NetBSD/sys/dev/acpi/acpi_pci_link.c

1210 lines
33 KiB
C

/* $NetBSD: acpi_pci_link.c,v 1.7 2006/09/24 06:03:20 dogcow Exp $ */
/*-
* Copyright (c) 2002 Mitsuru IWASAKI <iwasaki@jp.freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acpi_pci_link.c,v 1.7 2006/09/24 06:03:20 dogcow Exp $");
#include "opt_acpi.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/reboot.h>
#include <dev/acpi/acpica.h>
#include <dev/acpi/acpireg.h>
#include <dev/acpi/acpivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#define NUM_ISA_INTERRUPTS 16
#define NUM_ACPI_INTERRUPTS 256
#define PCI_INVALID_IRQ 255
#define PCI_INTERRUPT_VALID(x) ((x) != PCI_INVALID_IRQ && (x) != 0)
#define ACPI_SERIAL_BEGIN(x)
#define ACPI_SERIAL_END(x)
/*
* An ACPI PCI link device may contain multiple links. Each link has its
* own ACPI resource. _PRT entries specify which link is being used via
* the Source Index.
*
* XXX: A note about Source Indices and DPFs: Currently we assume that
* the DPF start and end tags are not counted towards the index that
* Source Index corresponds to. Also, we assume that when DPFs are in use
* they various sets overlap in terms of Indices. Here's an example
* resource list indicating these assumptions:
*
* Resource Index
* -------- -----
* I/O Port 0
* Start DPF -
* IRQ 1
* MemIO 2
* Start DPF -
* IRQ 1
* MemIO 2
* End DPF -
* DMA Channel 3
*
* The XXX is because I'm not sure if this is a valid assumption to make.
*/
/* States during DPF processing. */
#define DPF_OUTSIDE 0
#define DPF_FIRST 1
#define DPF_IGNORE 2
struct link;
struct acpi_pci_link_softc {
int pl_num_links;
int pl_crs_bad;
struct link *pl_links;
char pl_name[32];
ACPI_HANDLE pl_handle;
void *pl_powerhook;
TAILQ_ENTRY(acpi_pci_link_softc) pl_list;
};
static TAILQ_HEAD(, acpi_pci_link_softc) acpi_pci_linkdevs =
TAILQ_HEAD_INITIALIZER(acpi_pci_linkdevs);
struct link {
struct acpi_pci_link_softc *l_sc;
uint8_t l_bios_irq;
uint8_t l_irq;
uint8_t l_trig;
uint8_t l_pol;
uint8_t l_initial_irq;
int l_res_index;
int l_num_irqs;
int *l_irqs;
int l_references;
int l_routed:1;
int l_isa_irq:1;
ACPI_RESOURCE l_prs_template;
};
struct link_count_request {
int in_dpf;
int count;
};
struct link_res_request {
struct acpi_pci_link_softc *sc;
int in_dpf;
int res_index;
int link_index;
};
MALLOC_DEFINE(M_PCI_LINK, "pci_link", "ACPI PCI Link structures");
static int pci_link_interrupt_weights[NUM_ACPI_INTERRUPTS];
static int pci_link_bios_isa_irqs;
static ACPI_STATUS acpi_count_irq_resources(ACPI_RESOURCE *, void *);
static ACPI_STATUS link_add_crs(ACPI_RESOURCE *, void *);
static ACPI_STATUS link_add_prs(ACPI_RESOURCE *, void *);
static int link_valid_irq(struct link *, int);
static void acpi_pci_link_dump(struct acpi_pci_link_softc *);
static int acpi_pci_link_attach(struct acpi_pci_link_softc *);
static uint8_t acpi_pci_link_search_irq(struct acpi_pci_link_softc *, int, int,
int);
static void acpi_pci_link_resume(int, void *);
static struct link *acpi_pci_link_lookup(struct acpi_pci_link_softc *, int);
static ACPI_STATUS acpi_pci_link_srs(struct acpi_pci_link_softc *,
ACPI_BUFFER *);
static ACPI_STATUS acpi_AppendBufferResource(ACPI_BUFFER *, ACPI_RESOURCE *);
static ACPI_STATUS
acpi_count_irq_resources(ACPI_RESOURCE *res, void *context)
{
struct link_count_request *req;
req = (struct link_count_request *)context;
switch (res->Type) {
case ACPI_RESOURCE_TYPE_START_DEPENDENT:
switch (req->in_dpf) {
case DPF_OUTSIDE:
/* We've started the first DPF. */
req->in_dpf = DPF_FIRST;
break;
case DPF_FIRST:
/* We've started the second DPF. */
req->in_dpf = DPF_IGNORE;
break;
}
break;
case ACPI_RESOURCE_TYPE_END_DEPENDENT:
/* We are finished with DPF parsing. */
KASSERT(req->in_dpf != DPF_OUTSIDE);
req->in_dpf = DPF_OUTSIDE;
break;
case ACPI_RESOURCE_TYPE_IRQ:
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
/*
* Don't count resources if we are in a DPF set that we are
* ignoring.
