NetBSD/sys/kern/kern_resource.c
ad 6d70f903e6 Network protocol interrupts can now block on locks, so merge the globals
proclist_mutex and proclist_lock into a single adaptive mutex (proc_lock).
Implications:

- Inspecting process state requires thread context, so signals can no longer
  be sent from a hardware interrupt handler. Signal activity must be
  deferred to a soft interrupt or kthread.

- As the proc state locking is simplified, it's now safe to take exit()
  and wait() out from under kernel_lock.

- The system spends less time at IPL_SCHED, and there is less lock activity.
2008-04-24 15:35:27 +00:00

1128 lines
27 KiB
C

/* $NetBSD: kern_resource.c,v 1.138 2008/04/24 15:35:29 ad Exp $ */
/*-
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.138 2008/04/24 15:35:29 ad Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/file.h>
#include <sys/resourcevar.h>
#include <sys/malloc.h>
#include <sys/kmem.h>
#include <sys/namei.h>
#include <sys/pool.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/timevar.h>
#include <sys/kauth.h>
#include <sys/atomic.h>
#include <sys/mount.h>
#include <sys/syscallargs.h>
#include <sys/atomic.h>
#include <uvm/uvm_extern.h>
/*
* Maximum process data and stack limits.
* They are variables so they are patchable.
*/
rlim_t maxdmap = MAXDSIZ;
rlim_t maxsmap = MAXSSIZ;
static SLIST_HEAD(uihashhead, uidinfo) *uihashtbl;
static u_long uihash;
#define UIHASH(uid) (&uihashtbl[(uid) & uihash])
static pool_cache_t plimit_cache;
static pool_cache_t pstats_cache;
void
resource_init(void)
{
/*
* In case of MP system, SLIST_FOREACH would force a cache line
* write-back for every modified 'uidinfo', thus we try to keep the
* lists short.
*/
const u_int uihash_sz = (maxproc > 1 ? 1024 : 64);
plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
"plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
"pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
uihashtbl = hashinit(uihash_sz, HASH_SLIST, M_PROC, M_WAITOK, &uihash);
}
/*
* Resource controls and accounting.
*/
int
sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
register_t *retval)
{
/* {
syscallarg(int) which;
syscallarg(id_t) who;
} */
struct proc *curp = l->l_proc, *p;
int low = NZERO + PRIO_MAX + 1;
int who = SCARG(uap, who);
mutex_enter(proc_lock);
switch (SCARG(uap, which)) {
case PRIO_PROCESS:
if (who == 0)
p = curp;
else
p = p_find(who, PFIND_LOCKED);
if (p != NULL)
low = p->p_nice;
break;
case PRIO_PGRP: {
struct pgrp *pg;
if (who == 0)
pg = curp->p_pgrp;
else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
break;
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
if (p->p_nice < low)
low = p->p_nice;
}
break;
}
case PRIO_USER:
if (who == 0)
who = (int)kauth_cred_geteuid(l->l_cred);
PROCLIST_FOREACH(p, &allproc) {
mutex_enter(&p->p_mutex);
if (kauth_cred_geteuid(p->p_cred) ==
(uid_t)who && p->p_nice < low)
low = p->p_nice;
mutex_exit(&p->p_mutex);
}
break;
default:
mutex_exit(proc_lock);
return (EINVAL);
}
mutex_exit(proc_lock);
if (low == NZERO + PRIO_MAX + 1)
return (ESRCH);
*retval = low - NZERO;
return (0);
}
/* ARGSUSED */
int
sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
register_t *retval)
{
/* {
syscallarg(int) which;
syscallarg(id_t) who;
syscallarg(int) prio;
} */
struct proc *curp = l->l_proc, *p;
int found = 0, error = 0;
int who = SCARG(uap, who);
mutex_enter(proc_lock);
switch (SCARG(uap, which)) {
case PRIO_PROCESS:
if (who == 0)
p = curp;
else
p = p_find(who, PFIND_LOCKED);
if (p != 0) {
mutex_enter(&p->p_mutex);
error = donice(l, p, SCARG(uap, prio));
mutex_exit(&p->p_mutex);
}
found++;
break;
case PRIO_PGRP: {
struct pgrp *pg;
if (who == 0)
pg = curp->p_pgrp;
else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
break;
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
mutex_enter(&p->p_mutex);
error = donice(l, p, SCARG(uap, prio));
mutex_exit(&p->p_mutex);
found++;
}
break;
}
case PRIO_USER:
if (who == 0)
who = (int)kauth_cred_geteuid(l->l_cred);
PROCLIST_FOREACH(p, &allproc) {
mutex_enter(&p->p_mutex);
if (kauth_cred_geteuid(p->p_cred) ==
(uid_t)SCARG(uap, who)) {
error = donice(l, p, SCARG(uap, prio));
found++;
}
mutex_exit(&p->p_mutex);
}
break;
default:
error = EINVAL;
break;
}
mutex_exit(proc_lock);
if (found == 0)
return (ESRCH);
return (error);
}
/*
* Renice a process.
