6d70f903e6
proclist_mutex and proclist_lock into a single adaptive mutex (proc_lock). Implications: - Inspecting process state requires thread context, so signals can no longer be sent from a hardware interrupt handler. Signal activity must be deferred to a soft interrupt or kthread. - As the proc state locking is simplified, it's now safe to take exit() and wait() out from under kernel_lock. - The system spends less time at IPL_SCHED, and there is less lock activity.
1128 lines
27 KiB
C
1128 lines
27 KiB
C
/* $NetBSD: kern_resource.c,v 1.138 2008/04/24 15:35:29 ad Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1982, 1986, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.138 2008/04/24 15:35:29 ad Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/file.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/timevar.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/atomic.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/syscallargs.h>
|
|
#include <sys/atomic.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
/*
|
|
* Maximum process data and stack limits.
|
|
* They are variables so they are patchable.
|
|
*/
|
|
rlim_t maxdmap = MAXDSIZ;
|
|
rlim_t maxsmap = MAXSSIZ;
|
|
|
|
static SLIST_HEAD(uihashhead, uidinfo) *uihashtbl;
|
|
static u_long uihash;
|
|
|
|
#define UIHASH(uid) (&uihashtbl[(uid) & uihash])
|
|
|
|
static pool_cache_t plimit_cache;
|
|
static pool_cache_t pstats_cache;
|
|
|
|
void
|
|
resource_init(void)
|
|
{
|
|
/*
|
|
* In case of MP system, SLIST_FOREACH would force a cache line
|
|
* write-back for every modified 'uidinfo', thus we try to keep the
|
|
* lists short.
|
|
*/
|
|
const u_int uihash_sz = (maxproc > 1 ? 1024 : 64);
|
|
|
|
plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
|
|
"plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
|
|
pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
|
|
"pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
|
|
uihashtbl = hashinit(uihash_sz, HASH_SLIST, M_PROC, M_WAITOK, &uihash);
|
|
}
|
|
|
|
/*
|
|
* Resource controls and accounting.
|
|
*/
|
|
|
|
int
|
|
sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(int) which;
|
|
syscallarg(id_t) who;
|
|
} */
|
|
struct proc *curp = l->l_proc, *p;
|
|
int low = NZERO + PRIO_MAX + 1;
|
|
int who = SCARG(uap, who);
|
|
|
|
mutex_enter(proc_lock);
|
|
switch (SCARG(uap, which)) {
|
|
case PRIO_PROCESS:
|
|
if (who == 0)
|
|
p = curp;
|
|
else
|
|
p = p_find(who, PFIND_LOCKED);
|
|
if (p != NULL)
|
|
low = p->p_nice;
|
|
break;
|
|
|
|
case PRIO_PGRP: {
|
|
struct pgrp *pg;
|
|
|
|
if (who == 0)
|
|
pg = curp->p_pgrp;
|
|
else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
|
|
break;
|
|
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
|
|
if (p->p_nice < low)
|
|
low = p->p_nice;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PRIO_USER:
|
|
if (who == 0)
|
|
who = (int)kauth_cred_geteuid(l->l_cred);
|
|
PROCLIST_FOREACH(p, &allproc) {
|
|
mutex_enter(&p->p_mutex);
|
|
if (kauth_cred_geteuid(p->p_cred) ==
|
|
(uid_t)who && p->p_nice < low)
|
|
low = p->p_nice;
|
|
mutex_exit(&p->p_mutex);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
mutex_exit(proc_lock);
|
|
return (EINVAL);
|
|
}
|
|
mutex_exit(proc_lock);
|
|
|
|
if (low == NZERO + PRIO_MAX + 1)
|
|
return (ESRCH);
|
|
*retval = low - NZERO;
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(int) which;
|
|
syscallarg(id_t) who;
|
|
syscallarg(int) prio;
|
|
} */
|
|
struct proc *curp = l->l_proc, *p;
|
|
int found = 0, error = 0;
|
|
int who = SCARG(uap, who);
|
|
|
|
mutex_enter(proc_lock);
|
|
switch (SCARG(uap, which)) {
|
|
