NetBSD/sys/crypto/cprng_fast/cprng_fast.c
2015-04-13 22:43:41 +00:00

500 lines
13 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* $NetBSD: cprng_fast.c,v 1.13 2015/04/13 22:43:41 riastradh Exp $ */
/*-
* Copyright (c) 2014 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Taylor R. Campbell.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: cprng_fast.c,v 1.13 2015/04/13 22:43:41 riastradh Exp $");
#include <sys/types.h>
#include <sys/param.h>
#include <sys/bitops.h>
#include <sys/cprng.h>
#include <sys/cpu.h>
#include <sys/intr.h>
#include <sys/percpu.h>
#include <sys/rnd.h> /* rnd_initial_entropy */
/* ChaCha core */
#define crypto_core_OUTPUTWORDS 16
#define crypto_core_INPUTWORDS 4
#define crypto_core_KEYWORDS 8
#define crypto_core_CONSTWORDS 4
#define crypto_core_ROUNDS 8
static uint32_t
rotate(uint32_t u, unsigned c)
{
return (u << c) | (u >> (32 - c));
}
#define QUARTERROUND(a, b, c, d) do { \
(a) += (b); (d) ^= (a); (d) = rotate((d), 16); \
(c) += (d); (b) ^= (c); (b) = rotate((b), 12); \
(a) += (b); (d) ^= (a); (d) = rotate((d), 8); \
(c) += (d); (b) ^= (c); (b) = rotate((b), 7); \
} while (0)
static void
crypto_core(uint32_t *out, const uint32_t *in, const uint32_t *k,
const uint32_t *c)
{
uint32_t x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15;
int i;
x0 = c[0];
x1 = c[1];
x2 = c[2];
x3 = c[3];
x4 = k[0];
x5 = k[1];
x6 = k[2];
x7 = k[3];
x8 = k[4];
x9 = k[5];
x10 = k[6];
x11 = k[7];
x12 = in[0];
x13 = in[1];
x14 = in[2];
x15 = in[3];
for (i = crypto_core_ROUNDS; i > 0; i -= 2) {
QUARTERROUND( x0, x4, x8,x12);
QUARTERROUND( x1, x5, x9,x13);
QUARTERROUND( x2, x6,x10,x14);
QUARTERROUND( x3, x7,x11,x15);
QUARTERROUND( x0, x5,x10,x15);
QUARTERROUND( x1, x6,x11,x12);
QUARTERROUND( x2, x7, x8,x13);
QUARTERROUND( x3, x4, x9,x14);
}
out[0] = x0 + c[0];
out[1] = x1 + c[1];
out[2] = x2 + c[2];
out[3] = x3 + c[3];
out[4] = x4 + k[0];
out[5] = x5 + k[1];
out[6] = x6 + k[2];
out[7] = x7 + k[3];
out[8] = x8 + k[4];
out[9] = x9 + k[5];
out[10] = x10 + k[6];
out[11] = x11 + k[7];
out[12] = x12 + in[0];
out[13] = x13 + in[1];
out[14] = x14 + in[2];
out[15] = x15 + in[3];
}
/* `expand 32-byte k' */
static const uint32_t crypto_core_constant32[4] = {
0x61707865U, 0x3320646eU, 0x79622d32U, 0x6b206574U,
};
/*
* Test vector for ChaCha20 from
* <http://tools.ietf.org/html/draft-strombergson-chacha-test-vectors-00>,
* test vectors for ChaCha12 and ChaCha8 generated by the same
* crypto_core code with crypto_core_ROUNDS varied.
