2223 lines
59 KiB
C
2223 lines
59 KiB
C
/* Subroutines used for code generation on the Mitsubishi M32R cpu.
|
||
Copyright (C) 1996, 1997, 1998 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "real.h"
|
||
#include "insn-config.h"
|
||
#include "conditions.h"
|
||
#include "insn-flags.h"
|
||
#include "output.h"
|
||
#include "insn-attr.h"
|
||
#include "flags.h"
|
||
#include "expr.h"
|
||
#include "recog.h"
|
||
|
||
/* Save the operands last given to a compare for use when we
|
||
generate a scc or bcc insn. */
|
||
rtx m32r_compare_op0, m32r_compare_op1;
|
||
|
||
/* Array of valid operand punctuation characters. */
|
||
char m32r_punct_chars[256];
|
||
|
||
/* Selected code model. */
|
||
char *m32r_model_string = M32R_MODEL_DEFAULT;
|
||
enum m32r_model m32r_model;
|
||
|
||
/* Selected SDA support. */
|
||
char *m32r_sdata_string = M32R_SDATA_DEFAULT;
|
||
enum m32r_sdata m32r_sdata;
|
||
|
||
|
||
/* Forward declaration. */
|
||
static void init_reg_tables PROTO((void));
|
||
|
||
/* Called by OVERRIDE_OPTIONS to initialize various things. */
|
||
|
||
void
|
||
m32r_init ()
|
||
{
|
||
init_reg_tables ();
|
||
|
||
/* Initialize array for PRINT_OPERAND_PUNCT_VALID_P. */
|
||
memset (m32r_punct_chars, 0, sizeof (m32r_punct_chars));
|
||
m32r_punct_chars['#'] = 1;
|
||
m32r_punct_chars['@'] = 1; /* ??? no longer used */
|
||
|
||
/* Provide default value if not specified. */
|
||
if (!g_switch_set)
|
||
g_switch_value = SDATA_DEFAULT_SIZE;
|
||
|
||
if (strcmp (m32r_model_string, "small") == 0)
|
||
m32r_model = M32R_MODEL_SMALL;
|
||
else if (strcmp (m32r_model_string, "medium") == 0)
|
||
m32r_model = M32R_MODEL_MEDIUM;
|
||
else if (strcmp (m32r_model_string, "large") == 0)
|
||
m32r_model = M32R_MODEL_LARGE;
|
||
else
|
||
error ("bad value (%s) for -mmodel switch", m32r_model_string);
|
||
|
||
if (strcmp (m32r_sdata_string, "none") == 0)
|
||
m32r_sdata = M32R_SDATA_NONE;
|
||
else if (strcmp (m32r_sdata_string, "sdata") == 0)
|
||
m32r_sdata = M32R_SDATA_SDATA;
|
||
else if (strcmp (m32r_sdata_string, "use") == 0)
|
||
m32r_sdata = M32R_SDATA_USE;
|
||
else
|
||
error ("bad value (%s) for -msdata switch", m32r_sdata_string);
|
||
|
||
}
|
||
|
||
/* Vectors to keep interesting information about registers where it can easily
|
||
be got. We use to use the actual mode value as the bit number, but there
|
||
is (or may be) more than 32 modes now. Instead we use two tables: one
|
||
indexed by hard register number, and one indexed by mode. */
|
||
|
||
/* The purpose of m32r_mode_class is to shrink the range of modes so that
|
||
they all fit (as bit numbers) in a 32 bit word (again). Each real mode is
|
||
mapped into one m32r_mode_class mode. */
|
||
|
||
enum m32r_mode_class
|
||
{
|
||
C_MODE,
|
||
S_MODE, D_MODE, T_MODE, O_MODE,
|
||
SF_MODE, DF_MODE, TF_MODE, OF_MODE
|
||
};
|
||
|
||
/* Modes for condition codes. */
|
||
#define C_MODES (1 << (int) C_MODE)
|
||
|
||
/* Modes for single-word and smaller quantities. */
|
||
#define S_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE))
|
||
|
||
/* Modes for double-word and smaller quantities. */
|
||
#define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << DF_MODE))
|
||
|
||
/* Modes for quad-word and smaller quantities. */
|
||
#define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE))
|
||
|
||
|
||
/* Value is 1 if register/mode pair is acceptable on arc. */
|
||
|
||
unsigned int m32r_hard_regno_mode_ok[FIRST_PSEUDO_REGISTER] =
|
||
{
|
||
T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES,
|
||
T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, S_MODES, S_MODES, S_MODES,
|
||
S_MODES, C_MODES
|
||
};
|
||
|
||
unsigned int m32r_mode_class [NUM_MACHINE_MODES];
|
||
|
||
enum reg_class m32r_regno_reg_class[FIRST_PSEUDO_REGISTER];
|
||
|
||
static void
|
||
init_reg_tables ()
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
||
{
|
||
switch (GET_MODE_CLASS (i))
|
||
{
|
||
case MODE_INT:
|
||
case MODE_PARTIAL_INT:
|
||
case MODE_COMPLEX_INT:
|
||
if (GET_MODE_SIZE (i) <= 4)
|
||
m32r_mode_class[i] = 1 << (int) S_MODE;
|
||
else if (GET_MODE_SIZE (i) == 8)
|
||
m32r_mode_class[i] = 1 << (int) D_MODE;
|
||
else if (GET_MODE_SIZE (i) == 16)
|
||
m32r_mode_class[i] = 1 << (int) T_MODE;
|
||
else if (GET_MODE_SIZE (i) == 32)
|
||
m32r_mode_class[i] = 1 << (int) O_MODE;
|
||
else
|
||
m32r_mode_class[i] = 0;
|
||
break;
|
||
case MODE_FLOAT:
|
||
case MODE_COMPLEX_FLOAT:
|
||
if (GET_MODE_SIZE (i) <= 4)
|
||
m32r_mode_class[i] = 1 << (int) SF_MODE;
|
||
else if (GET_MODE_SIZE (i) == 8)
|
||
m32r_mode_class[i] = 1 << (int) DF_MODE;
|
||
else if (GET_MODE_SIZE (i) == 16)
|
||
m32r_mode_class[i] = 1 << (int) TF_MODE;
|
||
else if (GET_MODE_SIZE (i) == 32)
|
||
m32r_mode_class[i] = 1 << (int) OF_MODE;
|
||
else
|
||
m32r_mode_class[i] = 0;
|
||
break;
|
||
case MODE_CC:
|
||
default:
|
||
/* mode_class hasn't been initialized yet for EXTRA_CC_MODES, so
|
||
we must explicitly check for them here. */
|
||
if (i == (int) CCmode)
|
||
m32r_mode_class[i] = 1 << (int) C_MODE;
|
||
else
|
||
m32r_mode_class[i] = 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
if (GPR_P (i))
|
||
m32r_regno_reg_class[i] = GENERAL_REGS;
|
||
else if (i == ARG_POINTER_REGNUM)
|
||
m32r_regno_reg_class[i] = GENERAL_REGS;
|
||
else
|
||
m32r_regno_reg_class[i] = NO_REGS;
|
||
}
|
||
}
|
||
|
||
/* M32R specific attribute support.
|
||
|
||
interrupt - for interrupt functions
|
||
|
||
model - select code model used to access object
|
||
|
||
small: addresses use 24 bits, use bl to make calls
|
||
medium: addresses use 32 bits, use bl to make calls
|
||
large: addresses use 32 bits, use seth/add3/jl to make calls
|
||
|
||
Grep for MODEL in m32r.h for more info.