case PRIO_PROCESS:
|
|
if (who == 0)
|
|
p = curp;
|
|
else
|
|
p = p_find(who, PFIND_LOCKED);
|
|
if (p != 0) {
|
|
mutex_enter(&p->p_mutex);
|
|
error = donice(l, p, SCARG(uap, prio));
|
|
mutex_exit(&p->p_mutex);
|
|
}
|
|
found++;
|
|
break;
|
|
|
|
case PRIO_PGRP: {
|
|
struct pgrp *pg;
|
|
|
|
if (who == 0)
|
|
pg = curp->p_pgrp;
|
|
else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
|
|
break;
|
|
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
|
|
mutex_enter(&p->p_mutex);
|
|
error = donice(l, p, SCARG(uap, prio));
|
|
mutex_exit(&p->p_mutex);
|
|
found++;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PRIO_USER:
|
|
if (who == 0)
|
|
who = (int)kauth_cred_geteuid(l->l_cred);
|
|
PROCLIST_FOREACH(p, &allproc) {
|
|
mutex_enter(&p->p_mutex);
|
|
if (kauth_cred_geteuid(p->p_cred) ==
|
|
(uid_t)SCARG(uap, who)) {
|
|
error = donice(l, p, SCARG(uap, prio));
|
|
found++;
|
|
}
|
|
mutex_exit(&p->p_mutex);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
mutex_exit(proc_lock);
|
|
if (found == 0)
|
|
return (ESRCH);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Renice a process.
|
|
*
|
|
* Call with the target process' credentials locked.
|
|
*/
|
|
int
|
|
donice(struct lwp *l, struct proc *chgp, int n)
|
|
{
|
|
kauth_cred_t cred = l->l_cred;
|
|
int onice;
|
|
|
|
KASSERT(mutex_owned(&chgp->p_mutex));
|
|
|
|
if (n > PRIO_MAX)
|
|
n = PRIO_MAX;
|
|
if (n < PRIO_MIN)
|
|
n = PRIO_MIN;
|
|
n += NZERO;
|
|
onice = chgp->p_nice;
|
|
onice = chgp->p_nice;
|
|
|
|
again:
|
|
if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
|
|
KAUTH_ARG(n), NULL, NULL))
|
|
return (EACCES);
|
|
mutex_spin_enter(&chgp->p_smutex);
|
|
if (onice != chgp->p_nice) {
|
|
mutex_spin_exit(&chgp->p_smutex);
|
|
goto again;
|
|
}
|
|
sched_nice(chgp, n);
|
|
mutex_spin_exit(&chgp->p_smutex);
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(int) which;
|
|
syscallarg(const struct rlimit *) rlp;
|
|
} */
|
|
int which = SCARG(uap, which);
|
|
struct rlimit alim;
|
|
int error;
|
|
|
|
error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
|
|
if (error)
|
|
return (error);
|
|
return (dosetrlimit(l, l->l_proc, which, &alim));
|
|
}
|
|
|
|
int
|
|
dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
|
|
{
|
|
struct rlimit *alimp;
|
|
int error;
|
|
|
|
if ((u_int)which >= RLIM_NLIMITS)
|
|
return (EINVAL);
|
|
|
|
if (limp->rlim_cur < 0 || limp->rlim_max < 0)
|
|
return (EINVAL);
|
|
|
|
if (limp->rlim_cur > limp->rlim_max) {
|
|
/*
|
|
* This is programming error. According to SUSv2, we should
|
|
* return error in this case.
|
|
*/
|
|
return (EINVAL);
|
|
}
|
|
|
|
alimp = &p->p_rlimit[which];
|
|
/* if we don't change the value, no need to limcopy() */
|
|
if (limp->rlim_cur == alimp->rlim_cur &&
|
|
limp->rlim_max == alimp->rlim_max)
|
|
return 0;
|
|
|
|
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
|
|
p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
|
|
if (error)
|
|
return (error);
|
|
|
|
lim_privatise(p, false);
|
|
/* p->p_limit is now unchangeable */
|
|
alimp = &p->p_rlimit[which];
|
|
|
|
switch (which) {
|
|
|
|
case RLIMIT_DATA:
|
|
if (limp->rlim_cur > maxdmap)
|
|
limp->rlim_cur = maxdmap;
|
|
if (limp->rlim_max > maxdmap)
|
|
limp->rlim_max = maxdmap;
|
|
break;
|
|
|
|
case RLIMIT_STACK:
|
|
if (limp->rlim_cur > maxsmap)
|
|
limp->rlim_cur = maxsmap;
|
|
if (limp->rlim_max > maxsmap)
|
|
limp->rlim_max = maxsmap;
|
|
|
|
/*
|
|
* Return EINVAL if the new stack size limit is lower than
|
|
* current usage. Otherwise, the process would get SIGSEGV the
|
|
* moment it would try to access anything on it's current stack.