*/
#define check(E) do \
{ \
if (!(E)) \
panic("crypto self-test failed: %s", #E); \
} while (0)
static void
crypto_core_selftest(void)
{
const uint32_t zero32[8] = {0};
const uint8_t sigma[] = "expand 32-byte k";
uint32_t block[16];
unsigned i;
#if crypto_core_ROUNDS == 8
static const uint8_t out[64] = {
0x3e,0x00,0xef,0x2f,0x89,0x5f,0x40,0xd6,
0x7f,0x5b,0xb8,0xe8,0x1f,0x09,0xa5,0xa1,
0x2c,0x84,0x0e,0xc3,0xce,0x9a,0x7f,0x3b,
0x18,0x1b,0xe1,0x88,0xef,0x71,0x1a,0x1e,
0x98,0x4c,0xe1,0x72,0xb9,0x21,0x6f,0x41,
0x9f,0x44,0x53,0x67,0x45,0x6d,0x56,0x19,
0x31,0x4a,0x42,0xa3,0xda,0x86,0xb0,0x01,
0x38,0x7b,0xfd,0xb8,0x0e,0x0c,0xfe,0x42,
};
#elif crypto_core_ROUNDS == 12
static const uint8_t out[64] = {
0x9b,0xf4,0x9a,0x6a,0x07,0x55,0xf9,0x53,
0x81,0x1f,0xce,0x12,0x5f,0x26,0x83,0xd5,
0x04,0x29,0xc3,0xbb,0x49,0xe0,0x74,0x14,
0x7e,0x00,0x89,0xa5,0x2e,0xae,0x15,0x5f,
0x05,0x64,0xf8,0x79,0xd2,0x7a,0xe3,0xc0,
0x2c,0xe8,0x28,0x34,0xac,0xfa,0x8c,0x79,
0x3a,0x62,0x9f,0x2c,0xa0,0xde,0x69,0x19,
0x61,0x0b,0xe8,0x2f,0x41,0x13,0x26,0xbe,
};
#elif crypto_core_ROUNDS == 20
static const uint8_t out[64] = {
0x76,0xb8,0xe0,0xad,0xa0,0xf1,0x3d,0x90,
0x40,0x5d,0x6a,0xe5,0x53,0x86,0xbd,0x28,
0xbd,0xd2,0x19,0xb8,0xa0,0x8d,0xed,0x1a,
0xa8,0x36,0xef,0xcc,0x8b,0x77,0x0d,0xc7,
0xda,0x41,0x59,0x7c,0x51,0x57,0x48,0x8d,
0x77,0x24,0xe0,0x3f,0xb8,0xd8,0x4a,0x37,
0x6a,0x43,0xb8,0xf4,0x15,0x18,0xa1,0x1c,
0xc3,0x87,0xb6,0x69,0xb2,0xee,0x65,0x86,
};
#else
#error crypto_core_ROUNDS must be 8, 12, or 20.
#endif
check(crypto_core_constant32[0] == le32dec(&sigma[0]));
check(crypto_core_constant32[1] == le32dec(&sigma[4]));
check(crypto_core_constant32[2] == le32dec(&sigma[8]));
check(crypto_core_constant32[3] == le32dec(&sigma[12]));
crypto_core(block, zero32, zero32, crypto_core_constant32);
for (i = 0; i < 16; i++)
check(block[i] == le32dec(&out[i*4]));
}
#undef check
#define CPRNG_FAST_SEED_BYTES (crypto_core_KEYWORDS * sizeof(uint32_t))
struct cprng_fast {
uint32_t buffer[crypto_core_OUTPUTWORDS];
uint32_t key[crypto_core_KEYWORDS];
uint32_t nonce[crypto_core_INPUTWORDS];
bool have_initial;
};
__CTASSERT(sizeof ((struct cprng_fast *)0)->key == CPRNG_FAST_SEED_BYTES);
static void cprng_fast_init_cpu(void *, void *, struct cpu_info *);
static void cprng_fast_schedule_reseed(struct cprng_fast *);
static void cprng_fast_intr(void *);
static void cprng_fast_seed(struct cprng_fast *, const void *);
static void cprng_fast_buf(struct cprng_fast *, void *, unsigned);
static void cprng_fast_buf_short(void *, size_t);
static void cprng_fast_buf_long(void *, size_t);
static percpu_t *cprng_fast_percpu __read_mostly;
static void *cprng_fast_softint __read_mostly;
void
cprng_fast_init(void)
{
crypto_core_selftest();
cprng_fast_percpu = percpu_alloc(sizeof(struct cprng_fast));
percpu_foreach(cprng_fast_percpu, &cprng_fast_init_cpu, NULL);
cprng_fast_softint = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
&cprng_fast_intr, NULL);
}
static void