|
||
*/
|
||
|
||
/* Return nonzero if IDENTIFIER is a valid decl attribute. */
|
||
|
||
int
|
||
m32r_valid_machine_decl_attribute (type, attributes, identifier, args)
|
||
tree type;
|
||
tree attributes;
|
||
tree identifier;
|
||
tree args;
|
||
{
|
||
static tree interrupt_ident, model_ident;
|
||
static tree small_ident, medium_ident, large_ident;
|
||
|
||
if (interrupt_ident == 0)
|
||
{
|
||
interrupt_ident = get_identifier ("__interrupt__");
|
||
model_ident = get_identifier ("__model__");
|
||
small_ident = get_identifier ("__small__");
|
||
medium_ident = get_identifier ("__medium__");
|
||
large_ident = get_identifier ("__large__");
|
||
}
|
||
|
||
if (identifier == interrupt_ident
|
||
&& list_length (args) == 0)
|
||
return 1;
|
||
|
||
if (identifier == model_ident
|
||
&& list_length (args) == 1
|
||
&& (TREE_VALUE (args) == small_ident
|
||
|| TREE_VALUE (args) == medium_ident
|
||
|| TREE_VALUE (args) == large_ident))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return zero if TYPE1 and TYPE are incompatible, one if they are compatible,
|
||
and two if they are nearly compatible (which causes a warning to be
|
||
generated). */
|
||
|
||
int
|
||
m32r_comp_type_attributes (type1, type2)
|
||
tree type1, type2;
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
/* Set the default attributes for TYPE. */
|
||
|
||
void
|
||
m32r_set_default_type_attributes (type)
|
||
tree type;
|
||
{
|
||
}
|
||
|
||
/* A C statement or statements to switch to the appropriate
|
||
section for output of DECL. DECL is either a `VAR_DECL' node
|
||
or a constant of some sort. RELOC indicates whether forming
|
||
the initial value of DECL requires link-time relocations. */
|
||
|
||
void
|
||
m32r_select_section (decl, reloc)
|
||
tree decl;
|
||
int reloc;
|
||
{
|
||
if (TREE_CODE (decl) == STRING_CST)
|
||
{
|
||
if (! flag_writable_strings)
|
||
const_section ();
|
||
else
|
||
data_section ();
|
||
}
|
||
else if (TREE_CODE (decl) == VAR_DECL)
|
||
{
|
||
if (SDATA_NAME_P (XSTR (XEXP (DECL_RTL (decl), 0), 0)))
|
||
sdata_section ();
|
||
else if ((flag_pic && reloc)
|
||
|| !TREE_READONLY (decl)
|
||
|| TREE_SIDE_EFFECTS (decl)
|
||
|| !DECL_INITIAL (decl)
|
||
|| (DECL_INITIAL (decl) != error_mark_node
|
||
&& !TREE_CONSTANT (DECL_INITIAL (decl))))
|
||
data_section ();
|
||
else
|
||
const_section ();
|
||
}
|
||
else
|
||
const_section ();
|
||
}
|
||
|
||
/* Encode section information of DECL, which is either a VAR_DECL,
|
||
FUNCTION_DECL, STRING_CST, CONSTRUCTOR, or ???.
|
||
|
||
For the M32R we want to record:
|
||
|
||
- whether the object lives in .sdata/.sbss.
|
||
objects living in .sdata/.sbss are prefixed with SDATA_FLAG_CHAR
|
||
|
||
- what code model should be used to access the object
|
||
small: recorded with no flag - for space efficiency since they'll
|
||
be the most common
|
||
medium: prefixed with MEDIUM_FLAG_CHAR
|
||
large: prefixed with LARGE_FLAG_CHAR
|
||
*/
|
||
|
||
void
|
||
m32r_encode_section_info (decl)
|
||
tree decl;
|
||
{
|
||
char prefix = 0;
|
||
tree model = 0;
|
||
|
||
switch (TREE_CODE (decl))
|
||
{
|
||
case VAR_DECL :
|
||
case FUNCTION_DECL :
|
||
model = lookup_attribute ("model", DECL_MACHINE_ATTRIBUTES (decl));
|
||
break;
|
||
case STRING_CST :
|
||
case CONSTRUCTOR :
|
||
/* ??? document all others that can appear here */
|
||
default :
|
||
return;
|
||
}
|
||
|
||
/* Only mark the object as being small data area addressable if
|
||
it hasn't been explicitly marked with a code model.
|
||
|
||
The user can explicitly put an object in the small data area with the
|
||
section attribute. If the object is in sdata/sbss and marked with a
|
||
code model do both [put the object in .sdata and mark it as being
|
||
addressed with a specific code model - don't mark it as being addressed
|
||
with an SDA reloc though]. This is ok and might be useful at times. If
|
||
the object doesn't fit the linker will give an error. */
|
||
|
||
if (! model)
|
||
{
|
||
if (TREE_CODE_CLASS (TREE_CODE (decl)) == 'd'
|
||
&& DECL_SECTION_NAME (decl) != NULL_TREE)
|
||
{
|
||
char *name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
|
||
if (! strcmp (name, ".sdata") || ! strcmp (name, ".sbss"))
|
||
{
|
||
#if 0 /* ??? There's no reason to disallow this, is there? */
|
||
if (TREE_READONLY (decl))
|
||
error_with_decl (decl, "const objects cannot go in .sdata/.sbss");
|
||
#endif
|
||
prefix = SDATA_FLAG_CHAR;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (TREE_CODE (decl) == VAR_DECL
|
||
&& ! TREE_READONLY (decl)
|
||
&& ! TARGET_SDATA_NONE)
|
||
{
|
||
int size = int_size_in_bytes (TREE_TYPE (decl));
|
||
|
||
if (size > 0 && size <= g_switch_value)
|
||
prefix = SDATA_FLAG_CHAR;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If data area not decided yet, check for a code model. */
|
||
if (prefix == 0)
|
||
{
|
||
if (model)
|
||
{
|
||
if (TREE_VALUE (TREE_VALUE (model)) == get_identifier ("__small__"))
|
||
; /* don't mark the symbol specially */
|
||
else if (TREE_VALUE (TREE_VALUE (model)) == get_identifier ("__medium__"))
|
||
prefix = MEDIUM_FLAG_CHAR;
|
||
else if (TREE_VALUE (TREE_VALUE (model)) == get_identifier ("__large__"))
|
||
prefix = LARGE_FLAG_CHAR;
|
||
else
|
||
abort (); /* shouldn't happen */
|
||
}
|
||
else
|
||
{
|
||
if (TARGET_MODEL_SMALL)
|
||
; /* don't mark the symbol specially */
|
||
else if (TARGET_MODEL_MEDIUM)
|
||
prefix = MEDIUM_FLAG_CHAR;
|
||
else if (TARGET_MODEL_LARGE)
|
||
prefix = LARGE_FLAG_CHAR;
|
||
else
|
||
abort (); /* shouldn't happen */
|
||
}
|
||
}
|
||
|
||
if (prefix != 0)
|
||
{
|
||
rtx rtl = (TREE_CODE_CLASS (TREE_CODE (decl)) != 'd'
|
||
? TREE_CST_RTL (decl) : DECL_RTL (decl));
|
||
char *str = XSTR (XEXP (rtl, 0), 0);
|
||
int len = strlen (str);
|
||
char *newstr = savealloc (len + 2);
|
||
strcpy (newstr + 1, str);
|
||
*newstr = prefix;
|
||
XSTR (XEXP (rtl, 0), 0) = newstr;
|
||
}
|
||
}
|
||
|
||
/* Do anything needed before RTL is emitted for each function. */
|
||
|
||
void
|
||
m32r_init_expanders ()
|
||
{
|
||
/* ??? At one point there was code here. The function is left in
|
||
to make it easy to experiment. */
|
||
}
|
||
|
||
/* Acceptable arguments to the call insn. */
|
||
|
||
int
|
||
call_address_operand (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
return symbolic_operand (op, int_mode);
|
||
|
||
/* Constants and values in registers are not OK, because
|
||
the m32r BL instruction can only support PC relative branching. */
|
||
}
|
||
|
||
int
|
||
call_operand (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
enum machine_mode mode = (enum machine_mode)int_mode;
|
||
|
||
if (GET_CODE (op) != MEM)
|
||
return 0;
|
||
op = XEXP (op, 0);
|
||
return call_address_operand (op, mode);
|
||
}
|
||
|
||
/* Returns 1 if OP is a symbol reference. */
|
||
|
||
int
|
||
symbolic_operand (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
switch (GET_CODE (op))
|
||
{
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
case CONST :
|
||
return 1;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return 1 if OP is a reference to an object in .sdata/.sbss. */
|
||
|
||
int
|
||
small_data_operand (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
if (! TARGET_SDATA_USE)
|
||
return 0;
|
||
|
||
if (GET_CODE (op) == SYMBOL_REF)
|
||
return SDATA_NAME_P (XSTR (op, 0));
|
||
|
||
if (GET_CODE (op) == CONST
|
||
&& GET_CODE (XEXP (op, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
|
||
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT
|
||
&& INT16_P (INTVAL (XEXP (XEXP (op, 0), 1))))
|
||
return SDATA_NAME_P (XSTR (XEXP (XEXP (op, 0), 0), 0));
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if OP is a symbol that can use 24 bit addressing. */
|
||
|
||
int
|
||
addr24_operand (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
if (GET_CODE (op) == LABEL_REF)
|
||
return TARGET_ADDR24;
|
||
|
||
if (GET_CODE (op) == SYMBOL_REF)
|
||
return (SMALL_NAME_P (XSTR (op, 0))
|
||
|| (TARGET_ADDR24
|
||
&& (CONSTANT_POOL_ADDRESS_P (op)
|
||
|| LIT_NAME_P (XSTR (op, 0)))));
|
||
|
||
if (GET_CODE (op) == CONST
|
||
&& GET_CODE (XEXP (op, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
|
||
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT
|
||
&& UINT24_P (INTVAL (XEXP (XEXP (op, 0), 1))))
|
||
{
|
||
rtx sym = XEXP (XEXP (op, 0), 0);
|
||
return (SMALL_NAME_P (XSTR (sym, 0))
|
||
|| (TARGET_ADDR24
|
||
&& (CONSTANT_POOL_ADDRESS_P (op)
|
||
|| LIT_NAME_P (XSTR (op, 0)))));
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if OP is a symbol that needs 32 bit addressing. */