*
* Call with the target process' credentials locked.
*/
int
donice(struct lwp *l, struct proc *chgp, int n)
{
kauth_cred_t cred = l->l_cred;
int onice;
KASSERT(mutex_owned(&chgp->p_mutex));
if (n > PRIO_MAX)
n = PRIO_MAX;
if (n < PRIO_MIN)
n = PRIO_MIN;
n += NZERO;
onice = chgp->p_nice;
onice = chgp->p_nice;
again:
if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
KAUTH_ARG(n), NULL, NULL))
return (EACCES);
mutex_spin_enter(&chgp->p_smutex);
if (onice != chgp->p_nice) {
mutex_spin_exit(&chgp->p_smutex);
goto again;
}
sched_nice(chgp, n);
mutex_spin_exit(&chgp->p_smutex);
return (0);
}
/* ARGSUSED */
int
sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
register_t *retval)
{
/* {
syscallarg(int) which;
syscallarg(const struct rlimit *) rlp;
} */
int which = SCARG(uap, which);
struct rlimit alim;
int error;
error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
if (error)
return (error);
return (dosetrlimit(l, l->l_proc, which, &alim));
}
int
dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
{
struct rlimit *alimp;
int error;
if ((u_int)which >= RLIM_NLIMITS)
return (EINVAL);
if (limp->rlim_cur < 0 || limp->rlim_max < 0)
return (EINVAL);
if (limp->rlim_cur > limp->rlim_max) {
/*
* This is programming error. According to SUSv2, we should
* return error in this case.
*/
return (EINVAL);
}
alimp = &p->p_rlimit[which];
/* if we don't change the value, no need to limcopy() */
if (limp->rlim_cur == alimp->rlim_cur &&
limp->rlim_max == alimp->rlim_max)
return 0;
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
if (error)
return (error);
lim_privatise(p, false);
/* p->p_limit is now unchangeable */
alimp = &p->p_rlimit[which];
switch (which) {
case RLIMIT_DATA:
if (limp->rlim_cur > maxdmap)
limp->rlim_cur = maxdmap;
if (limp->rlim_max > maxdmap)
limp->rlim_max = maxdmap;
break;
case RLIMIT_STACK:
if (limp->rlim_cur > maxsmap)
limp->rlim_cur = maxsmap;
if (limp->rlim_max > maxsmap)
limp->rlim_max = maxsmap;
/*
* Return EINVAL if the new stack size limit is lower than
* current usage. Otherwise, the process would get SIGSEGV the
* moment it would try to access anything on it's current stack.
* This conforms to SUSv2.
*/
if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
|| limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
return (EINVAL);
}
/*
* Stack is allocated to the max at exec time with
* only "rlim_cur" bytes accessible (In other words,
* allocates stack dividing two contiguous regions at
* "rlim_cur" bytes boundary).
*
* Since allocation is done in terms of page, roundup
* "rlim_cur" (otherwise, contiguous regions
* overlap). If stack limit is going up make more
* accessible, if going down make inaccessible.
