NetBSD/sys/kern/subr_xcall.c

515 lines
13 KiB
C

/* $NetBSD: subr_xcall.c,v 1.26 2018/02/07 04:25:09 ozaki-r Exp $ */
/*-
* Copyright (c) 2007-2010 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran and Mindaugas Rasiukevicius.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Cross call support
*
* Background
*
* Sometimes it is necessary to modify hardware state that is tied
* directly to individual CPUs (such as a CPU's local timer), and
* these updates can not be done remotely by another CPU. The LWP
* requesting the update may be unable to guarantee that it will be
* running on the CPU where the update must occur, when the update
* occurs.
*
* Additionally, it's sometimes necessary to modify per-CPU software
* state from a remote CPU. Where these update operations are so
* rare or the access to the per-CPU data so frequent that the cost
* of using locking or atomic operations to provide coherency is
* prohibitive, another way must be found.
*
* Cross calls help to solve these types of problem by allowing
* any CPU in the system to request that an arbitrary function be
* executed on any other CPU.
*
* Implementation
*
* A slow mechanism for making 'low priority' cross calls is
* provided. The function to be executed runs on the remote CPU
* within a bound kthread. No queueing is provided, and the
* implementation uses global state. The function being called may
* block briefly on locks, but in doing so must be careful to not
* interfere with other cross calls in the system. The function is
* called with thread context and not from a soft interrupt, so it
* can ensure that it is not interrupting other code running on the
* CPU, and so has exclusive access to the CPU. Since this facility
* is heavyweight, it's expected that it will not be used often.
*
* Cross calls must not allocate memory, as the pagedaemon uses
* them (and memory allocation may need to wait on the pagedaemon).
*
* A low-overhead mechanism for high priority calls (XC_HIGHPRI) is
* also provided. The function to be executed runs on a software
* interrupt context, at IPL_SOFTSERIAL level, and is expected to
* be very lightweight, e.g. avoid blocking.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_xcall.c,v 1.26 2018/02/07 04:25:09 ozaki-r Exp $");
#include <sys/types.h>
#include <sys/param.h>
#include <sys/xcall.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/evcnt.h>
#include <sys/kthread.h>
#include <sys/cpu.h>
#ifdef _RUMPKERNEL
#include "rump_private.h"
#endif
/* Cross-call state box. */
typedef struct {
kmutex_t xc_lock;
kcondvar_t xc_busy;
xcfunc_t xc_func;
void * xc_arg1;
void * xc_arg2;
uint64_t xc_headp;
uint64_t xc_donep;
unsigned int xc_ipl;
} xc_state_t;
/* Bit indicating high (1) or low (0) priority. */
#define XC_PRI_BIT (1ULL << 63)
/* Low priority xcall structures. */
static xc_state_t xc_low_pri __cacheline_aligned;
/* High priority xcall structures. */
static xc_state_t xc_high_pri __cacheline_aligned;
static void * xc_sihs[4] __cacheline_aligned;
/* Event counters. */
static struct evcnt xc_unicast_ev __cacheline_aligned;
static struct evcnt xc_broadcast_ev __cacheline_aligned;
static void xc_init(void);
static void xc_thread(void *);
static inline uint64_t xc_highpri(xcfunc_t, void *, void *, struct cpu_info *,
unsigned int);
static inline uint64_t xc_lowpri(xcfunc_t, void *, void *, struct cpu_info *);
/* The internal form of IPL */
#define XC_IPL_MASK 0xff00
/*
* Assign 0 to XC_IPL_SOFTSERIAL to treat IPL_SOFTSERIAL as the default value
* (just XC_HIGHPRI).
*/
#define XC_IPL_SOFTSERIAL 0
#define XC_IPL_SOFTNET 1
#define XC_IPL_SOFTBIO 2
#define XC_IPL_SOFTCLOCK 3
#define XC_IPL_MAX XC_IPL_SOFTCLOCK
CTASSERT(XC_IPL_MAX <= __arraycount(xc_sihs));
/*
* xc_init:
*
* Initialize low and high priority cross-call structures.