|
||
|
||
int
|
||
addr32_operand (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
if (GET_CODE (op) == LABEL_REF)
|
||
return TARGET_ADDR32;
|
||
|
||
if (GET_CODE (op) == SYMBOL_REF)
|
||
return (! addr24_operand (op, int_mode)
|
||
&& ! small_data_operand (op, int_mode));
|
||
|
||
if (GET_CODE (op) == CONST
|
||
&& GET_CODE (XEXP (op, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
|
||
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT)
|
||
{
|
||
return (! addr24_operand (op, int_mode)
|
||
&& ! small_data_operand (op, int_mode));
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if OP is a function that can be called with the `bl' insn. */
|
||
|
||
int
|
||
call26_operand (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
if (GET_CODE (op) == SYMBOL_REF)
|
||
return ! LARGE_NAME_P (XSTR (op, 0));
|
||
|
||
return TARGET_CALL26;
|
||
}
|
||
|
||
/* Returns 1 if OP is an acceptable operand for seth/add3. */
|
||
|
||
int
|
||
seth_add3_operand (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
if (GET_CODE (op) == SYMBOL_REF
|
||
|| GET_CODE (op) == LABEL_REF)
|
||
return 1;
|
||
|
||
if (GET_CODE (op) == CONST
|
||
&& GET_CODE (XEXP (op, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
|
||
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT
|
||
&& INT16_P (INTVAL (XEXP (XEXP (op, 0), 1))))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return true if OP is a signed 16 bit immediate value
|
||
useful in comparisons. */
|
||
|
||
int
|
||
cmp_int16_operand (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
if (GET_CODE (op) != CONST_INT)
|
||
return 0;
|
||
return CMP_INT16_P (INTVAL (op));
|
||
}
|
||
|
||
/* Return true if OP is an unsigned 16 bit immediate value. */
|
||
|
||
int
|
||
uint16_operand (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
if (GET_CODE (op) != CONST_INT)
|
||
return 0;
|
||
return UINT16_P (INTVAL (op));
|
||
}
|
||
|
||
/* Return true if OP is a register or signed 8 bit value. */
|
||
|
||
int
|
||
reg_or_int16_operand (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
enum machine_mode mode = (enum machine_mode)int_mode;
|
||
|
||
if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG)
|
||
return register_operand (op, mode);
|
||
if (GET_CODE (op) != CONST_INT)
|
||
return 0;
|
||
return INT16_P (INTVAL (op));
|
||
}
|
||
|
||
/* Return true if OP is a register or an unsigned 16 bit value. */
|
||
|
||
int
|
||
reg_or_uint16_operand (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
enum machine_mode mode = (enum machine_mode)int_mode;
|
||
|
||
if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG)
|
||
return register_operand (op, mode);
|
||
if (GET_CODE (op) != CONST_INT)
|
||
return 0;
|
||
return UINT16_P (INTVAL (op));
|
||
}
|
||
|
||
/* Return true if OP is a register or signed 16 bit value for compares. */
|
||
|
||
int
|
||
reg_or_cmp_int16_operand (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
enum machine_mode mode = (enum machine_mode)int_mode;
|
||
|
||
if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG)
|
||
return register_operand (op, mode);
|
||
if (GET_CODE (op) != CONST_INT)
|
||
return 0;
|
||
return CMP_INT16_P (INTVAL (op));
|
||
}
|
||
|
||
/* Return true if OP is a const_int requiring two instructions to load. */
|
||
|
||
int
|
||
two_insn_const_operand (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
if (GET_CODE (op) != CONST_INT)
|
||
return 0;
|
||
if (INT16_P (INTVAL (op))
|
||
|| UINT24_P (INTVAL (op))
|
||
|| UPPER16_P (INTVAL (op)))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Return true if OP is an acceptable argument for a single word
|
||
move source. */
|
||
|
||
int
|
||
move_src_operand (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
enum machine_mode mode = (enum machine_mode)int_mode;
|
||
switch (GET_CODE (op))
|
||
{
|
||
case SYMBOL_REF :
|
||
case CONST :
|
||
return addr24_operand (op, int_mode);
|
||
case CONST_INT :
|
||
/* ??? We allow more cse opportunities if we only allow constants
|
||
loadable with one insn, and split the rest into two. The instances
|
||
where this would help should be rare and the current way is
|
||
simpler. */
|
||
return INT32_P (INTVAL (op));
|
||
case LABEL_REF :
|
||
return TARGET_ADDR24;
|
||
case CONST_DOUBLE :
|
||
if (mode == SFmode)
|
||
return 1;
|
||
else if (mode == SImode)
|
||
{
|
||
/* Large unsigned constants are represented as const_double's. */
|
||
unsigned HOST_WIDE_INT low, high;
|
||
|
||
low = CONST_DOUBLE_LOW (op);
|
||
high = CONST_DOUBLE_HIGH (op);
|
||
return high == 0 && low <= 0xffffffff;
|
||
}
|
||
else
|
||
return 0;
|
||
case REG :
|
||
return register_operand (op, mode);
|
||
case SUBREG :
|
||
/* (subreg (mem ...) ...) can occur here if the inner part was once a
|
||
pseudo-reg and is now a stack slot. */
|
||
if (GET_CODE (SUBREG_REG (op)) == MEM)
|
||
return address_operand (XEXP (SUBREG_REG (op), 0), mode);
|
||
else
|
||
return register_operand (op, mode);
|
||
case MEM :
|
||
return address_operand (XEXP (op, 0), mode);
|
||
default :
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return true if OP is an acceptable argument for a double word
|
||
move source. */
|
||
|
||
int
|
||
move_double_src_operand (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
enum machine_mode mode = (enum machine_mode)int_mode;
|
||
switch (GET_CODE (op))
|
||
{
|
||
case CONST_INT :
|
||
case CONST_DOUBLE :
|
||
return 1;
|
||
case REG :
|
||
return register_operand (op, mode);
|
||
case SUBREG :
|
||
/* (subreg (mem ...) ...) can occur here if the inner part was once a
|
||
pseudo-reg and is now a stack slot. */
|
||
if (GET_CODE (SUBREG_REG (op)) == MEM)
|
||
return move_double_src_operand (SUBREG_REG (op), int_mode);
|
||
else
|
||
return register_operand (op, mode);
|
||
case MEM :
|
||
/* Disallow auto inc/dec for now. */
|
||
if (GET_CODE (XEXP (op, 0)) == PRE_DEC
|
||
|| GET_CODE (XEXP (op, 0)) == PRE_INC)
|
||
return 0;
|
||
return address_operand (XEXP (op, 0), mode);
|
||
default :
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return true if OP is an acceptable argument for a move destination. */
|
||
|
||
int
|
||
move_dest_operand (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
enum machine_mode mode = (enum machine_mode)int_mode;
|
||
switch (GET_CODE (op))
|
||
{
|
||
case REG :
|
||
return register_operand (op, mode);
|
||
case SUBREG :
|
||
/* (subreg (mem ...) ...) can occur here if the inner part was once a
|
||
pseudo-reg and is now a stack slot. */
|
||
if (GET_CODE (SUBREG_REG (op)) == MEM)
|
||
return address_operand (XEXP (SUBREG_REG (op), 0), mode);
|
||
else
|
||
return register_operand (op, mode);
|
||
case MEM :
|
||
return address_operand (XEXP (op, 0), mode);
|
||
default :
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return 1 if OP is a DImode const we want to handle inline.
|
||
This must match the code in the movdi pattern.
|
||
It is used by the 'G' CONST_DOUBLE_OK_FOR_LETTER. */
|
||
|
||
int
|
||
easy_di_const (op)
|
||
rtx op;
|
||
{
|
||
rtx high_rtx, low_rtx;
|
||
HOST_WIDE_INT high, low;
|
||
|
||
split_double (op, &high_rtx, &low_rtx);
|
||
high = INTVAL (high_rtx);
|
||
low = INTVAL (low_rtx);
|
||
/* Pick constants loadable with 2 16 bit `ldi' insns. */
|
||
if (high >= -128 && high <= 127
|
||
&& low >= -128 && low <= 127)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if OP is a DFmode const we want to handle inline.
|
||
This must match the code in the movdf pattern.
|
||
It is used by the 'H' CONST_DOUBLE_OK_FOR_LETTER. */
|
||
|
||
int
|
||
easy_df_const (op)
|
||
rtx op;
|
||
{
|
||
REAL_VALUE_TYPE r;
|
||
long l[2];
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
|
||
REAL_VALUE_TO_TARGET_DOUBLE (r, l);
|
||
if (l[0] == 0 && l[1] == 0)
|
||
return 1;
|
||
if ((l[0] & 0xffff) == 0 && l[1] == 0)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if OP is an EQ or NE comparison operator. */
|
||
|
||
int
|
||
eqne_comparison_operator (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
enum rtx_code code = GET_CODE (op);
|
||
|
||
if (GET_RTX_CLASS (code) != '<')
|
||
return 0;
|
||
return (code == EQ || code == NE);
|
||
}
|
||
|
||
/* Return 1 if OP is a signed comparison operator. */
|
||
|
||
int
|
||
signed_comparison_operator (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
enum rtx_code code = GET_CODE (op);
|
||
|
||
if (GET_RTX_CLASS (code) != '<')
|
||
return 0;
|
||
return (code == EQ || code == NE
|
||
|| code == LT || code == LE || code == GT || code == GE);
|
||
}
|
||
|
||
/* Return 1 if OP is (mem (reg ...)).