*/
if (req->in_dpf != DPF_IGNORE)
req->count++;
}
return (AE_OK);
}
static ACPI_STATUS
link_add_crs(ACPI_RESOURCE *res, void *context)
{
struct link_res_request *req;
struct link *link;
req = (struct link_res_request *)context;
switch (res->Type) {
case ACPI_RESOURCE_TYPE_START_DEPENDENT:
switch (req->in_dpf) {
case DPF_OUTSIDE:
/* We've started the first DPF. */
req->in_dpf = DPF_FIRST;
break;
case DPF_FIRST:
/* We've started the second DPF. */
panic(
"%s: Multiple dependent functions within a current resource",
__func__);
break;
}
break;
case ACPI_RESOURCE_TYPE_END_DEPENDENT:
/* We are finished with DPF parsing. */
KASSERT(req->in_dpf != DPF_OUTSIDE);
req->in_dpf = DPF_OUTSIDE;
break;
case ACPI_RESOURCE_TYPE_IRQ:
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
KASSERT(req->link_index < req->sc->pl_num_links);
link = &req->sc->pl_links[req->link_index];
link->l_res_index = req->res_index;
req->link_index++;
req->res_index++;
/*
* Only use the current value if there's one IRQ. Some
* systems return multiple IRQs (which is nonsense for _CRS)
* when the link hasn't been programmed.
*/
if (res->Type == ACPI_RESOURCE_TYPE_IRQ) {
if (res->Data.Irq.InterruptCount == 1) {
link->l_irq = res->Data.Irq.Interrupts[0];
link->l_trig = res->Data.Irq.Triggering;
link->l_pol = res->Data.Irq.Polarity;
}
} else if (res->Data.ExtendedIrq.InterruptCount == 1) {
link->l_irq = res->Data.ExtendedIrq.Interrupts[0];
link->l_trig = res->Data.ExtendedIrq.Triggering;
link->l_pol = res->Data.ExtendedIrq.Polarity;
}
/*
* An IRQ of zero means that the link isn't routed.
*/
if (link->l_irq == 0)
link->l_irq = PCI_INVALID_IRQ;
break;
default:
req->res_index++;
}
return (AE_OK);
}
/*
* Populate the set of possible IRQs for each device.
*/
static ACPI_STATUS
link_add_prs(ACPI_RESOURCE *res, void *context)
{
struct link_res_request *req;
struct link *link;
UINT8 *irqs = NULL;
UINT32 *ext_irqs = NULL;
int i, is_ext_irq = 1;
req = (struct link_res_request *)context;
switch (res->Type) {
case ACPI_RESOURCE_TYPE_START_DEPENDENT:
switch (req->in_dpf) {
case DPF_OUTSIDE:
/* We've started the first DPF. */
req->in_dpf = DPF_FIRST;
break;
case DPF_FIRST:
/* We've started the second DPF. */
req->in_dpf = DPF_IGNORE;
break;
}
break;
case ACPI_RESOURCE_TYPE_END_DEPENDENT:
/* We are finished with DPF parsing. */
KASSERT(req->in_dpf != DPF_OUTSIDE);
req->in_dpf = DPF_OUTSIDE;
break;
case ACPI_RESOURCE_TYPE_IRQ:
is_ext_irq = 0;
/* fall through */
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
/*
* Don't parse resources if we are in a DPF set that we are
* ignoring.
*/
if (req->in_dpf == DPF_IGNORE)
break;
KASSERT(req->link_index < req->sc->pl_num_links);
link = &req->sc->pl_links[req->link_index];
if (link->l_res_index == -1) {
KASSERT(req->sc->pl_crs_bad);
link->l_res_index = req->res_index;
}
req->link_index++;
req->res_index++;
/*
* Stash a copy of the resource for later use when
* doing _SRS.
*
* Note that in theory res->Length may exceed the size
* of ACPI_RESOURCE, due to variable length lists in
* subtypes. However, all uses of l_prs_template only
* rely on lists lengths of zero or one, for which
* sizeof(ACPI_RESOURCE) is sufficient space anyway.
* We cannot read longer than Length bytes, in case we
* read off the end of mapped memory. So we read
* whichever length is shortest, Length or
* sizeof(ACPI_RESOURCE).
*/
KASSERT(res->Length >= ACPI_RS_SIZE_MIN);
memset(&link->l_prs_template, 0, sizeof(link->l_prs_template));
memcpy(&link->l_prs_template, res,
MIN(res->Length, sizeof(link->l_prs_template)));
if (is_ext_irq) {
link->l_num_irqs =
res->Data.ExtendedIrq.InterruptCount;
link->l_trig = res->Data.ExtendedIrq.Triggering;
link->l_pol = res->Data.ExtendedIrq.Polarity;
ext_irqs = res->Data.ExtendedIrq.Interrupts;
} else {
link->l_num_irqs = res->Data.Irq.InterruptCount;
link->l_trig = res->Data.Irq.Triggering;
link->l_pol = res->Data.Irq.Polarity;
irqs = res->Data.Irq.Interrupts;
}
if (link->l_num_irqs == 0)
break;
/*
* Save a list of the valid IRQs. Also, if all of the
* valid IRQs are ISA IRQs, then mark this link as
* routed via an ISA interrupt.