*/
static void
xc_init(void)
{
xc_state_t *xclo = &xc_low_pri, *xchi = &xc_high_pri;
memset(xclo, 0, sizeof(xc_state_t));
mutex_init(&xclo->xc_lock, MUTEX_DEFAULT, IPL_NONE);
cv_init(&xclo->xc_busy, "xclocv");
memset(xchi, 0, sizeof(xc_state_t));
mutex_init(&xchi->xc_lock, MUTEX_DEFAULT, IPL_SOFTSERIAL);
cv_init(&xchi->xc_busy, "xchicv");
/* Set up a softint for each IPL_SOFT*. */
#define SETUP_SOFTINT(xipl, sipl) do { \
xc_sihs[(xipl)] = softint_establish( (sipl) | SOFTINT_MPSAFE,\
xc__highpri_intr, NULL); \
KASSERT(xc_sihs[(xipl)] != NULL); \
} while (0)
SETUP_SOFTINT(XC_IPL_SOFTSERIAL, SOFTINT_SERIAL);
/*
* If a IPL_SOFTXXX have the same value of the previous, we don't use
* the IPL (see xc_encode_ipl). So we don't need to allocate a softint
* for it.
*/
#if IPL_SOFTNET != IPL_SOFTSERIAL
SETUP_SOFTINT(XC_IPL_SOFTNET, SOFTINT_NET);
#endif
#if IPL_SOFTBIO != IPL_SOFTNET
SETUP_SOFTINT(XC_IPL_SOFTBIO, SOFTINT_BIO);
#endif
#if IPL_SOFTCLOCK != IPL_SOFTBIO
SETUP_SOFTINT(XC_IPL_SOFTCLOCK, SOFTINT_CLOCK);
#endif
#undef SETUP_SOFTINT
evcnt_attach_dynamic(&xc_unicast_ev, EVCNT_TYPE_MISC, NULL,
"crosscall", "unicast");
evcnt_attach_dynamic(&xc_broadcast_ev, EVCNT_TYPE_MISC, NULL,
"crosscall", "broadcast");
}
/*
* Encode an IPL to a form that can be embedded into flags of xc_broadcast
* or xc_unicast.
*/
unsigned int
xc_encode_ipl(int ipl)
{
switch (ipl) {
case IPL_SOFTSERIAL:
return __SHIFTIN(XC_IPL_SOFTSERIAL, XC_IPL_MASK);
/* IPL_SOFT* can be the same value (e.g., on sparc or mips). */
#if IPL_SOFTNET != IPL_SOFTSERIAL
case IPL_SOFTNET:
return __SHIFTIN(XC_IPL_SOFTNET, XC_IPL_MASK);
#endif
#if IPL_SOFTBIO != IPL_SOFTNET
case IPL_SOFTBIO:
return __SHIFTIN(XC_IPL_SOFTBIO, XC_IPL_MASK);
#endif
#if IPL_SOFTCLOCK != IPL_SOFTBIO
case IPL_SOFTCLOCK:
return __SHIFTIN(XC_IPL_SOFTCLOCK, XC_IPL_MASK);
#endif
}
panic("Invalid IPL: %d", ipl);
}
/*
* Extract an XC_IPL from flags of xc_broadcast or xc_unicast.
*/
static inline unsigned int
xc_extract_ipl(unsigned int flags)
{
return __SHIFTOUT(flags, XC_IPL_MASK);
}
/*
* xc_init_cpu:
*
* Initialize the cross-call subsystem. Called once for each CPU
* in the system as they are attached.
