NetBSD/sys/compat/ndis/subr_hal.c

461 lines
12 KiB
C

/*-
* Copyright (c) 2003
* Bill Paul <wpaul@windriver.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#ifdef __FreeBSD__
__FBSDID("$FreeBSD: src/sys/compat/ndis/subr_hal.c,v 1.13.2.3 2005/03/31 04:24:35 wpaul Exp $");
#endif
#ifdef __NetBSD__
__KERNEL_RCSID(0, "$NetBSD: subr_hal.c,v 1.3 2006/03/31 00:03:57 rittera Exp $");
#endif
#include <sys/param.h>
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#ifdef __FreeBSD__
#include <sys/mutex.h>
#endif
#include <sys/proc.h>
#include <sys/sched.h>
#ifdef __FreeBSD__
#include <sys/module.h>
#endif
#include <sys/systm.h>
#ifdef __NetBSD__
#include <sys/lkm.h>
#endif
#ifdef __FreeBSD__
#include <machine/clock.h>
#include <machine/bus_memio.h>
#include <machine/bus_pio.h>
#endif
#include <machine/bus.h>
#ifdef __FreeBSD__
#include <sys/bus.h>
#include <sys/rman.h>
#endif
#include <compat/ndis/pe_var.h>
#include <compat/ndis/ntoskrnl_var.h>
#include <compat/ndis/hal_var.h>
__stdcall static void KeStallExecutionProcessor(uint32_t);
__stdcall static void WRITE_PORT_BUFFER_ULONG(uint32_t *,
uint32_t *, uint32_t);
__stdcall static void WRITE_PORT_BUFFER_USHORT(uint16_t *,
uint16_t *, uint32_t);
__stdcall static void WRITE_PORT_BUFFER_UCHAR(uint8_t *,
uint8_t *, uint32_t);
__stdcall static void WRITE_PORT_ULONG(uint32_t *, uint32_t);
__stdcall static void WRITE_PORT_USHORT(uint16_t *, uint16_t);
__stdcall static void WRITE_PORT_UCHAR(uint8_t *, uint8_t);
__stdcall static uint32_t READ_PORT_ULONG(uint32_t *);
__stdcall static uint16_t READ_PORT_USHORT(uint16_t *);
__stdcall static uint8_t READ_PORT_UCHAR(uint8_t *);
__stdcall static void READ_PORT_BUFFER_ULONG(uint32_t *,
uint32_t *, uint32_t);
__stdcall static void READ_PORT_BUFFER_USHORT(uint16_t *,
uint16_t *, uint32_t);
__stdcall static void READ_PORT_BUFFER_UCHAR(uint8_t *,
uint8_t *, uint32_t);
__stdcall static uint64_t KeQueryPerformanceCounter(uint64_t *);
__stdcall static void dummy (void);
extern struct mtx_pool *ndis_mtxpool;
int
hal_libinit()
{
image_patch_table *patch;
patch = hal_functbl;
while (patch->ipt_func != NULL) {
windrv_wrap((funcptr)patch->ipt_func,
(funcptr *)&patch->ipt_wrap);
patch++;
}
return(0);
}
int
hal_libfini()
{
image_patch_table *patch;
patch = hal_functbl;
while (patch->ipt_func != NULL) {
windrv_unwrap(patch->ipt_wrap);
patch++;
}
return(0);
}
__stdcall static void
KeStallExecutionProcessor(usecs)
uint32_t usecs;
{
DELAY(usecs);
return;
}
__stdcall static void
WRITE_PORT_ULONG(port, val)
uint32_t *port;
uint32_t val;
{
bus_space_write_4(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port, val);
return;
}
__stdcall static void
WRITE_PORT_USHORT(port, val)
uint16_t *port;
uint16_t val;
{
bus_space_write_2(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port, val);
return;
}
__stdcall static void
WRITE_PORT_UCHAR(port, val)
uint8_t *port;
uint8_t val;
{
bus_space_write_1(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port, val);
return;
}
__stdcall static void
WRITE_PORT_BUFFER_ULONG(port, val, cnt)
uint32_t *port;
uint32_t *val;
uint32_t cnt;
{
bus_space_write_multi_4(NDIS_BUS_SPACE_IO, 0x0,
(bus_size_t)port, val, cnt);
return;
}
__stdcall static void
WRITE_PORT_BUFFER_USHORT(port, val, cnt)
uint16_t *port;
uint16_t *val;
uint32_t cnt;
{
bus_space_write_multi_2(NDIS_BUS_SPACE_IO, 0x0,
(bus_size_t)port, val, cnt);
return;
}
__stdcall static void
WRITE_PORT_BUFFER_UCHAR(port, val, cnt)
uint8_t *port;
uint8_t *val;
uint32_t cnt;
{
bus_space_write_multi_1(NDIS_BUS_SPACE_IO, 0x0,
(bus_size_t)port, val, cnt);
return;
}
__stdcall static uint16_t
READ_PORT_USHORT(port)
uint16_t *port;
{
return(bus_space_read_2(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port));
}
__stdcall static uint32_t
READ_PORT_ULONG(port)