|
|
* This conforms to SUSv2.
|
|
*/
|
|
if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
|
|
|| limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Stack is allocated to the max at exec time with
|
|
* only "rlim_cur" bytes accessible (In other words,
|
|
* allocates stack dividing two contiguous regions at
|
|
* "rlim_cur" bytes boundary).
|
|
*
|
|
* Since allocation is done in terms of page, roundup
|
|
* "rlim_cur" (otherwise, contiguous regions
|
|
* overlap). If stack limit is going up make more
|
|
* accessible, if going down make inaccessible.
|
|
*/
|
|
limp->rlim_cur = round_page(limp->rlim_cur);
|
|
if (limp->rlim_cur != alimp->rlim_cur) {
|
|
vaddr_t addr;
|
|
vsize_t size;
|
|
vm_prot_t prot;
|
|
|
|
if (limp->rlim_cur > alimp->rlim_cur) {
|
|
prot = VM_PROT_READ | VM_PROT_WRITE;
|
|
size = limp->rlim_cur - alimp->rlim_cur;
|
|
addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
|
|
limp->rlim_cur;
|
|
} else {
|
|
prot = VM_PROT_NONE;
|
|
size = alimp->rlim_cur - limp->rlim_cur;
|
|
addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
|
|
alimp->rlim_cur;
|
|
}
|
|
(void) uvm_map_protect(&p->p_vmspace->vm_map,
|
|
addr, addr+size, prot, false);
|
|
}
|
|
break;
|
|
|
|
case RLIMIT_NOFILE:
|
|
if (limp->rlim_cur > maxfiles)
|
|
limp->rlim_cur = maxfiles;
|
|
if (limp->rlim_max > maxfiles)
|
|
limp->rlim_max = maxfiles;
|
|
break;
|
|
|
|
case RLIMIT_NPROC:
|
|
if (limp->rlim_cur > maxproc)
|
|
limp->rlim_cur = maxproc;
|
|
if (limp->rlim_max > maxproc)
|
|
limp->rlim_max = maxproc;
|
|
break;
|
|
}
|
|
|
|
mutex_enter(&p->p_limit->pl_lock);
|
|
*alimp = *limp;
|
|
mutex_exit(&p->p_limit->pl_lock);
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(int) which;
|
|
syscallarg(struct rlimit *) rlp;
|
|
} */
|
|
struct proc *p = l->l_proc;
|
|
int which = SCARG(uap, which);
|
|
struct rlimit rl;
|
|
|
|
if ((u_int)which >= RLIM_NLIMITS)
|
|
return (EINVAL);
|
|
|
|
mutex_enter(&p->p_mutex);
|
|
memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
|
|
mutex_exit(&p->p_mutex);
|
|
|
|
return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
|
|
}
|
|
|
|
/*
|
|
* Transform the running time and tick information in proc p into user,
|
|
* system, and interrupt time usage.
|
|
*
|
|
* Should be called with p->p_smutex held unless called from exit1().
|
|
*/
|
|
void
|
|
calcru(struct proc *p, struct timeval *up, struct timeval *sp,
|
|
struct timeval *ip, struct timeval *rp)
|
|
{
|
|
uint64_t u, st, ut, it, tot;
|
|
struct lwp *l;
|
|
struct bintime tm;
|
|
struct timeval tv;
|
|
|
|
mutex_spin_enter(&p->p_stmutex);
|
|
st = p->p_sticks;
|
|
ut = p->p_uticks;
|
|
it = p->p_iticks;
|
|
mutex_spin_exit(&p->p_stmutex);
|
|
|
|
tm = p->p_rtime;
|
|
|
|
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
|
|
lwp_lock(l);
|
|
bintime_add(&tm, &l->l_rtime);
|
|
if ((l->l_flag & LW_RUNNING) != 0) {
|
|
struct bintime diff;
|
|
/*
|
|
* Adjust for the current time slice. This is
|
|
* actually fairly important since the error
|
|
* here is on the order of a time quantum,
|
|
* which is much greater than the sampling
|
|
* error.