*/
void
xc_init_cpu(struct cpu_info *ci)
{
static bool again = false;
int error __diagused;
if (!again) {
/* Autoconfiguration will prevent re-entry. */
xc_init();
again = true;
}
cv_init(&ci->ci_data.cpu_xcall, "xcall");
error = kthread_create(PRI_XCALL, KTHREAD_MPSAFE, ci, xc_thread,
NULL, NULL, "xcall/%u", ci->ci_index);
KASSERT(error == 0);
}
/*
* xc_broadcast:
*
* Trigger a call on all CPUs in the system.
*/
uint64_t
xc_broadcast(unsigned int flags, xcfunc_t func, void *arg1, void *arg2)
{
KASSERT(!cpu_intr_p() && !cpu_softintr_p());
ASSERT_SLEEPABLE();
if ((flags & XC_HIGHPRI) != 0) {
int ipl = xc_extract_ipl(flags);
return xc_highpri(func, arg1, arg2, NULL, ipl);
} else {
return xc_lowpri(func, arg1, arg2, NULL);
}
}
/*
* xc_unicast:
*
* Trigger a call on one CPU.
*/
uint64_t
xc_unicast(unsigned int flags, xcfunc_t func, void *arg1, void *arg2,
struct cpu_info *ci)
{
KASSERT(ci != NULL);
KASSERT(!cpu_intr_p() && !cpu_softintr_p());
ASSERT_SLEEPABLE();
if ((flags & XC_HIGHPRI) != 0) {
int ipl = xc_extract_ipl(flags);
return xc_highpri(func, arg1, arg2, ci, ipl);
} else {
return xc_lowpri(func, arg1, arg2, ci);
}
}
/*
* xc_wait:
*
* Wait for a cross call to complete.
*/
void
xc_wait(uint64_t where)
{
xc_state_t *xc;
KASSERT(!cpu_intr_p() && !cpu_softintr_p());
ASSERT_SLEEPABLE();
/* Determine whether it is high or low priority cross-call. */
if ((where & XC_PRI_BIT) != 0) {
xc = &xc_high_pri;
where &= ~XC_PRI_BIT;
} else {
xc = &xc_low_pri;
}
/* Fast path, if already done. */
if (xc->xc_donep >= where) {
return;
}
/* Slow path: block until awoken. */
mutex_enter(&xc->xc_lock);
while (xc->xc_donep < where) {
cv_wait(&xc->xc_busy, &xc->xc_lock);
}
mutex_exit(&xc->xc_lock);
}
/*
* xc_lowpri:
*
* Trigger a low priority call on one or more CPUs.
*/
static inline uint64_t
xc_lowpri(xcfunc_t func, void *arg1, void *arg2, struct cpu_info *ci)
{
xc_state_t *xc = &xc_low_pri;
CPU_INFO_ITERATOR cii;
uint64_t where;
mutex_enter(&xc->xc_lock);
while (xc->xc_headp != xc->xc_donep) {
cv_wait(&xc->xc_busy, &xc->xc_lock);
}
xc->xc_arg1 = arg1;
xc->xc_arg2 = arg2;
xc->xc_func = func;
if (ci == NULL) {
xc_broadcast_ev.ev_count++;
for (CPU_INFO_FOREACH(cii, ci)) {
if ((ci->ci_schedstate.spc_flags & SPCF_RUNNING) == 0)
continue;
xc->xc_headp += 1;
ci->ci_data.cpu_xcall_pending = true;
cv_signal(&ci->ci_data.cpu_xcall);
}
} else {
xc_unicast_ev.ev_count++;
xc->xc_headp += 1;
ci->ci_data.cpu_xcall_pending = true;
cv_signal(&ci->ci_data.cpu_xcall);
}
KASSERT(xc->xc_donep < xc->xc_headp);
where = xc->xc_headp;
mutex_exit(&xc->xc_lock);
/* Return a low priority ticket. */
KASSERT((where & XC_PRI_BIT) == 0);
return where;
}
/*
* xc_thread:
*
* One thread per-CPU to dispatch low priority calls.
