d5e6f1b80b
(in this case, throw away all local modifications; I'll start patching from scratch)
2862 lines
85 KiB
C
2862 lines
85 KiB
C
/* $NetBSD: refclock_wwv.c,v 1.3 2003/12/04 16:23:37 drochner Exp $ */
|
|
|
|
/*
|
|
* refclock_wwv - clock driver for NIST WWV/H time/frequency station
|
|
*/
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#if defined(REFCLOCK) && defined(CLOCK_WWV)
|
|
|
|
#include "ntpd.h"
|
|
#include "ntp_io.h"
|
|
#include "ntp_refclock.h"
|
|
#include "ntp_calendar.h"
|
|
#include "ntp_stdlib.h"
|
|
#include "audio.h"
|
|
|
|
#include <stdio.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
#ifdef HAVE_SYS_IOCTL_H
|
|
# include <sys/ioctl.h>
|
|
#endif /* HAVE_SYS_IOCTL_H */
|
|
|
|
#define ICOM 1
|
|
|
|
#ifdef ICOM
|
|
#include "icom.h"
|
|
#endif /* ICOM */
|
|
|
|
/*
|
|
* Audio WWV/H demodulator/decoder
|
|
*
|
|
* This driver synchronizes the computer time using data encoded in
|
|
* radio transmissions from NIST time/frequency stations WWV in Boulder,
|
|
* CO, and WWVH in Kauai, HI. Transmissions are made continuously on
|
|
* 2.5, 5, 10, 15 and 20 MHz in AM mode. An ordinary shortwave receiver
|
|
* can be tuned manually to one of these frequencies or, in the case of
|
|
* ICOM receivers, the receiver can be tuned automatically using this
|
|
* program as propagation conditions change throughout the day and
|
|
* night.
|
|
*
|
|
* The driver receives, demodulates and decodes the radio signals when
|
|
* connected to the audio codec of a workstation running Solaris, SunOS
|
|
* FreeBSD or Linux, and with a little help, other workstations with
|
|
* similar codecs or sound cards. In this implementation, only one audio
|
|
* driver and codec can be supported on a single machine.
|
|
*
|
|
* The demodulation and decoding algorithms used in this driver are
|
|
* based on those developed for the TAPR DSP93 development board and the
|
|
* TI 320C25 digital signal processor described in: Mills, D.L. A
|
|
* precision radio clock for WWV transmissions. Electrical Engineering
|
|
* Report 97-8-1, University of Delaware, August 1997, 25 pp., available
|
|
* from www.eecis.udel.edu/~mills/reports.htm. The algorithms described
|
|
* in this report have been modified somewhat to improve performance
|
|
* under weak signal conditions and to provide an automatic station
|
|
* identification feature.
|
|
*
|
|
* The ICOM code is normally compiled in the driver. It isn't used,
|
|
* unless the mode keyword on the server configuration command specifies
|
|
* a nonzero ICOM ID select code. The C-IV trace is turned on if the
|
|
* debug level is greater than one.
|
|
*/
|
|
/*
|
|
* Interface definitions
|
|
*/
|
|
#define DEVICE_AUDIO "/dev/audio" /* audio device name */
|
|
#define AUDIO_BUFSIZ 320 /* audio buffer size (50 ms) */
|
|
#define PRECISION (-10) /* precision assumed (about 1 ms) */
|
|
#define DESCRIPTION "WWV/H Audio Demodulator/Decoder" /* WRU */
|
|
#define SECOND 8000 /* second epoch (sample rate) (Hz) */
|
|
#define MINUTE (SECOND * 60) /* minute epoch */
|
|
#define OFFSET 128 /* companded sample offset */
|
|
#define SIZE 256 /* decompanding table size */
|
|
#define MAXSIG 6000. /* max signal level reference */
|
|
#define MAXCLP 100 /* max clips above reference per s */
|
|
#define MAXSNR 30. /* max SNR reference */
|
|
#define DGAIN 20. /* data channel gain reference */
|
|
#define SGAIN 10. /* sync channel gain reference */
|
|
#define MAXFREQ 1. /* max frequency tolerance (125 PPM) */
|
|
#define PI 3.1415926535 /* the real thing */
|
|
#define DATSIZ (170 * MS) /* data matched filter size */
|
|
#define SYNSIZ (800 * MS) /* minute sync matched filter size */
|
|
#define MAXERR 30 /* max data bit errors in minute */
|
|
#define NCHAN 5 /* number of radio channels */
|
|
#define AUDIO_PHI 5e-6 /* dispersion growth factor */
|
|
#ifdef IRIG_SUCKS
|
|
#define WIGGLE 11 /* wiggle filter length */
|
|
#endif /* IRIG_SUCKS */
|
|
|
|
/*
|
|
* General purpose status bits (status)
|
|
*
|
|
* SELV and/or SELH are set when WWV or WWVH has been heard and cleared
|
|
* on signal loss. SSYNC is set when the second sync pulse has been
|
|
* acquired and cleared by signal loss. MSYNC is set when the minute
|
|
* sync pulse has been acquired. DSYNC is set when a digit reaches the
|
|
* threshold and INSYNC is set when all nine digits have reached the
|
|
* threshold. The MSYNC, DSYNC and INSYNC bits are cleared only by
|
|
* timeout, upon which the driver starts over from scratch.
|
|
*
|
|
* DGATE is set if a data bit is invalid and BGATE is set if a BCD digit
|
|
* bit is invalid. SFLAG is set when during seconds 59, 0 and 1 while
|
|
* probing alternate frequencies. LEPDAY is set when SECWAR of the
|
|
* timecode is set on 30 June or 31 December. LEPSEC is set during the
|
|
* last minute of the day when LEPDAY is set. At the end of this minute
|
|
* the driver inserts second 60 in the seconds state machine and the
|
|
* minute sync slips a second. The SLOSS and SJITR bits are for monitor
|
|
* only.
|
|
*/
|
|
#define MSYNC 0x0001 /* minute epoch sync */
|
|
#define SSYNC 0x0002 /* second epoch sync */
|
|
#define DSYNC 0x0004 /* minute units sync */
|
|
#define INSYNC 0x0008 /* clock synchronized */
|
|
#define FGATE 0x0010 /* frequency gate */
|
|
#define DGATE 0x0020 /* data bit error */
|
|
#define BGATE 0x0040 /* BCD digit bit error */
|
|
#define SFLAG 0x1000 /* probe flag */
|
|
#define LEPDAY 0x2000 /* leap second day */
|
|
#define LEPSEC 0x4000 /* leap second minute */
|
|
|
|
/*
|
|
* Station scoreboard bits
|
|
*
|
|
* These are used to establish the signal quality for each of the five
|
|
* frequencies and two stations.
|
|
*/
|
|
#define SYNCNG 0x0001 /* sync or SNR below threshold */
|
|
#define DATANG 0x0002 /* data or SNR below threshold */
|
|
#define ERRRNG 0x0004 /* data error */
|
|
#define SELV 0x0100 /* WWV station select */
|
|
#define SELH 0x0200 /* WWVH station select */
|
|
|
|
/*
|
|
* Alarm status bits (alarm)
|
|
*
|
|
* These bits indicate various alarm conditions, which are decoded to
|
|
* form the quality character included in the timecode. If not tracking
|
|
* second sync, the SYNERR alarm is raised. The data error counter is
|
|
* incremented for each invalid data bit. If too many data bit errors
|
|
* are encountered in one minute, the MODERR alarm is raised. The DECERR
|
|
* alarm is raised if a maximum likelihood digit fails to compare with
|
|
* the current clock digit. If the probability of any miscellaneous bit
|
|
* or any digit falls below the threshold, the SYMERR alarm is raised.
|
|
*/
|
|
#define DECERR 1 /* BCD digit compare error */
|
|
#define SYMERR 2 /* low bit or digit probability */
|
|
#define MODERR 4 /* too many data bit errors */
|
|
#define SYNERR 8 /* not synchronized to station */
|
|
|
|
/*
|
|
* Watchcat timeouts (watch)
|
|
*
|
|
* If these timeouts expire, the status bits are mashed to zero and the
|
|
* driver starts from scratch. Suitably more refined procedures may be
|
|
* developed in future. All these are in minutes.
|
|
*/
|
|
#define ACQSN 5 /* station acquisition timeout */
|
|
#define DIGIT 30 /* minute unit digit timeout */
|
|
#define HOLD 30 /* reachable timeout */
|
|
#define PANIC (2 * 1440) /* panic timeout */
|
|
|
|
/*
|
|
* Thresholds. These establish the minimum signal level, minimum SNR and
|
|
* maximum jitter thresholds which establish the error and false alarm
|
|
* rates of the driver. The values defined here may be on the
|
|
* adventurous side in the interest of the highest sensitivity.
|
|
*/
|
|
#define MTHR 13. /* acquisition signal gate (percent) */
|
|
#define TTHR 50. /* tracking signal gate (percent) */
|
|
#define ATHR 2000. /* acquisition amplitude threshold */
|
|
#define ASNR 6. /* acquisition SNR threshold (dB) */
|
|
#define AWND 20. /* acquisition jitter threshold (ms) */
|
|
#define AMIN 3 /* min bit count */
|
|
#define AMAX 6 /* max bit count */
|
|
#define QTHR 2000 /* QSY sync threshold */
|
|
#define QSNR 20. /* QSY sync SNR threshold (dB) */
|
|
#define XTHR 1000. /* QSY data threshold */
|
|
#define XSNR 10. /* QSY data SNR threshold (dB) */
|
|
#define STHR 500 /* second sync amplitude threshold */
|
|
#define SSNR 10. /* second sync SNR threshold */
|
|
#define SCMP 10 /* second sync compare threshold */
|
|
#define DTHR 1000 /* bit amplitude threshold */
|
|
#define DSNR 10. /* bit SNR threshold (dB) */
|
|
#define BTHR 1000 /* digit amplitude threshold */
|
|
#define BSNR 3. /* digit likelihood threshold (dB) */
|
|
#define BCMP 5 /* digit compare threshold */
|
|
|
|
/*
|
|
* Tone frequency definitions. The increments are for 4.5-deg sine
|
|
* table.
|
|
*/
|
|
#define MS (SECOND / 1000) /* samples per millisecond */
|
|
#define IN100 ((100 * 80) / SECOND) /* 100 Hz increment */
|
|
#define IN1000 ((1000 * 80) / SECOND) /* 1000 Hz increment */
|
|
#define IN1200 ((1200 * 80) / SECOND) /* 1200 Hz increment */
|
|
|
|
/*
|
|
* Acquisition and tracking time constants. Usually powers of 2.
|
|
*/
|
|
#define MINAVG 8 /* min time constant */
|
|
#define MAXAVG 1024 /* max time constant */
|
|
#define TCONST 16 /* data bit/digit time constant */
|
|
|
|
/*
|
|
* Miscellaneous status bits (misc)
|
|
*
|
|
* These bits correspond to designated bits in the WWV/H timecode. The
|
|
* bit probabilities are exponentially averaged over several minutes and
|
|
* processed by a integrator and threshold.
|
|
*/
|
|
#define DUT1 0x01 /* 56 DUT .1 */
|
|
#define DUT2 0x02 /* 57 DUT .2 */
|
|
#define DUT4 0x04 /* 58 DUT .4 */
|
|
#define DUTS 0x08 /* 50 DUT sign */
|
|
#define DST1 0x10 /* 55 DST1 leap warning */
|
|
#define DST2 0x20 /* 2 DST2 DST1 delayed one day */
|
|
#define SECWAR 0x40 /* 3 leap second warning */
|
|
|
|
/*
|
|
* The on-time synchronization point for the driver is the second epoch
|
|
* sync pulse produced by the FIR matched filters. As the 5-ms delay of
|
|
* these filters is compensated, the program delay is 1.1 ms due to the
|
|
* 600-Hz IIR bandpass filter. The measured receiver delay is 4.7 ms and
|
|
* the codec delay less than 0.2 ms. The additional propagation delay
|
|
* specific to each receiver location can be programmed in the fudge
|
|
* time1 and time2 values for WWV and WWVH, respectively.
|
|
*/
|
|
#define PDELAY (.0011 + .0047 + .0002) /* net system delay (s) */
|
|
|
|
/*
|
|
* Table of sine values at 4.5-degree increments. This is used by the
|
|
* synchronous matched filter demodulators. The integral of sine-squared
|
|
* over one complete cycle is PI, so the table is normallized by 1 / PI.
|
|
*/
|
|
double sintab[] = {
|
|
0.000000e+00, 2.497431e-02, 4.979464e-02, 7.430797e-02, /* 0-3 */
|
|
9.836316e-02, 1.218119e-01, 1.445097e-01, 1.663165e-01, /* 4-7 */
|
|
1.870979e-01, 2.067257e-01, 2.250791e-01, 2.420447e-01, /* 8-11 */
|
|
2.575181e-01, 2.714038e-01, 2.836162e-01, 2.940800e-01, /* 12-15 */
|
|
3.027307e-01, 3.095150e-01, 3.143910e-01, 3.173286e-01, /* 16-19 */
|
|
3.183099e-01, 3.173286e-01, 3.143910e-01, 3.095150e-01, /* 20-23 */
|
|
3.027307e-01, 2.940800e-01, 2.836162e-01, 2.714038e-01, /* 24-27 */
|
|
2.575181e-01, 2.420447e-01, 2.250791e-01, 2.067257e-01, /* 28-31 */
|
|
1.870979e-01, 1.663165e-01, 1.445097e-01, 1.218119e-01, /* 32-35 */
|
|
9.836316e-02, 7.430797e-02, 4.979464e-02, 2.497431e-02, /* 36-39 */
|
|
-0.000000e+00, -2.497431e-02, -4.979464e-02, -7.430797e-02, /* 40-43 */
|
|
-9.836316e-02, -1.218119e-01, -1.445097e-01, -1.663165e-01, /* 44-47 */
|
|
-1.870979e-01, -2.067257e-01, -2.250791e-01, -2.420447e-01, /* 48-51 */
|
|
-2.575181e-01, -2.714038e-01, -2.836162e-01, -2.940800e-01, /* 52-55 */
|
|
-3.027307e-01, -3.095150e-01, -3.143910e-01, -3.173286e-01, /* 56-59 */
|
|
-3.183099e-01, -3.173286e-01, -3.143910e-01, -3.095150e-01, /* 60-63 */
|
|
-3.027307e-01, -2.940800e-01, -2.836162e-01, -2.714038e-01, /* 64-67 */
|
|
-2.575181e-01, -2.420447e-01, -2.250791e-01, -2.067257e-01, /* 68-71 */
|
|
-1.870979e-01, -1.663165e-01, -1.445097e-01, -1.218119e-01, /* 72-75 */
|
|
-9.836316e-02, -7.430797e-02, -4.979464e-02, -2.497431e-02, /* 76-79 */
|
|
0.000000e+00}; /* 80 */
|
|
|
|
/*
|
|
* Decoder operations at the end of each second are driven by a state
|
|
* machine. The transition matrix consists of a dispatch table indexed
|
|
* by second number. Each entry in the table contains a case switch
|
|
* number and argument.
