NetBSD/dist/ntp/ntpd/refclock_wwv.c
drochner d5e6f1b80b resolve conflicts
(in this case, throw away all local modifications; I'll start patching
from scratch)
2003-12-04 16:23:34 +00:00

2862 lines
85 KiB
C

/* $NetBSD: refclock_wwv.c,v 1.3 2003/12/04 16:23:37 drochner Exp $ */
/*
* refclock_wwv - clock driver for NIST WWV/H time/frequency station
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#if defined(REFCLOCK) && defined(CLOCK_WWV)
#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_refclock.h"
#include "ntp_calendar.h"
#include "ntp_stdlib.h"
#include "audio.h"
#include <stdio.h>
#include <ctype.h>
#include <math.h>
#ifdef HAVE_SYS_IOCTL_H
# include <sys/ioctl.h>
#endif /* HAVE_SYS_IOCTL_H */
#define ICOM 1
#ifdef ICOM
#include "icom.h"
#endif /* ICOM */
/*
* Audio WWV/H demodulator/decoder
*
* This driver synchronizes the computer time using data encoded in
* radio transmissions from NIST time/frequency stations WWV in Boulder,
* CO, and WWVH in Kauai, HI. Transmissions are made continuously on
* 2.5, 5, 10, 15 and 20 MHz in AM mode. An ordinary shortwave receiver
* can be tuned manually to one of these frequencies or, in the case of
* ICOM receivers, the receiver can be tuned automatically using this
* program as propagation conditions change throughout the day and
* night.
*
* The driver receives, demodulates and decodes the radio signals when
* connected to the audio codec of a workstation running Solaris, SunOS
* FreeBSD or Linux, and with a little help, other workstations with
* similar codecs or sound cards. In this implementation, only one audio
* driver and codec can be supported on a single machine.
*
* The demodulation and decoding algorithms used in this driver are
* based on those developed for the TAPR DSP93 development board and the
* TI 320C25 digital signal processor described in: Mills, D.L. A
* precision radio clock for WWV transmissions. Electrical Engineering
* Report 97-8-1, University of Delaware, August 1997, 25 pp., available
* from www.eecis.udel.edu/~mills/reports.htm. The algorithms described
* in this report have been modified somewhat to improve performance
* under weak signal conditions and to provide an automatic station
* identification feature.
*
* The ICOM code is normally compiled in the driver. It isn't used,
* unless the mode keyword on the server configuration command specifies
* a nonzero ICOM ID select code. The C-IV trace is turned on if the
* debug level is greater than one.
*/
/*
* Interface definitions
*/
#define DEVICE_AUDIO "/dev/audio" /* audio device name */
#define AUDIO_BUFSIZ 320 /* audio buffer size (50 ms) */
#define PRECISION (-10) /* precision assumed (about 1 ms) */
#define DESCRIPTION "WWV/H Audio Demodulator/Decoder" /* WRU */
#define SECOND 8000 /* second epoch (sample rate) (Hz) */
#define MINUTE (SECOND * 60) /* minute epoch */
#define OFFSET 128 /* companded sample offset */
#define SIZE 256 /* decompanding table size */
#define MAXSIG 6000. /* max signal level reference */
#define MAXCLP 100 /* max clips above reference per s */
#define MAXSNR 30. /* max SNR reference */
#define DGAIN 20. /* data channel gain reference */
#define SGAIN 10. /* sync channel gain reference */
#define MAXFREQ 1. /* max frequency tolerance (125 PPM) */
#define PI 3.1415926535 /* the real thing */
#define DATSIZ (170 * MS) /* data matched filter size */
#define SYNSIZ (800 * MS) /* minute sync matched filter size */
#define MAXERR 30 /* max data bit errors in minute */
#define NCHAN 5 /* number of radio channels */
#define AUDIO_PHI 5e-6 /* dispersion growth factor */
#ifdef IRIG_SUCKS
#define WIGGLE 11 /* wiggle filter length */
#endif /* IRIG_SUCKS */
/*
* General purpose status bits (status)
*
* SELV and/or SELH are set when WWV or WWVH has been heard and cleared
* on signal loss. SSYNC is set when the second sync pulse has been
* acquired and cleared by signal loss. MSYNC is set when the minute
* sync pulse has been acquired. DSYNC is set when a digit reaches the
* threshold and INSYNC is set when all nine digits have reached the
* threshold. The MSYNC, DSYNC and INSYNC bits are cleared only by
* timeout, upon which the driver starts over from scratch.
*
* DGATE is set if a data bit is invalid and BGATE is set if a BCD digit
* bit is invalid. SFLAG is set when during seconds 59, 0 and 1 while
* probing alternate frequencies. LEPDAY is set when SECWAR of the
* timecode is set on 30 June or 31 December. LEPSEC is set during the
* last minute of the day when LEPDAY is set. At the end of this minute
* the driver inserts second 60 in the seconds state machine and the
* minute sync slips a second. The SLOSS and SJITR bits are for monitor
* only.
*/
#define MSYNC 0x0001 /* minute epoch sync */
#define SSYNC 0x0002 /* second epoch sync */
#define DSYNC 0x0004 /* minute units sync */
#define INSYNC 0x0008 /* clock synchronized */
#define FGATE 0x0010 /* frequency gate */
#define DGATE 0x0020 /* data bit error */
#define BGATE 0x0040 /* BCD digit bit error */
#define SFLAG 0x1000 /* probe flag */
#define LEPDAY 0x2000 /* leap second day */
#define LEPSEC 0x4000 /* leap second minute */
/*
* Station scoreboard bits
*
* These are used to establish the signal quality for each of the five
* frequencies and two stations.
*/
#define SYNCNG 0x0001 /* sync or SNR below threshold */
#define DATANG 0x0002 /* data or SNR below threshold */
#define ERRRNG 0x0004 /* data error */
#define SELV 0x0100 /* WWV station select */
#define SELH 0x0200 /* WWVH station select */
/*
* Alarm status bits (alarm)
*
* These bits indicate various alarm conditions, which are decoded to
* form the quality character included in the timecode. If not tracking
* second sync, the SYNERR alarm is raised. The data error counter is
* incremented for each invalid data bit. If too many data bit errors
* are encountered in one minute, the MODERR alarm is raised. The DECERR
* alarm is raised if a maximum likelihood digit fails to compare with
* the current clock digit. If the probability of any miscellaneous bit
* or any digit falls below the threshold, the SYMERR alarm is raised.
*/
#define DECERR 1 /* BCD digit compare error */
#define SYMERR 2 /* low bit or digit probability */
#define MODERR 4 /* too many data bit errors */
#define SYNERR 8 /* not synchronized to station */
/*
* Watchcat timeouts (watch)
*
* If these timeouts expire, the status bits are mashed to zero and the
* driver starts from scratch. Suitably more refined procedures may be
* developed in future. All these are in minutes.
*/
#define ACQSN 5 /* station acquisition timeout */
#define DIGIT 30 /* minute unit digit timeout */
#define HOLD 30 /* reachable timeout */
#define PANIC (2 * 1440) /* panic timeout */
/*
* Thresholds. These establish the minimum signal level, minimum SNR and
* maximum jitter thresholds which establish the error and false alarm
* rates of the driver. The values defined here may be on the
* adventurous side in the interest of the highest sensitivity.
*/
#define MTHR 13. /* acquisition signal gate (percent) */
#define TTHR 50. /* tracking signal gate (percent) */
#define ATHR 2000. /* acquisition amplitude threshold */
#define ASNR 6. /* acquisition SNR threshold (dB) */
#define AWND 20. /* acquisition jitter threshold (ms) */
#define AMIN 3 /* min bit count */
#define AMAX 6 /* max bit count */
#define QTHR 2000 /* QSY sync threshold */
#define QSNR 20. /* QSY sync SNR threshold (dB) */
#define XTHR 1000. /* QSY data threshold */
#define XSNR 10. /* QSY data SNR threshold (dB) */
#define STHR 500 /* second sync amplitude threshold */
#define SSNR 10. /* second sync SNR threshold */
#define SCMP 10 /* second sync compare threshold */
#define DTHR 1000 /* bit amplitude threshold */
#define DSNR 10. /* bit SNR threshold (dB) */
#define BTHR 1000 /* digit amplitude threshold */
#define BSNR 3. /* digit likelihood threshold (dB) */
#define BCMP 5 /* digit compare threshold */
/*
* Tone frequency definitions. The increments are for 4.5-deg sine
* table.
*/
#define MS (SECOND / 1000) /* samples per millisecond */
#define IN100 ((100 * 80) / SECOND) /* 100 Hz increment */
#define IN1000 ((1000 * 80) / SECOND) /* 1000 Hz increment */
#define IN1200 ((1200 * 80) / SECOND) /* 1200 Hz increment */
/*
* Acquisition and tracking time constants. Usually powers of 2.
*/
#define MINAVG 8 /* min time constant */
#define MAXAVG 1024 /* max time constant */
#define TCONST 16 /* data bit/digit time constant */
/*
* Miscellaneous status bits (misc)
*
* These bits correspond to designated bits in the WWV/H timecode. The
* bit probabilities are exponentially averaged over several minutes and
* processed by a integrator and threshold.
*/
#define DUT1 0x01 /* 56 DUT .1 */
#define DUT2 0x02 /* 57 DUT .2 */
#define DUT4 0x04 /* 58 DUT .4 */
#define DUTS 0x08 /* 50 DUT sign */
#define DST1 0x10 /* 55 DST1 leap warning */
#define DST2 0x20 /* 2 DST2 DST1 delayed one day */
#define SECWAR 0x40 /* 3 leap second warning */
/*
* The on-time synchronization point for the driver is the second epoch
* sync pulse produced by the FIR matched filters. As the 5-ms delay of
* these filters is compensated, the program delay is 1.1 ms due to the
* 600-Hz IIR bandpass filter. The measured receiver delay is 4.7 ms and
* the codec delay less than 0.2 ms. The additional propagation delay
* specific to each receiver location can be programmed in the fudge
* time1 and time2 values for WWV and WWVH, respectively.
*/
#define PDELAY (.0011 + .0047 + .0002) /* net system delay (s) */
/*
* Table of sine values at 4.5-degree increments. This is used by the
* synchronous matched filter demodulators. The integral of sine-squared
* over one complete cycle is PI, so the table is normallized by 1 / PI.
*/
double sintab[] = {
0.000000e+00, 2.497431e-02, 4.979464e-02, 7.430797e-02, /* 0-3 */
9.836316e-02, 1.218119e-01, 1.445097e-01, 1.663165e-01, /* 4-7 */
1.870979e-01, 2.067257e-01, 2.250791e-01, 2.420447e-01, /* 8-11 */
2.575181e-01, 2.714038e-01, 2.836162e-01, 2.940800e-01, /* 12-15 */
3.027307e-01, 3.095150e-01, 3.143910e-01, 3.173286e-01, /* 16-19 */
3.183099e-01, 3.173286e-01, 3.143910e-01, 3.095150e-01, /* 20-23 */
3.027307e-01, 2.940800e-01, 2.836162e-01, 2.714038e-01, /* 24-27 */
2.575181e-01, 2.420447e-01, 2.250791e-01, 2.067257e-01, /* 28-31 */
1.870979e-01, 1.663165e-01, 1.445097e-01, 1.218119e-01, /* 32-35 */
9.836316e-02, 7.430797e-02, 4.979464e-02, 2.497431e-02, /* 36-39 */
-0.000000e+00, -2.497431e-02, -4.979464e-02, -7.430797e-02, /* 40-43 */
-9.836316e-02, -1.218119e-01, -1.445097e-01, -1.663165e-01, /* 44-47 */
-1.870979e-01, -2.067257e-01, -2.250791e-01, -2.420447e-01, /* 48-51 */
-2.575181e-01, -2.714038e-01, -2.836162e-01, -2.940800e-01, /* 52-55 */
-3.027307e-01, -3.095150e-01, -3.143910e-01, -3.173286e-01, /* 56-59 */
-3.183099e-01, -3.173286e-01, -3.143910e-01, -3.095150e-01, /* 60-63 */
-3.027307e-01, -2.940800e-01, -2.836162e-01, -2.714038e-01, /* 64-67 */
-2.575181e-01, -2.420447e-01, -2.250791e-01, -2.067257e-01, /* 68-71 */
-1.870979e-01, -1.663165e-01, -1.445097e-01, -1.218119e-01, /* 72-75 */
-9.836316e-02, -7.430797e-02, -4.979464e-02, -2.497431e-02, /* 76-79 */
0.000000e+00}; /* 80 */
/*
* Decoder operations at the end of each second are driven by a state
* machine. The transition matrix consists of a dispatch table indexed
* by second number. Each entry in the table contains a case switch
* number and argument.