*/
limp->rlim_cur = round_page(limp->rlim_cur);
if (limp->rlim_cur != alimp->rlim_cur) {
vaddr_t addr;
vsize_t size;
vm_prot_t prot;
if (limp->rlim_cur > alimp->rlim_cur) {
prot = VM_PROT_READ | VM_PROT_WRITE;
size = limp->rlim_cur - alimp->rlim_cur;
addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
limp->rlim_cur;
} else {
prot = VM_PROT_NONE;
size = alimp->rlim_cur - limp->rlim_cur;
addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
alimp->rlim_cur;
}
(void) uvm_map_protect(&p->p_vmspace->vm_map,
addr, addr+size, prot, false);
}
break;
case RLIMIT_NOFILE:
if (limp->rlim_cur > maxfiles)
limp->rlim_cur = maxfiles;
if (limp->rlim_max > maxfiles)
limp->rlim_max = maxfiles;
break;
case RLIMIT_NPROC:
if (limp->rlim_cur > maxproc)
limp->rlim_cur = maxproc;
if (limp->rlim_max > maxproc)
limp->rlim_max = maxproc;
break;
}
mutex_enter(&p->p_limit->pl_lock);
*alimp = *limp;
mutex_exit(&p->p_limit->pl_lock);
return (0);
}
/* ARGSUSED */
int
sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
register_t *retval)
{
/* {
syscallarg(int) which;
syscallarg(struct rlimit *) rlp;
} */
struct proc *p = l->l_proc;
int which = SCARG(uap, which);
struct rlimit rl;
if ((u_int)which >= RLIM_NLIMITS)
return (EINVAL);
mutex_enter(&p->p_mutex);
memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
mutex_exit(&p->p_mutex);
return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
}
/*
* Transform the running time and tick information in proc p into user,
* system, and interrupt time usage.
*
* Should be called with p->p_smutex held unless called from exit1().
*/
void
calcru(struct proc *p, struct timeval *up, struct timeval *sp,
struct timeval *ip, struct timeval *rp)
{
uint64_t u, st, ut, it, tot;
struct lwp *l;
struct bintime tm;
struct timeval tv;
mutex_spin_enter(&p->p_stmutex);
st = p->p_sticks;
ut = p->p_uticks;
it = p->p_iticks;
mutex_spin_exit(&p->p_stmutex);
tm = p->p_rtime;
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
lwp_lock(l);
bintime_add(&tm, &l->l_rtime);
if ((l->l_flag & LW_RUNNING) != 0) {
struct bintime diff;
/*
* Adjust for the current time slice. This is
* actually fairly important since the error
* here is on the order of a time quantum,
* which is much greater than the sampling
* error.
*/
binuptime(&diff);
bintime_sub(&diff, &l->l_stime);
bintime_add(&tm, &diff);
}
lwp_unlock(l);
}
tot = st + ut + it;
bintime2timeval(&tm, &tv);
u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
if (tot == 0) {
/* No ticks, so can't use to share time out, split 50-50 */
st = ut = u / 2;
} else {
st = (u * st) / tot;
ut = (u * ut) / tot;
}
if (sp != NULL) {
sp->tv_sec = st / 1000000;
sp->tv_usec = st % 1000000;
}
if (up != NULL) {
up->tv_sec = ut / 1000000;
up->tv_usec = ut % 1000000;
}
if (ip != NULL) {
if (it != 0)
it = (u * it) / tot;
ip->tv_sec = it / 1000000;
ip->tv_usec = it % 1000000;
}
if (rp != NULL) {
*rp = tv;
}
}
/* ARGSUSED */
int
sys_getrusage(struct lwp *l, const struct sys_getrusage_args *uap,
register_t *retval)
{
/* {
syscallarg(int) who;
syscallarg(struct rusage *) rusage;
} */
struct rusage ru;
struct proc *p = l->l_proc;
switch (SCARG(uap, who)) {
case RUSAGE_SELF:
mutex_enter(&p->p_smutex);
memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
rulwps(p, &ru);
mutex_exit(&p->p_smutex);
break;
case RUSAGE_CHILDREN:
mutex_enter(&p->p_smutex);
memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
mutex_exit(&p->p_smutex);
break;
default:
return EINVAL;
}
return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
}
void
ruadd(struct rusage *ru, struct rusage *ru2)
{
long *ip, *ip2;
int i;
timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
if (ru->ru_maxrss < ru2->ru_maxrss)
ru->ru_maxrss = ru2->ru_maxrss;
ip = &ru->ru_first; ip2 = &ru2->ru_first;
for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
*ip++ += *ip2++;
}
void
rulwps(proc_t *p, struct rusage *ru)
{
lwp_t *l;
KASSERT(mutex_owned(&p->p_smutex));
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
ruadd(ru, &l->l_ru);
ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
ru->ru_nivcsw += l->l_nivcsw;
}
}
/*
* Make a copy of the plimit structure.