|
|
*/
|
|
struct progx {
|
|
int sw; /* case switch number */
|
|
int arg; /* argument */
|
|
};
|
|
|
|
/*
|
|
* Case switch numbers
|
|
*/
|
|
#define IDLE 0 /* no operation */
|
|
#define COEF 1 /* BCD bit */
|
|
#define COEF2 2 /* BCD bit ignored */
|
|
#define DECIM9 3 /* BCD digit 0-9 */
|
|
#define DECIM6 4 /* BCD digit 0-6 */
|
|
#define DECIM3 5 /* BCD digit 0-3 */
|
|
#define DECIM2 6 /* BCD digit 0-2 */
|
|
#define MSCBIT 7 /* miscellaneous bit */
|
|
#define MSC20 8 /* miscellaneous bit */
|
|
#define MSC21 9 /* QSY probe channel */
|
|
#define MIN1 10 /* minute */
|
|
#define MIN2 11 /* leap second */
|
|
#define SYNC2 12 /* QSY data channel */
|
|
#define SYNC3 13 /* QSY data channel */
|
|
|
|
/*
|
|
* Offsets in decoding matrix
|
|
*/
|
|
#define MN 0 /* minute digits (2) */
|
|
#define HR 2 /* hour digits (2) */
|
|
#define DA 4 /* day digits (3) */
|
|
#define YR 7 /* year digits (2) */
|
|
|
|
struct progx progx[] = {
|
|
{SYNC2, 0}, /* 0 latch sync max */
|
|
{SYNC3, 0}, /* 1 QSY data channel */
|
|
{MSCBIT, DST2}, /* 2 dst2 */
|
|
{MSCBIT, SECWAR}, /* 3 lw */
|
|
{COEF, 0}, /* 4 1 year units */
|
|
{COEF, 1}, /* 5 2 */
|
|
{COEF, 2}, /* 6 4 */
|
|
{COEF, 3}, /* 7 8 */
|
|
{DECIM9, YR}, /* 8 */
|
|
{IDLE, 0}, /* 9 p1 */
|
|
{COEF, 0}, /* 10 1 minute units */
|
|
{COEF, 1}, /* 11 2 */
|
|
{COEF, 2}, /* 12 4 */
|
|
{COEF, 3}, /* 13 8 */
|
|
{DECIM9, MN}, /* 14 */
|
|
{COEF, 0}, /* 15 10 minute tens */
|
|
{COEF, 1}, /* 16 20 */
|
|
{COEF, 2}, /* 17 40 */
|
|
{COEF2, 3}, /* 18 80 (not used) */
|
|
{DECIM6, MN + 1}, /* 19 p2 */
|
|
{COEF, 0}, /* 20 1 hour units */
|
|
{COEF, 1}, /* 21 2 */
|
|
{COEF, 2}, /* 22 4 */
|
|
{COEF, 3}, /* 23 8 */
|
|
{DECIM9, HR}, /* 24 */
|
|
{COEF, 0}, /* 25 10 hour tens */
|
|
{COEF, 1}, /* 26 20 */
|
|
{COEF2, 2}, /* 27 40 (not used) */
|
|
{COEF2, 3}, /* 28 80 (not used) */
|
|
{DECIM2, HR + 1}, /* 29 p3 */
|
|
{COEF, 0}, /* 30 1 day units */
|
|
{COEF, 1}, /* 31 2 */
|
|
{COEF, 2}, /* 32 4 */
|
|
{COEF, 3}, /* 33 8 */
|
|
{DECIM9, DA}, /* 34 */
|
|
{COEF, 0}, /* 35 10 day tens */
|
|
{COEF, 1}, /* 36 20 */
|
|
{COEF, 2}, /* 37 40 */
|
|
{COEF, 3}, /* 38 80 */
|
|
{DECIM9, DA + 1}, /* 39 p4 */
|
|
{COEF, 0}, /* 40 100 day hundreds */
|
|
{COEF, 1}, /* 41 200 */
|
|
{COEF2, 2}, /* 42 400 (not used) */
|
|
{COEF2, 3}, /* 43 800 (not used) */
|
|
{DECIM3, DA + 2}, /* 44 */
|
|
{IDLE, 0}, /* 45 */
|
|
{IDLE, 0}, /* 46 */
|
|
{IDLE, 0}, /* 47 */
|
|
{IDLE, 0}, /* 48 */
|
|
{IDLE, 0}, /* 49 p5 */
|
|
{MSCBIT, DUTS}, /* 50 dut+- */
|
|
{COEF, 0}, /* 51 10 year tens */
|
|
{COEF, 1}, /* 52 20 */
|
|
{COEF, 2}, /* 53 40 */
|
|
{COEF, 3}, /* 54 80 */
|
|
{MSC20, DST1}, /* 55 dst1 */
|
|
{MSCBIT, DUT1}, /* 56 0.1 dut */
|
|
{MSCBIT, DUT2}, /* 57 0.2 */
|
|
{MSC21, DUT4}, /* 58 0.4 QSY probe channel */
|
|
{MIN1, 0}, /* 59 p6 latch sync min */
|
|
{MIN2, 0} /* 60 leap second */
|
|
};
|
|
|
|
/*
|
|
* BCD coefficients for maximum likelihood digit decode
|
|
*/
|
|
#define P15 1. /* max positive number */
|
|
#define N15 -1. /* max negative number */
|
|
|
|
/*
|
|
* Digits 0-9
|
|
*/
|
|
#define P9 (P15 / 4) /* mark (+1) */
|
|
#define N9 (N15 / 4) /* space (-1) */
|
|
|
|
double bcd9[][4] = {
|
|
{N9, N9, N9, N9}, /* 0 */
|
|
{P9, N9, N9, N9}, /* 1 */
|
|
{N9, P9, N9, N9}, /* 2 */
|
|
{P9, P9, N9, N9}, /* 3 */
|
|
{N9, N9, P9, N9}, /* 4 */
|
|
{P9, N9, P9, N9}, /* 5 */
|
|
{N9, P9, P9, N9}, /* 6 */
|
|
{P9, P9, P9, N9}, /* 7 */
|
|
{N9, N9, N9, P9}, /* 8 */
|
|
{P9, N9, N9, P9}, /* 9 */
|
|
{0, 0, 0, 0} /* backstop */
|
|
};
|
|
|
|
/*
|
|
* Digits 0-6 (minute tens)
|
|
*/
|
|
#define P6 (P15 / 3) /* mark (+1) */
|
|
#define N6 (N15 / 3) /* space (-1) */
|
|
|
|
double bcd6[][4] = {
|
|
{N6, N6, N6, 0}, /* 0 */
|
|
{P6, N6, N6, 0}, /* 1 */
|
|
{N6, P6, N6, 0}, /* 2 */
|
|
{P6, P6, N6, 0}, /* 3 */
|
|
{N6, N6, P6, 0}, /* 4 */
|
|
{P6, N6, P6, 0}, /* 5 */
|
|
{N6, P6, P6, 0}, /* 6 */
|
|
{0, 0, 0, 0} /* backstop */
|
|
};
|
|
|
|
/*
|
|
* Digits 0-3 (day hundreds)
|
|
*/
|
|
#define P3 (P15 / 2) /* mark (+1) */
|
|
#define N3 (N15 / 2) /* space (-1) */
|
|
|
|
double bcd3[][4] = {
|
|
{N3, N3, 0, 0}, /* 0 */
|
|
{P3, N3, 0, 0}, /* 1 */
|
|
{N3, P3, 0, 0}, /* 2 */
|
|
{P3, P3, 0, 0}, /* 3 */
|
|
{0, 0, 0, 0} /* backstop */
|
|
};
|
|
|
|
/*
|
|
* Digits 0-2 (hour tens)
|
|
*/
|
|
#define P2 (P15 / 2) /* mark (+1) */
|
|
#define N2 (N15 / 2) /* space (-1) */
|
|
|
|
double bcd2[][4] = {
|
|
{N2, N2, 0, 0}, /* 0 */
|
|
{P2, N2, 0, 0}, /* 1 */
|
|
{N2, P2, 0, 0}, /* 2 */
|
|
{0, 0, 0, 0} /* backstop */
|
|
};
|
|
|
|
/*
|
|
* DST decode (DST2 DST1) for prettyprint
|
|
*/
|
|
char dstcod[] = {
|
|
'S', /* 00 standard time */
|
|
'I', /* 01 set clock ahead at 0200 local */
|
|
'O', /* 10 set clock back at 0200 local */
|
|
'D' /* 11 daylight time */
|
|
};
|
|
|
|
/*
|
|
* The decoding matrix consists of nine row vectors, one for each digit
|
|
* of the timecode. The digits are stored from least to most significant
|
|
* order. The maximum likelihood timecode is formed from the digits
|
|
* corresponding to the maximum likelihood values reading in the
|
|
* opposite order: yy ddd hh:mm.
|
|
*/
|
|
struct decvec {
|
|
int radix; /* radix (3, 4, 6, 10) */
|
|
int digit; /* current clock digit */
|
|
int mldigit; /* maximum likelihood digit */
|
|
int phase; /* maximum likelihood digit phase */
|
|
int count; /* match count */
|
|
double digprb; /* max digit probability */
|
|
double digsnr; /* likelihood function (dB) */
|
|
double like[10]; /* likelihood integrator 0-9 */
|
|
};
|
|
|
|
/*
|
|
* The station structure is used to acquire the minute pulse from WWV
|
|
* and/or WWVH. These stations are distinguished by the frequency used
|
|
* for the second and minute sync pulses, 1000 Hz for WWV and 1200 Hz
|
|
* for WWVH. Other than frequency, the format is the same.
|
|
*/
|
|
struct sync {
|
|
double epoch; /* accumulated epoch differences */
|
|
double maxamp; /* sync max envelope (square) */
|
|
double noiamp; /* sync noise envelope (square) */
|
|
long pos; /* max amplitude position */
|
|
long lastpos; /* last max position */
|
|
long mepoch; /* minute synch epoch */
|
|
|
|
double amp; /* sync amplitude (I, Q squares) */
|
|
double synamp; /* sync max envelope at 800 ms */
|
|
double synmax; /* sync envelope at 0 s */
|
|
double synmin; /* sync envelope at 59, 1 s */
|
|
double synsnr; /* sync signal SNR */
|
|
int count; /* bit counter */
|
|
char refid[5]; /* reference identifier */
|
|
int select; /* select bits */
|
|
int reach; /* reachability register */
|
|
};
|
|
|
|
/*
|
|
* The channel structure is used to mitigate between channels.
|
|
*/
|
|
struct chan {
|
|
int gain; /* audio gain */
|
|
double sigamp; /* data max envelope (square) */
|
|
double noiamp; /* data noise envelope (square) */
|
|
double datsnr; /* data signal SNR */
|
|
struct sync wwv; /* wwv station */
|
|
struct sync wwvh; /* wwvh station */
|
|
};
|
|
|
|
/*
|
|
* WWV unit control structure
|
|
*/
|
|
struct wwvunit {
|
|
l_fp timestamp; /* audio sample timestamp */
|
|
l_fp tick; /* audio sample increment */
|
|
double phase, freq; /* logical clock phase and frequency */
|
|
double monitor; /* audio monitor point */
|
|
int fd_icom; /* ICOM file descriptor */
|
|
int errflg; /* error flags */
|
|
int watch; /* watchcat */
|
|
|
|
/*
|
|
* Audio codec variables
|
|
*/
|
|
double comp[SIZE]; /* decompanding table */
|
|
int port; /* codec port */
|
|
int gain; /* codec gain */
|
|
int mongain; /* codec monitor gain */
|
|
int clipcnt; /* sample clipped count */
|
|
#ifdef IRIG_SUCKS
|
|
l_fp wigwag; /* wiggle accumulator */
|
|
int wp; /* wiggle filter pointer */
|
|
l_fp wiggle[WIGGLE]; /* wiggle filter */
|
|
l_fp wigbot[WIGGLE]; /* wiggle bottom fisher*/
|
|
#endif /* IRIG_SUCKS */
|
|
|
|
/*
|
|
* Variables used to establish basic system timing
|
|
*/
|
|
int avgint; /* master time constant */
|
|
int tepoch; /* sync epoch median */
|
|
int yepoch; /* sync epoch */
|
|
int repoch; /* buffered sync epoch */
|
|
double epomax; /* second sync amplitude */
|
|
double eposnr; /* second sync SNR */
|
|
double irig; /* data I channel amplitude */
|
|
double qrig; /* data Q channel amplitude */
|
|
int datapt; /* 100 Hz ramp */
|
|
double datpha; /* 100 Hz VFO control */
|
|
int rphase; /* second sample counter */
|
|
long mphase; /* minute sample counter */
|
|
|
|
/*
|
|
* Variables used to mitigate which channel to use
|
|
*/
|
|
struct chan mitig[NCHAN]; /* channel data */
|
|
struct sync *sptr; /* station pointer */
|
|
int dchan; /* data channel */
|
|
int schan; /* probe channel */
|
|
int achan; /* active channel */
|
|
|
|
/*
|
|
* Variables used by the clock state machine
|
|
*/
|
|
struct decvec decvec[9]; /* decoding matrix */
|
|
int rsec; /* seconds counter */
|
|
int digcnt; /* count of digits synchronized */
|
|
|
|
/*
|
|
* Variables used to estimate signal levels and bit/digit
|
|
* probabilities
|
|
*/
|
|
double sigsig; /* data max signal */
|
|
double sigamp; /* data max envelope (square) */
|
|
double noiamp; /* data noise envelope (square) */
|
|
double datsnr; /* data SNR (dB) */
|
|
|
|
/*
|
|
* Variables used to establish status and alarm conditions
|
|
*/
|
|
int status; /* status bits */
|
|
int alarm; /* alarm flashers */
|
|
int misc; /* miscellaneous timecode bits */
|
|
int errcnt; /* data bit error counter */
|
|
int errbit; /* data bit errors in minute */
|
|
};
|
|
|
|
/*
|
|
* Function prototypes
|
|
*/
|
|
static int wwv_start P((int, struct peer *));
|
|
static void wwv_shutdown P((int, struct peer *));
|
|
static void wwv_receive P((struct recvbuf *));
|
|
static void wwv_poll P((int, struct peer *));
|
|
|
|
/*
|
|
* More function prototypes
|
|
*/
|
|
static void wwv_epoch P((struct peer *));
|
|
static void wwv_rf P((struct peer *, double));
|
|
static void wwv_endpoc P((struct peer *, int));
|
|
static void wwv_rsec P((struct peer *, double));
|
|
static void wwv_qrz P((struct peer *, struct sync *,
|
|
double, int));
|
|
static void wwv_corr4 P((struct peer *, struct decvec *,
|
|
double [], double [][4]));
|
|
static void wwv_gain P((struct peer *));
|
|
static void wwv_tsec P((struct wwvunit *));
|
|
static double wwv_data P((struct wwvunit *, double));
|
|
static int timecode P((struct wwvunit *, char *));
|
|
static double wwv_snr P((double, double));
|
|
static int carry P((struct decvec *));
|
|
static void wwv_newchan P((struct peer *));
|
|
static void wwv_newgame P((struct peer *));
|
|
static double wwv_metric P((struct sync *));
|
|
#ifdef ICOM
|
|
static int wwv_qsy P((struct peer *, int));
|
|
#endif /* ICOM */
|
|
|
|
static double qsy[NCHAN] = {2.5, 5, 10, 15, 20}; /* frequencies (MHz) */
|
|
|
|
/*
|
|
* Transfer vector
|
|
*/
|
|
struct refclock refclock_wwv = {
|
|
wwv_start, /* start up driver */
|
|
wwv_shutdown, /* shut down driver */
|
|
wwv_poll, /* transmit poll message */
|
|
noentry, /* not used (old wwv_control) */
|
|
noentry, /* initialize driver (not used) */
|
|
noentry, /* not used (old wwv_buginfo) */
|
|
NOFLAGS /* not used */
|
|
};
|
|
|
|
|
|
/*
|
|
* wwv_start - open the devices and initialize data for processing
|
|
*/
|
|
static int
|
|
wwv_start(
|
|
int unit, /* instance number (used by PCM) */
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
struct wwvunit *up;
|
|
#ifdef ICOM
|
|
int temp;
|
|
#endif /* ICOM */
|
|
|
|
/*
|
|
* Local variables
|
|
*/
|
|
int fd; /* file descriptor */
|
|
int i; /* index */
|
|
double step; /* codec adjustment */
|
|
|
|
/*
|
|
* Open audio device
|
|
*/
|
|
fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
|
|
if (fd < 0)
|
|
return (0);
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
audio_show();
|
|
#endif
|
|
|
|
/*
|
|
* Allocate and initialize unit structure
|
|
*/
|
|
if (!(up = (struct wwvunit *)emalloc(sizeof(struct wwvunit)))) {
|
|
close(fd);
|
|
return (0);
|
|
}
|
|
memset(up, 0, sizeof(struct wwvunit));
|
|
pp = peer->procptr;
|
|
pp->unitptr = (caddr_t)up;
|
|
pp->io.clock_recv = wwv_receive;
|
|
pp->io.srcclock = (caddr_t)peer;
|
|
pp->io.datalen = 0;
|
|
pp->io.fd = fd;
|
|
if (!io_addclock(&pp->io)) {
|
|
close(fd);
|
|
free(up);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Initialize miscellaneous variables
|
|
*/
|
|
peer->precision = PRECISION;
|
|
pp->clockdesc = DESCRIPTION;
|
|
|
|
/*
|
|
* The companded samples are encoded sign-magnitude. The table
|
|
* contains all the 256 values in the interest of speed.