*/
struct progx {
int sw; /* case switch number */
int arg; /* argument */
};
/*
* Case switch numbers
*/
#define IDLE 0 /* no operation */
#define COEF 1 /* BCD bit */
#define COEF2 2 /* BCD bit ignored */
#define DECIM9 3 /* BCD digit 0-9 */
#define DECIM6 4 /* BCD digit 0-6 */
#define DECIM3 5 /* BCD digit 0-3 */
#define DECIM2 6 /* BCD digit 0-2 */
#define MSCBIT 7 /* miscellaneous bit */
#define MSC20 8 /* miscellaneous bit */
#define MSC21 9 /* QSY probe channel */
#define MIN1 10 /* minute */
#define MIN2 11 /* leap second */
#define SYNC2 12 /* QSY data channel */
#define SYNC3 13 /* QSY data channel */
/*
* Offsets in decoding matrix
*/
#define MN 0 /* minute digits (2) */
#define HR 2 /* hour digits (2) */
#define DA 4 /* day digits (3) */
#define YR 7 /* year digits (2) */
struct progx progx[] = {
{SYNC2, 0}, /* 0 latch sync max */
{SYNC3, 0}, /* 1 QSY data channel */
{MSCBIT, DST2}, /* 2 dst2 */
{MSCBIT, SECWAR}, /* 3 lw */
{COEF, 0}, /* 4 1 year units */
{COEF, 1}, /* 5 2 */
{COEF, 2}, /* 6 4 */
{COEF, 3}, /* 7 8 */
{DECIM9, YR}, /* 8 */
{IDLE, 0}, /* 9 p1 */
{COEF, 0}, /* 10 1 minute units */
{COEF, 1}, /* 11 2 */
{COEF, 2}, /* 12 4 */
{COEF, 3}, /* 13 8 */
{DECIM9, MN}, /* 14 */
{COEF, 0}, /* 15 10 minute tens */
{COEF, 1}, /* 16 20 */
{COEF, 2}, /* 17 40 */
{COEF2, 3}, /* 18 80 (not used) */
{DECIM6, MN + 1}, /* 19 p2 */
{COEF, 0}, /* 20 1 hour units */
{COEF, 1}, /* 21 2 */
{COEF, 2}, /* 22 4 */
{COEF, 3}, /* 23 8 */
{DECIM9, HR}, /* 24 */
{COEF, 0}, /* 25 10 hour tens */
{COEF, 1}, /* 26 20 */
{COEF2, 2}, /* 27 40 (not used) */
{COEF2, 3}, /* 28 80 (not used) */
{DECIM2, HR + 1}, /* 29 p3 */
{COEF, 0}, /* 30 1 day units */
{COEF, 1}, /* 31 2 */
{COEF, 2}, /* 32 4 */
{COEF, 3}, /* 33 8 */
{DECIM9, DA}, /* 34 */
{COEF, 0}, /* 35 10 day tens */
{COEF, 1}, /* 36 20 */
{COEF, 2}, /* 37 40 */
{COEF, 3}, /* 38 80 */
{DECIM9, DA + 1}, /* 39 p4 */
{COEF, 0}, /* 40 100 day hundreds */
{COEF, 1}, /* 41 200 */
{COEF2, 2}, /* 42 400 (not used) */
{COEF2, 3}, /* 43 800 (not used) */
{DECIM3, DA + 2}, /* 44 */
{IDLE, 0}, /* 45 */
{IDLE, 0}, /* 46 */
{IDLE, 0}, /* 47 */
{IDLE, 0}, /* 48 */
{IDLE, 0}, /* 49 p5 */
{MSCBIT, DUTS}, /* 50 dut+- */
{COEF, 0}, /* 51 10 year tens */
{COEF, 1}, /* 52 20 */
{COEF, 2}, /* 53 40 */
{COEF, 3}, /* 54 80 */
{MSC20, DST1}, /* 55 dst1 */
{MSCBIT, DUT1}, /* 56 0.1 dut */
{MSCBIT, DUT2}, /* 57 0.2 */
{MSC21, DUT4}, /* 58 0.4 QSY probe channel */
{MIN1, 0}, /* 59 p6 latch sync min */
{MIN2, 0} /* 60 leap second */
};
/*
* BCD coefficients for maximum likelihood digit decode
*/
#define P15 1. /* max positive number */
#define N15 -1. /* max negative number */
/*
* Digits 0-9
*/
#define P9 (P15 / 4) /* mark (+1) */
#define N9 (N15 / 4) /* space (-1) */
double bcd9[][4] = {
{N9, N9, N9, N9}, /* 0 */
{P9, N9, N9, N9}, /* 1 */
{N9, P9, N9, N9}, /* 2 */
{P9, P9, N9, N9}, /* 3 */
{N9, N9, P9, N9}, /* 4 */
{P9, N9, P9, N9}, /* 5 */
{N9, P9, P9, N9}, /* 6 */
{P9, P9, P9, N9}, /* 7 */
{N9, N9, N9, P9}, /* 8 */
{P9, N9, N9, P9}, /* 9 */
{0, 0, 0, 0} /* backstop */
};
/*
* Digits 0-6 (minute tens)
*/
#define P6 (P15 / 3) /* mark (+1) */
#define N6 (N15 / 3) /* space (-1) */
double bcd6[][4] = {
{N6, N6, N6, 0}, /* 0 */
{P6, N6, N6, 0}, /* 1 */
{N6, P6, N6, 0}, /* 2 */
{P6, P6, N6, 0}, /* 3 */
{N6, N6, P6, 0}, /* 4 */
{P6, N6, P6, 0}, /* 5 */
{N6, P6, P6, 0}, /* 6 */
{0, 0, 0, 0} /* backstop */
};
/*
* Digits 0-3 (day hundreds)
*/
#define P3 (P15 / 2) /* mark (+1) */
#define N3 (N15 / 2) /* space (-1) */
double bcd3[][4] = {
{N3, N3, 0, 0}, /* 0 */
{P3, N3, 0, 0}, /* 1 */
{N3, P3, 0, 0}, /* 2 */
{P3, P3, 0, 0}, /* 3 */
{0, 0, 0, 0} /* backstop */
};
/*
* Digits 0-2 (hour tens)
*/
#define P2 (P15 / 2) /* mark (+1) */
#define N2 (N15 / 2) /* space (-1) */
double bcd2[][4] = {
{N2, N2, 0, 0}, /* 0 */
{P2, N2, 0, 0}, /* 1 */
{N2, P2, 0, 0}, /* 2 */
{0, 0, 0, 0} /* backstop */
};
/*
* DST decode (DST2 DST1) for prettyprint
*/
char dstcod[] = {
'S', /* 00 standard time */
'I', /* 01 set clock ahead at 0200 local */
'O', /* 10 set clock back at 0200 local */
'D' /* 11 daylight time */
};
/*
* The decoding matrix consists of nine row vectors, one for each digit
* of the timecode. The digits are stored from least to most significant
* order. The maximum likelihood timecode is formed from the digits
* corresponding to the maximum likelihood values reading in the
* opposite order: yy ddd hh:mm.
*/
struct decvec {
int radix; /* radix (3, 4, 6, 10) */
int digit; /* current clock digit */
int mldigit; /* maximum likelihood digit */
int phase; /* maximum likelihood digit phase */
int count; /* match count */
double digprb; /* max digit probability */
double digsnr; /* likelihood function (dB) */
double like[10]; /* likelihood integrator 0-9 */
};
/*
* The station structure is used to acquire the minute pulse from WWV
* and/or WWVH. These stations are distinguished by the frequency used
* for the second and minute sync pulses, 1000 Hz for WWV and 1200 Hz
* for WWVH. Other than frequency, the format is the same.
*/
struct sync {
double epoch; /* accumulated epoch differences */
double maxamp; /* sync max envelope (square) */
double noiamp; /* sync noise envelope (square) */
long pos; /* max amplitude position */
long lastpos; /* last max position */
long mepoch; /* minute synch epoch */
double amp; /* sync amplitude (I, Q squares) */
double synamp; /* sync max envelope at 800 ms */
double synmax; /* sync envelope at 0 s */
double synmin; /* sync envelope at 59, 1 s */
double synsnr; /* sync signal SNR */
int count; /* bit counter */
char refid[5]; /* reference identifier */
int select; /* select bits */
int reach; /* reachability register */
};
/*
* The channel structure is used to mitigate between channels.
*/
struct chan {
int gain; /* audio gain */
double sigamp; /* data max envelope (square) */
double noiamp; /* data noise envelope (square) */
double datsnr; /* data signal SNR */
struct sync wwv; /* wwv station */
struct sync wwvh; /* wwvh station */
};
/*
* WWV unit control structure
*/
struct wwvunit {
l_fp timestamp; /* audio sample timestamp */
l_fp tick; /* audio sample increment */
double phase, freq; /* logical clock phase and frequency */
double monitor; /* audio monitor point */
int fd_icom; /* ICOM file descriptor */
int errflg; /* error flags */
int watch; /* watchcat */
/*
* Audio codec variables
*/
double comp[SIZE]; /* decompanding table */
int port; /* codec port */
int gain; /* codec gain */
int mongain; /* codec monitor gain */
int clipcnt; /* sample clipped count */
#ifdef IRIG_SUCKS
l_fp wigwag; /* wiggle accumulator */
int wp; /* wiggle filter pointer */
l_fp wiggle[WIGGLE]; /* wiggle filter */
l_fp wigbot[WIGGLE]; /* wiggle bottom fisher*/
#endif /* IRIG_SUCKS */
/*
* Variables used to establish basic system timing
*/
int avgint; /* master time constant */
int tepoch; /* sync epoch median */
int yepoch; /* sync epoch */
int repoch; /* buffered sync epoch */
double epomax; /* second sync amplitude */
double eposnr; /* second sync SNR */
double irig; /* data I channel amplitude */
double qrig; /* data Q channel amplitude */
int datapt; /* 100 Hz ramp */
double datpha; /* 100 Hz VFO control */
int rphase; /* second sample counter */
long mphase; /* minute sample counter */
/*
* Variables used to mitigate which channel to use
*/
struct chan mitig[NCHAN]; /* channel data */
struct sync *sptr; /* station pointer */
int dchan; /* data channel */
int schan; /* probe channel */
int achan; /* active channel */
/*
* Variables used by the clock state machine
*/
struct decvec decvec[9]; /* decoding matrix */
int rsec; /* seconds counter */
int digcnt; /* count of digits synchronized */
/*
* Variables used to estimate signal levels and bit/digit
* probabilities
*/
double sigsig; /* data max signal */
double sigamp; /* data max envelope (square) */
double noiamp; /* data noise envelope (square) */
double datsnr; /* data SNR (dB) */
/*
* Variables used to establish status and alarm conditions
*/
int status; /* status bits */
int alarm; /* alarm flashers */
int misc; /* miscellaneous timecode bits */
int errcnt; /* data bit error counter */
int errbit; /* data bit errors in minute */
};
/*
* Function prototypes
*/
static int wwv_start P((int, struct peer *));
static void wwv_shutdown P((int, struct peer *));
static void wwv_receive P((struct recvbuf *));
static void wwv_poll P((int, struct peer *));
/*
* More function prototypes
*/
static void wwv_epoch P((struct peer *));
static void wwv_rf P((struct peer *, double));
static void wwv_endpoc P((struct peer *, int));
static void wwv_rsec P((struct peer *, double));
static void wwv_qrz P((struct peer *, struct sync *,
double, int));
static void wwv_corr4 P((struct peer *, struct decvec *,
double [], double [][4]));
static void wwv_gain P((struct peer *));
static void wwv_tsec P((struct wwvunit *));
static double wwv_data P((struct wwvunit *, double));
static int timecode P((struct wwvunit *, char *));
static double wwv_snr P((double, double));
static int carry P((struct decvec *));
static void wwv_newchan P((struct peer *));
static void wwv_newgame P((struct peer *));
static double wwv_metric P((struct sync *));
#ifdef ICOM
static int wwv_qsy P((struct peer *, int));
#endif /* ICOM */
static double qsy[NCHAN] = {2.5, 5, 10, 15, 20}; /* frequencies (MHz) */
/*
* Transfer vector
*/
struct refclock refclock_wwv = {
wwv_start, /* start up driver */
wwv_shutdown, /* shut down driver */
wwv_poll, /* transmit poll message */
noentry, /* not used (old wwv_control) */
noentry, /* initialize driver (not used) */
noentry, /* not used (old wwv_buginfo) */
NOFLAGS /* not used */
};
/*
* wwv_start - open the devices and initialize data for processing
*/
static int
wwv_start(
int unit, /* instance number (used by PCM) */
struct peer *peer /* peer structure pointer */
)
{
struct refclockproc *pp;
struct wwvunit *up;
#ifdef ICOM
int temp;
#endif /* ICOM */
/*
* Local variables
*/
int fd; /* file descriptor */
int i; /* index */
double step; /* codec adjustment */
/*
* Open audio device
*/
fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
if (fd < 0)
return (0);
#ifdef DEBUG
if (debug)
audio_show();
#endif
/*
* Allocate and initialize unit structure
*/
if (!(up = (struct wwvunit *)emalloc(sizeof(struct wwvunit)))) {
close(fd);
return (0);
}
memset(up, 0, sizeof(struct wwvunit));
pp = peer->procptr;
pp->unitptr = (caddr_t)up;
pp->io.clock_recv = wwv_receive;
pp->io.srcclock = (caddr_t)peer;
pp->io.datalen = 0;
pp->io.fd = fd;
if (!io_addclock(&pp->io)) {
close(fd);
free(up);
return (0);
}
/*
* Initialize miscellaneous variables
*/
peer->precision = PRECISION;
pp->clockdesc = DESCRIPTION;
/*
* The companded samples are encoded sign-magnitude. The table
* contains all the 256 values in the interest of speed.