|
||
This is used in insn length calcs. */
|
||
|
||
int
|
||
memreg_operand (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
return GET_CODE (op) == MEM && GET_CODE (XEXP (op, 0)) == REG;
|
||
}
|
||
|
||
/* Return non-zero if the operand is an insn that is a small insn.
|
||
Allow const_int 0 as well, which is a placeholder for NOP slots. */
|
||
|
||
int
|
||
small_insn_p (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
if (GET_CODE (op) == CONST_INT && INTVAL (op) == 0)
|
||
return 1;
|
||
|
||
if (GET_RTX_CLASS (GET_CODE (op)) != 'i')
|
||
return 0;
|
||
|
||
return get_attr_length (op) == 2;
|
||
}
|
||
|
||
/* Return non-zero if the operand is an insn that is a large insn. */
|
||
|
||
int
|
||
large_insn_p (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
if (GET_RTX_CLASS (GET_CODE (op)) != 'i')
|
||
return 0;
|
||
|
||
return get_attr_length (op) != 2;
|
||
}
|
||
|
||
|
||
/* Comparisons. */
|
||
|
||
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
|
||
return the mode to be used for the comparison. */
|
||
|
||
int
|
||
m32r_select_cc_mode (op, x, y)
|
||
int op;
|
||
rtx x, y;
|
||
{
|
||
return (int)CCmode;
|
||
}
|
||
|
||
/* X and Y are two things to compare using CODE. Emit the compare insn and
|
||
return the rtx for compare [arg0 of the if_then_else].
|
||
If need_compare is true then the comparison insn must be generated, rather
|
||
than being susummed into the following branch instruction. */
|
||
|
||
rtx
|
||
gen_compare (int_code, x, y, need_compare)
|
||
int int_code;
|
||
rtx x;
|
||
rtx y;
|
||
int need_compare;
|
||
{
|
||
enum rtx_code code = (enum rtx_code)int_code;
|
||
enum rtx_code compare_code;
|
||
enum rtx_code branch_code;
|
||
enum machine_mode mode = SELECT_CC_MODE (code, x, y);
|
||
rtx cc_reg = gen_rtx (REG, mode, CARRY_REGNUM);
|
||
int must_swap = 0;
|
||
|
||
switch (code)
|
||
{
|
||
case EQ: compare_code = EQ; branch_code = NE; break;
|
||
case NE: compare_code = EQ; branch_code = EQ; break;
|
||
case LT: compare_code = LT; branch_code = NE; break;
|
||
case LE: compare_code = LT; branch_code = EQ; must_swap = 1; break;
|
||
case GT: compare_code = LT; branch_code = NE; must_swap = 1; break;
|
||
case GE: compare_code = LT; branch_code = EQ; break;
|
||
case LTU: compare_code = LTU; branch_code = NE; break;
|
||
case LEU: compare_code = LTU; branch_code = EQ; must_swap = 1; break;
|
||
case GTU: compare_code = LTU; branch_code = NE; must_swap = 1; break;
|
||
case GEU: compare_code = LTU; branch_code = EQ; break;
|
||
}
|
||
|
||
if (need_compare)
|
||
{
|
||
switch (compare_code)
|
||
{
|
||
case EQ:
|
||
if (GET_CODE (y) == CONST_INT
|
||
&& CMP_INT16_P (INTVAL (y)) /* reg equal to small const. */
|
||
&& y != const0_rtx)
|
||
{
|
||
rtx tmp = gen_reg_rtx (SImode);
|
||
|
||
emit_insn (gen_cmp_ne_small_const_insn (tmp, x, y));
|
||
x = tmp;
|
||
y = const0_rtx;
|
||
}
|
||
else if (CONSTANT_P (y)) /* reg equal to const. */
|
||
{
|
||
rtx tmp = force_reg (GET_MODE (x), y);
|
||
y = tmp;
|
||
}
|
||
|
||
if (register_operand (y, SImode) /* reg equal to reg. */
|
||
|| y == const0_rtx) /* req equal to zero. */
|
||
{
|
||
emit_insn (gen_cmp_eqsi_insn (x, y));
|
||
|
||
return gen_rtx (code, mode, cc_reg, const0_rtx);
|
||
}
|
||
break;
|
||
|
||
case LT:
|
||
if (register_operand (y, SImode)
|
||
|| (GET_CODE (y) == CONST_INT && CMP_INT16_P (INTVAL (y))))
|
||
{
|
||
rtx tmp = gen_reg_rtx (SImode); /* reg compared to reg. */
|
||
|
||
switch (code)
|
||
{
|
||
case LT:
|
||
emit_insn (gen_cmp_ltsi_insn (x, y));
|
||
code = EQ;
|
||
break;
|
||
case LE:
|
||
if (y == const0_rtx)
|
||
tmp = const1_rtx;
|
||
else
|
||
emit_insn (gen_cmp_ne_small_const_insn (tmp, y, const1_rtx));
|
||
emit_insn (gen_cmp_ltsi_insn (x, tmp));
|
||
code = EQ;
|
||
break;
|
||
case GT:
|
||
if (GET_CODE (y) == CONST_INT)
|
||
tmp = gen_rtx (PLUS, SImode, y, const1_rtx);
|
||
else
|
||
emit_insn (gen_cmp_ne_small_const_insn (tmp, y, const1_rtx));
|
||
emit_insn (gen_cmp_ltsi_insn (x, tmp));
|
||
code = NE;
|
||
break;
|
||
case GE:
|
||
emit_insn (gen_cmp_ltsi_insn (x, y));
|
||
code = NE;
|
||
break;
|
||
default:
|
||
abort();
|
||
}
|
||
|
||
return gen_rtx (code, mode, cc_reg, const0_rtx);
|
||
}
|
||
break;
|
||
|
||
case LTU:
|
||
if (register_operand (y, SImode)
|
||
|| (GET_CODE (y) == CONST_INT && CMP_INT16_P (INTVAL (y))))
|
||
{
|
||
rtx tmp = gen_reg_rtx (SImode); /* reg (unsigned) compared to reg. */
|
||
|
||
switch (code)
|
||
{
|
||
case LTU:
|
||
emit_insn (gen_cmp_ltusi_insn (x, y));
|
||
code = EQ;
|
||
break;
|
||
case LEU:
|
||
if (y == const0_rtx)
|
||
tmp = const1_rtx;
|
||
else
|
||
emit_insn (gen_cmp_ne_small_const_insn (tmp, y, const1_rtx));
|
||
emit_insn (gen_cmp_ltusi_insn (x, tmp));
|
||
code = EQ;
|
||
break;
|
||
case GTU:
|
||
if (GET_CODE (y) == CONST_INT)
|
||
tmp = gen_rtx (PLUS, SImode, y, const1_rtx);
|
||
else
|
||
emit_insn (gen_cmp_ne_small_const_insn (tmp, y, const1_rtx));
|
||
emit_insn (gen_cmp_ltusi_insn (x, tmp));
|
||
code = NE;
|
||
break;
|
||
case GEU:
|
||
emit_insn (gen_cmp_ltusi_insn (x, y));
|
||
code = NE;
|
||
break;
|
||
default:
|
||
abort();
|
||
}
|
||
|
||
return gen_rtx (code, mode, cc_reg, const0_rtx);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
abort();
|
||
}
|
||
}
|
||
else
|
||
if (! TARGET_OLD_COMPARE)
|
||
{
|
||
/* reg/reg equal comparison */
|
||
if (compare_code == EQ
|
||
&& register_operand (y, SImode))
|
||
return gen_rtx (code, mode, x, y);
|
||
|
||
/* reg/zero signed comparison */
|
||
if ((compare_code == EQ || compare_code == LT)
|
||
&& y == const0_rtx)
|
||
return gen_rtx (code, mode, x, y);
|
||
|
||
/* reg/smallconst equal comparison */
|
||
if (compare_code == EQ
|
||
&& GET_CODE (y) == CONST_INT
|
||
&& CMP_INT16_P (INTVAL (y)))
|
||
{
|
||
rtx tmp = gen_reg_rtx (SImode);
|
||
emit_insn (gen_cmp_ne_small_const_insn (tmp, x, y));
|
||
return gen_rtx (code, mode, tmp, const0_rtx);
|
||
}
|
||
|
||
/* reg/const equal comparison */
|
||
if (compare_code == EQ
|
||
&& CONSTANT_P (y))
|
||
{
|
||
rtx tmp = force_reg (GET_MODE (x), y);
|
||
return gen_rtx (code, mode, x, tmp);
|
||
}
|
||
}
|
||
|
||
if (CONSTANT_P (y))
|
||
{
|
||
if (must_swap)
|
||
y = force_reg (GET_MODE (x), y);
|
||
else
|
||
{
|
||
int ok_const =
|
||
(code == LTU || code == LEU || code == GTU || code == GEU)
|
||
? uint16_operand (y, GET_MODE (y))
|
||
: reg_or_cmp_int16_operand (y, GET_MODE (y));