uint32_t *port;
{
return(bus_space_read_4(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port));
}
__stdcall static uint8_t
READ_PORT_UCHAR(port)
uint8_t *port;
{
return(bus_space_read_1(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port));
}
__stdcall static void
READ_PORT_BUFFER_ULONG(port, val, cnt)
uint32_t *port;
uint32_t *val;
uint32_t cnt;
{
bus_space_read_multi_4(NDIS_BUS_SPACE_IO, 0x0,
(bus_size_t)port, val, cnt);
return;
}
__stdcall static void
READ_PORT_BUFFER_USHORT(port, val, cnt)
uint16_t *port;
uint16_t *val;
uint32_t cnt;
{
bus_space_read_multi_2(NDIS_BUS_SPACE_IO, 0x0,
(bus_size_t)port, val, cnt);
return;
}
__stdcall static void
READ_PORT_BUFFER_UCHAR(port, val, cnt)
uint8_t *port;
uint8_t *val;
uint32_t cnt;
{
bus_space_read_multi_1(NDIS_BUS_SPACE_IO, 0x0,
(bus_size_t)port, val, cnt);
return;
}
/*
* The spinlock implementation in Windows differs from that of FreeBSD.
* The basic operation of spinlocks involves two steps: 1) spin in a
* tight loop while trying to acquire a lock, 2) after obtaining the
* lock, disable preemption. (Note that on uniprocessor systems, you're
* allowed to skip the first step and just lock out pre-emption, since
* it's not possible for you to be in contention with another running
* thread.) Later, you release the lock then re-enable preemption.
* The difference between Windows and FreeBSD lies in how preemption
* is disabled. In FreeBSD, it's done using critical_enter(), which on
* the x86 arch translates to a cli instruction. This masks off all
* interrupts, and effectively stops the scheduler from ever running
* so _nothing_ can execute except the current thread. In Windows,
* preemption is disabled by raising the processor IRQL to DISPATCH_LEVEL.
* This stops other threads from running, but does _not_ block device
* interrupts. This means ISRs can still run, and they can make other
* threads runable, but those other threads won't be able to execute
* until the current thread lowers the IRQL to something less than
* DISPATCH_LEVEL.
*
* There's another commonly used IRQL in Windows, which is APC_LEVEL.
* An APC is an Asynchronous Procedure Call, which differs from a DPC
* (Defered Procedure Call) in that a DPC is queued up to run in
* another thread, while an APC runs in the thread that scheduled
* it (similar to a signal handler in a UNIX process). We don't
* actually support the notion of APCs in FreeBSD, so for now, the
* only IRQLs we're interested in are DISPATCH_LEVEL and PASSIVE_LEVEL.
*
* To simulate DISPATCH_LEVEL, we raise the current thread's priority
* to PI_REALTIME, which is the highest we can give it. This should,
* if I understand things correctly, prevent anything except for an
* interrupt thread from preempting us. PASSIVE_LEVEL is basically
* everything else.
*
* Be aware that, at least on the x86 arch, the Windows spinlock
* functions are divided up in peculiar ways. The actual spinlock
* functions are KfAcquireSpinLock() and KfReleaseSpinLock(), and
* they live in HAL.dll. Meanwhile, KeInitializeSpinLock(),
* KefAcquireSpinLockAtDpcLevel() and KefReleaseSpinLockFromDpcLevel()
* live in ntoskrnl.exe. Most Windows source code will call
* KeAcquireSpinLock() and KeReleaseSpinLock(), but these are just
* macros that call KfAcquireSpinLock() and KfReleaseSpinLock().
* KefAcquireSpinLockAtDpcLevel() and KefReleaseSpinLockFromDpcLevel()
* perform the lock aquisition/release functions without doing the
* IRQL manipulation, and are used when one is already running at
* DISPATCH_LEVEL. Make sense? Good.
*
* According to the Microsoft documentation, any thread that calls
* KeAcquireSpinLock() must be running at IRQL <= DISPATCH_LEVEL. If
* we detect someone trying to acquire a spinlock from DEVICE_LEVEL
* or HIGH_LEVEL, we panic.