*/
up->comp[0] = up->comp[OFFSET] = 0.;
up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
step = 2.;
for (i = 3; i < OFFSET; i++) {
up->comp[i] = up->comp[i - 1] + step;
up->comp[OFFSET + i] = -up->comp[i];
if (i % 16 == 0)
step *= 2.;
}
DTOLFP(1. / SECOND, &up->tick);
/*
* Initialize the decoding matrix with the radix for each digit
* position.
*/
up->decvec[MN].radix = 10; /* minutes */
up->decvec[MN + 1].radix = 6;
up->decvec[HR].radix = 10; /* hours */
up->decvec[HR + 1].radix = 3;
up->decvec[DA].radix = 10; /* days */
up->decvec[DA + 1].radix = 10;
up->decvec[DA + 2].radix = 4;
up->decvec[YR].radix = 10; /* years */
up->decvec[YR + 1].radix = 10;
wwv_newgame(peer);
up->schan = up->achan = 3;
/*
* Initialize autotune if available. Start out at 15 MHz. Note
* that the ICOM select code must be less than 128, so the high
* order bit can be used to select the line speed.
*/
#ifdef ICOM
temp = 0;
#ifdef DEBUG
if (debug > 1)
temp = P_TRACE;
#endif
if (peer->ttl != 0) {
if (peer->ttl & 0x80)
up->fd_icom = icom_init("/dev/icom", B1200,
temp);
else
up->fd_icom = icom_init("/dev/icom", B9600,
temp);
}
if (up->fd_icom > 0) {
if ((temp = wwv_qsy(peer, up->schan)) != 0) {
NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
msyslog(LOG_NOTICE,
"icom: radio not found");
up->errflg = CEVNT_FAULT;
close(up->fd_icom);
up->fd_icom = 0;
} else {
NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
msyslog(LOG_NOTICE,
"icom: autotune enabled");
}
}
#endif /* ICOM */
return (1);
}
/*
* wwv_shutdown - shut down the clock
*/
static void
wwv_shutdown(
int unit, /* instance number (not used) */
struct peer *peer /* peer structure pointer */
)
{
struct refclockproc *pp;
struct wwvunit *up;
pp = peer->procptr;
up = (struct wwvunit *)pp->unitptr;
io_closeclock(&pp->io);
if (up->fd_icom > 0)
close(up->fd_icom);
free(up);
}
/*
* wwv_receive - receive data from the audio device
*
* This routine reads input samples and adjusts the logical clock to
* track the A/D sample clock by dropping or duplicating codec samples.
* It also controls the A/D signal level with an AGC loop to mimimize
* quantization noise and avoid overload.
*/
static void
wwv_receive(
struct recvbuf *rbufp /* receive buffer structure pointer */
)
{
struct peer *peer;
struct refclockproc *pp;
struct wwvunit *up;
/*
* Local variables
*/
double sample; /* codec sample */
u_char *dpt; /* buffer pointer */
int bufcnt; /* buffer counter */
l_fp ltemp;
peer = (struct peer *)rbufp->recv_srcclock;
pp = peer->procptr;
up = (struct wwvunit *)pp->unitptr;
/*
* Main loop - read until there ain't no more. Note codec
* samples are bit-inverted.
*/
DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
L_SUB(&rbufp->recv_time, &ltemp);
up->timestamp = rbufp->recv_time;
dpt = rbufp->recv_buffer;
for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
sample = up->comp[~*dpt++ & 0xff];
/*
* Clip noise spikes greater than MAXSIG. If no clips,
* increase the gain a tad; if the clips are too high,
* decrease a tad.
*/
if (sample > MAXSIG) {
sample = MAXSIG;
up->clipcnt++;
} else if (sample < -MAXSIG) {
sample = -MAXSIG;
up->clipcnt++;
}
/*
* Variable frequency oscillator. The codec oscillator
* runs at the nominal rate of 8000 samples per second,
* or 125 us per sample. A frequency change of one unit
* results in either duplicating or deleting one sample
* per second, which results in a frequency change of
* 125 PPM.
*/
up->phase += up->freq / SECOND;
if (up->phase >= .5) {
up->phase -= 1.;
} else if (up->phase < -.5) {
up->phase += 1.;
wwv_rf(peer, sample);
wwv_rf(peer, sample);
} else {
wwv_rf(peer, sample);
}
L_ADD(&up->timestamp, &up->tick);
}
/*
* Set the input port and monitor gain for the next buffer.
*/
if (pp->sloppyclockflag & CLK_FLAG2)
up->port = 2;
else
up->port = 1;
if (pp->sloppyclockflag & CLK_FLAG3)
up->mongain = MONGAIN;
else
up->mongain = 0;
}
/*
* wwv_poll - called by the transmit procedure
*
* This routine keeps track of status. If no offset samples have been
* processed during a poll interval, a timeout event is declared. If
* errors have have occurred during the interval, they are reported as
* well. Once the clock is set, it always appears reachable, unless
* reset by watchdog timeout.
*/
static void
wwv_poll(
int unit, /* instance number (not used) */
struct peer *peer /* peer structure pointer */
)
{
struct refclockproc *pp;
struct wwvunit *up;
pp = peer->procptr;
up = (struct wwvunit *)pp->unitptr;
if (pp->coderecv == pp->codeproc)
up->errflg = CEVNT_TIMEOUT;
if (up->errflg)
refclock_report(peer, up->errflg);
up->errflg = 0;
pp->polls++;
}
/*
* wwv_rf - process signals and demodulate to baseband
*
* This routine grooms and filters decompanded raw audio samples. The
* output signals include the 100-Hz baseband data signal in quadrature
* form, plus the epoch index of the second sync signal and the second
* index of the minute sync signal.
*
* There are two 1-s ramps used by this program. Both count the 8000
* logical clock samples spanning exactly one second. The epoch ramp
* counts the samples starting at an arbitrary time. The rphase ramp
* counts the samples starting at the 5-ms second sync pulse found
* during the epoch ramp.
*
* There are two 1-m ramps used by this program. The mphase ramp counts
* the 480,000 logical clock samples spanning exactly one minute and
* starting at an arbitrary time. The rsec ramp counts the 60 seconds of
* the minute starting at the 800-ms minute sync pulse found during the
* mphase ramp. The rsec ramp drives the seconds state machine to
* determine the bits and digits of the timecode.
*
* Demodulation operations are based on three synthesized quadrature
* sinusoids: 100 Hz for the data signal, 1000 Hz for the WWV sync
* signal and 1200 Hz for the WWVH sync signal. These drive synchronous
* matched filters for the data signal (170 ms at 100 Hz), WWV minute
* sync signal (800 ms at 1000 Hz) and WWVH minute sync signal (800 ms
* at 1200 Hz). Two additional matched filters are switched in
* as required for the WWV second sync signal (5 ms at 1000 Hz) and
* WWVH second sync signal (5 ms at 1200 Hz).
*/
static void
wwv_rf(
struct peer *peer, /* peerstructure pointer */
double isig /* input signal */
)
{
struct refclockproc *pp;
struct wwvunit *up;
struct sync *sp;
static double lpf[5]; /* 150-Hz lpf delay line */
double data; /* lpf output */
static double bpf[9]; /* 1000/1200-Hz bpf delay line */
double syncx; /* bpf output */
static double mf[41]; /* 1000/1200-Hz mf delay line */
double mfsync; /* mf output */
static int iptr; /* data channel pointer */
static double ibuf[DATSIZ]; /* data I channel delay line */
static double qbuf[DATSIZ]; /* data Q channel delay line */
static int jptr; /* sync channel pointer */
static double cibuf[SYNSIZ]; /* wwv I channel delay line */
static double cqbuf[SYNSIZ]; /* wwv Q channel delay line */
static double ciamp; /* wwv I channel amplitude */
static double cqamp; /* wwv Q channel amplitude */
static int csinptr; /* wwv channel phase */
static double hibuf[SYNSIZ]; /* wwvh I channel delay line */
static double hqbuf[SYNSIZ]; /* wwvh Q channel delay line */
static double hiamp; /* wwvh I channel amplitude */
static double hqamp; /* wwvh Q channel amplitude */
static int hsinptr; /* wwvh channels phase */
static double epobuf[SECOND]; /* epoch sync comb filter */
static double epomax; /* epoch sync amplitude buffer */
static int epopos; /* epoch sync position buffer */
static int iniflg; /* initialization flag */
int epoch; /* comb filter index */
int pdelay; /* propagation delay (samples) */
double dtemp;
int i;
pp = peer->procptr;
up = (struct wwvunit *)pp->unitptr;
if (!iniflg) {
iniflg = 1;
memset((char *)lpf, 0, sizeof(lpf));
memset((char *)bpf, 0, sizeof(bpf));
memset((char *)mf, 0, sizeof(mf));
memset((char *)ibuf, 0, sizeof(ibuf));
memset((char *)qbuf, 0, sizeof(qbuf));
memset((char *)cibuf, 0, sizeof(cibuf));
memset((char *)cqbuf, 0, sizeof(cqbuf));
memset((char *)hibuf, 0, sizeof(hibuf));
memset((char *)hqbuf, 0, sizeof(hqbuf));
memset((char *)epobuf, 0, sizeof(epobuf));
}
/*
* Baseband data demodulation. The 100-Hz subcarrier is
* extracted using a 150-Hz IIR lowpass filter. This attenuates
* the 1000/1200-Hz sync signals, as well as the 440-Hz and
* 600-Hz tones and most of the noise and voice modulation
* components.
*
* Matlab IIR 4th-order IIR elliptic, 150 Hz lowpass, 0.2 dB
* passband ripple, -50 dB stopband ripple.
*/
data = (lpf[4] = lpf[3]) * 8.360961e-01;
data += (lpf[3] = lpf[2]) * -3.481740e+00;
data += (lpf[2] = lpf[1]) * 5.452988e+00;
data += (lpf[1] = lpf[0]) * -3.807229e+00;
lpf[0] = isig - data;
data = lpf[0] * 3.281435e-03
+ lpf[1] * -1.149947e-02
+ lpf[2] * 1.654858e-02
+ lpf[3] * -1.149947e-02
+ lpf[4] * 3.281435e-03;
/*
* The I and Q quadrature data signals are produced by
* multiplying the filtered signal by 100-Hz sine and cosine
* signals, respectively. The data signals are demodulated by
* 170-ms synchronous matched filters to produce the amplitude
* and phase signals used by the decoder.