|
|
*/
|
|
binuptime(&diff);
|
|
bintime_sub(&diff, &l->l_stime);
|
|
bintime_add(&tm, &diff);
|
|
}
|
|
lwp_unlock(l);
|
|
}
|
|
|
|
tot = st + ut + it;
|
|
bintime2timeval(&tm, &tv);
|
|
u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
|
|
|
|
if (tot == 0) {
|
|
/* No ticks, so can't use to share time out, split 50-50 */
|
|
st = ut = u / 2;
|
|
} else {
|
|
st = (u * st) / tot;
|
|
ut = (u * ut) / tot;
|
|
}
|
|
if (sp != NULL) {
|
|
sp->tv_sec = st / 1000000;
|
|
sp->tv_usec = st % 1000000;
|
|
}
|
|
if (up != NULL) {
|
|
up->tv_sec = ut / 1000000;
|
|
up->tv_usec = ut % 1000000;
|
|
}
|
|
if (ip != NULL) {
|
|
if (it != 0)
|
|
it = (u * it) / tot;
|
|
ip->tv_sec = it / 1000000;
|
|
ip->tv_usec = it % 1000000;
|
|
}
|
|
if (rp != NULL) {
|
|
*rp = tv;
|
|
}
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys_getrusage(struct lwp *l, const struct sys_getrusage_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(int) who;
|
|
syscallarg(struct rusage *) rusage;
|
|
} */
|
|
struct rusage ru;
|
|
struct proc *p = l->l_proc;
|
|
|
|
switch (SCARG(uap, who)) {
|
|
case RUSAGE_SELF:
|
|
mutex_enter(&p->p_smutex);
|
|
memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
|
|
calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
|
|
rulwps(p, &ru);
|
|
mutex_exit(&p->p_smutex);
|
|
break;
|
|
|
|
case RUSAGE_CHILDREN:
|
|
mutex_enter(&p->p_smutex);
|
|
memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
|
|
mutex_exit(&p->p_smutex);
|
|
break;
|
|
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
|
|
return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
|
|
}
|
|
|
|
void
|
|
ruadd(struct rusage *ru, struct rusage *ru2)
|
|
{
|
|
long *ip, *ip2;
|
|
int i;
|
|
|
|
timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
|
|
timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
|
|
if (ru->ru_maxrss < ru2->ru_maxrss)
|
|
ru->ru_maxrss = ru2->ru_maxrss;
|
|
ip = &ru->ru_first; ip2 = &ru2->ru_first;
|
|
for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
|
|
*ip++ += *ip2++;
|
|
}
|
|
|
|
void
|
|
rulwps(proc_t *p, struct rusage *ru)
|
|
{
|
|
lwp_t *l;
|
|
|
|
KASSERT(mutex_owned(&p->p_smutex));
|
|
|
|
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
|
|
ruadd(ru, &l->l_ru);
|
|
ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
|
|
ru->ru_nivcsw += l->l_nivcsw;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make a copy of the plimit structure.
|
|
* We share these structures copy-on-write after fork,
|
|
* and copy when a limit is changed.
|
|
*
|
|
* Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
|
|
* we are copying to change beneath our feet!