*/
link->l_isa_irq = TRUE;
link->l_irqs = malloc(sizeof(int) * link->l_num_irqs,
M_PCI_LINK, M_WAITOK | M_ZERO);
for (i = 0; i < link->l_num_irqs; i++) {
if (is_ext_irq) {
link->l_irqs[i] = ext_irqs[i];
if (ext_irqs[i] >= NUM_ISA_INTERRUPTS)
link->l_isa_irq = FALSE;
} else {
link->l_irqs[i] = irqs[i];
if (irqs[i] >= NUM_ISA_INTERRUPTS)
link->l_isa_irq = FALSE;
}
}
break;
default:
if (req->in_dpf == DPF_IGNORE)
break;
if (req->sc->pl_crs_bad)
aprint_normal("%s: Warning: possible resource %d "
"will be lost during _SRS\n", req->sc->pl_name,
req->res_index);
req->res_index++;
}
return (AE_OK);
}
static int
link_valid_irq(struct link *link, int irq)
{
int i;
/* Invalid interrupts are never valid. */
if (!PCI_INTERRUPT_VALID(irq))
return (FALSE);
/* Any interrupt in the list of possible interrupts is valid. */
for (i = 0; i < link->l_num_irqs; i++)
if (link->l_irqs[i] == irq)
return (TRUE);
/*
* For links routed via an ISA interrupt, if the SCI is routed via
* an ISA interrupt, the SCI is always treated as a valid IRQ.
*/
if (link->l_isa_irq && AcpiGbl_FADT->SciInt == irq &&
irq < NUM_ISA_INTERRUPTS)
return (TRUE);
/* If the interrupt wasn't found in the list it is not valid. */
return (FALSE);
}
void
acpi_pci_link_state(void)
{
struct acpi_pci_link_softc *sc;
TAILQ_FOREACH(sc, &acpi_pci_linkdevs, pl_list) {
acpi_pci_link_dump(sc);
}
}
static void
acpi_pci_link_dump(struct acpi_pci_link_softc *sc)
{
struct link *link;
int i, j;
printf("Link Device %s:\n", sc->pl_name);
printf("Index IRQ Rtd Ref IRQs\n");
for (i = 0; i < sc->pl_num_links; i++) {
link = &sc->pl_links[i];
printf("%5d %3d %c %3d ", i, link->l_irq,
link->l_routed ? 'Y' : 'N', link->l_references);
if (link->l_num_irqs == 0)
printf(" none");
else for (j = 0; j < link->l_num_irqs; j++)
printf(" %d", link->l_irqs[j]);
printf(" polarity %u trigger %u\n", link->l_pol, link->l_trig);
}
printf("\n");
}
static int
acpi_pci_link_attach(struct acpi_pci_link_softc *sc)
{
struct link_count_request creq;
struct link_res_request rreq;
ACPI_STATUS status;
int i;
ACPI_SERIAL_BEGIN(pci_link);
/*
* Count the number of current resources so we know how big of
* a link array to allocate. On some systems, _CRS is broken,
* so for those systems try to derive the count from _PRS instead.
*/
creq.in_dpf = DPF_OUTSIDE;
creq.count = 0;
status = AcpiWalkResources(sc->pl_handle, "_CRS",
acpi_count_irq_resources, &creq);
sc->pl_crs_bad = ACPI_FAILURE(status);
if (sc->pl_crs_bad) {
creq.in_dpf = DPF_OUTSIDE;
creq.count = 0;
status = AcpiWalkResources(sc->pl_handle, "_PRS",
acpi_count_irq_resources, &creq);
if (ACPI_FAILURE(status)) {
aprint_error("%s: Unable to parse _CRS or _PRS: %s\n",
sc->pl_name, AcpiFormatException(status));
ACPI_SERIAL_END(pci_link);
return (ENXIO);
}
}
sc->pl_num_links = creq.count;
if (creq.count == 0) {
ACPI_SERIAL_END(pci_link);
return (0);
}
sc->pl_links = malloc(sizeof(struct link) * sc->pl_num_links,
M_PCI_LINK, M_WAITOK | M_ZERO);
/* Initialize the child links. */
for (i = 0; i < sc->pl_num_links; i++) {
sc->pl_links[i].l_irq = PCI_INVALID_IRQ;
sc->pl_links[i].l_bios_irq = PCI_INVALID_IRQ;
sc->pl_links[i].l_sc = sc;
sc->pl_links[i].l_isa_irq = FALSE;
sc->pl_links[i].l_res_index = -1;
}
/* Try to read the current settings from _CRS if it is valid. */
if (!sc->pl_crs_bad) {
rreq.in_dpf = DPF_OUTSIDE;
rreq.link_index = 0;
rreq.res_index = 0;
rreq.sc = sc;
status = AcpiWalkResources(sc->pl_handle, "_CRS",
link_add_crs, &rreq);
if (ACPI_FAILURE(status)) {
aprint_error("%s: Unable to parse _CRS: %s\n",
sc->pl_name, AcpiFormatException(status));
goto fail;
}
}
/*
* Try to read the possible settings from _PRS. Note that if the
* _CRS is toast, we depend on having a working _PRS. However, if
* _CRS works, then it is ok for _PRS to be missing.