*/
i = up->datapt;
up->datapt = (up->datapt + IN100) % 80;
dtemp = sintab[i] * data / DATSIZ * DGAIN;
up->irig -= ibuf[iptr];
ibuf[iptr] = dtemp;
up->irig += dtemp;
i = (i + 20) % 80;
dtemp = sintab[i] * data / DATSIZ * DGAIN;
up->qrig -= qbuf[iptr];
qbuf[iptr] = dtemp;
up->qrig += dtemp;
iptr = (iptr + 1) % DATSIZ;
/*
* Baseband sync demodulation. The 1000/1200 sync signals are
* extracted using a 600-Hz IIR bandpass filter. This removes
* the 100-Hz data subcarrier, as well as the 440-Hz and 600-Hz
* tones and most of the noise and voice modulation components.
*
* Matlab 4th-order IIR elliptic, 800-1400 Hz bandpass, 0.2 dB
* passband ripple, -50 dB stopband ripple.
*/
syncx = (bpf[8] = bpf[7]) * 4.897278e-01;
syncx += (bpf[7] = bpf[6]) * -2.765914e+00;
syncx += (bpf[6] = bpf[5]) * 8.110921e+00;
syncx += (bpf[5] = bpf[4]) * -1.517732e+01;
syncx += (bpf[4] = bpf[3]) * 1.975197e+01;
syncx += (bpf[3] = bpf[2]) * -1.814365e+01;
syncx += (bpf[2] = bpf[1]) * 1.159783e+01;
syncx += (bpf[1] = bpf[0]) * -4.735040e+00;
bpf[0] = isig - syncx;
syncx = bpf[0] * 8.203628e-03
+ bpf[1] * -2.375732e-02
+ bpf[2] * 3.353214e-02
+ bpf[3] * -4.080258e-02
+ bpf[4] * 4.605479e-02
+ bpf[5] * -4.080258e-02
+ bpf[6] * 3.353214e-02
+ bpf[7] * -2.375732e-02
+ bpf[8] * 8.203628e-03;
/*
* The I and Q quadrature minute sync signals are produced by
* multiplying the filtered signal by 1000-Hz (WWV) and 1200-Hz
* (WWVH) sine and cosine signals, respectively. The resulting
* signals are demodulated by 800-ms synchronous matched filters
* to synchronize the second and minute and to detect which one
* (or both) the WWV or WWVH signal is present.
*
* Note the master timing ramps, which run continuously. The
* minute counter (mphase) counts the samples in the minute,
* while the second counter (epoch) counts the samples in the
* second.
*/
up->mphase = (up->mphase + 1) % MINUTE;
epoch = up->mphase % SECOND;
i = csinptr;
csinptr = (csinptr + IN1000) % 80;
dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
ciamp = ciamp - cibuf[jptr] + dtemp;
cibuf[jptr] = dtemp;
i = (i + 20) % 80;
dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
cqamp = cqamp - cqbuf[jptr] + dtemp;
cqbuf[jptr] = dtemp;
sp = &up->mitig[up->schan].wwv;
dtemp = ciamp * ciamp + cqamp * cqamp;
sp->amp = dtemp;
if (!(up->status & MSYNC))
wwv_qrz(peer, sp, dtemp, (int)(pp->fudgetime1 *
SECOND));
i = hsinptr;
hsinptr = (hsinptr + IN1200) % 80;
dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
hiamp = hiamp - hibuf[jptr] + dtemp;
hibuf[jptr] = dtemp;
i = (i + 20) % 80;
dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
hqamp = hqamp - hqbuf[jptr] + dtemp;
hqbuf[jptr] = dtemp;
sp = &up->mitig[up->schan].wwvh;
dtemp = hiamp * hiamp + hqamp * hqamp;
sp->amp = dtemp;
if (!(up->status & MSYNC))
wwv_qrz(peer, sp, dtemp, (int)(pp->fudgetime2 *
SECOND));
jptr = (jptr + 1) % SYNSIZ;
/*
* The following section is called once per minute. It does
* housekeeping and timeout functions and empties the dustbins.
*/
if (up->mphase == 0) {
up->watch++;
if (!(up->status & MSYNC)) {
/*
* If minute sync has not been acquired before
* timeout, or if no signal is heard, the
* program cycles to the next frequency and
* tries again.
*/
wwv_newchan(peer);
if (!(up->status & (SELV | SELH)) || up->watch >
ACQSN) {
wwv_newgame(peer);
#ifdef ICOM
if (up->fd_icom > 0) {
up->schan = (up->schan + 1) %
NCHAN;
wwv_qsy(peer, up->schan);
}
#endif /* ICOM */
}
} else {
/*
* If the leap bit is set, set the minute epoch
* back one second so the station processes
* don't miss a beat.
*/
if (up->status & LEPSEC) {
up->mphase -= SECOND;
if (up->mphase < 0)
up->mphase += MINUTE;
}
}
}
/*
* When the channel metric reaches threshold and the second
* counter matches the minute epoch within the second, the
* driver has synchronized to the station. The second number is
* the remaining seconds until the next minute epoch, while the
* sync epoch is zero. Watch out for the first second; if
* already synchronized to the second, the buffered sync epoch
* must be set.
*/
if (up->status & MSYNC) {
wwv_epoch(peer);
} else if ((sp = up->sptr) != NULL) {
struct chan *cp;
if (sp->count >= AMIN && epoch == sp->mepoch % SECOND) {
up->rsec = 60 - sp->mepoch / SECOND;
up->rphase = 0;
up->status |= MSYNC;
up->watch = 0;
if (!(up->status & SSYNC))
up->repoch = up->yepoch = epoch;
else
up->repoch = up->yepoch;
for (i = 0; i < NCHAN; i++) {
cp = &up->mitig[i];
cp->wwv.count = cp->wwv.reach = 0;
cp->wwvh.count = cp->wwvh.reach = 0;
}
}
}
/*
* The second sync pulse is extracted using 5-ms (40 sample) FIR
* matched filters at 1000 Hz for WWV or 1200 Hz for WWVH. This
* pulse is used for the most precise synchronization, since if
* provides a resolution of one sample (125 us). The filters run
* only if the station has been reliably determined.
*/
if (up->status & SELV) {
pdelay = (int)(pp->fudgetime1 * SECOND);
/*
* WWV FIR matched filter, five cycles of 1000-Hz
* sinewave.
*/
mf[40] = mf[39];
mfsync = (mf[39] = mf[38]) * 4.224514e-02;
mfsync += (mf[38] = mf[37]) * 5.974365e-02;
mfsync += (mf[37] = mf[36]) * 4.224514e-02;
mf[36] = mf[35];
mfsync += (mf[35] = mf[34]) * -4.224514e-02;
mfsync += (mf[34] = mf[33]) * -5.974365e-02;
mfsync += (mf[33] = mf[32]) * -4.224514e-02;
mf[32] = mf[31];
mfsync += (mf[31] = mf[30]) * 4.224514e-02;
mfsync += (mf[30] = mf[29]) * 5.974365e-02;
mfsync += (mf[29] = mf[28]) * 4.224514e-02;
mf[28] = mf[27];
mfsync += (mf[27] = mf[26]) * -4.224514e-02;
mfsync += (mf[26] = mf[25]) * -5.974365e-02;
mfsync += (mf[25] = mf[24]) * -4.224514e-02;
mf[24] = mf[23];
mfsync += (mf[23] = mf[22]) * 4.224514e-02;
mfsync += (mf[22] = mf[21]) * 5.974365e-02;
mfsync += (mf[21] = mf[20]) * 4.224514e-02;
mf[20] = mf[19];
mfsync += (mf[19] = mf[18]) * -4.224514e-02;
mfsync += (mf[18] = mf[17]) * -5.974365e-02;
mfsync += (mf[17] = mf[16]) * -4.224514e-02;
mf[16] = mf[15];
mfsync += (mf[15] = mf[14]) * 4.224514e-02;
mfsync += (mf[14] = mf[13]) * 5.974365e-02;
mfsync += (mf[13] = mf[12]) * 4.224514e-02;
mf[12] = mf[11];
mfsync += (mf[11] = mf[10]) * -4.224514e-02;
mfsync += (mf[10] = mf[9]) * -5.974365e-02;
mfsync += (mf[9] = mf[8]) * -4.224514e-02;
mf[8] = mf[7];
mfsync += (mf[7] = mf[6]) * 4.224514e-02;
mfsync += (mf[6] = mf[5]) * 5.974365e-02;
mfsync += (mf[5] = mf[4]) * 4.224514e-02;
mf[4] = mf[3];
mfsync += (mf[3] = mf[2]) * -4.224514e-02;
mfsync += (mf[2] = mf[1]) * -5.974365e-02;
mfsync += (mf[1] = mf[0]) * -4.224514e-02;
mf[0] = syncx;
} else if (up->status & SELH) {
pdelay = (int)(pp->fudgetime2 * SECOND);
/*
* WWVH FIR matched filter, six cycles of 1200-Hz
* sinewave.
*/
mf[40] = mf[39];
mfsync = (mf[39] = mf[38]) * 4.833363e-02;
mfsync += (mf[38] = mf[37]) * 5.681959e-02;
mfsync += (mf[37] = mf[36]) * 1.846180e-02;
mfsync += (mf[36] = mf[35]) * -3.511644e-02;
mfsync += (mf[35] = mf[34]) * -5.974365e-02;
mfsync += (mf[34] = mf[33]) * -3.511644e-02;
mfsync += (mf[33] = mf[32]) * 1.846180e-02;
mfsync += (mf[32] = mf[31]) * 5.681959e-02;
mfsync += (mf[31] = mf[30]) * 4.833363e-02;
mf[30] = mf[29];
mfsync += (mf[29] = mf[28]) * -4.833363e-02;
mfsync += (mf[28] = mf[27]) * -5.681959e-02;
mfsync += (mf[27] = mf[26]) * -1.846180e-02;
mfsync += (mf[26] = mf[25]) * 3.511644e-02;
mfsync += (mf[25] = mf[24]) * 5.974365e-02;
mfsync += (mf[24] = mf[23]) * 3.511644e-02;
mfsync += (mf[23] = mf[22]) * -1.846180e-02;
mfsync += (mf[22] = mf[21]) * -5.681959e-02;
mfsync += (mf[21] = mf[20]) * -4.833363e-02;
mf[20] = mf[19];
mfsync += (mf[19] = mf[18]) * 4.833363e-02;
mfsync += (mf[18] = mf[17]) * 5.681959e-02;
mfsync += (mf[17] = mf[16]) * 1.846180e-02;
mfsync += (mf[16] = mf[15]) * -3.511644e-02;
mfsync += (mf[15] = mf[14]) * -5.974365e-02;
mfsync += (mf[14] = mf[13]) * -3.511644e-02;
mfsync += (mf[13] = mf[12]) * 1.846180e-02;
mfsync += (mf[12] = mf[11]) * 5.681959e-02;
mfsync += (mf[11] = mf[10]) * 4.833363e-02;
mf[10] = mf[9];
mfsync += (mf[9] = mf[8]) * -4.833363e-02;
mfsync += (mf[8] = mf[7]) * -5.681959e-02;
mfsync += (mf[7] = mf[6]) * -1.846180e-02;
mfsync += (mf[6] = mf[5]) * 3.511644e-02;
mfsync += (mf[5] = mf[4]) * 5.974365e-02;
mfsync += (mf[4] = mf[3]) * 3.511644e-02;
mfsync += (mf[3] = mf[2]) * -1.846180e-02;
mfsync += (mf[2] = mf[1]) * -5.681959e-02;
mfsync += (mf[1] = mf[0]) * -4.833363e-02;
mf[0] = syncx;
} else {
mfsync = 0;
pdelay = 0;
}
/*
* Enhance the seconds sync pulse using a 1-s (8000-sample) comb
* filter. Correct for the FIR matched filter delay, which is 5
* ms for both the WWV and WWVH filters, and also for the
* propagation delay. Once each second look for second sync. If
* not in minute sync, fiddle the codec gain. Note the SNR is
* computed from the maximum sample and the two samples 6 ms
* before and 6 ms after it, so if we slip more than a cycle the
* SNR should plummet.