|
|
*/
|
|
up->comp[0] = up->comp[OFFSET] = 0.;
|
|
up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
|
|
up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
|
|
step = 2.;
|
|
for (i = 3; i < OFFSET; i++) {
|
|
up->comp[i] = up->comp[i - 1] + step;
|
|
up->comp[OFFSET + i] = -up->comp[i];
|
|
if (i % 16 == 0)
|
|
step *= 2.;
|
|
}
|
|
DTOLFP(1. / SECOND, &up->tick);
|
|
|
|
/*
|
|
* Initialize the decoding matrix with the radix for each digit
|
|
* position.
|
|
*/
|
|
up->decvec[MN].radix = 10; /* minutes */
|
|
up->decvec[MN + 1].radix = 6;
|
|
up->decvec[HR].radix = 10; /* hours */
|
|
up->decvec[HR + 1].radix = 3;
|
|
up->decvec[DA].radix = 10; /* days */
|
|
up->decvec[DA + 1].radix = 10;
|
|
up->decvec[DA + 2].radix = 4;
|
|
up->decvec[YR].radix = 10; /* years */
|
|
up->decvec[YR + 1].radix = 10;
|
|
wwv_newgame(peer);
|
|
up->schan = up->achan = 3;
|
|
|
|
/*
|
|
* Initialize autotune if available. Start out at 15 MHz. Note
|
|
* that the ICOM select code must be less than 128, so the high
|
|
* order bit can be used to select the line speed.
|
|
*/
|
|
#ifdef ICOM
|
|
temp = 0;
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
temp = P_TRACE;
|
|
#endif
|
|
if (peer->ttl != 0) {
|
|
if (peer->ttl & 0x80)
|
|
up->fd_icom = icom_init("/dev/icom", B1200,
|
|
temp);
|
|
else
|
|
up->fd_icom = icom_init("/dev/icom", B9600,
|
|
temp);
|
|
}
|
|
if (up->fd_icom > 0) {
|
|
if ((temp = wwv_qsy(peer, up->schan)) != 0) {
|
|
NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
|
|
msyslog(LOG_NOTICE,
|
|
"icom: radio not found");
|
|
up->errflg = CEVNT_FAULT;
|
|
close(up->fd_icom);
|
|
up->fd_icom = 0;
|
|
} else {
|
|
NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
|
|
msyslog(LOG_NOTICE,
|
|
"icom: autotune enabled");
|
|
}
|
|
}
|
|
#endif /* ICOM */
|
|
return (1);
|
|
}
|
|
|
|
|
|
/*
|
|
* wwv_shutdown - shut down the clock
|
|
*/
|
|
static void
|
|
wwv_shutdown(
|
|
int unit, /* instance number (not used) */
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
struct wwvunit *up;
|
|
|
|
pp = peer->procptr;
|
|
up = (struct wwvunit *)pp->unitptr;
|
|
io_closeclock(&pp->io);
|
|
if (up->fd_icom > 0)
|
|
close(up->fd_icom);
|
|
free(up);
|
|
}
|
|
|
|
|
|
/*
|
|
* wwv_receive - receive data from the audio device
|
|
*
|
|
* This routine reads input samples and adjusts the logical clock to
|
|
* track the A/D sample clock by dropping or duplicating codec samples.
|
|
* It also controls the A/D signal level with an AGC loop to mimimize
|
|
* quantization noise and avoid overload.
|
|
*/
|
|
static void
|
|
wwv_receive(
|
|
struct recvbuf *rbufp /* receive buffer structure pointer */
|
|
)
|
|
{
|
|
struct peer *peer;
|
|
struct refclockproc *pp;
|
|
struct wwvunit *up;
|
|
|
|
/*
|
|
* Local variables
|
|
*/
|
|
double sample; /* codec sample */
|
|
u_char *dpt; /* buffer pointer */
|
|
int bufcnt; /* buffer counter */
|
|
l_fp ltemp;
|
|
|
|
peer = (struct peer *)rbufp->recv_srcclock;
|
|
pp = peer->procptr;
|
|
up = (struct wwvunit *)pp->unitptr;
|
|
|
|
/*
|
|
* Main loop - read until there ain't no more. Note codec
|
|
* samples are bit-inverted.
|
|
*/
|
|
DTOLFP((double)rbufp->recv_length / SECOND, <emp);
|
|
L_SUB(&rbufp->recv_time, <emp);
|
|
up->timestamp = rbufp->recv_time;
|
|
dpt = rbufp->recv_buffer;
|
|
for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
|
|
sample = up->comp[~*dpt++ & 0xff];
|
|
|
|
/*
|
|
* Clip noise spikes greater than MAXSIG. If no clips,
|
|
* increase the gain a tad; if the clips are too high,
|
|
* decrease a tad.
|
|
*/
|
|
if (sample > MAXSIG) {
|
|
sample = MAXSIG;
|
|
up->clipcnt++;
|
|
} else if (sample < -MAXSIG) {
|
|
sample = -MAXSIG;
|
|
up->clipcnt++;
|
|
}
|
|
|
|
/*
|
|
* Variable frequency oscillator. The codec oscillator
|
|
* runs at the nominal rate of 8000 samples per second,
|
|
* or 125 us per sample. A frequency change of one unit
|
|
* results in either duplicating or deleting one sample
|
|
* per second, which results in a frequency change of
|
|
* 125 PPM.
|
|
*/
|
|
up->phase += up->freq / SECOND;
|
|
if (up->phase >= .5) {
|
|
up->phase -= 1.;
|
|
} else if (up->phase < -.5) {
|
|
up->phase += 1.;
|
|
wwv_rf(peer, sample);
|
|
wwv_rf(peer, sample);
|
|
} else {
|
|
wwv_rf(peer, sample);
|
|
}
|
|
L_ADD(&up->timestamp, &up->tick);
|
|
}
|
|
|
|
/*
|
|
* Set the input port and monitor gain for the next buffer.
|
|
*/
|
|
if (pp->sloppyclockflag & CLK_FLAG2)
|
|
up->port = 2;
|
|
else
|
|
up->port = 1;
|
|
if (pp->sloppyclockflag & CLK_FLAG3)
|
|
up->mongain = MONGAIN;
|
|
else
|
|
up->mongain = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* wwv_poll - called by the transmit procedure
|
|
*
|
|
* This routine keeps track of status. If no offset samples have been
|
|
* processed during a poll interval, a timeout event is declared. If
|
|
* errors have have occurred during the interval, they are reported as
|
|
* well. Once the clock is set, it always appears reachable, unless
|
|
* reset by watchdog timeout.
|
|
*/
|
|
static void
|
|
wwv_poll(
|
|
int unit, /* instance number (not used) */
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
struct wwvunit *up;
|
|
|
|
pp = peer->procptr;
|
|
up = (struct wwvunit *)pp->unitptr;
|
|
if (pp->coderecv == pp->codeproc)
|
|
up->errflg = CEVNT_TIMEOUT;
|
|
if (up->errflg)
|
|
refclock_report(peer, up->errflg);
|
|
up->errflg = 0;
|
|
pp->polls++;
|
|
}
|
|
|
|
|
|
/*
|
|
* wwv_rf - process signals and demodulate to baseband
|
|
*
|
|
* This routine grooms and filters decompanded raw audio samples. The
|
|
* output signals include the 100-Hz baseband data signal in quadrature
|
|
* form, plus the epoch index of the second sync signal and the second
|
|
* index of the minute sync signal.
|
|
*
|
|
* There are two 1-s ramps used by this program. Both count the 8000
|
|
* logical clock samples spanning exactly one second. The epoch ramp
|
|
* counts the samples starting at an arbitrary time. The rphase ramp
|
|
* counts the samples starting at the 5-ms second sync pulse found
|
|
* during the epoch ramp.
|
|
*
|
|
* There are two 1-m ramps used by this program. The mphase ramp counts
|
|
* the 480,000 logical clock samples spanning exactly one minute and
|
|
* starting at an arbitrary time. The rsec ramp counts the 60 seconds of
|
|
* the minute starting at the 800-ms minute sync pulse found during the
|
|
* mphase ramp. The rsec ramp drives the seconds state machine to
|
|
* determine the bits and digits of the timecode.
|
|
*
|
|
* Demodulation operations are based on three synthesized quadrature
|
|
* sinusoids: 100 Hz for the data signal, 1000 Hz for the WWV sync
|
|
* signal and 1200 Hz for the WWVH sync signal. These drive synchronous
|
|
* matched filters for the data signal (170 ms at 100 Hz), WWV minute
|
|
* sync signal (800 ms at 1000 Hz) and WWVH minute sync signal (800 ms
|
|
* at 1200 Hz). Two additional matched filters are switched in
|
|
* as required for the WWV second sync signal (5 ms at 1000 Hz) and
|
|
* WWVH second sync signal (5 ms at 1200 Hz).
|
|
*/
|
|
static void
|
|
wwv_rf(
|
|
struct peer *peer, /* peerstructure pointer */
|
|
double isig /* input signal */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
struct wwvunit *up;
|
|
struct sync *sp;
|
|
|
|
static double lpf[5]; /* 150-Hz lpf delay line */
|
|
double data; /* lpf output */
|
|
static double bpf[9]; /* 1000/1200-Hz bpf delay line */
|
|
double syncx; /* bpf output */
|
|
static double mf[41]; /* 1000/1200-Hz mf delay line */
|
|
double mfsync; /* mf output */
|
|
|
|
static int iptr; /* data channel pointer */
|
|
static double ibuf[DATSIZ]; /* data I channel delay line */
|
|
static double qbuf[DATSIZ]; /* data Q channel delay line */
|
|
|
|
static int jptr; /* sync channel pointer */
|
|
static double cibuf[SYNSIZ]; /* wwv I channel delay line */
|
|
static double cqbuf[SYNSIZ]; /* wwv Q channel delay line */
|
|
static double ciamp; /* wwv I channel amplitude */
|
|
static double cqamp; /* wwv Q channel amplitude */
|
|
static int csinptr; /* wwv channel phase */
|
|
static double hibuf[SYNSIZ]; /* wwvh I channel delay line */
|
|
static double hqbuf[SYNSIZ]; /* wwvh Q channel delay line */
|
|
static double hiamp; /* wwvh I channel amplitude */
|
|
static double hqamp; /* wwvh Q channel amplitude */
|
|
static int hsinptr; /* wwvh channels phase */
|
|
|
|
static double epobuf[SECOND]; /* epoch sync comb filter */
|
|
static double epomax; /* epoch sync amplitude buffer */
|
|
static int epopos; /* epoch sync position buffer */
|
|
|
|
static int iniflg; /* initialization flag */
|
|
int epoch; /* comb filter index */
|
|
int pdelay; /* propagation delay (samples) */
|
|
double dtemp;
|
|
int i;
|
|
|
|
pp = peer->procptr;
|
|
up = (struct wwvunit *)pp->unitptr;
|
|
|
|
if (!iniflg) {
|
|
iniflg = 1;
|
|
memset((char *)lpf, 0, sizeof(lpf));
|
|
memset((char *)bpf, 0, sizeof(bpf));
|
|
memset((char *)mf, 0, sizeof(mf));
|
|
memset((char *)ibuf, 0, sizeof(ibuf));
|
|
memset((char *)qbuf, 0, sizeof(qbuf));
|
|
memset((char *)cibuf, 0, sizeof(cibuf));
|
|
memset((char *)cqbuf, 0, sizeof(cqbuf));
|
|
memset((char *)hibuf, 0, sizeof(hibuf));
|
|
memset((char *)hqbuf, 0, sizeof(hqbuf));
|
|
memset((char *)epobuf, 0, sizeof(epobuf));
|
|
}
|
|
|
|
/*
|
|
* Baseband data demodulation. The 100-Hz subcarrier is
|
|
* extracted using a 150-Hz IIR lowpass filter. This attenuates
|
|
* the 1000/1200-Hz sync signals, as well as the 440-Hz and
|
|
* 600-Hz tones and most of the noise and voice modulation
|
|
* components.
|
|
*
|
|
* Matlab IIR 4th-order IIR elliptic, 150 Hz lowpass, 0.2 dB
|
|
* passband ripple, -50 dB stopband ripple.
|
|
*/
|
|
data = (lpf[4] = lpf[3]) * 8.360961e-01;
|
|
data += (lpf[3] = lpf[2]) * -3.481740e+00;
|
|
data += (lpf[2] = lpf[1]) * 5.452988e+00;
|
|
data += (lpf[1] = lpf[0]) * -3.807229e+00;
|
|
lpf[0] = isig - data;
|
|
data = lpf[0] * 3.281435e-03
|
|
+ lpf[1] * -1.149947e-02
|
|
+ lpf[2] * 1.654858e-02
|
|
+ lpf[3] * -1.149947e-02
|
|
+ lpf[4] * 3.281435e-03;
|
|
|
|
/*
|
|
* The I and Q quadrature data signals are produced by
|
|
* multiplying the filtered signal by 100-Hz sine and cosine
|
|
* signals, respectively. The data signals are demodulated by
|
|
* 170-ms synchronous matched filters to produce the amplitude
|
|
* and phase signals used by the decoder.
|
|
*/
|
|
i = up->datapt;
|
|
up->datapt = (up->datapt + IN100) % 80;
|
|
dtemp = sintab[i] * data / DATSIZ * DGAIN;
|
|
up->irig -= ibuf[iptr];
|
|
ibuf[iptr] = dtemp;
|
|
up->irig += dtemp;
|
|
i = (i + 20) % 80;
|
|
dtemp = sintab[i] * data / DATSIZ * DGAIN;
|
|
up->qrig -= qbuf[iptr];
|
|
qbuf[iptr] = dtemp;
|
|
up->qrig += dtemp;
|
|
iptr = (iptr + 1) % DATSIZ;
|
|
|
|
/*
|
|
* Baseband sync demodulation. The 1000/1200 sync signals are
|
|
* extracted using a 600-Hz IIR bandpass filter. This removes
|
|
* the 100-Hz data subcarrier, as well as the 440-Hz and 600-Hz
|
|
* tones and most of the noise and voice modulation components.