|
|
*/
|
|
struct plimit *
|
|
lim_copy(struct plimit *lim)
|
|
{
|
|
struct plimit *newlim;
|
|
char *corename;
|
|
size_t alen, len;
|
|
|
|
newlim = pool_cache_get(plimit_cache, PR_WAITOK);
|
|
mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
|
|
newlim->pl_flags = 0;
|
|
newlim->pl_refcnt = 1;
|
|
newlim->pl_sv_limit = NULL;
|
|
|
|
mutex_enter(&lim->pl_lock);
|
|
memcpy(newlim->pl_rlimit, lim->pl_rlimit,
|
|
sizeof(struct rlimit) * RLIM_NLIMITS);
|
|
|
|
alen = 0;
|
|
corename = NULL;
|
|
for (;;) {
|
|
if (lim->pl_corename == defcorename) {
|
|
newlim->pl_corename = defcorename;
|
|
break;
|
|
}
|
|
len = strlen(lim->pl_corename) + 1;
|
|
if (len <= alen) {
|
|
newlim->pl_corename = corename;
|
|
memcpy(corename, lim->pl_corename, len);
|
|
corename = NULL;
|
|
break;
|
|
}
|
|
mutex_exit(&lim->pl_lock);
|
|
if (corename != NULL)
|
|
free(corename, M_TEMP);
|
|
alen = len;
|
|
corename = malloc(alen, M_TEMP, M_WAITOK);
|
|
mutex_enter(&lim->pl_lock);
|
|
}
|
|
mutex_exit(&lim->pl_lock);
|
|
if (corename != NULL)
|
|
free(corename, M_TEMP);
|
|
return newlim;
|
|
}
|
|
|
|
void
|
|
lim_addref(struct plimit *lim)
|
|
{
|
|
atomic_inc_uint(&lim->pl_refcnt);
|
|
}
|
|
|
|
/*
|
|
* Give a process it's own private plimit structure.
|
|
* This will only be shared (in fork) if modifications are to be shared.
|
|
*/
|
|
void
|
|
lim_privatise(struct proc *p, bool set_shared)
|
|
{
|
|
struct plimit *lim, *newlim;
|
|
|
|
lim = p->p_limit;
|
|
if (lim->pl_flags & PL_WRITEABLE) {
|
|
if (set_shared)
|
|
lim->pl_flags |= PL_SHAREMOD;
|
|
return;
|
|
}
|
|
|
|
if (set_shared && lim->pl_flags & PL_SHAREMOD)
|
|
return;
|
|
|
|
newlim = lim_copy(lim);
|
|
|
|
mutex_enter(&p->p_mutex);
|
|
if (p->p_limit->pl_flags & PL_WRITEABLE) {
|
|
/* Someone crept in while we were busy */
|
|
mutex_exit(&p->p_mutex);
|
|
limfree(newlim);
|
|
if (set_shared)
|
|
p->p_limit->pl_flags |= PL_SHAREMOD;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Since most accesses to p->p_limit aren't locked, we must not
|
|
* delete the old limit structure yet.
|
|
*/
|
|
newlim->pl_sv_limit = p->p_limit;
|
|
newlim->pl_flags |= PL_WRITEABLE;
|
|
if (set_shared)
|
|
newlim->pl_flags |= PL_SHAREMOD;
|
|
p->p_limit = newlim;
|
|
mutex_exit(&p->p_mutex);
|
|
}
|
|
|
|
void
|
|
limfree(struct plimit *lim)
|
|
{
|
|
struct plimit *sv_lim;
|
|
|
|
do {
|
|
if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0)
|
|
return;
|
|
if (lim->pl_corename != defcorename)
|
|
free(lim->pl_corename, M_TEMP);
|
|
sv_lim = lim->pl_sv_limit;
|
|
mutex_destroy(&lim->pl_lock);
|
|
pool_cache_put(plimit_cache, lim);
|
|
} while ((lim = sv_lim) != NULL);
|
|
}
|
|
|
|
struct pstats *
|
|
pstatscopy(struct pstats *ps)
|
|
{
|
|
|
|
struct pstats *newps;
|
|
|
|
newps = pool_cache_get(pstats_cache, PR_WAITOK);
|
|
|
|
memset(&newps->pstat_startzero, 0,
|
|
(unsigned) ((char *)&newps->pstat_endzero -
|
|
(char *)&newps->pstat_startzero));
|
|
memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
|
|
((char *)&newps->pstat_endcopy -
|
|
(char *)&newps->pstat_startcopy));
|
|
|
|
return (newps);
|
|
|
|
}
|
|
|
|
void
|
|
pstatsfree(struct pstats *ps)
|
|
{
|
|
|
|
pool_cache_put(pstats_cache, ps);
|
|
}
|
|
|
|
/*
|
|
* sysctl interface in five parts
|
|
*/
|
|
|
|
/*
|
|
* a routine for sysctl proc subtree helpers that need to pick a valid
|
|
* process by pid.