*/
dtemp = (epobuf[epoch] += (mfsync - epobuf[epoch]) /
up->avgint);
if (dtemp > epomax) {
epomax = dtemp;
epopos = epoch;
}
if (epoch == 0) {
int k, j;
up->epomax = epomax;
k = epopos - 6 * MS;
if (k < 0)
k += SECOND;
j = epopos + 6 * MS;
if (j >= SECOND)
i -= SECOND;
up->eposnr = wwv_snr(epomax, max(abs(epobuf[k]),
abs(epobuf[j])));
epopos -= pdelay + 5 * MS;
if (epopos < 0)
epopos += SECOND;
wwv_endpoc(peer, epopos);
if (!(up->status & SSYNC))
up->alarm |= SYNERR;
epomax = 0;
if (!(up->status & MSYNC))
wwv_gain(peer);
}
}
/*
* wwv_qrz - identify and acquire WWV/WWVH minute sync pulse
*
* This routine implements a virtual station process used to acquire
* minute sync and to mitigate among the ten frequency and station
* combinations. During minute sync acquisition the process probes each
* frequency in turn for the minute pulse from either station, which
* involves searching through the entire minute of samples. After
* finding a candidate, the process searches only the seconds before and
* after the candidate for the signal and all other seconds for the
* noise.
*
* Students of radar receiver technology will discover this algorithm
* amounts to a range gate discriminator. The discriminator requires
* that the peak minute pulse amplitude be at least 2000 and the SNR be
* at least 6 dB. In addition after finding a candidate, The peak second
* pulse amplitude must be at least 2000, the SNR at least 6 dB and the
* difference between the current and previous epoch must be less than
* 7.5 ms, which corresponds to a frequency error of 125 PPM.. A compare
* counter keeps track of the number of successive intervals which
* satisfy these criteria.
*
* Note that, while the minute pulse is found by by the discriminator,
* the actual value is determined from the second epoch. The assumption
* is that the discriminator peak occurs about 800 ms into the second,
* so the timing is retarted to the previous second epoch.
*/
static void
wwv_qrz(
struct peer *peer, /* peer structure pointer */
struct sync *sp, /* sync channel structure */
double syncx, /* bandpass filtered sync signal */
int pdelay /* propagation delay (samples) */
)
{
struct refclockproc *pp;
struct wwvunit *up;
char tbuf[80]; /* monitor buffer */
double snr; /* on-pulse/off-pulse ratio (dB) */
long epoch, fpoch;
int isgood;
pp = peer->procptr;
up = (struct wwvunit *)pp->unitptr;
/*
* Find the sample with peak energy, which defines the minute
* epoch. If a sample has been found with good amplitude,
* accumulate the noise squares for all except the second before
* and after that position.
*/
isgood = up->epomax > STHR && up->eposnr > SSNR;
if (isgood) {
fpoch = up->mphase % SECOND - up->tepoch;
if (fpoch < 0)
fpoch += SECOND;
} else {
fpoch = pdelay + SYNSIZ;
}
epoch = up->mphase - fpoch;
if (epoch < 0)
epoch += MINUTE;
if (syncx > sp->maxamp) {
sp->maxamp = syncx;
sp->pos = epoch;
}
if (abs((epoch - sp->lastpos) % MINUTE) > SECOND)
sp->noiamp += syncx;
/*
* At the end of the minute, determine the epoch of the
* sync pulse, as well as the SNR and difference between
* the current and previous epoch, which represents the
* intrinsic frequency error plus jitter.
*/
if (up->mphase == 0) {
sp->synmax = sqrt(sp->maxamp);
sp->synmin = sqrt(sp->noiamp / (MINUTE - 2 * SECOND));
epoch = (sp->pos - sp->lastpos) % MINUTE;
/*
* If not yet in minute sync, we have to do a little
* dance to find a valid minute sync pulse, emphasis
* valid.
*/
snr = wwv_snr(sp->synmax, sp->synmin);
isgood = isgood && sp->synmax > ATHR && snr > ASNR;
switch (sp->count) {
/*
* In state 0 the station was not heard during the
* previous probe. Look for the biggest blip greater
* than the amplitude threshold in the minute and assume
* that the minute sync pulse. We're fishing here, since
* the range gate has not yet been determined. If found,
* bump to state 1.
*/
case 0:
if (sp->synmax >= ATHR)
sp->count++;
break;
/*
* In state 1 a candidate blip has been found and the
* next minute has been searched for another blip. If
* none are found acceptable, drop back to state 0 and
* hunt some more. Otherwise, a legitimate minute pulse
* may have been found, so bump to state 2.
*/
case 1:
if (!isgood) {
sp->count = 0;
break;
}
sp->count++;
break;
/*
* In states 2 and above, continue to groom samples as
* before and drop back to state 0 if the groom fails.
* If it succeeds, set the epoch and bump to the next
* state until reaching the threshold, if ever.
*/
default:
if (!isgood || abs(epoch) > AWND * MS) {
sp->count = 0;
break;
}
sp->mepoch = sp->pos;
sp->count++;
break;
}
if (pp->sloppyclockflag & CLK_FLAG4) {
sprintf(tbuf,
"wwv8 %d %3d %s %d %5.0f %5.1f %5ld %5d %ld",
up->port, up->gain, sp->refid, sp->count,
sp->synmax, snr, sp->pos, up->tepoch,
epoch);
record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
if (debug)
printf("%s\n", tbuf);
#endif
}
sp->lastpos = sp->pos;
sp->maxamp = sp->noiamp = 0;
}
}
/*
* wwv_endpoc - identify and acquire second sync pulse
*
* This routine is called at the end of the second sync interval. It
* determines the second sync epoch position within the interval and
* disciplines the sample clock using a frequency-lock loop (FLL).
*
* Second sync is determined in the RF input routine as the maximum
* over all 8000 samples in the second comb filter. To assure accurate
* and reliable time and frequency discipline, this routine performs a
* great deal of heavy-handed heuristic data filtering and grooming.
*
* Note that, since the minute sync pulse is very wide (800 ms), precise
* minute sync epoch acquisition requires at least a rough estimate of
* the second sync pulse (5 ms). This becomes more important in choppy
* conditions at the lower frequencies at night, since sferics and
* cochannel crude can badly distort the minute pulse.
*/
static void
wwv_endpoc(
struct peer *peer, /* peer structure pointer */
int epopos /* epoch max position */
)
{
struct refclockproc *pp;
struct wwvunit *up;
static int epoch_mf[3]; /* epoch median filter */
static int xepoch; /* last second epoch */
static int zepoch; /* last averaging interval epoch */
static int syncnt; /* run length counter */
static int maxrun; /* longest run length */
static int mepoch; /* longest run epoch */
static int avgcnt; /* averaging interval counter */
static int avginc; /* averaging ratchet */
static int iniflg; /* initialization flag */
char tbuf[80]; /* monitor buffer */
double dtemp;
int tmp2;
pp = peer->procptr;
up = (struct wwvunit *)pp->unitptr;
if (!iniflg) {
iniflg = 1;
memset((char *)epoch_mf, 0, sizeof(epoch_mf));
}
/*
* A three-stage median filter is used to help denoise the
* second sync pulse. The median sample becomes the candidate
* epoch.
*/
epoch_mf[2] = epoch_mf[1];
epoch_mf[1] = epoch_mf[0];
epoch_mf[0] = epopos;
if (epoch_mf[0] > epoch_mf[1]) {
if (epoch_mf[1] > epoch_mf[2])
up->tepoch = epoch_mf[1]; /* 0 1 2 */
else if (epoch_mf[2] > epoch_mf[0])
up->tepoch = epoch_mf[0]; /* 2 0 1 */
else
up->tepoch = epoch_mf[2]; /* 0 2 1 */
} else {
if (epoch_mf[1] < epoch_mf[2])
up->tepoch = epoch_mf[1]; /* 2 1 0 */
else if (epoch_mf[2] < epoch_mf[0])
up->tepoch = epoch_mf[0]; /* 1 0 2 */
else
up->tepoch = epoch_mf[2]; /* 1 2 0 */
}
/*
* If the signal amplitude or SNR fall below thresholds or if no
* stations are heard, dim the second sync lamp and start over.
*/
if (!(up->status & (SELV | SELH)) || up->epomax < STHR ||
up->eposnr < SSNR) {
up->status &= ~(SSYNC | FGATE);
avgcnt = syncnt = maxrun = 0;
return;
}
avgcnt++;
/*
* If the epoch candidate is the same as the last one, increment
* the compare counter. If not, save the length and epoch of the
* current run for use later and reset the counter.
*/
tmp2 = (up->tepoch - xepoch) % SECOND;
if (tmp2 == 0) {
syncnt++;
} else {
if (maxrun > 0 && mepoch == xepoch) {
maxrun += syncnt;
} else if (syncnt > maxrun) {
maxrun = syncnt;
mepoch = xepoch;
}
syncnt = 0;
}
if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status & (SSYNC |
MSYNC))) {
sprintf(tbuf,
"wwv1 %04x %5.0f %5.1f %5d %5d %4d %4d",
up->status, up->epomax, up->eposnr, up->tepoch,
tmp2, avgcnt, syncnt);
record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
if (debug)
printf("%s\n", tbuf);
#endif /* DEBUG */
}
/*
* The sample clock frequency is disciplined using a first order
* feedback loop with time constant consistent with the Allan
* intercept of typical computer clocks.
*
* The frequency update is calculated from the epoch change in
* 125-us units divided by the averaging interval in seconds.
* The averaging interval affects other receiver functions,
* including the the 1000/1200-Hz comb filter and codec clock
* loop. It also affects the 100-Hz subcarrier loop and the bit
* and digit comparison counter thresholds.
*/
if (avgcnt < up->avgint) {
xepoch = up->tepoch;
return;
}
/*
* During the averaging interval the longest run of identical
* epoches is determined. If the longest run is at least 10
* seconds, the SSYNC bit is lit and the value becomes the
* reference epoch for the next interval. If not, the second
* synd lamp is dark and flashers set.
*/
if (maxrun > 0 && mepoch == xepoch) {
maxrun += syncnt;
} else if (syncnt > maxrun) {
maxrun = syncnt;
mepoch = xepoch;
}
xepoch = up->tepoch;
if (maxrun > SCMP) {
up->status |= SSYNC;
up->yepoch = mepoch;
} else {
up->status &= ~SSYNC;
}
/*
* If the epoch change over the averaging interval is less than
* 1 ms, the frequency is adjusted, but clamped at +-125 PPM. If
* greater than 1 ms, the counter is decremented. If the epoch
* change is less than 0.5 ms, the counter is incremented. If
* the counter increments to +3, the averaging interval is
* doubled and the counter set to zero; if it increments to -3,
* the interval is halved and the counter set to zero.
*
* Here be spooks. From careful observations, the epoch
* sometimes makes a long run of identical samples, then takes a
* lurch due apparently to lost interrupts or spooks. If this
* happens, the epoch change times the maximum run length will
* be greater than the averaging interval, so the lurch should
* be believed but the frequency left alone. Really intricate
* here.
*/
if (maxrun == 0)
mepoch = up->tepoch;
dtemp = (mepoch - zepoch) % SECOND;
if (up->status & FGATE) {
if (abs(dtemp) < MAXFREQ * MINAVG) {
if (maxrun * abs(mepoch - zepoch) <
avgcnt) {
up->freq += dtemp / avgcnt;
if (up->freq > MAXFREQ)
up->freq = MAXFREQ;
else if (up->freq < -MAXFREQ)
up->freq = -MAXFREQ;
}
if (abs(dtemp) < MAXFREQ * MINAVG / 2) {
if (avginc < 3) {
avginc++;
} else {
if (up->avgint < MAXAVG) {
up->avgint <<= 1;
avginc = 0;
}
}
}
} else {
if (avginc > -3) {
avginc--;
} else {
if (up->avgint > MINAVG) {
up->avgint >>= 1;
avginc = 0;
}
}
}
}
if (pp->sloppyclockflag & CLK_FLAG4) {
sprintf(tbuf,
"wwv2 %04x %4.0f %4d %4d %2d %4d %4.0f %6.1f",
up->status, up->epomax, mepoch, maxrun, avginc,
avgcnt, dtemp, up->freq * 1e6 / SECOND);
record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
if (debug)
printf("%s\n", tbuf);
#endif /* DEBUG */
}
up->status |= FGATE;
zepoch = mepoch;
avgcnt = syncnt = maxrun = 0;
}
/*
* wwv_epoch - epoch scanner
*
* This routine scans the receiver second epoch to determine the signal
* amplitudes and pulse timings. Receiver synchronization is determined
* by the minute sync pulse detected in the wwv_rf() routine and the
* second sync pulse detected in the wwv_epoch() routine. A pulse width
* discriminator extracts data signals from the 100-Hz subcarrier. The
* transmitted signals are delayed by the propagation delay, receiver
* delay and filter delay of this program. Delay corrections are
* introduced separately for WWV and WWVH.