|
|
*
|
|
* Matlab 4th-order IIR elliptic, 800-1400 Hz bandpass, 0.2 dB
|
|
* passband ripple, -50 dB stopband ripple.
|
|
*/
|
|
syncx = (bpf[8] = bpf[7]) * 4.897278e-01;
|
|
syncx += (bpf[7] = bpf[6]) * -2.765914e+00;
|
|
syncx += (bpf[6] = bpf[5]) * 8.110921e+00;
|
|
syncx += (bpf[5] = bpf[4]) * -1.517732e+01;
|
|
syncx += (bpf[4] = bpf[3]) * 1.975197e+01;
|
|
syncx += (bpf[3] = bpf[2]) * -1.814365e+01;
|
|
syncx += (bpf[2] = bpf[1]) * 1.159783e+01;
|
|
syncx += (bpf[1] = bpf[0]) * -4.735040e+00;
|
|
bpf[0] = isig - syncx;
|
|
syncx = bpf[0] * 8.203628e-03
|
|
+ bpf[1] * -2.375732e-02
|
|
+ bpf[2] * 3.353214e-02
|
|
+ bpf[3] * -4.080258e-02
|
|
+ bpf[4] * 4.605479e-02
|
|
+ bpf[5] * -4.080258e-02
|
|
+ bpf[6] * 3.353214e-02
|
|
+ bpf[7] * -2.375732e-02
|
|
+ bpf[8] * 8.203628e-03;
|
|
|
|
/*
|
|
* The I and Q quadrature minute sync signals are produced by
|
|
* multiplying the filtered signal by 1000-Hz (WWV) and 1200-Hz
|
|
* (WWVH) sine and cosine signals, respectively. The resulting
|
|
* signals are demodulated by 800-ms synchronous matched filters
|
|
* to synchronize the second and minute and to detect which one
|
|
* (or both) the WWV or WWVH signal is present.
|
|
*
|
|
* Note the master timing ramps, which run continuously. The
|
|
* minute counter (mphase) counts the samples in the minute,
|
|
* while the second counter (epoch) counts the samples in the
|
|
* second.
|
|
*/
|
|
up->mphase = (up->mphase + 1) % MINUTE;
|
|
epoch = up->mphase % SECOND;
|
|
i = csinptr;
|
|
csinptr = (csinptr + IN1000) % 80;
|
|
dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
|
|
ciamp = ciamp - cibuf[jptr] + dtemp;
|
|
cibuf[jptr] = dtemp;
|
|
i = (i + 20) % 80;
|
|
dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
|
|
cqamp = cqamp - cqbuf[jptr] + dtemp;
|
|
cqbuf[jptr] = dtemp;
|
|
sp = &up->mitig[up->schan].wwv;
|
|
dtemp = ciamp * ciamp + cqamp * cqamp;
|
|
sp->amp = dtemp;
|
|
if (!(up->status & MSYNC))
|
|
wwv_qrz(peer, sp, dtemp, (int)(pp->fudgetime1 *
|
|
SECOND));
|
|
i = hsinptr;
|
|
hsinptr = (hsinptr + IN1200) % 80;
|
|
dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
|
|
hiamp = hiamp - hibuf[jptr] + dtemp;
|
|
hibuf[jptr] = dtemp;
|
|
i = (i + 20) % 80;
|
|
dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
|
|
hqamp = hqamp - hqbuf[jptr] + dtemp;
|
|
hqbuf[jptr] = dtemp;
|
|
sp = &up->mitig[up->schan].wwvh;
|
|
dtemp = hiamp * hiamp + hqamp * hqamp;
|
|
sp->amp = dtemp;
|
|
if (!(up->status & MSYNC))
|
|
wwv_qrz(peer, sp, dtemp, (int)(pp->fudgetime2 *
|
|
SECOND));
|
|
jptr = (jptr + 1) % SYNSIZ;
|
|
|
|
/*
|
|
* The following section is called once per minute. It does
|
|
* housekeeping and timeout functions and empties the dustbins.
|
|
*/
|
|
if (up->mphase == 0) {
|
|
up->watch++;
|
|
if (!(up->status & MSYNC)) {
|
|
|
|
/*
|
|
* If minute sync has not been acquired before
|
|
* timeout, or if no signal is heard, the
|
|
* program cycles to the next frequency and
|
|
* tries again.
|
|
*/
|
|
wwv_newchan(peer);
|
|
if (!(up->status & (SELV | SELH)) || up->watch >
|
|
ACQSN) {
|
|
wwv_newgame(peer);
|
|
#ifdef ICOM
|
|
if (up->fd_icom > 0) {
|
|
up->schan = (up->schan + 1) %
|
|
NCHAN;
|
|
wwv_qsy(peer, up->schan);
|
|
}
|
|
#endif /* ICOM */
|
|
}
|
|
} else {
|
|
|
|
/*
|
|
* If the leap bit is set, set the minute epoch
|
|
* back one second so the station processes
|
|
* don't miss a beat.
|
|
*/
|
|
if (up->status & LEPSEC) {
|
|
up->mphase -= SECOND;
|
|
if (up->mphase < 0)
|
|
up->mphase += MINUTE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When the channel metric reaches threshold and the second
|
|
* counter matches the minute epoch within the second, the
|
|
* driver has synchronized to the station. The second number is
|
|
* the remaining seconds until the next minute epoch, while the
|
|
* sync epoch is zero. Watch out for the first second; if
|
|
* already synchronized to the second, the buffered sync epoch
|
|
* must be set.
|
|
*/
|
|
if (up->status & MSYNC) {
|
|
wwv_epoch(peer);
|
|
} else if ((sp = up->sptr) != NULL) {
|
|
struct chan *cp;
|
|
|
|
if (sp->count >= AMIN && epoch == sp->mepoch % SECOND) {
|
|
up->rsec = 60 - sp->mepoch / SECOND;
|
|
up->rphase = 0;
|
|
up->status |= MSYNC;
|
|
up->watch = 0;
|
|
if (!(up->status & SSYNC))
|
|
up->repoch = up->yepoch = epoch;
|
|
else
|
|
up->repoch = up->yepoch;
|
|
for (i = 0; i < NCHAN; i++) {
|
|
cp = &up->mitig[i];
|
|
cp->wwv.count = cp->wwv.reach = 0;
|
|
cp->wwvh.count = cp->wwvh.reach = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The second sync pulse is extracted using 5-ms (40 sample) FIR
|
|
* matched filters at 1000 Hz for WWV or 1200 Hz for WWVH. This
|
|
* pulse is used for the most precise synchronization, since if
|
|
* provides a resolution of one sample (125 us). The filters run
|
|
* only if the station has been reliably determined.
|
|
*/
|
|
if (up->status & SELV) {
|
|
pdelay = (int)(pp->fudgetime1 * SECOND);
|
|
|
|
/*
|
|
* WWV FIR matched filter, five cycles of 1000-Hz
|
|
* sinewave.
|
|
*/
|
|
mf[40] = mf[39];
|
|
mfsync = (mf[39] = mf[38]) * 4.224514e-02;
|
|
mfsync += (mf[38] = mf[37]) * 5.974365e-02;
|
|
mfsync += (mf[37] = mf[36]) * 4.224514e-02;
|
|
mf[36] = mf[35];
|
|
mfsync += (mf[35] = mf[34]) * -4.224514e-02;
|
|
mfsync += (mf[34] = mf[33]) * -5.974365e-02;
|
|
mfsync += (mf[33] = mf[32]) * -4.224514e-02;
|
|
mf[32] = mf[31];
|
|
mfsync += (mf[31] = mf[30]) * 4.224514e-02;
|
|
mfsync += (mf[30] = mf[29]) * 5.974365e-02;
|
|
mfsync += (mf[29] = mf[28]) * 4.224514e-02;
|
|
mf[28] = mf[27];
|
|
mfsync += (mf[27] = mf[26]) * -4.224514e-02;
|
|
mfsync += (mf[26] = mf[25]) * -5.974365e-02;
|
|
mfsync += (mf[25] = mf[24]) * -4.224514e-02;
|
|
mf[24] = mf[23];
|
|
mfsync += (mf[23] = mf[22]) * 4.224514e-02;
|
|
mfsync += (mf[22] = mf[21]) * 5.974365e-02;
|
|
mfsync += (mf[21] = mf[20]) * 4.224514e-02;
|
|
mf[20] = mf[19];
|
|
mfsync += (mf[19] = mf[18]) * -4.224514e-02;
|
|
mfsync += (mf[18] = mf[17]) * -5.974365e-02;
|
|
mfsync += (mf[17] = mf[16]) * -4.224514e-02;
|
|
mf[16] = mf[15];
|
|
mfsync += (mf[15] = mf[14]) * 4.224514e-02;
|
|
mfsync += (mf[14] = mf[13]) * 5.974365e-02;
|
|
mfsync += (mf[13] = mf[12]) * 4.224514e-02;
|
|
mf[12] = mf[11];
|
|
mfsync += (mf[11] = mf[10]) * -4.224514e-02;
|
|
mfsync += (mf[10] = mf[9]) * -5.974365e-02;
|
|
mfsync += (mf[9] = mf[8]) * -4.224514e-02;
|
|
mf[8] = mf[7];
|
|
mfsync += (mf[7] = mf[6]) * 4.224514e-02;
|
|
mfsync += (mf[6] = mf[5]) * 5.974365e-02;
|
|
mfsync += (mf[5] = mf[4]) * 4.224514e-02;
|
|
mf[4] = mf[3];
|
|
mfsync += (mf[3] = mf[2]) * -4.224514e-02;
|
|
mfsync += (mf[2] = mf[1]) * -5.974365e-02;
|
|
mfsync += (mf[1] = mf[0]) * -4.224514e-02;
|
|
mf[0] = syncx;
|
|
} else if (up->status & SELH) {
|
|
pdelay = (int)(pp->fudgetime2 * SECOND);
|
|
|
|
/*
|
|
* WWVH FIR matched filter, six cycles of 1200-Hz
|
|
* sinewave.
|
|
*/
|
|
mf[40] = mf[39];
|
|
mfsync = (mf[39] = mf[38]) * 4.833363e-02;
|
|
mfsync += (mf[38] = mf[37]) * 5.681959e-02;
|
|
mfsync += (mf[37] = mf[36]) * 1.846180e-02;
|
|
mfsync += (mf[36] = mf[35]) * -3.511644e-02;
|
|
mfsync += (mf[35] = mf[34]) * -5.974365e-02;
|
|
mfsync += (mf[34] = mf[33]) * -3.511644e-02;
|
|
mfsync += (mf[33] = mf[32]) * 1.846180e-02;
|
|
mfsync += (mf[32] = mf[31]) * 5.681959e-02;
|
|
mfsync += (mf[31] = mf[30]) * 4.833363e-02;
|
|
mf[30] = mf[29];
|
|
mfsync += (mf[29] = mf[28]) * -4.833363e-02;
|
|
mfsync += (mf[28] = mf[27]) * -5.681959e-02;
|
|
mfsync += (mf[27] = mf[26]) * -1.846180e-02;
|
|
mfsync += (mf[26] = mf[25]) * 3.511644e-02;
|
|
mfsync += (mf[25] = mf[24]) * 5.974365e-02;
|
|
mfsync += (mf[24] = mf[23]) * 3.511644e-02;
|
|
mfsync += (mf[23] = mf[22]) * -1.846180e-02;
|
|
mfsync += (mf[22] = mf[21]) * -5.681959e-02;
|
|
mfsync += (mf[21] = mf[20]) * -4.833363e-02;
|
|
mf[20] = mf[19];
|
|
mfsync += (mf[19] = mf[18]) * 4.833363e-02;
|
|
mfsync += (mf[18] = mf[17]) * 5.681959e-02;
|
|
mfsync += (mf[17] = mf[16]) * 1.846180e-02;
|
|
mfsync += (mf[16] = mf[15]) * -3.511644e-02;
|
|
mfsync += (mf[15] = mf[14]) * -5.974365e-02;
|
|
mfsync += (mf[14] = mf[13]) * -3.511644e-02;
|
|
mfsync += (mf[13] = mf[12]) * 1.846180e-02;
|
|
mfsync += (mf[12] = mf[11]) * 5.681959e-02;
|
|
mfsync += (mf[11] = mf[10]) * 4.833363e-02;
|
|
mf[10] = mf[9];
|
|
mfsync += (mf[9] = mf[8]) * -4.833363e-02;
|
|
mfsync += (mf[8] = mf[7]) * -5.681959e-02;
|
|
mfsync += (mf[7] = mf[6]) * -1.846180e-02;
|
|
mfsync += (mf[6] = mf[5]) * 3.511644e-02;
|
|
mfsync += (mf[5] = mf[4]) * 5.974365e-02;
|
|
mfsync += (mf[4] = mf[3]) * 3.511644e-02;
|
|
mfsync += (mf[3] = mf[2]) * -1.846180e-02;
|
|
mfsync += (mf[2] = mf[1]) * -5.681959e-02;
|
|
mfsync += (mf[1] = mf[0]) * -4.833363e-02;
|
|
mf[0] = syncx;
|
|
} else {
|
|
mfsync = 0;
|
|
pdelay = 0;
|
|
}
|
|
|
|
/*
|
|
* Enhance the seconds sync pulse using a 1-s (8000-sample) comb
|
|
* filter. Correct for the FIR matched filter delay, which is 5
|
|
* ms for both the WWV and WWVH filters, and also for the
|
|
* propagation delay. Once each second look for second sync. If
|
|
* not in minute sync, fiddle the codec gain. Note the SNR is
|
|
* computed from the maximum sample and the two samples 6 ms
|
|
* before and 6 ms after it, so if we slip more than a cycle the
|
|
* SNR should plummet.
|
|
*/
|
|
dtemp = (epobuf[epoch] += (mfsync - epobuf[epoch]) /
|
|
up->avgint);
|
|
if (dtemp > epomax) {
|
|
epomax = dtemp;
|
|
epopos = epoch;
|
|
}
|
|
if (epoch == 0) {
|
|
int k, j;
|
|
|
|
up->epomax = epomax;
|
|
k = epopos - 6 * MS;
|
|
if (k < 0)
|
|
k += SECOND;
|
|
j = epopos + 6 * MS;
|
|
if (j >= SECOND)
|
|
i -= SECOND;
|
|
up->eposnr = wwv_snr(epomax, max(abs(epobuf[k]),
|
|
abs(epobuf[j])));
|
|
epopos -= pdelay + 5 * MS;
|
|
if (epopos < 0)
|
|
epopos += SECOND;
|
|
wwv_endpoc(peer, epopos);
|
|
if (!(up->status & SSYNC))
|
|
up->alarm |= SYNERR;
|
|
epomax = 0;
|
|
if (!(up->status & MSYNC))
|
|
wwv_gain(peer);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* wwv_qrz - identify and acquire WWV/WWVH minute sync pulse
|
|
*
|
|
* This routine implements a virtual station process used to acquire
|
|
* minute sync and to mitigate among the ten frequency and station
|
|
* combinations. During minute sync acquisition the process probes each
|
|
* frequency in turn for the minute pulse from either station, which
|
|
* involves searching through the entire minute of samples. After
|
|
* finding a candidate, the process searches only the seconds before and
|
|
* after the candidate for the signal and all other seconds for the
|
|
* noise.