*/
__fastcall uint8_t
KfAcquireSpinLock(REGARGS1(kspin_lock *lock))
{
uint8_t oldirql;
/* I am so going to hell for this. */
if (KeGetCurrentIrql() > DISPATCH_LEVEL)
panic("IRQL_NOT_LESS_THAN_OR_EQUAL");
oldirql = KeRaiseIrql(DISPATCH_LEVEL);
KeAcquireSpinLockAtDpcLevel(lock);
return(oldirql);
}
__fastcall void
KfReleaseSpinLock(REGARGS2(kspin_lock *lock, uint8_t newirql))
{
KeReleaseSpinLockFromDpcLevel(lock);
KeLowerIrql(newirql);
return;
}
__stdcall uint8_t
KeGetCurrentIrql(void)
{
if (AT_DISPATCH_LEVEL(curthread))
return(DISPATCH_LEVEL);
return(PASSIVE_LEVEL);
}
__stdcall static uint64_t
KeQueryPerformanceCounter(freq)
uint64_t *freq;
{
if (freq != NULL)
*freq = hz;
return((uint64_t)ticks);
}
static int old_ipl;
static int ipl_raised = FALSE;
__fastcall uint8_t
KfRaiseIrql(REGARGS1(uint8_t irql))
{
uint8_t oldirql = 0;
//#ifdef __NetBSD__
// uint8_t s;
//#endif
if (irql < KeGetCurrentIrql())
panic("IRQL_NOT_LESS_THAN");
if (KeGetCurrentIrql() == DISPATCH_LEVEL)
return(DISPATCH_LEVEL);
#ifdef __NetBSD__
if(irql >= DISPATCH_LEVEL && !ipl_raised) {
old_ipl = splsoftclock();
ipl_raised = TRUE;
oldirql = win_irql;
win_irql = irql;
}
#else /* __FreeBSD__ */
mtx_lock_spin(&sched_lock);
oldirql = curthread->td_base_pri;
sched_prio(curthread, PI_REALTIME);
#if __FreeBSD_version < 600000
curthread->td_base_pri = PI_REALTIME;
#endif
mtx_unlock_spin(&sched_lock);
#endif /* __FreeBSD__ */
return(oldirql);
}
__fastcall void
KfLowerIrql(REGARGS1(uint8_t oldirql))
{
//#ifdef __NetBSD__
// uint8_t s;
//#endif
if (oldirql == DISPATCH_LEVEL)
return;
#ifdef __FreeBSD__
if (KeGetCurrentIrql() != DISPATCH_LEVEL)
panic("IRQL_NOT_GREATER_THAN");
#else /* __NetBSD__ */
if (KeGetCurrentIrql() < oldirql)
panic("IRQL_NOT_GREATER_THAN");
#endif
#ifdef __NetBSD__
if(oldirql < DISPATCH_LEVEL && ipl_raised) {
splx(old_ipl);
ipl_raised = FALSE;
win_irql = oldirql;
}
#else
mtx_lock_spin(&sched_lock);
#if __FreeBSD_version < 600000
curthread->td_base_pri = oldirql;
#endif
sched_prio(curthread, oldirql);
mtx_unlock_spin(&sched_lock);
#endif /* __NetBSD__ */
return;
}
__stdcall
static void dummy()
{
printf ("hal dummy called...\n");
return;
}
image_patch_table hal_functbl[] = {
IMPORT_FUNC(KeStallExecutionProcessor),
IMPORT_FUNC(WRITE_PORT_ULONG),
IMPORT_FUNC(WRITE_PORT_USHORT),
IMPORT_FUNC(WRITE_PORT_UCHAR),
IMPORT_FUNC(WRITE_PORT_BUFFER_ULONG),
IMPORT_FUNC(WRITE_PORT_BUFFER_USHORT),
IMPORT_FUNC(WRITE_PORT_BUFFER_UCHAR),
IMPORT_FUNC(READ_PORT_ULONG),
IMPORT_FUNC(READ_PORT_USHORT),
IMPORT_FUNC(READ_PORT_UCHAR),
IMPORT_FUNC(READ_PORT_BUFFER_ULONG),
IMPORT_FUNC(READ_PORT_BUFFER_USHORT),
IMPORT_FUNC(READ_PORT_BUFFER_UCHAR),
IMPORT_FUNC(KfAcquireSpinLock),
IMPORT_FUNC(KfReleaseSpinLock),
IMPORT_FUNC(KeGetCurrentIrql),
IMPORT_FUNC(KeQueryPerformanceCounter),
IMPORT_FUNC(KfLowerIrql),
IMPORT_FUNC(KfRaiseIrql),
/*
* This last entry is a catch-all for any function we haven't
* implemented yet. The PE import list patching routine will
* use it for any function that doesn't have an explicit match
* in this table.
*/
{ NULL, (FUNC)dummy, NULL },
/* End of list. */
{ NULL, NULL, NULL }
};