*/
rreq.in_dpf = DPF_OUTSIDE;
rreq.link_index = 0;
rreq.res_index = 0;
rreq.sc = sc;
status = AcpiWalkResources(sc->pl_handle, "_PRS",
link_add_prs, &rreq);
if (ACPI_FAILURE(status) &&
(status != AE_NOT_FOUND || sc->pl_crs_bad)) {
aprint_error("%s: Unable to parse _PRS: %s\n",
sc->pl_name, AcpiFormatException(status));
goto fail;
}
if (boothowto & AB_VERBOSE) {
aprint_normal("%s: Links after initial probe:\n", sc->pl_name);
acpi_pci_link_dump(sc);
}
/* Verify initial IRQs if we have _PRS. */
if (status != AE_NOT_FOUND)
for (i = 0; i < sc->pl_num_links; i++)
if (!link_valid_irq(&sc->pl_links[i],
sc->pl_links[i].l_irq))
sc->pl_links[i].l_irq = PCI_INVALID_IRQ;
if (boothowto & AB_VERBOSE) {
printf("%s: Links after initial validation:\n", sc->pl_name);
acpi_pci_link_dump(sc);
}
/* Save initial IRQs. */
for (i = 0; i < sc->pl_num_links; i++)
sc->pl_links[i].l_initial_irq = sc->pl_links[i].l_irq;
/*
* Try to disable this link. If successful, set the current IRQ to
* zero and flags to indicate this link is not routed. If we can't
* run _DIS (i.e., the method doesn't exist), assume the initial
* IRQ was routed by the BIOS.
*/
#if 0 /* XXX causes spontaneaous resets on some systems. Disabled for now. */
if (ACPI_SUCCESS(AcpiEvaluateObject(sc->pl_handle, "_DIS", NULL,
NULL)))
for (i = 0; i < sc->pl_num_links; i++)
sc->pl_links[i].l_irq = PCI_INVALID_IRQ;
else
#endif
for (i = 0; i < sc->pl_num_links; i++)
if (PCI_INTERRUPT_VALID(sc->pl_links[i].l_irq))
sc->pl_links[i].l_routed = TRUE;
if (boothowto & AB_VERBOSE) {
printf("%s: Links after disable:\n", sc->pl_name);
acpi_pci_link_dump(sc);
}
ACPI_SERIAL_END(pci_link);
return (0);
fail:
ACPI_SERIAL_END(pci_link);
for (i = 0; i < sc->pl_num_links; i++)
if (sc->pl_links[i].l_irqs != NULL)
free(sc->pl_links[i].l_irqs, M_PCI_LINK);
free(sc->pl_links, M_PCI_LINK);
return (ENXIO);
}
static uint8_t
acpi_pci_link_search_irq(struct acpi_pci_link_softc *sc, int bus, int device,
int pin)
{
uint32_t value;
uint8_t func, maxfunc, ipin, iline;
pcitag_t tag;
tag = pci_make_tag(acpi_softc->sc_pc, bus, device, 0);
/* See if we have a valid device at function 0. */
value = pci_conf_read(acpi_softc->sc_pc, tag, PCI_BHLC_REG);
if (PCI_HDRTYPE_TYPE(value) > PCI_HDRTYPE_PCB)
return (PCI_INVALID_IRQ);
if (PCI_HDRTYPE_MULTIFN(value))
maxfunc = 7;
else
maxfunc = 0;
/* Scan all possible functions at this device. */
for (func = 0; func <= maxfunc; func++) {
tag = pci_make_tag(acpi_softc->sc_pc, bus, device, func);
value = pci_conf_read(acpi_softc->sc_pc, tag, PCI_ID_REG);
if (PCI_VENDOR(value) == 0xffff)
continue;
value = pci_conf_read(acpi_softc->sc_pc, tag,
PCI_INTERRUPT_REG);
ipin = PCI_INTERRUPT_PIN(value);
iline = PCI_INTERRUPT_LINE(value);
/*
* See if it uses the pin in question. Note that the passed
* in pin uses 0 for A, .. 3 for D whereas the intpin
* register uses 0 for no interrupt, 1 for A, .. 4 for D.
*/
if (ipin != pin + 1)
continue;
aprint_verbose(
"%s: ACPI: Found matching pin for %d.%d.INT%c"
" at func %d: %d\n",
sc->pl_name, bus, device, pin + 'A', func, iline);
if (PCI_INTERRUPT_VALID(iline))
return (iline);
}
return (PCI_INVALID_IRQ);
}
/*
* Find the link structure that corresponds to the resource index passed in
* via 'source_index'.