|
|
*
|
|
* Students of radar receiver technology will discover this algorithm
|
|
* amounts to a range gate discriminator. The discriminator requires
|
|
* that the peak minute pulse amplitude be at least 2000 and the SNR be
|
|
* at least 6 dB. In addition after finding a candidate, The peak second
|
|
* pulse amplitude must be at least 2000, the SNR at least 6 dB and the
|
|
* difference between the current and previous epoch must be less than
|
|
* 7.5 ms, which corresponds to a frequency error of 125 PPM.. A compare
|
|
* counter keeps track of the number of successive intervals which
|
|
* satisfy these criteria.
|
|
*
|
|
* Note that, while the minute pulse is found by by the discriminator,
|
|
* the actual value is determined from the second epoch. The assumption
|
|
* is that the discriminator peak occurs about 800 ms into the second,
|
|
* so the timing is retarted to the previous second epoch.
|
|
*/
|
|
static void
|
|
wwv_qrz(
|
|
struct peer *peer, /* peer structure pointer */
|
|
struct sync *sp, /* sync channel structure */
|
|
double syncx, /* bandpass filtered sync signal */
|
|
int pdelay /* propagation delay (samples) */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
struct wwvunit *up;
|
|
char tbuf[80]; /* monitor buffer */
|
|
double snr; /* on-pulse/off-pulse ratio (dB) */
|
|
long epoch, fpoch;
|
|
int isgood;
|
|
|
|
pp = peer->procptr;
|
|
up = (struct wwvunit *)pp->unitptr;
|
|
|
|
/*
|
|
* Find the sample with peak energy, which defines the minute
|
|
* epoch. If a sample has been found with good amplitude,
|
|
* accumulate the noise squares for all except the second before
|
|
* and after that position.
|
|
*/
|
|
isgood = up->epomax > STHR && up->eposnr > SSNR;
|
|
if (isgood) {
|
|
fpoch = up->mphase % SECOND - up->tepoch;
|
|
if (fpoch < 0)
|
|
fpoch += SECOND;
|
|
} else {
|
|
fpoch = pdelay + SYNSIZ;
|
|
}
|
|
epoch = up->mphase - fpoch;
|
|
if (epoch < 0)
|
|
epoch += MINUTE;
|
|
if (syncx > sp->maxamp) {
|
|
sp->maxamp = syncx;
|
|
sp->pos = epoch;
|
|
}
|
|
if (abs((epoch - sp->lastpos) % MINUTE) > SECOND)
|
|
sp->noiamp += syncx;
|
|
|
|
/*
|
|
* At the end of the minute, determine the epoch of the
|
|
* sync pulse, as well as the SNR and difference between
|
|
* the current and previous epoch, which represents the
|
|
* intrinsic frequency error plus jitter.
|
|
*/
|
|
if (up->mphase == 0) {
|
|
sp->synmax = sqrt(sp->maxamp);
|
|
sp->synmin = sqrt(sp->noiamp / (MINUTE - 2 * SECOND));
|
|
epoch = (sp->pos - sp->lastpos) % MINUTE;
|
|
|
|
/*
|
|
* If not yet in minute sync, we have to do a little
|
|
* dance to find a valid minute sync pulse, emphasis
|
|
* valid.
|
|
*/
|
|
snr = wwv_snr(sp->synmax, sp->synmin);
|
|
isgood = isgood && sp->synmax > ATHR && snr > ASNR;
|
|
switch (sp->count) {
|
|
|
|
/*
|
|
* In state 0 the station was not heard during the
|
|
* previous probe. Look for the biggest blip greater
|
|
* than the amplitude threshold in the minute and assume
|
|
* that the minute sync pulse. We're fishing here, since
|
|
* the range gate has not yet been determined. If found,
|
|
* bump to state 1.
|
|
*/
|
|
case 0:
|
|
if (sp->synmax >= ATHR)
|
|
sp->count++;
|
|
break;
|
|
|
|
/*
|
|
* In state 1 a candidate blip has been found and the
|
|
* next minute has been searched for another blip. If
|
|
* none are found acceptable, drop back to state 0 and
|
|
* hunt some more. Otherwise, a legitimate minute pulse
|
|
* may have been found, so bump to state 2.
|
|
*/
|
|
case 1:
|
|
if (!isgood) {
|
|
sp->count = 0;
|
|
break;
|
|
}
|
|
sp->count++;
|
|
break;
|
|
|
|
/*
|
|
* In states 2 and above, continue to groom samples as
|
|
* before and drop back to state 0 if the groom fails.
|
|
* If it succeeds, set the epoch and bump to the next
|
|
* state until reaching the threshold, if ever.
|
|
*/
|
|
default:
|
|
if (!isgood || abs(epoch) > AWND * MS) {
|
|
sp->count = 0;
|
|
break;
|
|
}
|
|
sp->mepoch = sp->pos;
|
|
sp->count++;
|
|
break;
|
|
}
|
|
if (pp->sloppyclockflag & CLK_FLAG4) {
|
|
sprintf(tbuf,
|
|
"wwv8 %d %3d %s %d %5.0f %5.1f %5ld %5d %ld",
|
|
up->port, up->gain, sp->refid, sp->count,
|
|
sp->synmax, snr, sp->pos, up->tepoch,
|
|
epoch);
|
|
record_clock_stats(&peer->srcadr, tbuf);
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("%s\n", tbuf);
|
|
#endif
|
|
}
|
|
sp->lastpos = sp->pos;
|
|
sp->maxamp = sp->noiamp = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* wwv_endpoc - identify and acquire second sync pulse
|
|
*
|
|
* This routine is called at the end of the second sync interval. It
|
|
* determines the second sync epoch position within the interval and
|
|
* disciplines the sample clock using a frequency-lock loop (FLL).
|
|
*
|
|
* Second sync is determined in the RF input routine as the maximum
|
|
* over all 8000 samples in the second comb filter. To assure accurate
|
|
* and reliable time and frequency discipline, this routine performs a
|
|
* great deal of heavy-handed heuristic data filtering and grooming.
|
|
*
|
|
* Note that, since the minute sync pulse is very wide (800 ms), precise
|
|
* minute sync epoch acquisition requires at least a rough estimate of
|
|
* the second sync pulse (5 ms). This becomes more important in choppy
|
|
* conditions at the lower frequencies at night, since sferics and
|
|
* cochannel crude can badly distort the minute pulse.
|
|
*/
|
|
static void
|
|
wwv_endpoc(
|
|
struct peer *peer, /* peer structure pointer */
|
|
int epopos /* epoch max position */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
struct wwvunit *up;
|
|
static int epoch_mf[3]; /* epoch median filter */
|
|
static int xepoch; /* last second epoch */
|
|
static int zepoch; /* last averaging interval epoch */
|
|
static int syncnt; /* run length counter */
|
|
static int maxrun; /* longest run length */
|
|
static int mepoch; /* longest run epoch */
|
|
static int avgcnt; /* averaging interval counter */
|
|
static int avginc; /* averaging ratchet */
|
|
static int iniflg; /* initialization flag */
|
|
char tbuf[80]; /* monitor buffer */
|
|
double dtemp;
|
|
int tmp2;
|
|
|
|
pp = peer->procptr;
|
|
up = (struct wwvunit *)pp->unitptr;
|
|
if (!iniflg) {
|
|
iniflg = 1;
|
|
memset((char *)epoch_mf, 0, sizeof(epoch_mf));
|
|
}
|
|
|
|
/*
|
|
* A three-stage median filter is used to help denoise the
|
|
* second sync pulse. The median sample becomes the candidate
|
|
* epoch.
|
|
*/
|
|
epoch_mf[2] = epoch_mf[1];
|
|
epoch_mf[1] = epoch_mf[0];
|
|
epoch_mf[0] = epopos;
|
|
if (epoch_mf[0] > epoch_mf[1]) {
|
|
if (epoch_mf[1] > epoch_mf[2])
|
|
up->tepoch = epoch_mf[1]; /* 0 1 2 */
|
|
else if (epoch_mf[2] > epoch_mf[0])
|
|
up->tepoch = epoch_mf[0]; /* 2 0 1 */
|
|
else
|
|
up->tepoch = epoch_mf[2]; /* 0 2 1 */
|
|
} else {
|
|
if (epoch_mf[1] < epoch_mf[2])
|
|
up->tepoch = epoch_mf[1]; /* 2 1 0 */
|
|
else if (epoch_mf[2] < epoch_mf[0])
|
|
up->tepoch = epoch_mf[0]; /* 1 0 2 */
|
|
else
|
|
up->tepoch = epoch_mf[2]; /* 1 2 0 */
|
|
}
|
|
|
|
/*
|
|
* If the signal amplitude or SNR fall below thresholds or if no
|
|
* stations are heard, dim the second sync lamp and start over.
|
|
*/
|
|
if (!(up->status & (SELV | SELH)) || up->epomax < STHR ||
|
|
up->eposnr < SSNR) {
|
|
up->status &= ~(SSYNC | FGATE);
|
|
avgcnt = syncnt = maxrun = 0;
|
|
return;
|
|
}
|
|
avgcnt++;
|
|
|
|
/*
|
|
* If the epoch candidate is the same as the last one, increment
|
|
* the compare counter. If not, save the length and epoch of the
|
|
* current run for use later and reset the counter.
|
|
*/
|
|
tmp2 = (up->tepoch - xepoch) % SECOND;
|
|
if (tmp2 == 0) {
|
|
syncnt++;
|
|
} else {
|
|
if (maxrun > 0 && mepoch == xepoch) {
|
|
maxrun += syncnt;
|
|
} else if (syncnt > maxrun) {
|
|
maxrun = syncnt;
|
|
mepoch = xepoch;
|
|
}
|
|
syncnt = 0;
|
|
}
|
|
if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status & (SSYNC |
|
|
MSYNC))) {
|
|
sprintf(tbuf,
|
|
"wwv1 %04x %5.0f %5.1f %5d %5d %4d %4d",
|
|
up->status, up->epomax, up->eposnr, up->tepoch,
|
|
tmp2, avgcnt, syncnt);
|
|
record_clock_stats(&peer->srcadr, tbuf);
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("%s\n", tbuf);
|
|
#endif /* DEBUG */
|
|
}
|
|
|
|
/*
|
|
* The sample clock frequency is disciplined using a first order
|
|
* feedback loop with time constant consistent with the Allan
|
|
* intercept of typical computer clocks.
|
|
*
|
|
* The frequency update is calculated from the epoch change in
|
|
* 125-us units divided by the averaging interval in seconds.
|
|
* The averaging interval affects other receiver functions,
|
|
* including the the 1000/1200-Hz comb filter and codec clock
|
|
* loop. It also affects the 100-Hz subcarrier loop and the bit
|
|
* and digit comparison counter thresholds.
|
|
*/
|
|
if (avgcnt < up->avgint) {
|
|
xepoch = up->tepoch;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* During the averaging interval the longest run of identical
|
|
* epoches is determined. If the longest run is at least 10
|
|
* seconds, the SSYNC bit is lit and the value becomes the
|
|
* reference epoch for the next interval. If not, the second
|
|
* synd lamp is dark and flashers set.
|
|
*/
|
|
if (maxrun > 0 && mepoch == xepoch) {
|
|
maxrun += syncnt;
|
|
} else if (syncnt > maxrun) {
|
|
maxrun = syncnt;
|
|
mepoch = xepoch;
|
|
}
|
|
xepoch = up->tepoch;
|
|
if (maxrun > SCMP) {
|
|
up->status |= SSYNC;
|
|
up->yepoch = mepoch;
|
|
} else {
|
|
up->status &= ~SSYNC;
|
|
}
|
|
|
|
/*
|
|
* If the epoch change over the averaging interval is less than
|
|
* 1 ms, the frequency is adjusted, but clamped at +-125 PPM. If
|
|
* greater than 1 ms, the counter is decremented. If the epoch
|
|
* change is less than 0.5 ms, the counter is incremented. If
|
|
* the counter increments to +3, the averaging interval is
|
|
* doubled and the counter set to zero; if it increments to -3,
|
|
* the interval is halved and the counter set to zero.
|
|
*
|
|
* Here be spooks. From careful observations, the epoch
|
|
* sometimes makes a long run of identical samples, then takes a
|
|
* lurch due apparently to lost interrupts or spooks. If this
|
|
* happens, the epoch change times the maximum run length will
|
|
* be greater than the averaging interval, so the lurch should
|
|
* be believed but the frequency left alone. Really intricate
|
|
* here.
|
|
*/
|
|
if (maxrun == 0)
|
|
mepoch = up->tepoch;
|
|
dtemp = (mepoch - zepoch) % SECOND;
|
|
if (up->status & FGATE) {
|
|
if (abs(dtemp) < MAXFREQ * MINAVG) {
|
|
if (maxrun * abs(mepoch - zepoch) <
|
|
avgcnt) {
|
|
up->freq += dtemp / avgcnt;
|
|
if (up->freq > MAXFREQ)
|
|
up->freq = MAXFREQ;
|
|
else if (up->freq < -MAXFREQ)
|
|
up->freq = -MAXFREQ;
|
|
}
|
|
if (abs(dtemp) < MAXFREQ * MINAVG / 2) {
|
|
if (avginc < 3) {
|
|
avginc++;
|
|
} else {
|
|
if (up->avgint < MAXAVG) {
|
|
up->avgint <<= 1;
|
|
avginc = 0;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if (avginc > -3) {
|
|
avginc--;
|
|
} else {
|
|
if (up->avgint > MINAVG) {
|
|
up->avgint >>= 1;
|
|
avginc = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (pp->sloppyclockflag & CLK_FLAG4) {
|
|
sprintf(tbuf,
|
|
"wwv2 %04x %4.0f %4d %4d %2d %4d %4.0f %6.1f",
|
|
up->status, up->epomax, mepoch, maxrun, avginc,
|
|
avgcnt, dtemp, up->freq * 1e6 / SECOND);
|
|
record_clock_stats(&peer->srcadr, tbuf);
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("%s\n", tbuf);
|
|
#endif /* DEBUG */
|
|
}
|
|
up->status |= FGATE;
|
|
zepoch = mepoch;
|
|
avgcnt = syncnt = maxrun = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* wwv_epoch - epoch scanner
|
|
*
|
|
* This routine scans the receiver second epoch to determine the signal
|
|
* amplitudes and pulse timings. Receiver synchronization is determined
|
|
* by the minute sync pulse detected in the wwv_rf() routine and the
|
|
* second sync pulse detected in the wwv_epoch() routine. A pulse width
|
|
* discriminator extracts data signals from the 100-Hz subcarrier. The
|
|
* transmitted signals are delayed by the propagation delay, receiver
|
|
* delay and filter delay of this program. Delay corrections are
|
|
* introduced separately for WWV and WWVH.
|
|
*
|
|
* Most communications radios use a highpass filter in the audio stages,
|
|
* which can do nasty things to the subcarrier phase relative to the
|
|
* sync pulses. Therefore, the data subcarrier reference phase is
|
|
* disciplined using the hardlimited quadrature-phase signal sampled at
|
|
* the same time as the in-phase signal. The phase tracking loop uses
|
|
* phase adjustments of plus-minus one sample (125 us).