* We share these structures copy-on-write after fork,
* and copy when a limit is changed.
*
* Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
* we are copying to change beneath our feet!
*/
struct plimit *
lim_copy(struct plimit *lim)
{
struct plimit *newlim;
char *corename;
size_t alen, len;
newlim = pool_cache_get(plimit_cache, PR_WAITOK);
mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
newlim->pl_flags = 0;
newlim->pl_refcnt = 1;
newlim->pl_sv_limit = NULL;
mutex_enter(&lim->pl_lock);
memcpy(newlim->pl_rlimit, lim->pl_rlimit,
sizeof(struct rlimit) * RLIM_NLIMITS);
alen = 0;
corename = NULL;
for (;;) {
if (lim->pl_corename == defcorename) {
newlim->pl_corename = defcorename;
break;
}
len = strlen(lim->pl_corename) + 1;
if (len <= alen) {
newlim->pl_corename = corename;
memcpy(corename, lim->pl_corename, len);
corename = NULL;
break;
}
mutex_exit(&lim->pl_lock);
if (corename != NULL)
free(corename, M_TEMP);
alen = len;
corename = malloc(alen, M_TEMP, M_WAITOK);
mutex_enter(&lim->pl_lock);
}
mutex_exit(&lim->pl_lock);
if (corename != NULL)
free(corename, M_TEMP);
return newlim;
}
void
lim_addref(struct plimit *lim)
{
atomic_inc_uint(&lim->pl_refcnt);
}
/*
* Give a process it's own private plimit structure.
* This will only be shared (in fork) if modifications are to be shared.
*/
void
lim_privatise(struct proc *p, bool set_shared)
{
struct plimit *lim, *newlim;
lim = p->p_limit;
if (lim->pl_flags & PL_WRITEABLE) {
if (set_shared)
lim->pl_flags |= PL_SHAREMOD;
return;
}
if (set_shared && lim->pl_flags & PL_SHAREMOD)
return;
newlim = lim_copy(lim);
mutex_enter(&p->p_mutex);
if (p->p_limit->pl_flags & PL_WRITEABLE) {
/* Someone crept in while we were busy */
mutex_exit(&p->p_mutex);
limfree(newlim);
if (set_shared)
p->p_limit->pl_flags |= PL_SHAREMOD;
return;
}
/*
* Since most accesses to p->p_limit aren't locked, we must not
* delete the old limit structure yet.
*/
newlim->pl_sv_limit = p->p_limit;
newlim->pl_flags |= PL_WRITEABLE;
if (set_shared)
newlim->pl_flags |= PL_SHAREMOD;
p->p_limit = newlim;
mutex_exit(&p->p_mutex);
}
void
limfree(struct plimit *lim)
{
struct plimit *sv_lim;
do {
if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0)
return;
if (lim->pl_corename != defcorename)
free(lim->pl_corename, M_TEMP);
sv_lim = lim->pl_sv_limit;
mutex_destroy(&lim->pl_lock);
pool_cache_put(plimit_cache, lim);
} while ((lim = sv_lim) != NULL);
}
struct pstats *
pstatscopy(struct pstats *ps)
{
struct pstats *newps;
newps = pool_cache_get(pstats_cache, PR_WAITOK);
memset(&newps->pstat_startzero, 0,
(unsigned) ((char *)&newps->pstat_endzero -
(char *)&newps->pstat_startzero));
memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
((char *)&newps->pstat_endcopy -
(char *)&newps->pstat_startcopy));
return (newps);
}
void
pstatsfree(struct pstats *ps)
{
pool_cache_put(pstats_cache, ps);
}
/*
* sysctl interface in five parts
*/
/*
* a routine for sysctl proc subtree helpers that need to pick a valid
* process by pid.
*/
static int
sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
{
struct proc *ptmp;
int error = 0;
if (pid == PROC_CURPROC)
ptmp = l->l_proc;
else if ((ptmp = pfind(pid)) == NULL)
error = ESRCH;
*p2 = ptmp;
return (error);
}
/*
* sysctl helper routine for setting a process's specific corefile
* name. picks the process based on the given pid and checks the
* correctness of the new value.