|
||
|
||
if (! ok_const)
|
||
y = force_reg (GET_MODE (x), y);
|
||
}
|
||
}
|
||
|
||
switch (compare_code)
|
||
{
|
||
case EQ :
|
||
emit_insn (gen_cmp_eqsi_insn (must_swap ? y : x, must_swap ? x : y));
|
||
break;
|
||
case LT :
|
||
emit_insn (gen_cmp_ltsi_insn (must_swap ? y : x, must_swap ? x : y));
|
||
break;
|
||
case LTU :
|
||
emit_insn (gen_cmp_ltusi_insn (must_swap ? y : x, must_swap ? x : y));
|
||
break;
|
||
}
|
||
|
||
return gen_rtx (branch_code, VOIDmode, cc_reg, CONST0_RTX (mode));
|
||
}
|
||
|
||
/* Split a 2 word move (DI or DF) into component parts. */
|
||
|
||
rtx
|
||
gen_split_move_double (operands)
|
||
rtx operands[];
|
||
{
|
||
enum machine_mode mode = GET_MODE (operands[0]);
|
||
rtx dest = operands[0];
|
||
rtx src = operands[1];
|
||
rtx val;
|
||
|
||
start_sequence ();
|
||
if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
|
||
{
|
||
/* reg = reg */
|
||
if (GET_CODE (src) == REG || GET_CODE (src) == SUBREG)
|
||
{
|
||
/* We normally copy the low-numbered register first. However, if
|
||
the first register operand 0 is the same as the second register of
|
||
operand 1, we must copy in the opposite order. */
|
||
int reverse = (REGNO (operands[0]) == REGNO (operands[1]) + 1);
|
||
emit_insn (gen_rtx_SET (VOIDmode,
|
||
operand_subword (dest, reverse, TRUE, mode),
|
||
operand_subword (src, reverse, TRUE, mode)));
|
||
|
||
emit_insn (gen_rtx_SET (VOIDmode,
|
||
operand_subword (dest, !reverse, TRUE, mode),
|
||
operand_subword (src, !reverse, TRUE, mode)));
|
||
}
|
||
|
||
/* reg = constant */
|
||
else if (GET_CODE (src) == CONST_INT || GET_CODE (src) == CONST_DOUBLE)
|
||
{
|
||
rtx words[2];
|
||
split_double (src, &words[0], &words[1]);
|
||
emit_insn (gen_rtx_SET (VOIDmode,
|
||
operand_subword (dest, 0, TRUE, mode),
|
||
words[0]));
|
||
|
||
emit_insn (gen_rtx_SET (VOIDmode,
|
||
operand_subword (dest, 1, TRUE, mode),
|
||
words[1]));
|
||
}
|
||
|
||
/* reg = mem */
|
||
else if (GET_CODE (src) == MEM)
|
||
{
|
||
/* If the high-address word is used in the address, we must load it
|
||
last. Otherwise, load it first. */
|
||
rtx addr = XEXP (src, 0);
|
||
int reverse = (refers_to_regno_p (REGNO (dest), REGNO (dest)+1,
|
||
addr, 0) != 0);
|
||
|
||
/* We used to optimize loads from single registers as
|
||
|
||
ld r1,r3+; ld r2,r3
|
||
|
||
if r3 were not used subsequently. However, the REG_NOTES aren't
|
||
propigated correctly by the reload phase, and it can cause bad
|
||
code to be generated. We could still try:
|
||
|
||
ld r1,r3+; ld r2,r3; addi r3,-4
|
||
|
||
which saves 2 bytes and doesn't force longword alignment. */
|
||
emit_insn (gen_rtx_SET (VOIDmode,
|
||
operand_subword (dest, reverse, TRUE, mode),
|
||
change_address (src, SImode,
|
||
plus_constant (addr,
|
||
reverse * UNITS_PER_WORD))));
|
||
|
||
emit_insn (gen_rtx_SET (VOIDmode,
|
||
operand_subword (dest, !reverse, TRUE, mode),
|
||
change_address (src, SImode,
|
||
plus_constant (addr,
|
||
(!reverse) * UNITS_PER_WORD))));
|
||
}
|
||
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* mem = reg */
|
||
/* We used to optimize loads from single registers as
|
||
|
||
st r1,r3; st r2,+r3
|
||
|
||
if r3 were not used subsequently. However, the REG_NOTES aren't
|
||
propigated correctly by the reload phase, and it can cause bad
|
||
code to be generated. We could still try:
|
||
|
||
st r1,r3; st r2,+r3; addi r3,-4
|
||
|
||
which saves 2 bytes and doesn't force longword alignment. */
|
||
else if (GET_CODE (dest) == MEM
|
||
&& (GET_CODE (src) == REG || GET_CODE (src) == SUBREG))
|
||
{
|
||
rtx addr = XEXP (dest, 0);
|
||
|
||
emit_insn (gen_rtx_SET (VOIDmode,
|
||
change_address (dest, SImode, addr),
|
||
operand_subword (src, 0, TRUE, mode)));
|
||
|
||
emit_insn (gen_rtx_SET (VOIDmode,
|
||
change_address (dest, SImode,
|
||
plus_constant (addr, UNITS_PER_WORD)),
|
||
operand_subword (src, 1, TRUE, mode)));
|
||
}
|
||
|
||
else
|
||
abort ();
|
||
|
||
val = gen_sequence ();
|
||
end_sequence ();
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Implements the FUNCTION_ARG_PARTIAL_NREGS macro. */
|
||
|
||
int
|
||
function_arg_partial_nregs (cum, int_mode, type, named)
|
||
CUMULATIVE_ARGS *cum;
|
||
int int_mode;
|
||
tree type;
|
||
int named;
|
||
{
|
||
enum machine_mode mode = (enum machine_mode)int_mode;
|
||
int ret;
|
||
int size = (((mode == BLKmode && type)
|
||
? int_size_in_bytes (type)
|
||
: GET_MODE_SIZE (mode)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
|
||
|
||
if (*cum >= M32R_MAX_PARM_REGS)
|
||
ret = 0;
|
||
else if (*cum + size > M32R_MAX_PARM_REGS)
|
||
ret = (*cum + size) - M32R_MAX_PARM_REGS;
|
||
else
|
||
ret = 0;
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Do any needed setup for a variadic function. For the M32R, we must
|
||
create a register parameter block, and then copy any anonymous arguments
|
||
in registers to memory.
|
||
|
||
CUM has not been updated for the last named argument which has type TYPE
|
||
and mode MODE, and we rely on this fact. */
|
||
|
||
void
|
||
m32r_setup_incoming_varargs (cum, int_mode, type, pretend_size, no_rtl)
|
||
CUMULATIVE_ARGS *cum;
|
||
int int_mode;
|
||
tree type;
|
||
int *pretend_size;
|
||
int no_rtl;
|
||
{
|
||
enum machine_mode mode = (enum machine_mode)int_mode;
|
||
int first_anon_arg;
|
||
|
||
if (no_rtl)
|
||
return;
|
||
|
||
/* All BLKmode values are passed by reference. */
|
||
if (mode == BLKmode)
|
||
abort ();
|
||
|
||
/* We must treat `__builtin_va_alist' as an anonymous arg. */
|
||
if (current_function_varargs)
|
||
first_anon_arg = *cum;
|
||
else
|
||
first_anon_arg = (ROUND_ADVANCE_CUM (*cum, mode, type)
|
||
+ ROUND_ADVANCE_ARG (mode, type));
|
||
|
||
if (first_anon_arg < M32R_MAX_PARM_REGS)
|
||
{
|
||
/* Note that first_reg_offset < M32R_MAX_PARM_REGS. */
|
||
int first_reg_offset = first_anon_arg;
|
||
/* Size in words to "pretend" allocate. */
|
||
int size = M32R_MAX_PARM_REGS - first_reg_offset;
|
||
rtx regblock;
|
||
|
||
regblock = gen_rtx (MEM, BLKmode,
|
||
plus_constant (arg_pointer_rtx,
|
||
FIRST_PARM_OFFSET (0)));
|
||
move_block_from_reg (first_reg_offset, regblock,
|
||
size, size * UNITS_PER_WORD);
|
||
|
||
*pretend_size = (size * UNITS_PER_WORD);
|
||
}
|
||
}
|
||
|
||
/* Cost functions. */
|
||
|
||
/* Provide the costs of an addressing mode that contains ADDR.
|
||
If ADDR is not a valid address, its cost is irrelevant.