|
|
*/
|
|
static void
|
|
wwv_epoch(
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
struct wwvunit *up;
|
|
struct chan *cp;
|
|
static double dpulse; /* data pulse length */
|
|
double dtemp;
|
|
|
|
pp = peer->procptr;
|
|
up = (struct wwvunit *)pp->unitptr;
|
|
|
|
/*
|
|
* Sample the minute sync pulse envelopes at epoch 800 for both
|
|
* the WWV and WWVH stations. This will be used later for
|
|
* channel and station mitigation. Note that the seconds epoch
|
|
* is set here well before the end of the second to make sure we
|
|
* never seet the epoch backwards.
|
|
*/
|
|
if (up->rphase == 800 * MS) {
|
|
up->repoch = up->yepoch;
|
|
cp = &up->mitig[up->achan];
|
|
cp->wwv.synamp = cp->wwv.amp;
|
|
cp->wwvh.synamp = cp->wwvh.amp;
|
|
}
|
|
|
|
/*
|
|
* Sample the data subcarrier at epoch 15 ms, giving a guard
|
|
* time of +-15 ms from the beginning of the second until the
|
|
* pulse rises at 30 ms. The I-channel amplitude is used to
|
|
* calculate the slice level. The envelope amplitude is used
|
|
* during the probe seconds to determine the SNR. There is a
|
|
* compromise here; we want to delay the sample as long as
|
|
* possible to give the radio time to change frequency and the
|
|
* AGC to stabilize, but as early as possible if the second
|
|
* epoch is not exact.
|
|
*/
|
|
if (up->rphase == 15 * MS) {
|
|
up->noiamp = up->irig * up->irig + up->qrig * up->qrig;
|
|
|
|
/*
|
|
* Sample the data subcarrier at epoch 215 ms, giving a guard
|
|
* time of +-15 ms from the earliest the pulse peak can be
|
|
* reached to the earliest it can begin to fall. For the data
|
|
* channel latch the I-channel amplitude for all except the
|
|
* probe seconds and adjust the 100-Hz reference oscillator
|
|
* phase using the Q-channel amplitude at this epoch. For the
|
|
* probe channel latch the envelope amplitude.
|
|
*/
|
|
} else if (up->rphase == 215 * MS) {
|
|
up->sigsig = up->irig;
|
|
if (up->sigsig < 0)
|
|
up->sigsig = 0;
|
|
up->datpha = up->qrig / up->avgint;
|
|
if (up->datpha >= 0) {
|
|
up->datapt++;
|
|
if (up->datapt >= 80)
|
|
up->datapt -= 80;
|
|
} else {
|
|
up->datapt--;
|
|
if (up->datapt < 0)
|
|
up->datapt += 80;
|
|
}
|
|
up->sigamp = up->irig * up->irig + up->qrig * up->qrig;
|
|
|
|
/*
|
|
* The slice level is set half way between the peak signal and
|
|
* noise levels. Sample the negative zero crossing after epoch
|
|
* 200 ms and record the epoch at that time. This defines the
|
|
* length of the data pulse, which will later be converted into
|
|
* scaled bit probabilities.
|
|
*/
|
|
} else if (up->rphase > 200 * MS) {
|
|
dtemp = (up->sigsig + sqrt(up->noiamp)) / 2;
|
|
if (up->irig < dtemp && dpulse == 0)
|
|
dpulse = up->rphase;
|
|
}
|
|
|
|
/*
|
|
* At the end of the second crank the clock state machine and
|
|
* adjust the codec gain. Note the epoch is buffered from the
|
|
* center of the second in order to avoid jitter while the
|
|
* seconds synch is diddling the epoch. Then, determine the true
|
|
* offset and update the median filter in the driver interface.
|
|
*
|
|
* Sample the data subcarrier envelope at the end of the second
|
|
* to determine the SNR for the pulse. This gives a guard time
|
|
* of +-30 ms from the decay of the longest pulse to the rise of
|
|
* the next pulse.
|
|
*/
|
|
up->rphase++;
|
|
if (up->mphase % SECOND == up->repoch) {
|
|
up->datsnr = wwv_snr(up->sigsig, sqrt(up->noiamp));
|
|
wwv_rsec(peer, dpulse);
|
|
wwv_gain(peer);
|
|
up->rphase = dpulse = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* wwv_rsec - process receiver second
|
|
*
|
|
* This routine is called at the end of each receiver second to
|
|
* implement the per-second state machine. The machine assembles BCD
|
|
* digit bits, decodes miscellaneous bits and dances the leap seconds.
|
|
*
|
|
* Normally, the minute has 60 seconds numbered 0-59. If the leap
|
|
* warning bit is set, the last minute (1439) of 30 June (day 181 or 182
|
|
* for leap years) or 31 December (day 365 or 366 for leap years) is
|
|
* augmented by one second numbered 60. This is accomplished by
|
|
* extending the minute interval by one second and teaching the state
|
|
* machine to ignore it.
|
|
*/
|
|
static void
|
|
wwv_rsec(
|
|
struct peer *peer, /* peer structure pointer */
|
|
double dpulse
|
|
)
|
|
{
|
|
static int iniflg; /* initialization flag */
|
|
static double bcddld[4]; /* BCD data bits */
|
|
static double bitvec[61]; /* bit integrator for misc bits */
|
|
struct refclockproc *pp;
|
|
struct wwvunit *up;
|
|
struct chan *cp;
|
|
struct sync *sp, *rp;
|
|
l_fp offset; /* offset in NTP seconds */
|
|
double bit; /* bit likelihood */
|
|
char tbuf[80]; /* monitor buffer */
|
|
int sw, arg, nsec;
|
|
#ifdef IRIG_SUCKS
|
|
int i;
|
|
l_fp ltemp;
|
|
#endif /* IRIG_SUCKS */
|
|
|
|
pp = peer->procptr;
|
|
up = (struct wwvunit *)pp->unitptr;
|
|
if (!iniflg) {
|
|
iniflg = 1;
|
|
memset((char *)bitvec, 0, sizeof(bitvec));
|
|
}
|
|
|
|
/*
|
|
* The bit represents the probability of a hit on zero (negative
|
|
* values), a hit on one (positive values) or a miss (zero
|
|
* value). The likelihood vector is the exponential average of
|
|
* these probabilities. Only the bits of this vector
|
|
* corresponding to the miscellaneous bits of the timecode are
|
|
* used, but it's easier to do them all. After that, crank the
|
|
* seconds state machine.
|
|
*/
|
|
nsec = up->rsec + 1;
|
|
bit = wwv_data(up, dpulse);
|
|
bitvec[up->rsec] += (bit - bitvec[up->rsec]) / TCONST;
|
|
sw = progx[up->rsec].sw;
|
|
arg = progx[up->rsec].arg;
|
|
switch (sw) {
|
|
|
|
/*
|
|
* Ignore this second.
|
|
*/
|
|
case IDLE: /* 9, 45-49 */
|
|
break;
|
|
|
|
/*
|
|
* Probe channel stuff
|
|
*
|
|
* The WWV/H format contains data pulses in second 59 (position
|
|
* identifier), second 1 (not used) and the minute sync pulse in
|
|
* second 0. At the end of second 58, QSY to the probe channel,
|
|
* which rotates over all WWV/H frequencies. At the end of
|
|
* second 1 QSY back to the data channel.
|
|
*
|
|
* At the end of second 0 save the minute sync pulse peak value
|
|
* previously latched at 800 ms.
|
|
*/
|
|
case SYNC2: /* 0 */
|
|
cp = &up->mitig[up->achan];
|
|
cp->wwv.synmax = sqrt(cp->wwv.synamp);
|
|
cp->wwvh.synmax = sqrt(cp->wwvh.synamp);
|
|
break;
|
|
|
|
/*
|
|
* At the end of second 1 determine the minute sync pulse
|
|
* amplitude and SNR and set SYNCNG if these values are below
|
|
* thresholds. Determine the data pulse amplitude and SNR and
|
|
* set DATANG if these values are below thresholds. Set ERRRNG
|
|
* if data pulses in second 59 and second 1 are decoded in
|
|
* error. Shift a 1 into the reachability register if SYNCNG and
|
|
* DATANG are both lit; otherwise shift a 0. Ignore ERRRNG for
|
|
* the present. The number of 1 bits in the last six intervals
|
|
* represents the channel metric used by the mitigation routine.
|
|
* Finally, QSY back to the data channel.
|
|
*/
|
|
case SYNC3: /* 1 */
|
|
cp = &up->mitig[up->achan];
|
|
cp->sigamp = sqrt(up->sigamp);
|
|
cp->noiamp = sqrt(up->noiamp);
|
|
cp->datsnr = wwv_snr(cp->sigamp, cp->noiamp);
|
|
|
|
/*
|
|
* WWV station
|
|
*/
|
|
sp = &cp->wwv;
|
|
sp->synmin = sqrt((sp->synmin + sp->synamp) / 2.);
|
|
sp->synsnr = wwv_snr(sp->synmax, sp->synmin);
|
|
sp->select &= ~(SYNCNG | DATANG | ERRRNG);
|
|
if (sp->synmax < QTHR || sp->synsnr < QSNR)
|
|
sp->select |= SYNCNG;
|
|
if (cp->sigamp < XTHR || cp->datsnr < XSNR)
|
|
sp->select |= DATANG;
|
|
if (up->errcnt > 2)
|
|
sp->select |= ERRRNG;
|
|
sp->reach <<= 1;
|
|
if (sp->reach & (1 << AMAX))
|
|
sp->count--;
|
|
if (!(sp->select & (SYNCNG | DATANG))) {
|
|
sp->reach |= 1;
|
|
sp->count++;
|
|
}
|
|
|
|
/*
|
|
* WWVH station
|
|
*/
|
|
rp = &cp->wwvh;
|
|
rp->synmin = sqrt((rp->synmin + rp->synamp) / 2.);
|
|
rp->synsnr = wwv_snr(rp->synmax, rp->synmin);
|
|
rp->select &= ~(SYNCNG | DATANG | ERRRNG);
|
|
if (rp->synmax < QTHR || rp->synsnr < QSNR)
|
|
rp->select |= SYNCNG;
|
|
if (cp->sigamp < XTHR || cp->datsnr < XSNR)
|
|
rp->select |= DATANG;
|
|
if (up->errcnt > 2)
|
|
rp->select |= ERRRNG;
|
|
rp->reach <<= 1;
|
|
if (rp->reach & (1 << AMAX))
|
|
rp->count--;
|
|
if (!(rp->select & (SYNCNG | DATANG | ERRRNG))) {
|
|
rp->reach |= 1;
|
|
rp->count++;
|
|
}
|
|
|
|
/*
|
|
* Set up for next minute.
|
|
*/
|
|
if (pp->sloppyclockflag & CLK_FLAG4) {
|
|
sprintf(tbuf,
|
|
"wwv5 %2d %04x %3d %4d %d %.0f/%.1f %s %04x %.0f %.0f/%.1f %s %04x %.0f %.0f/%.1f",
|
|
up->port, up->status, up->gain, up->yepoch,
|
|
up->errcnt, cp->sigamp, cp->datsnr,
|
|
sp->refid, sp->reach & 0xffff,
|
|
wwv_metric(sp), sp->synmax, sp->synsnr,
|
|
rp->refid, rp->reach & 0xffff,
|
|
wwv_metric(rp), rp->synmax, rp->synsnr);
|
|
record_clock_stats(&peer->srcadr, tbuf);
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("%s\n", tbuf);
|
|
#endif /* DEBUG */
|
|
}
|
|
#ifdef ICOM
|
|
if (up->fd_icom > 0)
|
|
wwv_qsy(peer, up->dchan);
|
|
#endif /* ICOM */
|
|
up->status &= ~SFLAG;
|
|
up->errcnt = 0;
|
|
up->alarm = 0;
|
|
wwv_newchan(peer);
|
|
break;
|
|
|
|
/*
|
|
* Save the bit probability in the BCD data vector at the index
|
|
* given by the argument. Note that all bits of the vector have
|
|
* to be above the data gate threshold for the digit to be
|
|
* considered valid. Bits not used in the digit are forced to
|
|
* zero and not checked for errors.
|
|
*/
|
|
case COEF: /* 4-7, 10-13, 15-17, 20-23,
|
|
25-26, 30-33, 35-38, 40-41,
|
|
51-54 */
|
|
if (up->status & DGATE)
|
|
up->status |= BGATE;
|
|
bcddld[arg] = bit;
|
|
break;
|
|
|
|
case COEF2: /* 18, 27-28, 42-43 */
|
|
bcddld[arg] = 0;
|
|
break;
|
|
|
|
/*
|
|
* Correlate coefficient vector with each valid digit vector and
|
|
* save in decoding matrix. We step through the decoding matrix
|
|
* digits correlating each with the coefficients and saving the
|
|
* greatest and the next lower for later SNR calculation.
|
|
*/
|
|
case DECIM2: /* 29 */
|
|
wwv_corr4(peer, &up->decvec[arg], bcddld, bcd2);
|
|
break;
|
|
|
|
case DECIM3: /* 44 */
|
|
wwv_corr4(peer, &up->decvec[arg], bcddld, bcd3);
|
|
break;
|
|
|
|
case DECIM6: /* 19 */
|
|
wwv_corr4(peer, &up->decvec[arg], bcddld, bcd6);
|
|
break;
|
|
|
|
case DECIM9: /* 8, 14, 24, 34, 39 */
|
|
wwv_corr4(peer, &up->decvec[arg], bcddld, bcd9);
|
|
break;
|
|
|
|
/*
|
|
* Miscellaneous bits. If above the positive threshold, declare
|
|
* 1; if below the negative threshold, declare 0; otherwise
|
|
* raise the SYMERR alarm. At the end of second 58, QSY to the
|
|
* probe channel. The design is intended to preserve the bits
|
|
* over periods of signal loss.
|
|
*/
|
|
case MSC20: /* 55 */
|
|
wwv_corr4(peer, &up->decvec[YR + 1], bcddld, bcd9);
|
|
/* fall through */
|
|
|
|
case MSCBIT: /* 2-3, 50, 56-57 */
|
|
if (bitvec[up->rsec] > BTHR)
|
|
up->misc |= arg;
|
|
else if (bitvec[up->rsec] < -BTHR)
|
|
up->misc &= ~arg;
|
|
else
|
|
up->alarm |= SYMERR;
|
|
break;
|
|
|
|
/*
|
|
* Save the data channel gain, then QSY to the probe channel.
|
|
*/
|
|
case MSC21: /* 58 */
|
|
if (bitvec[up->rsec] > BTHR)
|
|
up->misc |= arg;
|
|
else if (bitvec[up->rsec] < -BTHR)
|
|
up->misc &= ~arg;
|
|
else
|
|
up->alarm |= SYMERR;
|
|
up->mitig[up->dchan].gain = up->gain;
|
|
#ifdef ICOM
|
|
if (up->fd_icom > 0) {
|
|
up->schan = (up->schan + 1) % NCHAN;
|
|
wwv_qsy(peer, up->schan);
|
|
}
|
|
#endif /* ICOM */
|
|
up->status |= SFLAG | SELV | SELH;
|
|
up->errbit = up->errcnt;
|
|
up->errcnt = 0;
|
|
break;
|
|
|
|
/*
|
|
* The endgames
|
|
*
|
|
* During second 59 the receiver and codec AGC are settling
|
|
* down, so the data pulse is unusable. At the end of this
|
|
* second, latch the minute sync pulse noise floor. Then do the
|
|
* minute processing and update the system clock. If a leap
|
|
* second sail on to the next second (60); otherwise, set up for
|
|
* the next minute.