*/
static struct link *
acpi_pci_link_lookup(struct acpi_pci_link_softc *sc, int source_index)
{
int i;
for (i = 0; i < sc->pl_num_links; i++)
if (sc->pl_links[i].l_res_index == source_index)
return (&sc->pl_links[i]);
return (NULL);
}
void
acpi_pci_link_add_reference(void *v, int index, int bus, int slot, int pin)
{
struct acpi_pci_link_softc *sc = v;
struct link *link;
uint8_t bios_irq;
/* Bump the reference count. */
ACPI_SERIAL_BEGIN(pci_link);
link = acpi_pci_link_lookup(sc, index);
if (link == NULL) {
printf("%s: apparently invalid index %d\n", sc->pl_name, index);
ACPI_SERIAL_END(pci_link);
return;
}
link->l_references++;
if (link->l_routed)
pci_link_interrupt_weights[link->l_irq]++;
/*
* The BIOS only routes interrupts via ISA IRQs using the ATPICs
* (8259As). Thus, if this link is routed via an ISA IRQ, go
* look to see if the BIOS routed an IRQ for this link at the
* indicated (bus, slot, pin). If so, we prefer that IRQ for
* this link and add that IRQ to our list of known-good IRQs.
* This provides a good work-around for link devices whose _CRS
* method is either broken or bogus. We only use the value
* returned by _CRS if we can't find a valid IRQ via this method
* in fact.
*
* If this link is not routed via an ISA IRQ (because we are using
* APIC for example), then don't bother looking up the BIOS IRQ
* as if we find one it won't be valid anyway.
*/
if (!link->l_isa_irq) {
ACPI_SERIAL_END(pci_link);
return;
}
/* Try to find a BIOS IRQ setting from any matching devices. */
bios_irq = acpi_pci_link_search_irq(sc, bus, slot, pin);
if (!PCI_INTERRUPT_VALID(bios_irq)) {
ACPI_SERIAL_END(pci_link);
return;
}
/* Validate the BIOS IRQ. */
if (!link_valid_irq(link, bios_irq)) {
printf("%s: BIOS IRQ %u for %d.%d.INT%c is invalid\n",
sc->pl_name, bios_irq, (int)bus, slot, pin + 'A');
} else if (!PCI_INTERRUPT_VALID(link->l_bios_irq)) {
link->l_bios_irq = bios_irq;
if (bios_irq < NUM_ISA_INTERRUPTS)
pci_link_bios_isa_irqs |= (1 << bios_irq);
if (bios_irq != link->l_initial_irq &&
PCI_INTERRUPT_VALID(link->l_initial_irq))
printf(
"%s: BIOS IRQ %u does not match initial IRQ %u\n",
sc->pl_name, bios_irq, link->l_initial_irq);
} else if (bios_irq != link->l_bios_irq)
printf(
"%s: BIOS IRQ %u for %d.%d.INT%c does not match "
"previous BIOS IRQ %u\n",
sc->pl_name, bios_irq, (int)bus, slot, pin + 'A',
link->l_bios_irq);
ACPI_SERIAL_END(pci_link);
}
static ACPI_STATUS
acpi_pci_link_srs_from_crs(struct acpi_pci_link_softc *sc, ACPI_BUFFER *srsbuf)
{
ACPI_RESOURCE *resource, *end, newres, *resptr;
ACPI_BUFFER crsbuf;
ACPI_STATUS status;
struct link *link;
int i, in_dpf;
/* Fetch the _CRS. */
crsbuf.Pointer = NULL;
crsbuf.Length = ACPI_ALLOCATE_BUFFER;
status = AcpiGetCurrentResources(sc->pl_handle, &crsbuf);
if (ACPI_SUCCESS(status) && crsbuf.Pointer == NULL)
status = AE_NO_MEMORY;
if (ACPI_FAILURE(status)) {
aprint_verbose("%s: Unable to fetch current resources: %s\n",
sc->pl_name, AcpiFormatException(status));
return (status);
}
/* Fill in IRQ resources via link structures. */
srsbuf->Pointer = NULL;
link = sc->pl_links;
i = 0;
in_dpf = DPF_OUTSIDE;
resource = (ACPI_RESOURCE *)crsbuf.Pointer;
end = (ACPI_RESOURCE *)((char *)crsbuf.Pointer + crsbuf.Length);
for (;;) {
switch (resource->Type) {
case ACPI_RESOURCE_TYPE_START_DEPENDENT:
switch (in_dpf) {
case DPF_OUTSIDE:
/* We've started the first DPF. */
in_dpf = DPF_FIRST;
break;
case DPF_FIRST:
/* We've started the second DPF. */
panic(
"%s: Multiple dependent functions within a current resource",
__func__);
break;
}
resptr = NULL;
break;
case ACPI_RESOURCE_TYPE_END_DEPENDENT:
/* We are finished with DPF parsing. */