|
|
*/
|
|
static int
|
|
sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
|
|
{
|
|
struct proc *ptmp;
|
|
int error = 0;
|
|
|
|
if (pid == PROC_CURPROC)
|
|
ptmp = l->l_proc;
|
|
else if ((ptmp = pfind(pid)) == NULL)
|
|
error = ESRCH;
|
|
|
|
*p2 = ptmp;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* sysctl helper routine for setting a process's specific corefile
|
|
* name. picks the process based on the given pid and checks the
|
|
* correctness of the new value.
|
|
*/
|
|
static int
|
|
sysctl_proc_corename(SYSCTLFN_ARGS)
|
|
{
|
|
struct proc *ptmp;
|
|
struct plimit *lim;
|
|
int error = 0, len;
|
|
char *cname;
|
|
char *ocore;
|
|
char *tmp;
|
|
struct sysctlnode node;
|
|
|
|
/*
|
|
* is this all correct?
|
|
*/
|
|
if (namelen != 0)
|
|
return (EINVAL);
|
|
if (name[-1] != PROC_PID_CORENAME)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* whom are we tweaking?
|
|
*/
|
|
error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
|
|
if (error)
|
|
return (error);
|
|
|
|
/* XXX-elad */
|
|
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
|
|
KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
|
|
if (error)
|
|
return (error);
|
|
|
|
if (newp == NULL) {
|
|
error = kauth_authorize_process(l->l_cred,
|
|
KAUTH_PROCESS_CORENAME, ptmp,
|
|
KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* let them modify a temporary copy of the core name
|
|
*/
|
|
cname = PNBUF_GET();
|
|
lim = ptmp->p_limit;
|
|
mutex_enter(&lim->pl_lock);
|
|
strlcpy(cname, lim->pl_corename, MAXPATHLEN);
|
|
mutex_exit(&lim->pl_lock);
|
|
|
|
node = *rnode;
|
|
node.sysctl_data = cname;
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
|
|
/*
|
|
* if that failed, or they have nothing new to say, or we've
|
|
* heard it before...
|
|
*/
|
|
if (error || newp == NULL)
|
|
goto done;
|
|
lim = ptmp->p_limit;
|
|
mutex_enter(&lim->pl_lock);
|
|
error = strcmp(cname, lim->pl_corename);
|
|
mutex_exit(&lim->pl_lock);
|
|
if (error == 0)
|
|
/* Unchanged */
|
|
goto done;
|
|
|
|
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
|
|
ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cname, NULL);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* no error yet and cname now has the new core name in it.
|
|
* let's see if it looks acceptable. it must be either "core"
|
|
* or end in ".core" or "/core".
|
|
*/
|
|
len = strlen(cname);
|
|
if (len < 4) {
|
|
error = EINVAL;
|
|
} else if (strcmp(cname + len - 4, "core") != 0) {
|
|
error = EINVAL;
|
|
} else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
|
|
error = EINVAL;
|
|
}
|
|
if (error != 0) {
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* hmm...looks good. now...where do we put it?
|
|
*/
|
|
tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
|
|
if (tmp == NULL) {
|
|
error = ENOMEM;
|
|
goto done;
|
|
}
|
|
memcpy(tmp, cname, len + 1);
|
|
|
|
lim_privatise(ptmp, false);
|
|
lim = ptmp->p_limit;
|
|
mutex_enter(&lim->pl_lock);
|
|
ocore = lim->pl_corename;
|
|
lim->pl_corename = tmp;
|
|
mutex_exit(&lim->pl_lock);
|
|
if (ocore != defcorename)
|
|
free(ocore, M_TEMP);
|
|
|
|
done:
|
|
PNBUF_PUT(cname);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* sysctl helper routine for checking/setting a process's stop flags,
|
|
* one for fork and one for exec.