*
* Most communications radios use a highpass filter in the audio stages,
* which can do nasty things to the subcarrier phase relative to the
* sync pulses. Therefore, the data subcarrier reference phase is
* disciplined using the hardlimited quadrature-phase signal sampled at
* the same time as the in-phase signal. The phase tracking loop uses
* phase adjustments of plus-minus one sample (125 us).
*/
static void
wwv_epoch(
struct peer *peer /* peer structure pointer */
)
{
struct refclockproc *pp;
struct wwvunit *up;
struct chan *cp;
static double dpulse; /* data pulse length */
double dtemp;
pp = peer->procptr;
up = (struct wwvunit *)pp->unitptr;
/*
* Sample the minute sync pulse envelopes at epoch 800 for both
* the WWV and WWVH stations. This will be used later for
* channel and station mitigation. Note that the seconds epoch
* is set here well before the end of the second to make sure we
* never seet the epoch backwards.
*/
if (up->rphase == 800 * MS) {
up->repoch = up->yepoch;
cp = &up->mitig[up->achan];
cp->wwv.synamp = cp->wwv.amp;
cp->wwvh.synamp = cp->wwvh.amp;
}
/*
* Sample the data subcarrier at epoch 15 ms, giving a guard
* time of +-15 ms from the beginning of the second until the
* pulse rises at 30 ms. The I-channel amplitude is used to
* calculate the slice level. The envelope amplitude is used
* during the probe seconds to determine the SNR. There is a
* compromise here; we want to delay the sample as long as
* possible to give the radio time to change frequency and the
* AGC to stabilize, but as early as possible if the second
* epoch is not exact.
*/
if (up->rphase == 15 * MS) {
up->noiamp = up->irig * up->irig + up->qrig * up->qrig;
/*
* Sample the data subcarrier at epoch 215 ms, giving a guard
* time of +-15 ms from the earliest the pulse peak can be
* reached to the earliest it can begin to fall. For the data
* channel latch the I-channel amplitude for all except the
* probe seconds and adjust the 100-Hz reference oscillator
* phase using the Q-channel amplitude at this epoch. For the
* probe channel latch the envelope amplitude.
*/
} else if (up->rphase == 215 * MS) {
up->sigsig = up->irig;
if (up->sigsig < 0)
up->sigsig = 0;
up->datpha = up->qrig / up->avgint;
if (up->datpha >= 0) {
up->datapt++;
if (up->datapt >= 80)
up->datapt -= 80;
} else {
up->datapt--;
if (up->datapt < 0)
up->datapt += 80;
}
up->sigamp = up->irig * up->irig + up->qrig * up->qrig;
/*
* The slice level is set half way between the peak signal and
* noise levels. Sample the negative zero crossing after epoch
* 200 ms and record the epoch at that time. This defines the
* length of the data pulse, which will later be converted into
* scaled bit probabilities.
*/
} else if (up->rphase > 200 * MS) {
dtemp = (up->sigsig + sqrt(up->noiamp)) / 2;
if (up->irig < dtemp && dpulse == 0)
dpulse = up->rphase;
}
/*
* At the end of the second crank the clock state machine and
* adjust the codec gain. Note the epoch is buffered from the
* center of the second in order to avoid jitter while the
* seconds synch is diddling the epoch. Then, determine the true
* offset and update the median filter in the driver interface.
*
* Sample the data subcarrier envelope at the end of the second
* to determine the SNR for the pulse. This gives a guard time
* of +-30 ms from the decay of the longest pulse to the rise of
* the next pulse.
*/
up->rphase++;
if (up->mphase % SECOND == up->repoch) {
up->datsnr = wwv_snr(up->sigsig, sqrt(up->noiamp));
wwv_rsec(peer, dpulse);
wwv_gain(peer);
up->rphase = dpulse = 0;
}
}
/*
* wwv_rsec - process receiver second
*
* This routine is called at the end of each receiver second to
* implement the per-second state machine. The machine assembles BCD
* digit bits, decodes miscellaneous bits and dances the leap seconds.
*
* Normally, the minute has 60 seconds numbered 0-59. If the leap
* warning bit is set, the last minute (1439) of 30 June (day 181 or 182
* for leap years) or 31 December (day 365 or 366 for leap years) is
* augmented by one second numbered 60. This is accomplished by
* extending the minute interval by one second and teaching the state
* machine to ignore it.
*/
static void
wwv_rsec(
struct peer *peer, /* peer structure pointer */
double dpulse
)
{
static int iniflg; /* initialization flag */
static double bcddld[4]; /* BCD data bits */
static double bitvec[61]; /* bit integrator for misc bits */
struct refclockproc *pp;
struct wwvunit *up;
struct chan *cp;
struct sync *sp, *rp;
l_fp offset; /* offset in NTP seconds */
double bit; /* bit likelihood */
char tbuf[80]; /* monitor buffer */
int sw, arg, nsec;
#ifdef IRIG_SUCKS
int i;
l_fp ltemp;
#endif /* IRIG_SUCKS */
pp = peer->procptr;
up = (struct wwvunit *)pp->unitptr;
if (!iniflg) {
iniflg = 1;
memset((char *)bitvec, 0, sizeof(bitvec));
}
/*
* The bit represents the probability of a hit on zero (negative
* values), a hit on one (positive values) or a miss (zero
* value). The likelihood vector is the exponential average of
* these probabilities. Only the bits of this vector
* corresponding to the miscellaneous bits of the timecode are
* used, but it's easier to do them all. After that, crank the
* seconds state machine.
*/
nsec = up->rsec + 1;
bit = wwv_data(up, dpulse);
bitvec[up->rsec] += (bit - bitvec[up->rsec]) / TCONST;
sw = progx[up->rsec].sw;
arg = progx[up->rsec].arg;
switch (sw) {
/*
* Ignore this second.
*/
case IDLE: /* 9, 45-49 */
break;
/*
* Probe channel stuff
*
* The WWV/H format contains data pulses in second 59 (position
* identifier), second 1 (not used) and the minute sync pulse in
* second 0. At the end of second 58, QSY to the probe channel,
* which rotates over all WWV/H frequencies. At the end of
* second 1 QSY back to the data channel.
*
* At the end of second 0 save the minute sync pulse peak value
* previously latched at 800 ms.
*/
case SYNC2: /* 0 */
cp = &up->mitig[up->achan];
cp->wwv.synmax = sqrt(cp->wwv.synamp);
cp->wwvh.synmax = sqrt(cp->wwvh.synamp);
break;
/*
* At the end of second 1 determine the minute sync pulse
* amplitude and SNR and set SYNCNG if these values are below
* thresholds. Determine the data pulse amplitude and SNR and
* set DATANG if these values are below thresholds. Set ERRRNG
* if data pulses in second 59 and second 1 are decoded in
* error. Shift a 1 into the reachability register if SYNCNG and
* DATANG are both lit; otherwise shift a 0. Ignore ERRRNG for
* the present. The number of 1 bits in the last six intervals
* represents the channel metric used by the mitigation routine.
* Finally, QSY back to the data channel.
*/
case SYNC3: /* 1 */
cp = &up->mitig[up->achan];
cp->sigamp = sqrt(up->sigamp);
cp->noiamp = sqrt(up->noiamp);
cp->datsnr = wwv_snr(cp->sigamp, cp->noiamp);
/*
* WWV station
*/
sp = &cp->wwv;
sp->synmin = sqrt((sp->synmin + sp->synamp) / 2.);
sp->synsnr = wwv_snr(sp->synmax, sp->synmin);
sp->select &= ~(SYNCNG | DATANG | ERRRNG);
if (sp->synmax < QTHR || sp->synsnr < QSNR)
sp->select |= SYNCNG;
if (cp->sigamp < XTHR || cp->datsnr < XSNR)
sp->select |= DATANG;
if (up->errcnt > 2)
sp->select |= ERRRNG;
sp->reach <<= 1;
if (sp->reach & (1 << AMAX))
sp->count--;
if (!(sp->select & (SYNCNG | DATANG))) {
sp->reach |= 1;
sp->count++;
}
/*
* WWVH station
*/
rp = &cp->wwvh;
rp->synmin = sqrt((rp->synmin + rp->synamp) / 2.);
rp->synsnr = wwv_snr(rp->synmax, rp->synmin);
rp->select &= ~(SYNCNG | DATANG | ERRRNG);
if (rp->synmax < QTHR || rp->synsnr < QSNR)
rp->select |= SYNCNG;
if (cp->sigamp < XTHR || cp->datsnr < XSNR)
rp->select |= DATANG;
if (up->errcnt > 2)
rp->select |= ERRRNG;
rp->reach <<= 1;
if (rp->reach & (1 << AMAX))
rp->count--;
if (!(rp->select & (SYNCNG | DATANG | ERRRNG))) {
rp->reach |= 1;
rp->count++;
}
/*
* Set up for next minute.
*/
if (pp->sloppyclockflag & CLK_FLAG4) {
sprintf(tbuf,
"wwv5 %2d %04x %3d %4d %d %.0f/%.1f %s %04x %.0f %.0f/%.1f %s %04x %.0f %.0f/%.1f",
up->port, up->status, up->gain, up->yepoch,
up->errcnt, cp->sigamp, cp->datsnr,
sp->refid, sp->reach & 0xffff,
wwv_metric(sp), sp->synmax, sp->synsnr,
rp->refid, rp->reach & 0xffff,
wwv_metric(rp), rp->synmax, rp->synsnr);
record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
if (debug)
printf("%s\n", tbuf);
#endif /* DEBUG */
}
#ifdef ICOM
if (up->fd_icom > 0)
wwv_qsy(peer, up->dchan);
#endif /* ICOM */
up->status &= ~SFLAG;
up->errcnt = 0;
up->alarm = 0;
wwv_newchan(peer);
break;
/*
* Save the bit probability in the BCD data vector at the index
* given by the argument. Note that all bits of the vector have
* to be above the data gate threshold for the digit to be
* considered valid. Bits not used in the digit are forced to
* zero and not checked for errors.
*/
case COEF: /* 4-7, 10-13, 15-17, 20-23,
25-26, 30-33, 35-38, 40-41,
51-54 */
if (up->status & DGATE)
up->status |= BGATE;
bcddld[arg] = bit;
break;
case COEF2: /* 18, 27-28, 42-43 */
bcddld[arg] = 0;
break;
/*
* Correlate coefficient vector with each valid digit vector and
* save in decoding matrix. We step through the decoding matrix
* digits correlating each with the coefficients and saving the
* greatest and the next lower for later SNR calculation.
*/
case DECIM2: /* 29 */
wwv_corr4(peer, &up->decvec[arg], bcddld, bcd2);
break;
case DECIM3: /* 44 */
wwv_corr4(peer, &up->decvec[arg], bcddld, bcd3);
break;
case DECIM6: /* 19 */
wwv_corr4(peer, &up->decvec[arg], bcddld, bcd6);
break;
case DECIM9: /* 8, 14, 24, 34, 39 */
wwv_corr4(peer, &up->decvec[arg], bcddld, bcd9);
break;
/*
* Miscellaneous bits. If above the positive threshold, declare
* 1; if below the negative threshold, declare 0; otherwise
* raise the SYMERR alarm. At the end of second 58, QSY to the
* probe channel. The design is intended to preserve the bits
* over periods of signal loss.
*/
case MSC20: /* 55 */
wwv_corr4(peer, &up->decvec[YR + 1], bcddld, bcd9);
/* fall through */
case MSCBIT: /* 2-3, 50, 56-57 */
if (bitvec[up->rsec] > BTHR)
up->misc |= arg;
else if (bitvec[up->rsec] < -BTHR)
up->misc &= ~arg;
else
up->alarm |= SYMERR;
break;
/*
* Save the data channel gain, then QSY to the probe channel.