|
|
*/
|
|
case MIN1: /* 59 */
|
|
cp = &up->mitig[up->achan];
|
|
cp->wwv.synmin = cp->wwv.synamp;
|
|
cp->wwvh.synmin = cp->wwvh.synamp;
|
|
|
|
/*
|
|
* Dance the leap if necessary and the kernel has the
|
|
* right stuff. Then, wind up the clock and initialize
|
|
* for the following minute. If the leap dance, note the
|
|
* kernel is armed one second before the actual leap is
|
|
* scheduled.
|
|
*/
|
|
if (up->status & SSYNC && up->digcnt >= 9)
|
|
up->status |= INSYNC;
|
|
if (up->status & LEPDAY) {
|
|
pp->leap = LEAP_ADDSECOND;
|
|
} else {
|
|
pp->leap = LEAP_NOWARNING;
|
|
wwv_tsec(up);
|
|
nsec = up->digcnt = 0;
|
|
}
|
|
pp->lencode = timecode(up, pp->a_lastcode);
|
|
record_clock_stats(&peer->srcadr, pp->a_lastcode);
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("wwv: timecode %d %s\n", pp->lencode,
|
|
pp->a_lastcode);
|
|
#endif /* DEBUG */
|
|
if (up->status & INSYNC && up->watch < HOLD)
|
|
refclock_receive(peer);
|
|
break;
|
|
|
|
/*
|
|
* If LEPDAY is set on the last minute of 30 June or 31
|
|
* December, the LEPSEC bit is set. At the end of the minute in
|
|
* which LEPSEC is set the transmitter and receiver insert an
|
|
* extra second (60) in the timescale and the minute sync skips
|
|
* a second. We only get to test this wrinkle at intervals of
|
|
* about 18 months; the actual mileage may vary.
|
|
*/
|
|
case MIN2: /* 60 */
|
|
wwv_tsec(up);
|
|
nsec = up->digcnt = 0;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If digit sync has not been acquired before timeout or if no
|
|
* station has been heard, game over and restart from scratch.
|
|
*/
|
|
if (!(up->status & DSYNC) && (!(up->status & (SELV | SELH)) ||
|
|
up->watch > DIGIT)) {
|
|
wwv_newgame(peer);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If no timestamps have been struck before timeout, game over
|
|
* and restart from scratch.
|
|
*/
|
|
if (up->watch > PANIC) {
|
|
wwv_newgame(peer);
|
|
return;
|
|
}
|
|
pp->disp += AUDIO_PHI;
|
|
up->rsec = nsec;
|
|
|
|
#ifdef IRIG_SUCKS
|
|
/*
|
|
* You really don't wanna know what comes down here. Leave it to
|
|
* say Solaris 2.8 broke the nice clean audio stream, apparently
|
|
* affected by a 5-ms sawtooth jitter. Sundown on Solaris. This
|
|
* leaves a little twilight.
|
|
*
|
|
* The scheme involves differentiation, forward learning and
|
|
* integration. The sawtooth has a period of 11 seconds. The
|
|
* timestamp differences are integrated and subtracted from the
|
|
* signal.
|
|
*/
|
|
ltemp = pp->lastrec;
|
|
L_SUB(<emp, &pp->lastref);
|
|
if (ltemp.l_f < 0)
|
|
ltemp.l_i = -1;
|
|
else
|
|
ltemp.l_i = 0;
|
|
pp->lastref = pp->lastrec;
|
|
if (!L_ISNEG(<emp))
|
|
L_CLR(&up->wigwag);
|
|
else
|
|
L_ADD(&up->wigwag, <emp);
|
|
L_SUB(&pp->lastrec, &up->wigwag);
|
|
up->wiggle[up->wp] = ltemp;
|
|
|
|
/*
|
|
* Bottom fisher. To understand this, you have to know about
|
|
* velocity microphones and AM transmitters. No further
|
|
* explanation is offered, as this is truly a black art.
|
|
*/
|
|
up->wigbot[up->wp] = pp->lastrec;
|
|
for (i = 0; i < WIGGLE; i++) {
|
|
if (i != up->wp)
|
|
up->wigbot[i].l_ui++;
|
|
L_SUB(&pp->lastrec, &up->wigbot[i]);
|
|
if (L_ISNEG(&pp->lastrec))
|
|
L_ADD(&pp->lastrec, &up->wigbot[i]);
|
|
else
|
|
pp->lastrec = up->wigbot[i];
|
|
}
|
|
up->wp++;
|
|
up->wp %= WIGGLE;
|
|
#endif /* IRIG_SUCKS */
|
|
|
|
/*
|
|
* If victory has been declared and seconds sync is lit, strike
|
|
* a timestamp. It should not be a surprise, especially if the
|
|
* radio is not tunable, that sometimes no stations are above
|
|
* the noise and the reference ID set to NONE.
|
|
*/
|
|
if (up->status & INSYNC && up->status & SSYNC) {
|
|
pp->second = up->rsec;
|
|
pp->minute = up->decvec[MN].digit + up->decvec[MN +
|
|
1].digit * 10;
|
|
pp->hour = up->decvec[HR].digit + up->decvec[HR +
|
|
1].digit * 10;
|
|
pp->day = up->decvec[DA].digit + up->decvec[DA +
|
|
1].digit * 10 + up->decvec[DA + 2].digit * 100;
|
|
pp->year = up->decvec[YR].digit + up->decvec[YR +
|
|
1].digit * 10;
|
|
pp->year += 2000;
|
|
L_CLR(&offset);
|
|
if (!clocktime(pp->day, pp->hour, pp->minute,
|
|
pp->second, GMT, up->timestamp.l_ui,
|
|
&pp->yearstart, &offset.l_ui)) {
|
|
up->errflg = CEVNT_BADTIME;
|
|
} else {
|
|
up->watch = 0;
|
|
pp->disp = 0;
|
|
refclock_process_offset(pp, offset,
|
|
up->timestamp, PDELAY);
|
|
}
|
|
}
|
|
if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
|
|
DSYNC)) {
|
|
sprintf(tbuf,
|
|
"wwv3 %2d %04x %5.0f %5.1f %5.0f %5.1f %5.0f",
|
|
up->rsec, up->status, up->epomax, up->eposnr,
|
|
up->sigsig, up->datsnr, bit);
|
|
record_clock_stats(&peer->srcadr, tbuf);
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("%s\n", tbuf);
|
|
#endif /* DEBUG */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* wwv_data - calculate bit probability
|
|
*
|
|
* This routine is called at the end of the receiver second to calculate
|
|
* the probabilities that the previous second contained a zero (P0), one
|
|
* (P1) or position indicator (P2) pulse. If not in sync or if the data
|
|
* bit is bad, a bit error is declared and the probabilities are forced
|
|
* to zero. Otherwise, the data gate is enabled and the probabilities
|
|
* are calculated. Note that the data matched filter contributes half
|
|
* the pulse width, or 85 ms.
|
|
*
|
|
* It's important to observe that there are three conditions to
|
|
* determine: average to +1 (hit), average to -1 (miss) or average to
|
|
* zero (erasure). The erasure condition results from insufficient
|
|
* signal (noise) and has no bias toward either a hit or miss.
|
|
*/
|
|
static double
|
|
wwv_data(
|
|
struct wwvunit *up, /* driver unit pointer */
|
|
double pulse /* pulse length (sample units) */
|
|
)
|
|
{
|
|
double p0, p1, p2; /* probabilities */
|
|
double dpulse; /* pulse length in ms */
|
|
|
|
p0 = p1 = p2 = 0;
|
|
dpulse = pulse - DATSIZ / 2;
|
|
|
|
/*
|
|
* If no station is being tracked, if either the data amplitude
|
|
* or SNR are below threshold or if the pulse length is less
|
|
* than 170 ms, declare an erasure.
|
|
*/
|
|
if (!(up->status & (SELV | SELH)) || up->sigsig < DTHR ||
|
|
up->datsnr < DSNR || dpulse < DATSIZ) {
|
|
up->status |= DGATE;
|
|
up->errcnt++;
|
|
if (up->errcnt > MAXERR)
|
|
up->alarm |= MODERR;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* The probability of P0 is one below 200 ms falling to zero at
|
|
* 500 ms. The probability of P1 is zero below 200 ms rising to
|
|
* one at 500 ms and falling to zero at 800 ms. The probability
|
|
* of P2 is zero below 500 ms, rising to one above 800 ms.
|
|
*/
|
|
up->status &= ~DGATE;
|
|
if (dpulse < (200 * MS)) {
|
|
p0 = 1;
|
|
} else if (dpulse < 500 * MS) {
|
|
dpulse -= 200 * MS;
|
|
p1 = dpulse / (300 * MS);
|
|
p0 = 1 - p1;
|
|
} else if (dpulse < 800 * MS) {
|
|
dpulse -= 500 * MS;
|
|
p2 = dpulse / (300 * MS);
|
|
p1 = 1 - p2;
|
|
} else {
|
|
p2 = 1;
|
|
}
|
|
|
|
/*
|
|
* The ouput is a metric that ranges from -1 (P0), to +1 (P1)
|
|
* scaled for convenience. An output of zero represents an
|
|
* erasure, either because of a data error or pulse length
|
|
* greater than 500 ms. At the moment, we don't use P2.
|
|
*/
|
|
return ((p1 - p0) * MAXSIG);
|
|
}
|
|
|
|
|
|
/*
|
|
* wwv_corr4 - determine maximum likelihood digit
|
|
*
|
|
* This routine correlates the received digit vector with the BCD
|
|
* coefficient vectors corresponding to all valid digits at the given
|
|
* position in the decoding matrix. The maximum value corresponds to the
|
|
* maximum likelihood digit, while the ratio of this value to the next
|
|
* lower value determines the likelihood function. Note that, if the
|
|
* digit is invalid, the likelihood vector is averaged toward a miss.
|
|
*/
|
|
static void
|
|
wwv_corr4(
|
|
struct peer *peer, /* peer unit pointer */
|
|
struct decvec *vp, /* decoding table pointer */
|
|
double data[], /* received data vector */
|
|
double tab[][4] /* correlation vector array */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
struct wwvunit *up;
|
|
|
|
double topmax, nxtmax; /* metrics */
|
|
double acc; /* accumulator */
|
|
char tbuf[80]; /* monitor buffer */
|
|
int mldigit; /* max likelihood digit */
|
|
int diff; /* decoding difference */
|
|
int i, j;
|
|
|
|
pp = peer->procptr;
|
|
up = (struct wwvunit *)pp->unitptr;
|
|
|
|
/*
|
|
* Correlate digit vector with each BCD coefficient vector. If
|
|
* any BCD digit bit is bad, consider all bits a miss.
|
|
*/
|
|
mldigit = 0;
|
|
topmax = nxtmax = -MAXSIG;
|
|
for (i = 0; tab[i][0] != 0; i++) {
|
|
acc = 0;
|
|
for (j = 0; j < 4; j++) {
|
|
if (!(up->status & BGATE))
|
|
acc += data[j] * tab[i][j];
|
|
}
|
|
acc = (vp->like[i] += (acc - vp->like[i]) / TCONST);
|
|
if (acc > topmax) {
|
|
nxtmax = topmax;
|
|
topmax = acc;
|
|
mldigit = i;
|
|
} else if (acc > nxtmax) {
|
|
nxtmax = acc;
|
|
}
|
|
}
|
|
vp->mldigit = mldigit;
|
|
vp->digprb = topmax;
|
|
vp->digsnr = wwv_snr(topmax, nxtmax);
|
|
|
|
/*
|
|
* The maximum likelihood digit is compared with the current
|
|
* clock digit. The difference represents the decoding phase
|
|
* error. If the clock is not yet synchronized, the phase error
|
|
* is corrected even of the digit probability and likelihood are
|
|
* below thresholds. This avoids lengthy averaging times should
|
|
* a carry mistake occur. However, the digit is not declared
|
|
* synchronized until these values are above thresholds and the
|
|
* last five decoded values are identical. If the clock is
|
|
* synchronized, the phase error is not corrected unless the
|
|
* last five digits are all above thresholds and identical. This
|
|
* avoids mistakes when the signal is coming out of the noise
|
|
* and the SNR is very marginal.
|
|
*/
|
|
diff = mldigit - vp->digit;
|
|
if (diff < 0)
|
|
diff += vp->radix;
|
|
if (diff != vp->phase) {
|
|
vp->count = 0;
|
|
vp->phase = diff;
|
|
}
|
|
if (vp->digsnr < BSNR) {
|
|
vp->count = 0;
|
|
up->alarm |= SYMERR;
|
|
} else if (vp->digprb < BTHR) {
|
|
vp->count = 0;
|
|
up->alarm |= SYMERR;
|
|
if (!(up->status & INSYNC)) {
|
|
vp->phase = 0;
|
|
vp->digit = mldigit;
|
|
}
|
|
} else if (vp->count < BCMP) {
|
|
vp->count++;
|
|
up->status |= DSYNC;
|
|
if (!(up->status & INSYNC)) {
|
|
vp->phase = 0;
|
|
vp->digit = mldigit;
|
|
}
|
|
} else {
|
|
vp->phase = 0;
|
|
vp->digit = mldigit;
|
|
up->digcnt++;
|
|
}
|
|
if (vp->digit != mldigit)
|
|
up->alarm |= DECERR;
|
|
if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
|
|
INSYNC)) {
|
|
sprintf(tbuf,
|
|
"wwv4 %2d %04x %5.0f %2d %d %d %d %d %5.0f %5.1f",
|
|
up->rsec, up->status, up->epomax, vp->radix,
|
|
vp->digit, vp->mldigit, vp->phase, vp->count,
|
|
vp->digprb, vp->digsnr);
|
|
record_clock_stats(&peer->srcadr, tbuf);
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("%s\n", tbuf);
|
|
#endif /* DEBUG */
|
|
}
|
|
up->status &= ~BGATE;
|
|
}
|
|
|
|
|
|
/*
|
|
* wwv_tsec - transmitter minute processing
|
|
*
|
|
* This routine is called at the end of the transmitter minute. It
|
|
* implements a state machine that advances the logical clock subject to
|
|
* the funny rules that govern the conventional clock and calendar.
|
|
*/
|
|
static void
|
|
wwv_tsec(
|
|
struct wwvunit *up /* driver structure pointer */
|
|
)
|
|
{
|
|
int minute, day, isleap;
|
|
int temp;
|
|
|
|
/*
|
|
* Advance minute unit of the day.
|
|
*/
|
|
temp = carry(&up->decvec[MN]); /* minute units */
|
|
|
|
/*
|
|
* Propagate carries through the day.
|
|
*/
|
|
if (temp == 0) /* carry minutes */
|
|
temp = carry(&up->decvec[MN + 1]);
|
|
if (temp == 0) /* carry hours */
|
|
temp = carry(&up->decvec[HR]);
|
|
if (temp == 0)
|
|
temp = carry(&up->decvec[HR + 1]);
|
|
|
|
/*
|
|
* Decode the current minute and day. Set leap day if the
|
|
* timecode leap bit is set on 30 June or 31 December. Set leap
|
|
* minute if the last minute on leap day. This code fails in
|
|
* 2400 AD.