|
|
*/
|
|
static int
|
|
sysctl_proc_stop(SYSCTLFN_ARGS)
|
|
{
|
|
struct proc *ptmp;
|
|
int i, f, error = 0;
|
|
struct sysctlnode node;
|
|
|
|
if (namelen != 0)
|
|
return (EINVAL);
|
|
|
|
error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
|
|
if (error)
|
|
return (error);
|
|
|
|
/* XXX-elad */
|
|
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
|
|
KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
|
|
if (error)
|
|
return (error);
|
|
|
|
switch (rnode->sysctl_num) {
|
|
case PROC_PID_STOPFORK:
|
|
f = PS_STOPFORK;
|
|
break;
|
|
case PROC_PID_STOPEXEC:
|
|
f = PS_STOPEXEC;
|
|
break;
|
|
case PROC_PID_STOPEXIT:
|
|
f = PS_STOPEXIT;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
i = (ptmp->p_flag & f) ? 1 : 0;
|
|
node = *rnode;
|
|
node.sysctl_data = &i;
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
if (error || newp == NULL)
|
|
return (error);
|
|
|
|
mutex_enter(&ptmp->p_smutex);
|
|
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
|
|
ptmp, KAUTH_ARG(f), NULL, NULL);
|
|
if (error)
|
|
return (error);
|
|
if (i)
|
|
ptmp->p_sflag |= f;
|
|
else
|
|
ptmp->p_sflag &= ~f;
|
|
mutex_exit(&ptmp->p_smutex);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* sysctl helper routine for a process's rlimits as exposed by sysctl.
|
|
*/
|
|
static int
|
|
sysctl_proc_plimit(SYSCTLFN_ARGS)
|
|
{
|
|
struct proc *ptmp;
|
|
u_int limitno;
|
|
int which, error = 0;
|
|
struct rlimit alim;
|
|
struct sysctlnode node;
|
|
|
|
if (namelen != 0)
|
|
return (EINVAL);
|
|
|
|
which = name[-1];
|
|
if (which != PROC_PID_LIMIT_TYPE_SOFT &&
|
|
which != PROC_PID_LIMIT_TYPE_HARD)
|
|
return (EINVAL);
|
|
|
|
limitno = name[-2] - 1;
|
|
if (limitno >= RLIM_NLIMITS)
|
|
return (EINVAL);
|
|
|
|
if (name[-3] != PROC_PID_LIMIT)
|
|
return (EINVAL);
|
|
|
|
error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
|
|
if (error)
|
|
return (error);
|
|
|
|
/* XXX-elad */
|
|
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
|
|
KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
|
|
if (error)
|
|
return (error);
|
|
|
|
/* Check if we can view limits. */
|
|
if (newp == NULL) {
|
|
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
|
|
ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
|
|
KAUTH_ARG(which));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
node = *rnode;
|
|
memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
|
|
if (which == PROC_PID_LIMIT_TYPE_HARD)
|
|
node.sysctl_data = &alim.rlim_max;
|
|
else
|
|
node.sysctl_data = &alim.rlim_cur;
|
|
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
if (error || newp == NULL)
|
|
return (error);
|
|
|
|
return (dosetrlimit(l, ptmp, limitno, &alim));
|
|
}
|
|
|
|
/*
|
|
* and finally, the actually glue that sticks it to the tree
|
|
*/
|
|
SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
|
|
{
|
|
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "proc", NULL,
|
|
NULL, 0, NULL, 0,
|
|
CTL_PROC, CTL_EOL);
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
|
|
CTLTYPE_NODE, "curproc",
|
|
SYSCTL_DESCR("Per-process settings"),
|
|
NULL, 0, NULL, 0,
|
|
CTL_PROC, PROC_CURPROC, CTL_EOL);
|
|
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
|
|
CTLTYPE_STRING, "corename",
|
|
SYSCTL_DESCR("Core file name"),
|
|
sysctl_proc_corename, 0, NULL, MAXPATHLEN,
|
|
CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "rlimit",
|
|
SYSCTL_DESCR("Process limits"),
|
|
NULL, 0, NULL, 0,
|
|
CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
|
|
|
|
#define create_proc_plimit(s, n) do { \
|
|
sysctl_createv(clog, 0, NULL, NULL, \
|
|
CTLFLAG_PERMANENT, \
|
|
CTLTYPE_NODE, s, \
|
|
SYSCTL_DESCR("Process " s " limits"), \
|
|
NULL, 0, NULL, 0, \
|
|
CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
|
|
CTL_EOL); \