cprng_fast_init_cpu(void *p, void *arg __unused, struct cpu_info *ci __unused)
{
struct cprng_fast *const cprng = p;
uint8_t seed[CPRNG_FAST_SEED_BYTES];
cprng_strong(kern_cprng, seed, sizeof seed, 0);
cprng_fast_seed(cprng, seed);
cprng->have_initial = rnd_initial_entropy;
(void)explicit_memset(seed, 0, sizeof seed);
}
static inline int
cprng_fast_get(struct cprng_fast **cprngp)
{
struct cprng_fast *cprng;
int s;
*cprngp = cprng = percpu_getref(cprng_fast_percpu);
s = splvm();
if (__predict_false(!cprng->have_initial))
cprng_fast_schedule_reseed(cprng);
return s;
}
static inline void
cprng_fast_put(struct cprng_fast *cprng, int s)
{
KASSERT((cprng == percpu_getref(cprng_fast_percpu)) &&
(percpu_putref(cprng_fast_percpu), true));
splx(s);
percpu_putref(cprng_fast_percpu);
}
static void
cprng_fast_schedule_reseed(struct cprng_fast *cprng __unused)
{
softint_schedule(cprng_fast_softint);
}
static void
cprng_fast_intr(void *cookie __unused)
{
struct cprng_fast *cprng;
uint8_t seed[CPRNG_FAST_SEED_BYTES];
int s;
cprng_strong(kern_cprng, seed, sizeof(seed), 0);
cprng = percpu_getref(cprng_fast_percpu);
s = splvm();
cprng_fast_seed(cprng, seed);
cprng->have_initial = rnd_initial_entropy;
splx(s);
percpu_putref(cprng_fast_percpu);
explicit_memset(seed, 0, sizeof(seed));
}
/* CPRNG algorithm */
/*
* The state consists of a key, the current nonce, and a 64-byte buffer
* of output. Since we fill the buffer only when we need output, and
* eat a 32-bit word at a time, one 32-bit word of the buffer would be
* wasted. Instead, we repurpose it to count the number of entries in
* the buffer remaining, counting from high to low in order to allow
* comparison to zero to detect when we need to refill it.
*/
#define CPRNG_FAST_BUFIDX (crypto_core_OUTPUTWORDS - 1)
static void
cprng_fast_seed(struct cprng_fast *cprng, const void *seed)
{
(void)memset(cprng->buffer, 0, sizeof cprng->buffer);
(void)memcpy(cprng->key, seed, sizeof cprng->key);
(void)memset(cprng->nonce, 0, sizeof cprng->nonce);
}
static inline uint32_t
cprng_fast_word(struct cprng_fast *cprng)
{
uint32_t v;
if (__predict_true(0 < cprng->buffer[CPRNG_FAST_BUFIDX])) {
v = cprng->buffer[--cprng->buffer[CPRNG_FAST_BUFIDX]];
} else {
/* If we don't have enough words, refill the buffer. */
crypto_core(cprng->buffer, cprng->nonce, cprng->key,
crypto_core_constant32);
if (__predict_false(++cprng->nonce[0] == 0)) {
cprng->nonce[1]++;
cprng_fast_schedule_reseed(cprng);
}
v = cprng->buffer[CPRNG_FAST_BUFIDX];
cprng->buffer[CPRNG_FAST_BUFIDX] = CPRNG_FAST_BUFIDX;
}
return v;
}
static inline void
cprng_fast_buf(struct cprng_fast *cprng, void *buf, unsigned n)
{
uint8_t *p = buf;
uint32_t v;
unsigned w, r;
w = n / sizeof(uint32_t);
while (w--) {
v = cprng_fast_word(cprng);
(void)memcpy(p, &v, 4);
p += 4;
}
r = n % sizeof(uint32_t);
if (r) {
v = cprng_fast_word(cprng);
while (r--) {
*p++ = (v & 0xff);
v >>= 8;
}
}
}
/*
* crypto_onetimestream: Expand a short unpredictable one-time seed
* into a long unpredictable output.