|
||
|
||
This function is trivial at the moment. This code doesn't live
|
||
in m32r.h so it's easy to experiment. */
|
||
|
||
int
|
||
m32r_address_cost (addr)
|
||
rtx addr;
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
/* Type of function DECL.
|
||
|
||
The result is cached. To reset the cache at the end of a function,
|
||
call with DECL = NULL_TREE. */
|
||
|
||
enum m32r_function_type
|
||
m32r_compute_function_type (decl)
|
||
tree decl;
|
||
{
|
||
/* Cached value. */
|
||
static enum m32r_function_type fn_type = M32R_FUNCTION_UNKNOWN;
|
||
/* Last function we were called for. */
|
||
static tree last_fn = NULL_TREE;
|
||
|
||
/* Resetting the cached value? */
|
||
if (decl == NULL_TREE)
|
||
{
|
||
fn_type = M32R_FUNCTION_UNKNOWN;
|
||
last_fn = NULL_TREE;
|
||
return fn_type;
|
||
}
|
||
|
||
if (decl == last_fn && fn_type != M32R_FUNCTION_UNKNOWN)
|
||
return fn_type;
|
||
|
||
/* Compute function type. */
|
||
fn_type = (lookup_attribute ("interrupt", DECL_MACHINE_ATTRIBUTES (current_function_decl)) != NULL_TREE
|
||
? M32R_FUNCTION_INTERRUPT
|
||
: M32R_FUNCTION_NORMAL);
|
||
|
||
last_fn = decl;
|
||
return fn_type;
|
||
}
|
||
/* Function prologue/epilogue handlers. */
|
||
|
||
/* M32R stack frames look like:
|
||
|
||
Before call After call
|
||
+-----------------------+ +-----------------------+
|
||
| | | |
|
||
high | local variables, | | local variables, |
|
||
mem | reg save area, etc. | | reg save area, etc. |
|
||
| | | |
|
||
+-----------------------+ +-----------------------+
|
||
| | | |
|
||
| arguments on stack. | | arguments on stack. |
|
||
| | | |
|
||
SP+0->+-----------------------+ +-----------------------+
|
||
| reg parm save area, |
|
||
| only created for |
|
||
| variable argument |
|
||
| functions |
|
||
+-----------------------+
|
||
| previous frame ptr |
|
||
+-----------------------+
|
||
| |
|
||
| register save area |
|
||
| |
|
||
+-----------------------+
|
||
| return address |
|
||
+-----------------------+
|
||
| |
|
||
| local variables |
|
||
| |
|
||
+-----------------------+
|
||
| |
|
||
| alloca allocations |
|
||
| |
|
||
+-----------------------+
|
||
| |
|
||
low | arguments on stack |
|
||
memory | |
|
||
SP+0->+-----------------------+
|
||
|
||
Notes:
|
||
1) The "reg parm save area" does not exist for non variable argument fns.
|
||
2) The "reg parm save area" can be eliminated completely if we saved regs
|
||
containing anonymous args separately but that complicates things too
|
||
much (so it's not done).
|
||
3) The return address is saved after the register save area so as to have as
|
||
many insns as possible between the restoration of `lr' and the `jmp lr'.
|
||
*/
|
||
|
||
/* Structure to be filled in by m32r_compute_frame_size with register
|
||
save masks, and offsets for the current function. */
|
||
struct m32r_frame_info
|
||
{
|
||
unsigned int total_size; /* # bytes that the entire frame takes up */
|
||
unsigned int extra_size; /* # bytes of extra stuff */
|
||
unsigned int pretend_size; /* # bytes we push and pretend caller did */
|
||
unsigned int args_size; /* # bytes that outgoing arguments take up */
|
||
unsigned int reg_size; /* # bytes needed to store regs */
|
||
unsigned int var_size; /* # bytes that variables take up */
|
||
unsigned int gmask; /* mask of saved gp registers */
|
||
unsigned int save_fp; /* nonzero if fp must be saved */
|
||
unsigned int save_lr; /* nonzero if lr (return addr) must be saved */
|
||
int initialized; /* nonzero if frame size already calculated */
|
||
};
|
||
|
||
/* Current frame information calculated by m32r_compute_frame_size. */
|
||
static struct m32r_frame_info current_frame_info;
|
||
|
||
/* Zero structure to initialize current_frame_info. */
|
||
static struct m32r_frame_info zero_frame_info;
|
||
|
||
#define FRAME_POINTER_MASK (1 << (FRAME_POINTER_REGNUM))
|
||
#define RETURN_ADDR_MASK (1 << (RETURN_ADDR_REGNUM))
|
||
|
||
/* Tell prologue and epilogue if register REGNO should be saved / restored.
|
||
The return address and frame pointer are treated separately.
|
||
Don't consider them here. */
|
||
#define MUST_SAVE_REGISTER(regno, interrupt_p) \
|
||
((regno) != RETURN_ADDR_REGNUM && (regno) != FRAME_POINTER_REGNUM \
|
||
&& (regs_ever_live[regno] && (!call_used_regs[regno] || interrupt_p)))
|
||
|
||
#define MUST_SAVE_FRAME_POINTER (regs_ever_live[FRAME_POINTER_REGNUM])
|
||
#define MUST_SAVE_RETURN_ADDR (regs_ever_live[RETURN_ADDR_REGNUM] || profile_flag)
|
||
|
||
#define SHORT_INSN_SIZE 2 /* size of small instructions */
|
||
#define LONG_INSN_SIZE 4 /* size of long instructions */
|
||
|
||
/* Return the bytes needed to compute the frame pointer from the current
|
||
stack pointer.
|
||
|
||
SIZE is the size needed for local variables. */
|
||
|
||
unsigned int
|
||
m32r_compute_frame_size (size)
|
||
int size; /* # of var. bytes allocated. */
|
||
{
|
||
int regno;
|
||
unsigned int total_size, var_size, args_size, pretend_size, extra_size;
|
||
unsigned int reg_size, frame_size;
|
||
unsigned int gmask;
|
||
enum m32r_function_type fn_type;
|
||
int interrupt_p;
|
||
|
||
var_size = M32R_STACK_ALIGN (size);
|
||
args_size = M32R_STACK_ALIGN (current_function_outgoing_args_size);
|
||
pretend_size = current_function_pretend_args_size;
|
||
extra_size = FIRST_PARM_OFFSET (0);
|
||
total_size = extra_size + pretend_size + args_size + var_size;
|
||
reg_size = 0;
|
||
gmask = 0;
|
||
|
||
/* See if this is an interrupt handler. Call used registers must be saved
|
||
for them too. */
|
||
fn_type = m32r_compute_function_type (current_function_decl);
|
||
interrupt_p = M32R_INTERRUPT_P (fn_type);
|
||
|
||
/* Calculate space needed for registers. */
|
||
|
||
for (regno = 0; regno < M32R_MAX_INT_REGS; regno++)
|
||
{
|
||
if (MUST_SAVE_REGISTER (regno, interrupt_p))
|
||
{
|
||
reg_size += UNITS_PER_WORD;
|
||
gmask |= 1 << regno;
|
||
}
|
||
}
|
||
|
||
current_frame_info.save_fp = MUST_SAVE_FRAME_POINTER;
|
||
current_frame_info.save_lr = MUST_SAVE_RETURN_ADDR;
|
||
|
||
reg_size += ((current_frame_info.save_fp + current_frame_info.save_lr)
|
||
* UNITS_PER_WORD);
|
||
total_size += reg_size;
|
||
|
||
/* ??? Not sure this is necessary, and I don't think the epilogue
|
||
handler will do the right thing if this changes total_size. */
|
||
total_size = M32R_STACK_ALIGN (total_size);
|
||
|
||
frame_size = total_size - (pretend_size + reg_size);
|
||
|
||
/* Save computed information. */
|
||
current_frame_info.total_size = total_size;
|
||
current_frame_info.extra_size = extra_size;
|
||
current_frame_info.pretend_size = pretend_size;
|
||
current_frame_info.var_size = var_size;
|
||
current_frame_info.args_size = args_size;
|
||
current_frame_info.reg_size = reg_size;
|
||
current_frame_info.gmask = gmask;
|
||
current_frame_info.initialized = reload_completed;
|
||
|
||
/* Ok, we're done. */
|
||
return total_size;
|
||
}
|
||
|
||
/* When the `length' insn attribute is used, this macro specifies the
|
||
value to be assigned to the address of the first insn in a
|
||
function. If not specified, 0 is used. */
|
||
|
||
int
|
||
m32r_first_insn_address ()
|
||
{
|
||
if (! current_frame_info.initialized)
|
||
m32r_compute_frame_size (get_frame_size ());
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Expand the m32r prologue as a series of insns. */
|
||
|
||
void
|
||
m32r_expand_prologue ()
|
||
{
|
||
int regno;
|
||
int frame_size;
|
||
unsigned int gmask = current_frame_info.gmask;
|
||
|
||
if (! current_frame_info.initialized)
|
||
m32r_compute_frame_size (get_frame_size ());
|
||
|
||
gmask = current_frame_info.gmask;
|
||
|
||
/* These cases shouldn't happen. Catch them now. */
|
||
if (current_frame_info.total_size == 0 && gmask)
|
||
abort ();
|
||
|
||
/* Allocate space for register arguments if this is a variadic function. */
|
||
if (current_frame_info.pretend_size != 0)
|
||
emit_insn (gen_addsi3 (stack_pointer_rtx,
|
||
stack_pointer_rtx,
|
||
GEN_INT (-current_frame_info.pretend_size)));
|
||
|
||
/* Save any registers we need to and set up fp. */
|
||
|
||
if (current_frame_info.save_fp)
|
||
emit_insn (gen_movsi_push (stack_pointer_rtx, frame_pointer_rtx));
|
||
|
||
gmask &= ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK);
|
||
|
||
/* Save any needed call-saved regs (and call-used if this is an
|
||
interrupt handler). */
|
||
for (regno = 0; regno <= M32R_MAX_INT_REGS; ++regno)
|
||
{
|
||
if ((gmask & (1 << regno)) != 0)
|
||
emit_insn (gen_movsi_push (stack_pointer_rtx,
|
||
gen_rtx_REG (Pmode, regno)));
|
||
}
|
||
|
||
if (current_frame_info.save_lr)
|
||
emit_insn (gen_movsi_push (stack_pointer_rtx,
|
||
gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)));
|
||
|
||
/* Allocate the stack frame. */
|
||
frame_size = (current_frame_info.total_size
|
||
- (current_frame_info.pretend_size
|
||
+ current_frame_info.reg_size));
|
||
|
||
if (frame_size == 0)
|
||
; /* nothing to do */
|
||
else if (frame_size <= 32768)
|
||
emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
|
||
GEN_INT (-frame_size)));
|
||
else
|
||
{
|
||
rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
|
||
emit_insn (gen_movsi (tmp, GEN_INT (frame_size)));
|
||
emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp));
|
||
}
|
||
|
||
if (frame_pointer_needed)
|
||
emit_insn (gen_movsi (frame_pointer_rtx, stack_pointer_rtx));
|
||
|
||
if (profile_flag || profile_block_flag)
|
||
emit_insn (gen_blockage ());
|
||
}
|
||
|
||
|
||
/* Set up the stack and frame pointer (if desired) for the function.