*/
static void
xc_thread(void *cookie)
{
struct cpu_info *ci = curcpu();
xc_state_t *xc = &xc_low_pri;
void *arg1, *arg2;
xcfunc_t func;
mutex_enter(&xc->xc_lock);
for (;;) {
while (!ci->ci_data.cpu_xcall_pending) {
if (xc->xc_headp == xc->xc_donep) {
cv_broadcast(&xc->xc_busy);
}
cv_wait(&ci->ci_data.cpu_xcall, &xc->xc_lock);
KASSERT(ci == curcpu());
}
ci->ci_data.cpu_xcall_pending = false;
func = xc->xc_func;
arg1 = xc->xc_arg1;
arg2 = xc->xc_arg2;
mutex_exit(&xc->xc_lock);
KASSERT(func != NULL);
(*func)(arg1, arg2);
mutex_enter(&xc->xc_lock);
xc->xc_donep++;
}
/* NOTREACHED */
}
/*
* xc_ipi_handler:
*
* Handler of cross-call IPI.
*/
void
xc_ipi_handler(void)
{
xc_state_t *xc = & xc_high_pri;
KASSERT(xc->xc_ipl < __arraycount(xc_sihs));
KASSERT(xc_sihs[xc->xc_ipl] != NULL);
/* Executes xc__highpri_intr() via software interrupt. */
softint_schedule(xc_sihs[xc->xc_ipl]);
}
/*
* xc__highpri_intr:
*
* A software interrupt handler for high priority calls.
*/
void
xc__highpri_intr(void *dummy)
{
xc_state_t *xc = &xc_high_pri;
void *arg1, *arg2;
xcfunc_t func;
KASSERTMSG(!cpu_intr_p(), "high priority xcall for function %p",
xc->xc_func);
/*
* Lock-less fetch of function and its arguments.
* Safe since it cannot change at this point.
*/
KASSERT(xc->xc_donep < xc->xc_headp);
func = xc->xc_func;
arg1 = xc->xc_arg1;
arg2 = xc->xc_arg2;
KASSERT(func != NULL);
(*func)(arg1, arg2);
/*
* Note the request as done, and if we have reached the head,
* cross-call has been processed - notify waiters, if any.
*/
mutex_enter(&xc->xc_lock);
if (++xc->xc_donep == xc->xc_headp) {
cv_broadcast(&xc->xc_busy);
}
mutex_exit(&xc->xc_lock);
}
/*
* xc_highpri:
*
* Trigger a high priority call on one or more CPUs.
*/
static inline uint64_t
xc_highpri(xcfunc_t func, void *arg1, void *arg2, struct cpu_info *ci,
unsigned int ipl)
{
xc_state_t *xc = &xc_high_pri;
uint64_t where;
mutex_enter(&xc->xc_lock);
while (xc->xc_headp != xc->xc_donep) {
cv_wait(&xc->xc_busy, &xc->xc_lock);
}
xc->xc_func = func;
xc->xc_arg1 = arg1;
xc->xc_arg2 = arg2;
xc->xc_headp += (ci ? 1 : ncpu);
xc->xc_ipl = ipl;
where = xc->xc_headp;
mutex_exit(&xc->xc_lock);
/*
* Send the IPI once lock is released.
* Note: it will handle the local CPU case.
*/
#ifdef _RUMPKERNEL
rump_xc_highpri(ci);
#else
#ifdef MULTIPROCESSOR
kpreempt_disable();
if (curcpu() == ci) {
/* Unicast: local CPU. */
xc_ipi_handler();
} else if (ci) {
/* Unicast: remote CPU. */
xc_send_ipi(ci);
} else {
/* Broadcast: all, including local. */
xc_send_ipi(NULL);
xc_ipi_handler();
}
kpreempt_enable();
#else
KASSERT(ci == NULL || curcpu() == ci);
xc_ipi_handler();
#endif
#endif
/* Indicate a high priority ticket. */
return (where | XC_PRI_BIT);
}