*/
static void
crypto_onetimestream(const uint32_t seed[crypto_core_KEYWORDS], void *buf,
size_t n)
{
uint32_t block[crypto_core_OUTPUTWORDS];
uint32_t nonce[crypto_core_INPUTWORDS] = {0};
uint8_t *p8;
uint32_t *p32;
size_t ni, nb, nf;
/*
* Guarantee we can generate up to n bytes. We have
* 2^(32*INPUTWORDS) possible inputs yielding output of
* 4*OUTPUTWORDS*2^(32*INPUTWORDS) bytes. It suffices to
* require that sizeof n > (1/CHAR_BIT) log_2 n be less than
* (1/CHAR_BIT) log_2 of the total output stream length. We
* have
*
* log_2 (4 o 2^(32 i)) = log_2 (4 o) + log_2 2^(32 i)
* = 2 + log_2 o + 32 i.
*/
__CTASSERT(CHAR_BIT*sizeof n <=
(2 + ilog2(crypto_core_OUTPUTWORDS) + 32*crypto_core_INPUTWORDS));
p8 = buf;
p32 = (uint32_t *)roundup2((uintptr_t)p8, sizeof(uint32_t));
ni = (uint8_t *)p32 - p8;
if (n < ni)
ni = n;
nb = (n - ni) / sizeof block;
nf = (n - ni) % sizeof block;
KASSERT(((uintptr_t)p32 & 3) == 0);
KASSERT(ni <= n);
KASSERT(nb <= (n / sizeof block));
KASSERT(nf <= n);
KASSERT(n == (ni + (nb * sizeof block) + nf));
KASSERT(ni < sizeof(uint32_t));
KASSERT(nf < sizeof block);
if (ni) {
crypto_core(block, nonce, seed, crypto_core_constant32);
nonce[0]++;
(void)memcpy(p8, block, ni);
}
while (nb--) {
crypto_core(p32, nonce, seed, crypto_core_constant32);
if (++nonce[0] == 0)
nonce[1]++;
p32 += crypto_core_OUTPUTWORDS;
}
if (nf) {
crypto_core(block, nonce, seed, crypto_core_constant32);
if (++nonce[0] == 0)
nonce[1]++;
(void)memcpy(p32, block, nf);
}
if (ni | nf)
(void)explicit_memset(block, 0, sizeof block);
}
/* Public API */
uint32_t
cprng_fast32(void)
{
struct cprng_fast *cprng;
uint32_t v;
int s;
s = cprng_fast_get(&cprng);
v = cprng_fast_word(cprng);
cprng_fast_put(cprng, s);
return v;
}
uint64_t
cprng_fast64(void)
{
struct cprng_fast *cprng;
uint32_t hi, lo;
int s;
s = cprng_fast_get(&cprng);
hi = cprng_fast_word(cprng);
lo = cprng_fast_word(cprng);
cprng_fast_put(cprng, s);
return ((uint64_t)hi << 32) | lo;
}
static void
cprng_fast_buf_short(void *buf, size_t len)
{
struct cprng_fast *cprng;
int s;
s = cprng_fast_get(&cprng);
cprng_fast_buf(cprng, buf, len);
cprng_fast_put(cprng, s);
}
static __noinline void
cprng_fast_buf_long(void *buf, size_t len)
{
uint32_t seed[crypto_core_KEYWORDS];
struct cprng_fast *cprng;
int s;
s = cprng_fast_get(&cprng);
cprng_fast_buf(cprng, seed, sizeof seed);
cprng_fast_put(cprng, s);
crypto_onetimestream(seed, buf, len);
(void)explicit_memset(seed, 0, sizeof seed);
}
size_t
cprng_fast(void *buf, size_t len)
{
/*
* We don't want to hog the CPU, so we use the short version,
* to generate output without preemption, only if we can do it
* with at most one crypto_core.
*/
if (len <= (sizeof(uint32_t) * crypto_core_OUTPUTWORDS))
cprng_fast_buf_short(buf, len);
else
cprng_fast_buf_long(buf, len);
return len;
}