|
|
sysctl_createv(clog, 0, NULL, NULL, \
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
|
|
CTLTYPE_QUAD, "soft", \
|
|
SYSCTL_DESCR("Process soft " s " limit"), \
|
|
sysctl_proc_plimit, 0, NULL, 0, \
|
|
CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
|
|
PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
|
|
sysctl_createv(clog, 0, NULL, NULL, \
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
|
|
CTLTYPE_QUAD, "hard", \
|
|
SYSCTL_DESCR("Process hard " s " limit"), \
|
|
sysctl_proc_plimit, 0, NULL, 0, \
|
|
CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
|
|
PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
|
|
} while (0/*CONSTCOND*/)
|
|
|
|
create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
|
|
create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
|
|
create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
|
|
create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
|
|
create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
|
|
create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
|
|
create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
|
|
create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
|
|
create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
|
|
create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
|
|
|
|
#undef create_proc_plimit
|
|
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
|
|
CTLTYPE_INT, "stopfork",
|
|
SYSCTL_DESCR("Stop process at fork(2)"),
|
|
sysctl_proc_stop, 0, NULL, 0,
|
|
CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
|
|
CTLTYPE_INT, "stopexec",
|
|
SYSCTL_DESCR("Stop process at execve(2)"),
|
|
sysctl_proc_stop, 0, NULL, 0,
|
|
CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
|
|
CTLTYPE_INT, "stopexit",
|
|
SYSCTL_DESCR("Stop process before completing exit"),
|
|
sysctl_proc_stop, 0, NULL, 0,
|
|
CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
|
|
}
|
|
|
|
void
|
|
uid_init(void)
|
|
{
|
|
|
|
/*
|
|
* Ensure that uid 0 is always in the user hash table, as
|
|
* sbreserve() expects it available from interrupt context.
|
|
*/
|
|
(void)uid_find(0);
|
|
}
|
|
|
|
struct uidinfo *
|
|
uid_find(uid_t uid)
|
|
{
|
|
struct uidinfo *uip, *uip_first, *newuip;
|
|
struct uihashhead *uipp;
|
|
|
|
uipp = UIHASH(uid);
|
|
newuip = NULL;
|
|
|
|
/*
|
|
* To make insertion atomic, abstraction of SLIST will be violated.
|
|
*/
|
|
uip_first = uipp->slh_first;
|
|
again:
|
|
SLIST_FOREACH(uip, uipp, ui_hash) {
|
|
if (uip->ui_uid != uid)
|
|
continue;
|
|
if (newuip != NULL)
|
|
kmem_free(newuip, sizeof(*newuip));
|
|
return uip;
|
|
}
|
|
if (newuip == NULL)
|
|
newuip = kmem_zalloc(sizeof(*newuip), KM_SLEEP);
|
|
newuip->ui_uid = uid;
|
|
|
|
/*
|
|
* If atomic insert is unsuccessful, another thread might be
|
|
* allocated this 'uid', thus full re-check is needed.
|
|
*/
|
|
newuip->ui_hash.sle_next = uip_first;
|
|
membar_producer();
|
|
uip = atomic_cas_ptr(&uipp->slh_first, uip_first, newuip);
|
|
if (uip != uip_first) {
|
|
uip_first = uip;
|
|
goto again;
|
|
}
|
|
|
|
return newuip;
|
|
}
|
|
|
|
/*
|
|
* Change the count associated with number of processes
|
|
* a given user is using.
|
|
*/
|
|
int
|
|
chgproccnt(uid_t uid, int diff)
|
|
{
|
|
struct uidinfo *uip;
|
|
long proccnt;
|
|
|
|
uip = uid_find(uid);
|
|
proccnt = atomic_add_long_nv(&uip->ui_proccnt, diff);
|
|
KASSERT(proccnt >= 0);
|
|
return proccnt;
|
|
}
|
|
|
|
int
|
|
chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
|
|
{
|
|
rlim_t nsb;
|
|
const long diff = to - *hiwat;
|
|
|
|
nsb = atomic_add_long_nv((long *)&uip->ui_sbsize, diff);
|
|
if (diff > 0 && nsb > xmax) {
|
|
atomic_add_long((long *)&uip->ui_sbsize, -diff);
|
|
return 0;
|
|
}
|
|
*hiwat = to;
|
|
KASSERT(nsb >= 0);
|
|
return 1;
|
|
}
|