*/
case MSC21: /* 58 */
if (bitvec[up->rsec] > BTHR)
up->misc |= arg;
else if (bitvec[up->rsec] < -BTHR)
up->misc &= ~arg;
else
up->alarm |= SYMERR;
up->mitig[up->dchan].gain = up->gain;
#ifdef ICOM
if (up->fd_icom > 0) {
up->schan = (up->schan + 1) % NCHAN;
wwv_qsy(peer, up->schan);
}
#endif /* ICOM */
up->status |= SFLAG | SELV | SELH;
up->errbit = up->errcnt;
up->errcnt = 0;
break;
/*
* The endgames
*
* During second 59 the receiver and codec AGC are settling
* down, so the data pulse is unusable. At the end of this
* second, latch the minute sync pulse noise floor. Then do the
* minute processing and update the system clock. If a leap
* second sail on to the next second (60); otherwise, set up for
* the next minute.
*/
case MIN1: /* 59 */
cp = &up->mitig[up->achan];
cp->wwv.synmin = cp->wwv.synamp;
cp->wwvh.synmin = cp->wwvh.synamp;
/*
* Dance the leap if necessary and the kernel has the
* right stuff. Then, wind up the clock and initialize
* for the following minute. If the leap dance, note the
* kernel is armed one second before the actual leap is
* scheduled.
*/
if (up->status & SSYNC && up->digcnt >= 9)
up->status |= INSYNC;
if (up->status & LEPDAY) {
pp->leap = LEAP_ADDSECOND;
} else {
pp->leap = LEAP_NOWARNING;
wwv_tsec(up);
nsec = up->digcnt = 0;
}
pp->lencode = timecode(up, pp->a_lastcode);
record_clock_stats(&peer->srcadr, pp->a_lastcode);
#ifdef DEBUG
if (debug)
printf("wwv: timecode %d %s\n", pp->lencode,
pp->a_lastcode);
#endif /* DEBUG */
if (up->status & INSYNC && up->watch < HOLD)
refclock_receive(peer);
break;
/*
* If LEPDAY is set on the last minute of 30 June or 31
* December, the LEPSEC bit is set. At the end of the minute in
* which LEPSEC is set the transmitter and receiver insert an
* extra second (60) in the timescale and the minute sync skips
* a second. We only get to test this wrinkle at intervals of
* about 18 months; the actual mileage may vary.
*/
case MIN2: /* 60 */
wwv_tsec(up);
nsec = up->digcnt = 0;
break;
}
/*
* If digit sync has not been acquired before timeout or if no
* station has been heard, game over and restart from scratch.
*/
if (!(up->status & DSYNC) && (!(up->status & (SELV | SELH)) ||
up->watch > DIGIT)) {
wwv_newgame(peer);
return;
}
/*
* If no timestamps have been struck before timeout, game over
* and restart from scratch.
*/
if (up->watch > PANIC) {
wwv_newgame(peer);
return;
}
pp->disp += AUDIO_PHI;
up->rsec = nsec;
#ifdef IRIG_SUCKS
/*
* You really don't wanna know what comes down here. Leave it to
* say Solaris 2.8 broke the nice clean audio stream, apparently
* affected by a 5-ms sawtooth jitter. Sundown on Solaris. This
* leaves a little twilight.
*
* The scheme involves differentiation, forward learning and
* integration. The sawtooth has a period of 11 seconds. The
* timestamp differences are integrated and subtracted from the
* signal.
*/
ltemp = pp->lastrec;
L_SUB(&ltemp, &pp->lastref);
if (ltemp.l_f < 0)
ltemp.l_i = -1;
else
ltemp.l_i = 0;
pp->lastref = pp->lastrec;
if (!L_ISNEG(&ltemp))
L_CLR(&up->wigwag);
else
L_ADD(&up->wigwag, &ltemp);
L_SUB(&pp->lastrec, &up->wigwag);
up->wiggle[up->wp] = ltemp;
/*
* Bottom fisher. To understand this, you have to know about
* velocity microphones and AM transmitters. No further
* explanation is offered, as this is truly a black art.
*/
up->wigbot[up->wp] = pp->lastrec;
for (i = 0; i < WIGGLE; i++) {
if (i != up->wp)
up->wigbot[i].l_ui++;
L_SUB(&pp->lastrec, &up->wigbot[i]);
if (L_ISNEG(&pp->lastrec))
L_ADD(&pp->lastrec, &up->wigbot[i]);
else
pp->lastrec = up->wigbot[i];
}
up->wp++;
up->wp %= WIGGLE;
#endif /* IRIG_SUCKS */
/*
* If victory has been declared and seconds sync is lit, strike
* a timestamp. It should not be a surprise, especially if the
* radio is not tunable, that sometimes no stations are above
* the noise and the reference ID set to NONE.
*/
if (up->status & INSYNC && up->status & SSYNC) {
pp->second = up->rsec;
pp->minute = up->decvec[MN].digit + up->decvec[MN +
1].digit * 10;
pp->hour = up->decvec[HR].digit + up->decvec[HR +
1].digit * 10;
pp->day = up->decvec[DA].digit + up->decvec[DA +
1].digit * 10 + up->decvec[DA + 2].digit * 100;
pp->year = up->decvec[YR].digit + up->decvec[YR +
1].digit * 10;
pp->year += 2000;
L_CLR(&offset);
if (!clocktime(pp->day, pp->hour, pp->minute,
pp->second, GMT, up->timestamp.l_ui,
&pp->yearstart, &offset.l_ui)) {
up->errflg = CEVNT_BADTIME;
} else {
up->watch = 0;
pp->disp = 0;
refclock_process_offset(pp, offset,
up->timestamp, PDELAY);
}
}
if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
DSYNC)) {
sprintf(tbuf,
"wwv3 %2d %04x %5.0f %5.1f %5.0f %5.1f %5.0f",
up->rsec, up->status, up->epomax, up->eposnr,
up->sigsig, up->datsnr, bit);
record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
if (debug)
printf("%s\n", tbuf);
#endif /* DEBUG */
}
}
/*
* wwv_data - calculate bit probability
*
* This routine is called at the end of the receiver second to calculate
* the probabilities that the previous second contained a zero (P0), one
* (P1) or position indicator (P2) pulse. If not in sync or if the data
* bit is bad, a bit error is declared and the probabilities are forced
* to zero. Otherwise, the data gate is enabled and the probabilities
* are calculated. Note that the data matched filter contributes half
* the pulse width, or 85 ms.
*
* It's important to observe that there are three conditions to
* determine: average to +1 (hit), average to -1 (miss) or average to
* zero (erasure). The erasure condition results from insufficient
* signal (noise) and has no bias toward either a hit or miss.
*/
static double
wwv_data(
struct wwvunit *up, /* driver unit pointer */
double pulse /* pulse length (sample units) */
)
{
double p0, p1, p2; /* probabilities */
double dpulse; /* pulse length in ms */
p0 = p1 = p2 = 0;
dpulse = pulse - DATSIZ / 2;
/*
* If no station is being tracked, if either the data amplitude
* or SNR are below threshold or if the pulse length is less
* than 170 ms, declare an erasure.
*/
if (!(up->status & (SELV | SELH)) || up->sigsig < DTHR ||
up->datsnr < DSNR || dpulse < DATSIZ) {
up->status |= DGATE;
up->errcnt++;
if (up->errcnt > MAXERR)
up->alarm |= MODERR;
return (0);
}
/*
* The probability of P0 is one below 200 ms falling to zero at
* 500 ms. The probability of P1 is zero below 200 ms rising to
* one at 500 ms and falling to zero at 800 ms. The probability
* of P2 is zero below 500 ms, rising to one above 800 ms.
*/
up->status &= ~DGATE;
if (dpulse < (200 * MS)) {
p0 = 1;
} else if (dpulse < 500 * MS) {
dpulse -= 200 * MS;
p1 = dpulse / (300 * MS);
p0 = 1 - p1;
} else if (dpulse < 800 * MS) {
dpulse -= 500 * MS;
p2 = dpulse / (300 * MS);
p1 = 1 - p2;
} else {
p2 = 1;
}
/*
* The ouput is a metric that ranges from -1 (P0), to +1 (P1)
* scaled for convenience. An output of zero represents an
* erasure, either because of a data error or pulse length
* greater than 500 ms. At the moment, we don't use P2.
*/
return ((p1 - p0) * MAXSIG);
}
/*
* wwv_corr4 - determine maximum likelihood digit
*
* This routine correlates the received digit vector with the BCD
* coefficient vectors corresponding to all valid digits at the given
* position in the decoding matrix. The maximum value corresponds to the
* maximum likelihood digit, while the ratio of this value to the next
* lower value determines the likelihood function. Note that, if the
* digit is invalid, the likelihood vector is averaged toward a miss.
*/
static void
wwv_corr4(
struct peer *peer, /* peer unit pointer */
struct decvec *vp, /* decoding table pointer */
double data[], /* received data vector */
double tab[][4] /* correlation vector array */
)
{
struct refclockproc *pp;
struct wwvunit *up;
double topmax, nxtmax; /* metrics */
double acc; /* accumulator */
char tbuf[80]; /* monitor buffer */
int mldigit; /* max likelihood digit */
int diff; /* decoding difference */
int i, j;
pp = peer->procptr;
up = (struct wwvunit *)pp->unitptr;
/*
* Correlate digit vector with each BCD coefficient vector. If
* any BCD digit bit is bad, consider all bits a miss.
*/
mldigit = 0;
topmax = nxtmax = -MAXSIG;
for (i = 0; tab[i][0] != 0; i++) {
acc = 0;
for (j = 0; j < 4; j++) {
if (!(up->status & BGATE))
acc += data[j] * tab[i][j];
}
acc = (vp->like[i] += (acc - vp->like[i]) / TCONST);
if (acc > topmax) {
nxtmax = topmax;
topmax = acc;
mldigit = i;
} else if (acc > nxtmax) {
nxtmax = acc;
}
}
vp->mldigit = mldigit;
vp->digprb = topmax;
vp->digsnr = wwv_snr(topmax, nxtmax);
/*
* The maximum likelihood digit is compared with the current
* clock digit. The difference represents the decoding phase
* error. If the clock is not yet synchronized, the phase error
* is corrected even of the digit probability and likelihood are
* below thresholds. This avoids lengthy averaging times should
* a carry mistake occur. However, the digit is not declared
* synchronized until these values are above thresholds and the
* last five decoded values are identical. If the clock is
* synchronized, the phase error is not corrected unless the
* last five digits are all above thresholds and identical. This
* avoids mistakes when the signal is coming out of the noise
* and the SNR is very marginal.
*/
diff = mldigit - vp->digit;
if (diff < 0)
diff += vp->radix;
if (diff != vp->phase) {
vp->count = 0;
vp->phase = diff;
}
if (vp->digsnr < BSNR) {
vp->count = 0;
up->alarm |= SYMERR;
} else if (vp->digprb < BTHR) {
vp->count = 0;
up->alarm |= SYMERR;
if (!(up->status & INSYNC)) {
vp->phase = 0;
vp->digit = mldigit;
}
} else if (vp->count < BCMP) {
vp->count++;
up->status |= DSYNC;
if (!(up->status & INSYNC)) {
vp->phase = 0;
vp->digit = mldigit;
}
} else {
vp->phase = 0;
vp->digit = mldigit;
up->digcnt++;
}
if (vp->digit != mldigit)
up->alarm |= DECERR;
if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
INSYNC)) {
sprintf(tbuf,
"wwv4 %2d %04x %5.0f %2d %d %d %d %d %5.0f %5.1f",
up->rsec, up->status, up->epomax, vp->radix,
vp->digit, vp->mldigit, vp->phase, vp->count,
vp->digprb, vp->digsnr);
record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
if (debug)
printf("%s\n", tbuf);
#endif /* DEBUG */
}
up->status &= ~BGATE;
}
/*
* wwv_tsec - transmitter minute processing
*
* This routine is called at the end of the transmitter minute. It
* implements a state machine that advances the logical clock subject to
* the funny rules that govern the conventional clock and calendar.
*/
static void
wwv_tsec(
struct wwvunit *up /* driver structure pointer */
)
{
int minute, day, isleap;
int temp;
/*
* Advance minute unit of the day.
*/
temp = carry(&up->decvec[MN]); /* minute units */
/*
* Propagate carries through the day.