*/
static int
sysctl_proc_corename(SYSCTLFN_ARGS)
{
struct proc *ptmp;
struct plimit *lim;
int error = 0, len;
char *cname;
char *ocore;
char *tmp;
struct sysctlnode node;
/*
* is this all correct?
*/
if (namelen != 0)
return (EINVAL);
if (name[-1] != PROC_PID_CORENAME)
return (EINVAL);
/*
* whom are we tweaking?
*/
error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
if (error)
return (error);
/* XXX-elad */
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
if (error)
return (error);
if (newp == NULL) {
error = kauth_authorize_process(l->l_cred,
KAUTH_PROCESS_CORENAME, ptmp,
KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
if (error)
return (error);
}
/*
* let them modify a temporary copy of the core name
*/
cname = PNBUF_GET();
lim = ptmp->p_limit;
mutex_enter(&lim->pl_lock);
strlcpy(cname, lim->pl_corename, MAXPATHLEN);
mutex_exit(&lim->pl_lock);
node = *rnode;
node.sysctl_data = cname;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
/*
* if that failed, or they have nothing new to say, or we've
* heard it before...
*/
if (error || newp == NULL)
goto done;
lim = ptmp->p_limit;
mutex_enter(&lim->pl_lock);
error = strcmp(cname, lim->pl_corename);
mutex_exit(&lim->pl_lock);
if (error == 0)
/* Unchanged */
goto done;
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cname, NULL);
if (error)
return (error);
/*
* no error yet and cname now has the new core name in it.
* let's see if it looks acceptable. it must be either "core"
* or end in ".core" or "/core".
*/
len = strlen(cname);
if (len < 4) {
error = EINVAL;
} else if (strcmp(cname + len - 4, "core") != 0) {
error = EINVAL;
} else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
error = EINVAL;
}
if (error != 0) {
goto done;
}
/*
* hmm...looks good. now...where do we put it?
*/
tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
if (tmp == NULL) {
error = ENOMEM;
goto done;
}
memcpy(tmp, cname, len + 1);
lim_privatise(ptmp, false);
lim = ptmp->p_limit;
mutex_enter(&lim->pl_lock);
ocore = lim->pl_corename;
lim->pl_corename = tmp;
mutex_exit(&lim->pl_lock);
if (ocore != defcorename)
free(ocore, M_TEMP);
done:
PNBUF_PUT(cname);
return error;
}
/*
* sysctl helper routine for checking/setting a process's stop flags,
* one for fork and one for exec.
*/
static int
sysctl_proc_stop(SYSCTLFN_ARGS)
{
struct proc *ptmp;
int i, f, error = 0;
struct sysctlnode node;
if (namelen != 0)
return (EINVAL);
error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
if (error)
return (error);
/* XXX-elad */
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
if (error)
return (error);
switch (rnode->sysctl_num) {
case PROC_PID_STOPFORK:
f = PS_STOPFORK;
break;
case PROC_PID_STOPEXEC:
f = PS_STOPEXEC;
break;
case PROC_PID_STOPEXIT:
f = PS_STOPEXIT;
break;
default:
return (EINVAL);
}
i = (ptmp->p_flag & f) ? 1 : 0;
node = *rnode;
node.sysctl_data = &i;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
mutex_enter(&ptmp->p_smutex);
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
ptmp, KAUTH_ARG(f), NULL, NULL);
if (error)
return (error);
if (i)
ptmp->p_sflag |= f;
else
ptmp->p_sflag &= ~f;
mutex_exit(&ptmp->p_smutex);
return (0);
}
/*
* sysctl helper routine for a process's rlimits as exposed by sysctl.