KASSERT(in_dpf != DPF_OUTSIDE);
in_dpf = DPF_OUTSIDE;
resptr = NULL;
break;
case ACPI_RESOURCE_TYPE_IRQ:
newres = link->l_prs_template;
resptr = &newres;
resptr->Data.Irq.InterruptCount = 1;
if (PCI_INTERRUPT_VALID(link->l_irq)) {
KASSERT(link->l_irq < NUM_ISA_INTERRUPTS);
resptr->Data.Irq.Interrupts[0] = link->l_irq;
resptr->Data.Irq.Triggering = link->l_trig;
resptr->Data.Irq.Polarity = link->l_pol;
} else
resptr->Data.Irq.Interrupts[0] = 0;
link++;
i++;
break;
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
newres = link->l_prs_template;
resptr = &newres;
resptr->Data.ExtendedIrq.InterruptCount = 1;
if (PCI_INTERRUPT_VALID(link->l_irq)) {
resptr->Data.ExtendedIrq.Interrupts[0] =
link->l_irq;
resptr->Data.ExtendedIrq.Triggering =
link->l_trig;
resptr->Data.ExtendedIrq.Polarity = link->l_pol;
} else
resptr->Data.ExtendedIrq.Interrupts[0] = 0;
link++;
i++;
break;
default:
resptr = resource;
}
if (resptr != NULL) {
status = acpi_AppendBufferResource(srsbuf, resptr);
if (ACPI_FAILURE(status)) {
printf("%s: Unable to build resources: %s\n",
sc->pl_name, AcpiFormatException(status));
if (srsbuf->Pointer != NULL)
AcpiOsFree(srsbuf->Pointer);
AcpiOsFree(crsbuf.Pointer);
return (status);
}
}
if (resource->Type == ACPI_RESOURCE_TYPE_END_TAG)
break;
resource = ACPI_NEXT_RESOURCE(resource);
if (resource >= end)
break;
}
AcpiOsFree(crsbuf.Pointer);
return (AE_OK);
}
static ACPI_STATUS
acpi_pci_link_srs_from_links(struct acpi_pci_link_softc *sc,
ACPI_BUFFER *srsbuf)
{
ACPI_RESOURCE newres;
ACPI_STATUS status;
struct link *link;
int i;
/* Start off with an empty buffer. */
srsbuf->Pointer = NULL;
link = sc->pl_links;
for (i = 0; i < sc->pl_num_links; i++) {
/* Add a new IRQ resource from each link. */
link = &sc->pl_links[i];
newres = link->l_prs_template;
if (newres.Type == ACPI_RESOURCE_TYPE_IRQ) {
/* Build an IRQ resource. */
newres.Data.Irq.InterruptCount = 1;
if (PCI_INTERRUPT_VALID(link->l_irq)) {
KASSERT(link->l_irq < NUM_ISA_INTERRUPTS);
newres.Data.Irq.Interrupts[0] = link->l_irq;
newres.Data.Irq.Triggering = link->l_trig;
newres.Data.Irq.Polarity = link->l_pol;
} else
newres.Data.Irq.Interrupts[0] = 0;
} else {
/* Build an ExtIRQ resuorce. */
newres.Data.ExtendedIrq.InterruptCount = 1;
if (PCI_INTERRUPT_VALID(link->l_irq)) {
newres.Data.ExtendedIrq.Interrupts[0] =
link->l_irq;
newres.Data.ExtendedIrq.Triggering =
link->l_trig;
newres.Data.ExtendedIrq.Polarity =
link->l_pol;
} else {
newres.Data.ExtendedIrq.Interrupts[0] = 0;
}
}
/* Add the new resource to the end of the _SRS buffer. */
status = acpi_AppendBufferResource(srsbuf, &newres);
if (ACPI_FAILURE(status)) {
printf("%s: Unable to build resources: %s\n",
sc->pl_name, AcpiFormatException(status));
if (srsbuf->Pointer != NULL)
AcpiOsFree(srsbuf->Pointer);
return (status);
}
}
return (AE_OK);
}
static ACPI_STATUS
acpi_pci_link_srs(struct acpi_pci_link_softc *sc, ACPI_BUFFER *srsbuf)
{
ACPI_STATUS status;
if (sc->pl_crs_bad)
status = acpi_pci_link_srs_from_links(sc, srsbuf);
else
status = acpi_pci_link_srs_from_crs(sc, srsbuf);
/* Write out new resources via _SRS. */
return AcpiSetCurrentResources(sc->pl_handle, srsbuf);
}
static ACPI_STATUS
acpi_pci_link_route_irqs(struct acpi_pci_link_softc *sc, int *irq, int *pol,
int *trig)
{
ACPI_RESOURCE *resource, *end;
ACPI_BUFFER srsbuf;
ACPI_STATUS status;
struct link *link;
int i, is_ext = 0;
status = acpi_pci_link_srs(sc, &srsbuf);
if (ACPI_FAILURE(status)) {
printf("%s: _SRS failed: %s\n",
sc->pl_name, AcpiFormatException(status));
return (status);
}
/*
* Perform acpi_config_intr() on each IRQ resource if it was just
* routed for the first time.