*/
if (temp == 0) /* carry minutes */
temp = carry(&up->decvec[MN + 1]);
if (temp == 0) /* carry hours */
temp = carry(&up->decvec[HR]);
if (temp == 0)
temp = carry(&up->decvec[HR + 1]);
/*
* Decode the current minute and day. Set leap day if the
* timecode leap bit is set on 30 June or 31 December. Set leap
* minute if the last minute on leap day. This code fails in
* 2400 AD.
*/
minute = up->decvec[MN].digit + up->decvec[MN + 1].digit *
10 + up->decvec[HR].digit * 60 + up->decvec[HR +
1].digit * 600;
day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
up->decvec[DA + 2].digit * 100;
isleap = (up->decvec[YR].digit & 0x3) == 0;
if (up->misc & SECWAR && (day == (isleap ? 182 : 183) || day ==
(isleap ? 365 : 366)) && up->status & INSYNC && up->status &
SSYNC)
up->status |= LEPDAY;
else
up->status &= ~LEPDAY;
if (up->status & LEPDAY && minute == 1439)
up->status |= LEPSEC;
else
up->status &= ~LEPSEC;
/*
* Roll the day if this the first minute and propagate carries
* through the year.
*/
if (minute != 1440)
return;
minute = 0;
while (carry(&up->decvec[HR]) != 0); /* advance to minute 0 */
while (carry(&up->decvec[HR + 1]) != 0);
day++;
temp = carry(&up->decvec[DA]); /* carry days */
if (temp == 0)
temp = carry(&up->decvec[DA + 1]);
if (temp == 0)
temp = carry(&up->decvec[DA + 2]);
/*
* Roll the year if this the first day and propagate carries
* through the century.
*/
if (day != (isleap ? 365 : 366))
return;
day = 1;
while (carry(&up->decvec[DA]) != 1); /* advance to day 1 */
while (carry(&up->decvec[DA + 1]) != 0);
while (carry(&up->decvec[DA + 2]) != 0);
temp = carry(&up->decvec[YR]); /* carry years */
if (temp)
carry(&up->decvec[YR + 1]);
}
/*
* carry - process digit
*
* This routine rotates a likelihood vector one position and increments
* the clock digit modulo the radix. It returns the new clock digit or
* zero if a carry occurred. Once synchronized, the clock digit will
* match the maximum likelihood digit corresponding to that position.
*/
static int
carry(
struct decvec *dp /* decoding table pointer */
)
{
int temp;
int j;
dp->digit++; /* advance clock digit */
if (dp->digit == dp->radix) { /* modulo radix */
dp->digit = 0;
}
temp = dp->like[dp->radix - 1]; /* rotate likelihood vector */
for (j = dp->radix - 1; j > 0; j--)
dp->like[j] = dp->like[j - 1];
dp->like[0] = temp;
return (dp->digit);
}
/*
* wwv_snr - compute SNR or likelihood function
*/
static double
wwv_snr(
double signal, /* signal */
double noise /* noise */
)
{
double rval;
/*
* This is a little tricky. Due to the way things are measured,
* either or both the signal or noise amplitude can be negative
* or zero. The intent is that, if the signal is negative or
* zero, the SNR must always be zero. This can happen with the
* subcarrier SNR before the phase has been aligned. On the
* other hand, in the likelihood function the "noise" is the
* next maximum down from the peak and this could be negative.
* However, in this case the SNR is truly stupendous, so we
* simply cap at MAXSNR dB.
*/
if (signal <= 0) {
rval = 0;
} else if (noise <= 0) {
rval = MAXSNR;
} else {
rval = 20 * log10(signal / noise);
if (rval > MAXSNR)
rval = MAXSNR;
}
return (rval);
}
/*
* wwv_newchan - change to new data channel
*
* The radio actually appears to have ten channels, one channel for each
* of five frequencies and each of two stations (WWV and WWVH), although
* if not tunable only the 15 MHz channels appear live. While the radio
* is tuned to the working data channel frequency and station for most
* of the minute, during seconds 59, 0 and 1 the radio is tuned to a
* probe frequency in order to search for minute sync pulse and data
* subcarrier from other transmitters.
*
* The search for WWV and WWVH operates simultaneously, with WWV minute
* sync pulse at 1000 Hz and WWVH at 1200 Hz. The probe frequency
* rotates each minute over 2.5, 5, 10, 15 and 20 MHz in order and yes,
* we all know WWVH is dark on 20 MHz, but few remember when WWV was lit
* on 25 MHz.
*
* This routine selects the best channel using a metric computed from
* the reachability register and minute pulse amplitude. Normally, the
* award goes to the the channel with the highest metric; but, in case
* of ties, the award goes to the channel with the highest minute sync
* pulse amplitude and then to the highest frequency.
*
* The routine performs an important squelch function to keep dirty data
* from polluting the integrators. During acquisition and until the
* clock is synchronized, the signal metric must be at least MTR (13);
* after that the metrict must be at least TTHR (50). If either of these
* is not true, the station select bits are cleared so the second sync
* is disabled and the data bit integrators averaged to a miss.
*/
static void
wwv_newchan(
struct peer *peer /* peer structure pointer */
)
{
struct refclockproc *pp;
struct wwvunit *up;
struct sync *sp, *rp;
double rank, dtemp;
int i, j;
pp = peer->procptr;
up = (struct wwvunit *)pp->unitptr;
/*
* Search all five station pairs looking for the channel with
* maximum metric. If no station is found above thresholds, the
* reference ID is set to NONE and we wait for hotter ions.
*/
j = 0;
sp = NULL;
rank = 0;
for (i = 0; i < NCHAN; i++) {
rp = &up->mitig[i].wwvh;
dtemp = wwv_metric(rp);
if (dtemp >= rank) {
rank = dtemp;
sp = rp;
j = i;
}
rp = &up->mitig[i].wwv;
dtemp = wwv_metric(rp);
if (dtemp >= rank) {
rank = dtemp;
sp = rp;
j = i;
}
}
up->dchan = j;
up->sptr = sp;
up->status &= ~(SELV | SELH);
memcpy(&pp->refid, "NONE", 4);
if ((!(up->status & INSYNC) && rank >= MTHR) || ((up->status &
INSYNC) && rank >= TTHR)) {
up->status |= sp->select & (SELV | SELH);
memcpy(&pp->refid, sp->refid, 4);
}
if (peer->stratum <= 1)
memcpy(&peer->refid, &pp->refid, 4);
}
/*
* www_newgame - reset and start over
*/
static void
wwv_newgame(
struct peer *peer /* peer structure pointer */
)
{
struct refclockproc *pp;
struct wwvunit *up;
struct chan *cp;
int i;
pp = peer->procptr;
up = (struct wwvunit *)pp->unitptr;
/*
* Initialize strategic values. Note we set the leap bits
* NOTINSYNC and the refid "NONE".
*/
peer->leap = LEAP_NOTINSYNC;
up->watch = up->status = up->alarm = 0;
up->avgint = MINAVG;
up->freq = 0;
up->sptr = NULL;
up->gain = MAXGAIN / 2;
/*
* Initialize the station processes for audio gain, select bit,
* station/frequency identifier and reference identifier.
*/
memset(up->mitig, 0, sizeof(up->mitig));
for (i = 0; i < NCHAN; i++) {
cp = &up->mitig[i];
cp->gain = up->gain;
cp->wwv.select = SELV;
sprintf(cp->wwv.refid, "WV%.0f", floor(qsy[i]));
cp->wwvh.select = SELH;
sprintf(cp->wwvh.refid, "WH%.0f", floor(qsy[i]));
}
wwv_newchan(peer);
}
/*
* wwv_metric - compute station metric
*
* The most significant bits represent the number of ones in the
* reachability register. The least significant bits represent the
* minute sync pulse amplitude. The combined value is scaled 0-100.
*/
double
wwv_metric(
struct sync *sp /* station pointer */
)
{
double dtemp;
dtemp = sp->count * MAXSIG;
if (sp->synmax < MAXSIG)
dtemp += sp->synmax;
else
dtemp += MAXSIG - 1;
dtemp /= (AMAX + 1) * MAXSIG;
return (dtemp * 100.);
}
#ifdef ICOM
/*
* wwv_qsy - Tune ICOM receiver
*
* This routine saves the AGC for the current channel, switches to a new
* channel and restores the AGC for that channel. If a tunable receiver
* is not available, just fake it.
*/
static int
wwv_qsy(
struct peer *peer, /* peer structure pointer */
int chan /* channel */
)
{
int rval = 0;
struct refclockproc *pp;
struct wwvunit *up;
pp = peer->procptr;
up = (struct wwvunit *)pp->unitptr;
if (up->fd_icom > 0) {
up->mitig[up->achan].gain = up->gain;
rval = icom_freq(up->fd_icom, peer->ttl & 0x7f,
qsy[chan]);
up->achan = chan;
up->gain = up->mitig[up->achan].gain;
}
return (rval);
}
#endif /* ICOM */
/*
* timecode - assemble timecode string and length
*
* Prettytime format - similar to Spectracom
*
* sq yy ddd hh:mm:ss ld dut lset agc iden sig errs freq avgt
*
* s sync indicator ('?' or ' ')
* q error bits (hex 0-F)
* yyyy year of century
* ddd day of year
* hh hour of day
* mm minute of hour
* ss second of minute)
* l leap second warning (' ' or 'L')
* d DST state ('S', 'D', 'I', or 'O')
* dut DUT sign and magnitude (0.1 s)
* lset minutes since last clock update
* agc audio gain (0-255)
* iden reference identifier (station and frequency)
* sig signal quality (0-100)
* errs bit errors in last minute
* freq frequency offset (PPM)
* avgt averaging time (s)
*/
static int
timecode(
struct wwvunit *up, /* driver structure pointer */
char *ptr /* target string */
)
{
struct sync *sp;
int year, day, hour, minute, second, dut;
char synchar, leapchar, dst;
char cptr[50];
/*
* Common fixed-format fields
*/
synchar = (up->status & INSYNC) ? ' ' : '?';
year = up->decvec[YR].digit + up->decvec[YR + 1].digit * 10 +
2000;
day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
up->decvec[DA + 2].digit * 100;
hour = up->decvec[HR].digit + up->decvec[HR + 1].digit * 10;
minute = up->decvec[MN].digit + up->decvec[MN + 1].digit * 10;
second = 0;
leapchar = (up->misc & SECWAR) ? 'L' : ' ';
dst = dstcod[(up->misc >> 4) & 0x3];
dut = up->misc & 0x7;
if (!(up->misc & DUTS))
dut = -dut;
sprintf(ptr, "%c%1X", synchar, up->alarm);
sprintf(cptr, " %4d %03d %02d:%02d:%02d %c%c %+d",
year, day, hour, minute, second, leapchar, dst, dut);
strcat(ptr, cptr);
/*
* Specific variable-format fields
*/
sp = up->sptr;
sprintf(cptr, " %d %d %s %.0f %d %.1f %d", up->watch,
up->mitig[up->dchan].gain, sp->refid, wwv_metric(sp),
up->errbit, up->freq / SECOND * 1e6, up->avgint);
strcat(ptr, cptr);
return (strlen(ptr));
}
/*
* wwv_gain - adjust codec gain
*
* This routine is called at the end of each second. It counts the
* number of signal clips above the MAXSIG threshold during the previous
* second. If there are no clips, the gain is bumped up; if too many
* clips, it is bumped down. The decoder is relatively insensitive to
* amplitude, so this crudity works just fine. The input port is set and
* the error flag is cleared, mostly to be ornery.
*/
static void
wwv_gain(
struct peer *peer /* peer structure pointer */
)
{
struct refclockproc *pp;
struct wwvunit *up;
pp = peer->procptr;
up = (struct wwvunit *)pp->unitptr;
/*
* Apparently, the codec uses only the high order bits of the
* gain control field. Thus, it may take awhile for changes to
* wiggle the hardware bits.
*/
if (up->clipcnt == 0) {
up->gain += 4;
if (up->gain > MAXGAIN)
up->gain = MAXGAIN;
} else if (up->clipcnt > MAXCLP) {
up->gain -= 4;
if (up->gain < 0)
up->gain = 0;
}
audio_gain(up->gain, up->mongain, up->port);
up->clipcnt = 0;
#if DEBUG
if (debug > 1)
audio_show();
#endif
}
#else
int refclock_wwv_bs;
#endif /* REFCLOCK */