*/
static int
sysctl_proc_plimit(SYSCTLFN_ARGS)
{
struct proc *ptmp;
u_int limitno;
int which, error = 0;
struct rlimit alim;
struct sysctlnode node;
if (namelen != 0)
return (EINVAL);
which = name[-1];
if (which != PROC_PID_LIMIT_TYPE_SOFT &&
which != PROC_PID_LIMIT_TYPE_HARD)
return (EINVAL);
limitno = name[-2] - 1;
if (limitno >= RLIM_NLIMITS)
return (EINVAL);
if (name[-3] != PROC_PID_LIMIT)
return (EINVAL);
error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
if (error)
return (error);
/* XXX-elad */
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
if (error)
return (error);
/* Check if we can view limits. */
if (newp == NULL) {
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
KAUTH_ARG(which));
if (error)
return (error);
}
node = *rnode;
memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
if (which == PROC_PID_LIMIT_TYPE_HARD)
node.sysctl_data = &alim.rlim_max;
else
node.sysctl_data = &alim.rlim_cur;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
return (dosetrlimit(l, ptmp, limitno, &alim));
}
/*
* and finally, the actually glue that sticks it to the tree
*/
SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
{
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "proc", NULL,
NULL, 0, NULL, 0,
CTL_PROC, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
CTLTYPE_NODE, "curproc",
SYSCTL_DESCR("Per-process settings"),
NULL, 0, NULL, 0,
CTL_PROC, PROC_CURPROC, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
CTLTYPE_STRING, "corename",
SYSCTL_DESCR("Core file name"),
sysctl_proc_corename, 0, NULL, MAXPATHLEN,
CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "rlimit",
SYSCTL_DESCR("Process limits"),
NULL, 0, NULL, 0,
CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
#define create_proc_plimit(s, n) do { \
sysctl_createv(clog, 0, NULL, NULL, \
CTLFLAG_PERMANENT, \
CTLTYPE_NODE, s, \
SYSCTL_DESCR("Process " s " limits"), \
NULL, 0, NULL, 0, \
CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
CTL_EOL); \
sysctl_createv(clog, 0, NULL, NULL, \
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
CTLTYPE_QUAD, "soft", \
SYSCTL_DESCR("Process soft " s " limit"), \
sysctl_proc_plimit, 0, NULL, 0, \
CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
sysctl_createv(clog, 0, NULL, NULL, \
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
CTLTYPE_QUAD, "hard", \
SYSCTL_DESCR("Process hard " s " limit"), \
sysctl_proc_plimit, 0, NULL, 0, \
CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
} while (0/*CONSTCOND*/)
create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
#undef create_proc_plimit
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
CTLTYPE_INT, "stopfork",
SYSCTL_DESCR("Stop process at fork(2)"),
sysctl_proc_stop, 0, NULL, 0,
CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
CTLTYPE_INT, "stopexec",
SYSCTL_DESCR("Stop process at execve(2)"),
sysctl_proc_stop, 0, NULL, 0,
CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
CTLTYPE_INT, "stopexit",
SYSCTL_DESCR("Stop process before completing exit"),
sysctl_proc_stop, 0, NULL, 0,
CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
}
void
uid_init(void)
{
/*
* Ensure that uid 0 is always in the user hash table, as
* sbreserve() expects it available from interrupt context.
*/
(void)uid_find(0);
}
struct uidinfo *
uid_find(uid_t uid)
{
struct uidinfo *uip, *uip_first, *newuip;
struct uihashhead *uipp;
uipp = UIHASH(uid);
newuip = NULL;
/*
* To make insertion atomic, abstraction of SLIST will be violated.
*/
uip_first = uipp->slh_first;
again:
SLIST_FOREACH(uip, uipp, ui_hash) {
if (uip->ui_uid != uid)
continue;
if (newuip != NULL)
kmem_free(newuip, sizeof(*newuip));
return uip;
}
if (newuip == NULL)
newuip = kmem_zalloc(sizeof(*newuip), KM_SLEEP);
newuip->ui_uid = uid;
/*
* If atomic insert is unsuccessful, another thread might be
* allocated this 'uid', thus full re-check is needed.
*/
newuip->ui_hash.sle_next = uip_first;
membar_producer();
uip = atomic_cas_ptr(&uipp->slh_first, uip_first, newuip);
if (uip != uip_first) {
uip_first = uip;
goto again;
}
return newuip;
}
/*
* Change the count associated with number of processes
* a given user is using.
*/
int
chgproccnt(uid_t uid, int diff)
{
struct uidinfo *uip;
long proccnt;
uip = uid_find(uid);
proccnt = atomic_add_long_nv(&uip->ui_proccnt, diff);
KASSERT(proccnt >= 0);
return proccnt;
}
int
chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
{
rlim_t nsb;
const long diff = to - *hiwat;
nsb = atomic_add_long_nv((long *)&uip->ui_sbsize, diff);
if (diff > 0 && nsb > xmax) {
atomic_add_long((long *)&uip->ui_sbsize, -diff);
return 0;
}
*hiwat = to;
KASSERT(nsb >= 0);
return 1;
}