|
||
Note, if this is changed, you need to mirror the changes in
|
||
m32r_compute_frame_size which calculates the prolog size. */
|
||
|
||
void
|
||
m32r_output_function_prologue (file, size)
|
||
FILE * file;
|
||
int size;
|
||
{
|
||
enum m32r_function_type fn_type = m32r_compute_function_type (current_function_decl);
|
||
|
||
/* If this is an interrupt handler, mark it as such. */
|
||
if (M32R_INTERRUPT_P (fn_type))
|
||
{
|
||
fprintf (file, "\t%s interrupt handler\n",
|
||
ASM_COMMENT_START);
|
||
}
|
||
|
||
if (! current_frame_info.initialized)
|
||
m32r_compute_frame_size (size);
|
||
|
||
/* This is only for the human reader. */
|
||
fprintf (file,
|
||
"\t%s PROLOGUE, vars= %d, regs= %d, args= %d, extra= %d\n",
|
||
ASM_COMMENT_START,
|
||
current_frame_info.var_size,
|
||
current_frame_info.reg_size / 4,
|
||
current_frame_info.args_size,
|
||
current_frame_info.extra_size);
|
||
}
|
||
|
||
/* Do any necessary cleanup after a function to restore stack, frame,
|
||
and regs. */
|
||
|
||
void
|
||
m32r_output_function_epilogue (file, size)
|
||
FILE * file;
|
||
int size;
|
||
{
|
||
int regno;
|
||
int noepilogue = FALSE;
|
||
int total_size;
|
||
enum m32r_function_type fn_type = m32r_compute_function_type (current_function_decl);
|
||
|
||
/* This is only for the human reader. */
|
||
fprintf (file, "\t%s EPILOGUE\n", ASM_COMMENT_START);
|
||
|
||
if (!current_frame_info.initialized)
|
||
abort ();
|
||
total_size = current_frame_info.total_size;
|
||
|
||
if (total_size == 0)
|
||
{
|
||
rtx insn = get_last_insn ();
|
||
|
||
/* If the last insn was a BARRIER, we don't have to write any code
|
||
because a jump (aka return) was put there. */
|
||
if (GET_CODE (insn) == NOTE)
|
||
insn = prev_nonnote_insn (insn);
|
||
if (insn && GET_CODE (insn) == BARRIER)
|
||
noepilogue = TRUE;
|
||
}
|
||
|
||
if (!noepilogue)
|
||
{
|
||
unsigned int pretend_size = current_frame_info.pretend_size;
|
||
unsigned int frame_size = total_size - pretend_size;
|
||
unsigned int var_size = current_frame_info.var_size;
|
||
unsigned int args_size = current_frame_info.args_size;
|
||
unsigned int gmask = current_frame_info.gmask;
|
||
int can_trust_sp_p = !current_function_calls_alloca;
|
||
char * sp_str = reg_names[STACK_POINTER_REGNUM];
|
||
char * fp_str = reg_names[FRAME_POINTER_REGNUM];
|
||
|
||
/* The first thing to do is point the sp at the bottom of the register
|
||
save area. */
|
||
if (can_trust_sp_p)
|
||
{
|
||
unsigned int reg_offset = var_size + args_size;
|
||
if (reg_offset == 0)
|
||
; /* nothing to do */
|
||
else if (reg_offset < 128)
|
||
fprintf (file, "\taddi %s,%s%d\n",
|
||
sp_str, IMMEDIATE_PREFIX, reg_offset);
|
||
else if (reg_offset < 32768)
|
||
fprintf (file, "\tadd3 %s,%s,%s%d\n",
|
||
sp_str, sp_str, IMMEDIATE_PREFIX, reg_offset);
|
||
else
|
||
fprintf (file, "\tld24 %s,%s%d\n\tadd %s,%s\n",
|
||
reg_names[PROLOGUE_TMP_REGNUM],
|
||
IMMEDIATE_PREFIX, reg_offset,
|
||
sp_str, reg_names[PROLOGUE_TMP_REGNUM]);
|
||
}
|
||
else if (frame_pointer_needed)
|
||
{
|
||
unsigned int reg_offset = var_size + args_size;
|
||
if (reg_offset == 0)
|
||
fprintf (file, "\tmv %s,%s\n", sp_str, fp_str);
|
||
else if (reg_offset < 32768)
|
||
fprintf (file, "\tadd3 %s,%s,%s%d\n",
|
||
sp_str, fp_str, IMMEDIATE_PREFIX, reg_offset);
|
||
else
|
||
fprintf (file, "\tld24 %s,%s%d\n\tadd %s,%s\n",
|
||
reg_names[PROLOGUE_TMP_REGNUM],
|
||
IMMEDIATE_PREFIX, reg_offset,
|
||
sp_str, reg_names[PROLOGUE_TMP_REGNUM]);
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
if (current_frame_info.save_lr)
|
||
fprintf (file, "\tpop %s\n", reg_names[RETURN_ADDR_REGNUM]);
|
||
|
||
/* Restore any saved registers, in reverse order of course. */
|
||
gmask &= ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK);
|
||
for (regno = M32R_MAX_INT_REGS - 1; regno >= 0; --regno)
|
||
{
|
||
if ((gmask & (1L << regno)) != 0)
|
||
fprintf (file, "\tpop %s\n", reg_names[regno]);
|
||
}
|
||
|
||
if (current_frame_info.save_fp)
|
||
fprintf (file, "\tpop %s\n", fp_str);
|
||
|
||
/* Remove varargs area if present. */
|
||
if (current_frame_info.pretend_size != 0)
|
||
fprintf (file, "\taddi %s,%s%d\n",
|
||
sp_str, IMMEDIATE_PREFIX, current_frame_info.pretend_size);
|
||
|
||
/* Emit the return instruction. */
|
||
if (M32R_INTERRUPT_P (fn_type))
|
||
fprintf (file, "\trte\n");
|
||
else
|
||
fprintf (file, "\tjmp %s\n", reg_names[RETURN_ADDR_REGNUM]);
|
||
}
|
||
|
||
#if 0 /* no longer needed */
|
||
/* Ensure the function cleanly ends on a 32 bit boundary. */
|
||
fprintf (file, "\t.fillinsn\n");
|
||
#endif
|
||
|
||
/* Reset state info for each function. */
|
||
current_frame_info = zero_frame_info;
|
||
m32r_compute_function_type (NULL_TREE);
|
||
}
|
||
|
||
/* PIC */
|
||
|
||
/* Emit special PIC prologues and epilogues. */
|
||
|
||
void
|
||
m32r_finalize_pic ()
|
||
{
|
||
/* nothing to do */
|
||
}
|
||
|
||
/* Nested function support. */
|
||
|
||
/* Emit RTL insns to initialize the variable parts of a trampoline.