*/
link = sc->pl_links;
i = 0;
resource = (ACPI_RESOURCE *)srsbuf.Pointer;
end = (ACPI_RESOURCE *)((char *)srsbuf.Pointer + srsbuf.Length);
for (;;) {
if (resource->Type == ACPI_RESOURCE_TYPE_END_TAG)
break;
switch (resource->Type) {
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
is_ext = 1;
/* FALLTHROUGH */
case ACPI_RESOURCE_TYPE_IRQ:
/*
* Only configure the interrupt and update the
* weights if this link has a valid IRQ and was
* previously unrouted.
*/
if (!link->l_routed &&
PCI_INTERRUPT_VALID(link->l_irq)) {
*trig = is_ext ?
resource->Data.ExtendedIrq.Triggering :
resource->Data.Irq.Triggering;
*pol = is_ext ?
resource->Data.ExtendedIrq.Polarity :
resource->Data.Irq.Polarity;
*irq = is_ext ?
resource->Data.ExtendedIrq.Interrupts[0] :
resource->Data.Irq.Interrupts[0];
link->l_routed = TRUE;
pci_link_interrupt_weights[link->l_irq] +=
link->l_references;
}
link++;
i++;
break;
}
resource = ACPI_NEXT_RESOURCE(resource);
if (resource >= end)
break;
}
AcpiOsFree(srsbuf.Pointer);
return (AE_OK);
}
static void
acpi_pci_link_resume(int why, void *arg)
{
struct acpi_pci_link_softc *sc = arg;
ACPI_BUFFER srsbuf;
switch (why) {
case PWR_RESUME:
ACPI_SERIAL_BEGIN(pci_link);
if (ACPI_SUCCESS(acpi_pci_link_srs(sc, &srsbuf)))
AcpiOsFree(srsbuf.Pointer);
ACPI_SERIAL_END(pci_link);
default:
break;
}
}
/*
* Pick an IRQ to use for this unrouted link.
*/
static uint8_t
acpi_pci_link_choose_irq(struct acpi_pci_link_softc *sc, struct link *link)
{
u_int8_t best_irq, pos_irq;
int best_weight, pos_weight, i;
KASSERT(!link->l_routed);
KASSERT(!PCI_INTERRUPT_VALID(link->l_irq));
/*
* If we have a valid BIOS IRQ, use that. We trust what the BIOS
* says it routed over what _CRS says the link thinks is routed.
*/
if (PCI_INTERRUPT_VALID(link->l_bios_irq))
return (link->l_bios_irq);
/*
* If we don't have a BIOS IRQ but do have a valid IRQ from _CRS,
* then use that.
*/
if (PCI_INTERRUPT_VALID(link->l_initial_irq))
return (link->l_initial_irq);
/*
* Ok, we have no useful hints, so we have to pick from the
* possible IRQs. For ISA IRQs we only use interrupts that
* have already been used by the BIOS.
*/
best_irq = PCI_INVALID_IRQ;
best_weight = INT_MAX;
for (i = 0; i < link->l_num_irqs; i++) {
pos_irq = link->l_irqs[i];
if (pos_irq < NUM_ISA_INTERRUPTS &&
(pci_link_bios_isa_irqs & 1 << pos_irq) == 0)
continue;
pos_weight = pci_link_interrupt_weights[pos_irq];
if (pos_weight < best_weight) {
best_weight = pos_weight;
best_irq = pos_irq;
}
}
/*
* If this is an ISA IRQ, try using the SCI if it is also an ISA
* interrupt as a fallback.
*/
if (link->l_isa_irq) {
pos_irq = AcpiGbl_FADT->SciInt;
pos_weight = pci_link_interrupt_weights[pos_irq];
if (pos_weight < best_weight) {
best_weight = pos_weight;
best_irq = pos_irq;
}
}
if (PCI_INTERRUPT_VALID(best_irq)) {
aprint_verbose("%s: Picked IRQ %u with weight %d\n",
sc->pl_name, best_irq, best_weight);
} else
printf("%s: Unable to choose an IRQ\n", sc->pl_name);
return (best_irq);
}
int
acpi_pci_link_route_interrupt(void *v, int index, int *irq, int *pol, int *trig)
{
struct acpi_pci_link_softc *sc = v;
struct link *link;
ACPI_SERIAL_BEGIN(pci_link);
link = acpi_pci_link_lookup(sc, index);
if (link == NULL)
panic("%s: apparently invalid index %d", __func__, index);
/*
* If this link device is already routed to an interrupt, just return
* the interrupt it is routed to.
*/
if (link->l_routed) {
KASSERT(PCI_INTERRUPT_VALID(link->l_irq));
ACPI_SERIAL_END(pci_link);
*irq = link->l_irq;
*pol = link->l_pol;
*trig = link->l_trig;
return (link->l_irq);
}
/* Choose an IRQ if we need one. */
if (!PCI_INTERRUPT_VALID(link->l_irq)) {
link->l_irq = acpi_pci_link_choose_irq(sc, link);
/*
* Try to route the interrupt we picked. If it fails, then
* assume the interrupt is not routed.