|
|
*/
|
|
minute = up->decvec[MN].digit + up->decvec[MN + 1].digit *
|
|
10 + up->decvec[HR].digit * 60 + up->decvec[HR +
|
|
1].digit * 600;
|
|
day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
|
|
up->decvec[DA + 2].digit * 100;
|
|
isleap = (up->decvec[YR].digit & 0x3) == 0;
|
|
if (up->misc & SECWAR && (day == (isleap ? 182 : 183) || day ==
|
|
(isleap ? 365 : 366)) && up->status & INSYNC && up->status &
|
|
SSYNC)
|
|
up->status |= LEPDAY;
|
|
else
|
|
up->status &= ~LEPDAY;
|
|
if (up->status & LEPDAY && minute == 1439)
|
|
up->status |= LEPSEC;
|
|
else
|
|
up->status &= ~LEPSEC;
|
|
|
|
/*
|
|
* Roll the day if this the first minute and propagate carries
|
|
* through the year.
|
|
*/
|
|
if (minute != 1440)
|
|
return;
|
|
minute = 0;
|
|
while (carry(&up->decvec[HR]) != 0); /* advance to minute 0 */
|
|
while (carry(&up->decvec[HR + 1]) != 0);
|
|
day++;
|
|
temp = carry(&up->decvec[DA]); /* carry days */
|
|
if (temp == 0)
|
|
temp = carry(&up->decvec[DA + 1]);
|
|
if (temp == 0)
|
|
temp = carry(&up->decvec[DA + 2]);
|
|
|
|
/*
|
|
* Roll the year if this the first day and propagate carries
|
|
* through the century.
|
|
*/
|
|
if (day != (isleap ? 365 : 366))
|
|
return;
|
|
day = 1;
|
|
while (carry(&up->decvec[DA]) != 1); /* advance to day 1 */
|
|
while (carry(&up->decvec[DA + 1]) != 0);
|
|
while (carry(&up->decvec[DA + 2]) != 0);
|
|
temp = carry(&up->decvec[YR]); /* carry years */
|
|
if (temp)
|
|
carry(&up->decvec[YR + 1]);
|
|
}
|
|
|
|
|
|
/*
|
|
* carry - process digit
|
|
*
|
|
* This routine rotates a likelihood vector one position and increments
|
|
* the clock digit modulo the radix. It returns the new clock digit or
|
|
* zero if a carry occurred. Once synchronized, the clock digit will
|
|
* match the maximum likelihood digit corresponding to that position.
|
|
*/
|
|
static int
|
|
carry(
|
|
struct decvec *dp /* decoding table pointer */
|
|
)
|
|
{
|
|
int temp;
|
|
int j;
|
|
|
|
dp->digit++; /* advance clock digit */
|
|
if (dp->digit == dp->radix) { /* modulo radix */
|
|
dp->digit = 0;
|
|
}
|
|
temp = dp->like[dp->radix - 1]; /* rotate likelihood vector */
|
|
for (j = dp->radix - 1; j > 0; j--)
|
|
dp->like[j] = dp->like[j - 1];
|
|
dp->like[0] = temp;
|
|
return (dp->digit);
|
|
}
|
|
|
|
|
|
/*
|
|
* wwv_snr - compute SNR or likelihood function
|
|
*/
|
|
static double
|
|
wwv_snr(
|
|
double signal, /* signal */
|
|
double noise /* noise */
|
|
)
|
|
{
|
|
double rval;
|
|
|
|
/*
|
|
* This is a little tricky. Due to the way things are measured,
|
|
* either or both the signal or noise amplitude can be negative
|
|
* or zero. The intent is that, if the signal is negative or
|
|
* zero, the SNR must always be zero. This can happen with the
|
|
* subcarrier SNR before the phase has been aligned. On the
|
|
* other hand, in the likelihood function the "noise" is the
|
|
* next maximum down from the peak and this could be negative.
|
|
* However, in this case the SNR is truly stupendous, so we
|
|
* simply cap at MAXSNR dB.
|
|
*/
|
|
if (signal <= 0) {
|
|
rval = 0;
|
|
} else if (noise <= 0) {
|
|
rval = MAXSNR;
|
|
} else {
|
|
rval = 20 * log10(signal / noise);
|
|
if (rval > MAXSNR)
|
|
rval = MAXSNR;
|
|
}
|
|
return (rval);
|
|
}
|
|
|
|
|
|
/*
|
|
* wwv_newchan - change to new data channel
|
|
*
|
|
* The radio actually appears to have ten channels, one channel for each
|
|
* of five frequencies and each of two stations (WWV and WWVH), although
|
|
* if not tunable only the 15 MHz channels appear live. While the radio
|
|
* is tuned to the working data channel frequency and station for most
|
|
* of the minute, during seconds 59, 0 and 1 the radio is tuned to a
|
|
* probe frequency in order to search for minute sync pulse and data
|
|
* subcarrier from other transmitters.
|
|
*
|
|
* The search for WWV and WWVH operates simultaneously, with WWV minute
|
|
* sync pulse at 1000 Hz and WWVH at 1200 Hz. The probe frequency
|
|
* rotates each minute over 2.5, 5, 10, 15 and 20 MHz in order and yes,
|
|
* we all know WWVH is dark on 20 MHz, but few remember when WWV was lit
|
|
* on 25 MHz.
|
|
*
|
|
* This routine selects the best channel using a metric computed from
|
|
* the reachability register and minute pulse amplitude. Normally, the
|
|
* award goes to the the channel with the highest metric; but, in case
|
|
* of ties, the award goes to the channel with the highest minute sync
|
|
* pulse amplitude and then to the highest frequency.
|
|
*
|
|
* The routine performs an important squelch function to keep dirty data
|
|
* from polluting the integrators. During acquisition and until the
|
|
* clock is synchronized, the signal metric must be at least MTR (13);
|
|
* after that the metrict must be at least TTHR (50). If either of these
|
|
* is not true, the station select bits are cleared so the second sync
|
|
* is disabled and the data bit integrators averaged to a miss.
|
|
*/
|
|
static void
|
|
wwv_newchan(
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
struct wwvunit *up;
|
|
struct sync *sp, *rp;
|
|
double rank, dtemp;
|
|
int i, j;
|
|
|
|
pp = peer->procptr;
|
|
up = (struct wwvunit *)pp->unitptr;
|
|
|
|
/*
|
|
* Search all five station pairs looking for the channel with
|
|
* maximum metric. If no station is found above thresholds, the
|
|
* reference ID is set to NONE and we wait for hotter ions.
|
|
*/
|
|
j = 0;
|
|
sp = NULL;
|
|
rank = 0;
|
|
for (i = 0; i < NCHAN; i++) {
|
|
rp = &up->mitig[i].wwvh;
|
|
dtemp = wwv_metric(rp);
|
|
if (dtemp >= rank) {
|
|
rank = dtemp;
|
|
sp = rp;
|
|
j = i;
|
|
}
|
|
rp = &up->mitig[i].wwv;
|
|
dtemp = wwv_metric(rp);
|
|
if (dtemp >= rank) {
|
|
rank = dtemp;
|
|
sp = rp;
|
|
j = i;
|
|
}
|
|
}
|
|
up->dchan = j;
|
|
up->sptr = sp;
|
|
up->status &= ~(SELV | SELH);
|
|
memcpy(&pp->refid, "NONE", 4);
|
|
if ((!(up->status & INSYNC) && rank >= MTHR) || ((up->status &
|
|
INSYNC) && rank >= TTHR)) {
|
|
up->status |= sp->select & (SELV | SELH);
|
|
memcpy(&pp->refid, sp->refid, 4);
|
|
}
|
|
if (peer->stratum <= 1)
|
|
memcpy(&peer->refid, &pp->refid, 4);
|
|
}
|
|
|
|
|
|
/*
|
|
* www_newgame - reset and start over
|
|
*/
|
|
static void
|
|
wwv_newgame(
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
struct wwvunit *up;
|
|
struct chan *cp;
|
|
int i;
|
|
|
|
pp = peer->procptr;
|
|
up = (struct wwvunit *)pp->unitptr;
|
|
|
|
/*
|
|
* Initialize strategic values. Note we set the leap bits
|
|
* NOTINSYNC and the refid "NONE".
|
|
*/
|
|
peer->leap = LEAP_NOTINSYNC;
|
|
up->watch = up->status = up->alarm = 0;
|
|
up->avgint = MINAVG;
|
|
up->freq = 0;
|
|
up->sptr = NULL;
|
|
up->gain = MAXGAIN / 2;
|
|
|
|
/*
|
|
* Initialize the station processes for audio gain, select bit,
|
|
* station/frequency identifier and reference identifier.
|
|
*/
|
|
memset(up->mitig, 0, sizeof(up->mitig));
|
|
for (i = 0; i < NCHAN; i++) {
|
|
cp = &up->mitig[i];
|
|
cp->gain = up->gain;
|
|
cp->wwv.select = SELV;
|
|
sprintf(cp->wwv.refid, "WV%.0f", floor(qsy[i]));
|
|
cp->wwvh.select = SELH;
|
|
sprintf(cp->wwvh.refid, "WH%.0f", floor(qsy[i]));
|
|
}
|
|
wwv_newchan(peer);
|
|
}
|
|
|
|
/*
|
|
* wwv_metric - compute station metric
|
|
*
|
|
* The most significant bits represent the number of ones in the
|
|
* reachability register. The least significant bits represent the
|
|
* minute sync pulse amplitude. The combined value is scaled 0-100.
|
|
*/
|
|
double
|
|
wwv_metric(
|
|
struct sync *sp /* station pointer */
|
|
)
|
|
{
|
|
double dtemp;
|
|
|
|
dtemp = sp->count * MAXSIG;
|
|
if (sp->synmax < MAXSIG)
|
|
dtemp += sp->synmax;
|
|
else
|
|
dtemp += MAXSIG - 1;
|
|
dtemp /= (AMAX + 1) * MAXSIG;
|
|
return (dtemp * 100.);
|
|
}
|
|
|
|
|
|
#ifdef ICOM
|
|
/*
|
|
* wwv_qsy - Tune ICOM receiver
|
|
*
|
|
* This routine saves the AGC for the current channel, switches to a new
|
|
* channel and restores the AGC for that channel. If a tunable receiver
|
|
* is not available, just fake it.
|
|
*/
|
|
static int
|
|
wwv_qsy(
|
|
struct peer *peer, /* peer structure pointer */
|
|
int chan /* channel */
|
|
)
|
|
{
|
|
int rval = 0;
|
|
struct refclockproc *pp;
|
|
struct wwvunit *up;
|
|
|
|
pp = peer->procptr;
|
|
up = (struct wwvunit *)pp->unitptr;
|
|
if (up->fd_icom > 0) {
|
|
up->mitig[up->achan].gain = up->gain;
|
|
rval = icom_freq(up->fd_icom, peer->ttl & 0x7f,
|
|
qsy[chan]);
|
|
up->achan = chan;
|
|
up->gain = up->mitig[up->achan].gain;
|
|
}
|
|
return (rval);
|
|
}
|
|
#endif /* ICOM */
|
|
|
|
|
|
/*
|
|
* timecode - assemble timecode string and length
|
|
*
|
|
* Prettytime format - similar to Spectracom
|
|
*
|
|
* sq yy ddd hh:mm:ss ld dut lset agc iden sig errs freq avgt
|
|
*
|
|
* s sync indicator ('?' or ' ')
|
|
* q error bits (hex 0-F)
|
|
* yyyy year of century
|
|
* ddd day of year
|
|
* hh hour of day
|
|
* mm minute of hour
|
|
* ss second of minute)
|
|
* l leap second warning (' ' or 'L')
|
|
* d DST state ('S', 'D', 'I', or 'O')
|
|
* dut DUT sign and magnitude (0.1 s)
|
|
* lset minutes since last clock update
|
|
* agc audio gain (0-255)
|
|
* iden reference identifier (station and frequency)
|
|
* sig signal quality (0-100)
|
|
* errs bit errors in last minute
|
|
* freq frequency offset (PPM)
|
|
* avgt averaging time (s)
|
|
*/
|
|
static int
|
|
timecode(
|
|
struct wwvunit *up, /* driver structure pointer */
|
|
char *ptr /* target string */
|
|
)
|
|
{
|
|
struct sync *sp;
|
|
int year, day, hour, minute, second, dut;
|
|
char synchar, leapchar, dst;
|
|
char cptr[50];
|
|
|
|
|
|
/*
|
|
* Common fixed-format fields
|
|
*/
|
|
synchar = (up->status & INSYNC) ? ' ' : '?';
|
|
year = up->decvec[YR].digit + up->decvec[YR + 1].digit * 10 +
|
|
2000;
|
|
day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
|
|
up->decvec[DA + 2].digit * 100;
|
|
hour = up->decvec[HR].digit + up->decvec[HR + 1].digit * 10;
|
|
minute = up->decvec[MN].digit + up->decvec[MN + 1].digit * 10;
|
|
second = 0;
|
|
leapchar = (up->misc & SECWAR) ? 'L' : ' ';
|
|
dst = dstcod[(up->misc >> 4) & 0x3];
|
|
dut = up->misc & 0x7;
|
|
if (!(up->misc & DUTS))
|
|
dut = -dut;
|
|
sprintf(ptr, "%c%1X", synchar, up->alarm);
|
|
sprintf(cptr, " %4d %03d %02d:%02d:%02d %c%c %+d",
|
|
year, day, hour, minute, second, leapchar, dst, dut);
|
|
strcat(ptr, cptr);
|
|
|
|
/*
|
|
* Specific variable-format fields
|
|
*/
|
|
sp = up->sptr;
|
|
sprintf(cptr, " %d %d %s %.0f %d %.1f %d", up->watch,
|
|
up->mitig[up->dchan].gain, sp->refid, wwv_metric(sp),
|
|
up->errbit, up->freq / SECOND * 1e6, up->avgint);
|
|
strcat(ptr, cptr);
|
|
return (strlen(ptr));
|
|
}
|
|
|
|
|
|
/*
|
|
* wwv_gain - adjust codec gain
|
|
*
|
|
* This routine is called at the end of each second. It counts the
|
|
* number of signal clips above the MAXSIG threshold during the previous
|
|
* second. If there are no clips, the gain is bumped up; if too many
|
|
* clips, it is bumped down. The decoder is relatively insensitive to
|
|
* amplitude, so this crudity works just fine. The input port is set and
|
|
* the error flag is cleared, mostly to be ornery.
|
|
*/
|
|
static void
|
|
wwv_gain(
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
struct wwvunit *up;
|
|
|
|
pp = peer->procptr;
|
|
up = (struct wwvunit *)pp->unitptr;
|
|
|
|
/*
|
|
* Apparently, the codec uses only the high order bits of the
|
|
* gain control field. Thus, it may take awhile for changes to
|
|
* wiggle the hardware bits.
|
|
*/
|
|
if (up->clipcnt == 0) {
|
|
up->gain += 4;
|
|
if (up->gain > MAXGAIN)
|
|
up->gain = MAXGAIN;
|
|
} else if (up->clipcnt > MAXCLP) {
|
|
up->gain -= 4;
|
|
if (up->gain < 0)
|
|
up->gain = 0;
|
|
}
|
|
audio_gain(up->gain, up->mongain, up->port);
|
|
up->clipcnt = 0;
|
|
#if DEBUG
|
|
if (debug > 1)
|
|
audio_show();
|
|
#endif
|
|
}
|
|
|
|
|
|
#else
|
|
int refclock_wwv_bs;
|
|
#endif /* REFCLOCK */
|