*/
if (PCI_INTERRUPT_VALID(link->l_irq)) {
acpi_pci_link_route_irqs(sc, irq, pol, trig);
if (!link->l_routed)
link->l_irq = PCI_INVALID_IRQ;
else {
link->l_pol = *pol;
link->l_trig = *trig;
}
}
}
ACPI_SERIAL_END(pci_link);
return (link->l_irq);
}
/*
* This is gross, but we abuse the identify routine to perform one-time
* SYSINIT() style initialization for the driver.
*/
static void
acpi_pci_link_init(struct acpi_pci_link_softc *sc)
{
ACPI_BUFFER buf;
char acpipcilinkname[] = "acpi_pci_link";
/*
* If the SCI is an ISA IRQ, add it to the bitmask of known good
* ISA IRQs.
*
* XXX: If we are using the APIC, the SCI might have been
* rerouted to an APIC pin in which case this is invalid. However,
* if we are using the APIC, we also shouldn't be having any PCI
* interrupts routed via ISA IRQs, so this is probably ok.
*/
if (AcpiGbl_FADT->SciInt < NUM_ISA_INTERRUPTS)
pci_link_bios_isa_irqs |= (1 << AcpiGbl_FADT->SciInt);
sc->pl_powerhook = powerhook_establish(acpipcilinkname,
acpi_pci_link_resume, sc);
if (sc->pl_powerhook == NULL)
aprint_normal("can't establish powerhook\n");
buf.Length = sizeof (sc->pl_name);
buf.Pointer = sc->pl_name;
if (ACPI_FAILURE(AcpiGetName(sc->pl_handle, ACPI_SINGLE_NAME, &buf)))
snprintf(sc->pl_name, sizeof (sc->pl_name), "%s",
"ACPI link device");
acpi_pci_link_attach(sc);
}
void *
acpi_pci_link_devbyhandle(ACPI_HANDLE handle)
{
struct acpi_pci_link_softc *sc;
TAILQ_FOREACH(sc, &acpi_pci_linkdevs, pl_list) {
if (sc->pl_handle == handle)
return sc;
}
sc = malloc(sizeof (*sc), M_PCI_LINK, M_NOWAIT|M_ZERO);
if (sc == NULL)
return NULL;
sc->pl_handle = handle;
acpi_pci_link_init(sc);
TAILQ_INSERT_TAIL(&acpi_pci_linkdevs, sc, pl_list);
return (void *)sc;
}
ACPI_HANDLE
acpi_pci_link_handle(void *v)
{
struct acpi_pci_link_softc *sc = v;
return sc->pl_handle;
}
char *
acpi_pci_link_name(void *v)
{
struct acpi_pci_link_softc *sc = v;
return sc->pl_name;
}
/*
* Append an ACPI_RESOURCE to an ACPI_BUFFER.
*
* Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER
* provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible
* backing block. If the ACPI_RESOURCE is NULL, return an empty set of
* resources.
*/
#define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512
static ACPI_STATUS
acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res)
{
ACPI_RESOURCE *rp;
void *newp;
/* Initialise the buffer if necessary. */
if (buf->Pointer == NULL) {
buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE;
if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL)
return (AE_NO_MEMORY);
rp = (ACPI_RESOURCE *)buf->Pointer;
rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
rp->Length = 0;
}
if (res == NULL)
return (AE_OK);
/*
* Scan the current buffer looking for the terminator.
* This will either find the terminator or hit the end
* of the buffer and return an error.
*/
rp = (ACPI_RESOURCE *)buf->Pointer;
for (;;) {
/* Range check, don't go outside the buffer */
if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer +
buf->Length))
return (AE_BAD_PARAMETER);
if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
break;
rp = ACPI_NEXT_RESOURCE(rp);
}
/*
* Check the size of the buffer and expand if required.
*
* Required size is:
* size of existing resources before terminator +
* size of new resource and header +
* size of terminator.
*
* Note that this loop should really only run once, unless
* for some reason we are stuffing a *really* huge resource.
*/
while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) +
res->Length + ACPI_RS_SIZE_NO_DATA +
ACPI_RS_SIZE_MIN) >= buf->Length) {
if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL)
return (AE_NO_MEMORY);
memcpy(newp, buf->Pointer, buf->Length);
rp = (ACPI_RESOURCE *)((u_int8_t *)newp +
((u_int8_t *)rp - (u_int8_t *)buf->Pointer));
AcpiOsFree(buf->Pointer);
buf->Pointer = newp;
buf->Length += buf->Length;
}
/* Insert the new resource. */
memcpy(rp, res, res->Length + ACPI_RS_SIZE_NO_DATA);
/* And add the terminator. */
rp = ACPI_NEXT_RESOURCE(rp);
rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
rp->Length = 0;
return (AE_OK);
}