|
||
FNADDR is an RTX for the address of the function's pure code.
|
||
CXT is an RTX for the static chain value for the function. */
|
||
|
||
void
|
||
m32r_initialize_trampoline (tramp, fnaddr, cxt)
|
||
rtx tramp, fnaddr, cxt;
|
||
{
|
||
}
|
||
|
||
/* Set the cpu type and print out other fancy things,
|
||
at the top of the file. */
|
||
|
||
void
|
||
m32r_asm_file_start (file)
|
||
FILE * file;
|
||
{
|
||
if (flag_verbose_asm)
|
||
fprintf (file, "%s M32R/D special options: -G %d\n",
|
||
ASM_COMMENT_START, g_switch_value);
|
||
}
|
||
|
||
/* Print operand X (an rtx) in assembler syntax to file FILE.
|
||
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
|
||
For `%' followed by punctuation, CODE is the punctuation and X is null. */
|
||
|
||
void
|
||
m32r_print_operand (file, x, code)
|
||
FILE * file;
|
||
rtx x;
|
||
int code;
|
||
{
|
||
rtx addr;
|
||
|
||
switch (code)
|
||
{
|
||
case 'R' :
|
||
/* Write second word of DImode or DFmode reference,
|
||
register or memory. */
|
||
if (GET_CODE (x) == REG)
|
||
fputs (reg_names[REGNO (x)+1], file);
|
||
else if (GET_CODE (x) == MEM)
|
||
{
|
||
fprintf (file, "@(");
|
||
/* Handle possible auto-increment. Since it is pre-increment and
|
||
we have already done it, we can just use an offset of four. */
|
||
/* ??? This is taken from rs6000.c I think. I don't think it is
|
||
currently necessary, but keep it around. */
|
||
if (GET_CODE (XEXP (x, 0)) == PRE_INC
|
||
|| GET_CODE (XEXP (x, 0)) == PRE_DEC)
|
||
output_address (plus_constant (XEXP (XEXP (x, 0), 0), 4));
|
||
else
|
||
output_address (plus_constant (XEXP (x, 0), 4));
|
||
fputc (')', file);
|
||
}
|
||
else
|
||
output_operand_lossage ("invalid operand to %R code");
|
||
return;
|
||
|
||
case 'H' : /* High word */
|
||
case 'L' : /* Low word */
|
||
if (GET_CODE (x) == REG)
|
||
{
|
||
/* L = least significant word, H = most significant word */
|
||
if ((WORDS_BIG_ENDIAN != 0) ^ (code == 'L'))
|
||
fputs (reg_names[REGNO (x)], file);
|
||
else
|
||
fputs (reg_names[REGNO (x)+1], file);
|
||
}
|
||
else if (GET_CODE (x) == CONST_INT
|
||
|| GET_CODE (x) == CONST_DOUBLE)
|
||
{
|
||
rtx first, second;
|
||
|
||
split_double (x, &first, &second);
|
||
fprintf (file, "0x%08lx",
|
||
code == 'L' ? INTVAL (first) : INTVAL (second));
|
||
}
|
||
else
|
||
output_operand_lossage ("invalid operand to %H/%L code");
|
||
return;
|
||
|
||
case 'A' :
|
||
{
|
||
REAL_VALUE_TYPE d;
|
||
char str[30];
|
||
|
||
if (GET_CODE (x) != CONST_DOUBLE
|
||
|| GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT)
|
||
abort ();
|
||
REAL_VALUE_FROM_CONST_DOUBLE (d, x);
|
||
REAL_VALUE_TO_DECIMAL (d, "%.20e", str);
|
||
fprintf (file, "%s", str);
|
||
return;
|
||
}
|
||
|
||
case 'B' : /* Bottom half */
|
||
case 'T' : /* Top half */
|
||
/* Output the argument to a `seth' insn (sets the Top half-word).
|
||
For constants output arguments to a seth/or3 pair to set Top and
|
||
Bottom halves. For symbols output arguments to a seth/add3 pair to
|
||
set Top and Bottom halves. The difference exists because for
|
||
constants seth/or3 is more readable but for symbols we need to use
|
||
the same scheme as `ld' and `st' insns (16 bit addend is signed). */
|
||
switch (GET_CODE (x))
|
||
{
|
||
case CONST_INT :
|
||
case CONST_DOUBLE :
|
||
{
|
||
rtx first, second;
|
||
|
||
split_double (x, &first, &second);
|
||
x = WORDS_BIG_ENDIAN ? second : first;
|
||
fprintf (file,
|
||
#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
|
||
"0x%x",
|
||
#else
|
||
"0x%lx",
|
||
#endif
|
||
(code == 'B'
|
||
? INTVAL (x) & 0xffff
|
||
: (INTVAL (x) >> 16) & 0xffff));
|
||
}
|
||
return;
|
||
case CONST :
|
||
case SYMBOL_REF :
|
||
if (code == 'B'
|
||
&& small_data_operand (x, VOIDmode))
|
||
{
|
||
fputs ("sda(", file);
|
||
output_addr_const (file, x);
|
||
fputc (')', file);
|
||
return;
|
||
}
|
||
/* fall through */
|
||
case LABEL_REF :
|
||
fputs (code == 'T' ? "shigh(" : "low(", file);
|
||
output_addr_const (file, x);
|
||
fputc (')', file);
|
||
return;
|
||
default :
|
||
output_operand_lossage ("invalid operand to %T/%B code");
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case 'U' :
|
||
/* ??? wip */
|
||
/* Output a load/store with update indicator if appropriate. */
|
||
if (GET_CODE (x) == MEM)
|
||
{
|
||
if (GET_CODE (XEXP (x, 0)) == PRE_INC
|
||
|| GET_CODE (XEXP (x, 0)) == PRE_DEC)
|
||
fputs (".a", file);
|
||
}
|
||
else
|
||
output_operand_lossage ("invalid operand to %U code");
|
||
return;
|
||
|
||
case 'N' :
|
||
/* Print a constant value negated. */
|
||
if (GET_CODE (x) == CONST_INT)
|
||
output_addr_const (file, GEN_INT (- INTVAL (x)));
|
||
else
|
||
output_operand_lossage ("invalid operand to %N code");
|
||
return;
|
||
|
||
case 'X' :
|
||
/* Print a const_int in hex. Used in comments. */
|
||
if (GET_CODE (x) == CONST_INT)
|
||
fprintf (file,
|
||
#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
|
||
"0x%x",
|
||
#else
|
||
"0x%lx",
|
||
#endif
|
||
INTVAL (x));
|
||
return;
|
||
|
||
case '#' :
|
||
fputs (IMMEDIATE_PREFIX, file);
|
||
return;
|
||
|
||
#if 0 /* ??? no longer used */
|
||
case '@' :
|
||
fputs (reg_names[SDA_REGNUM], file);
|
||
return;
|
||
#endif
|
||
|
||
case 0 :
|
||
/* Do nothing special. */
|
||
break;
|
||
|
||
default :
|
||
/* Unknown flag. */
|
||
output_operand_lossage ("invalid operand output code");
|
||
}
|
||
|
||
switch (GET_CODE (x))
|
||
{
|
||
case REG :
|
||
fputs (reg_names[REGNO (x)], file);
|
||
break;
|
||
|
||
case MEM :
|
||
addr = XEXP (x, 0);
|
||
if (GET_CODE (addr) == PRE_INC)
|
||
{
|
||
if (GET_CODE (XEXP (addr, 0)) != REG)
|
||
abort ();
|
||
|
||
fprintf (file, "@+%s", reg_names[REGNO (XEXP (addr, 0))]);
|
||
}
|
||
else if (GET_CODE (addr) == PRE_DEC)
|
||
{
|
||
if (GET_CODE (XEXP (addr, 0)) != REG)
|
||
abort ();
|
||
|
||
fprintf (file, "@-%s", reg_names[REGNO (XEXP (addr, 0))]);
|
||
}
|
||
else if (GET_CODE (addr) == POST_INC)
|
||
{
|
||
if (GET_CODE (XEXP (addr, 0)) != REG)
|
||
abort ();
|
||
|
||
fprintf (file, "@%s+", reg_names[REGNO (XEXP (addr, 0))]);
|
||
}
|
||
else
|
||
{
|
||
fputs ("@(", file);
|
||
output_address (XEXP (x, 0));
|
||
fputc (')', file);
|
||
}
|
||
break;
|
||
|
||
case CONST_DOUBLE :
|
||
/* We handle SFmode constants here as output_addr_const doesn't. */
|
||
if (GET_MODE (x) == SFmode)
|
||
{
|
||
REAL_VALUE_TYPE d;
|
||
long l;
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (d, x);
|
||
REAL_VALUE_TO_TARGET_SINGLE (d, l);
|
||
fprintf (file, "0x%08lx", l);
|
||
break;
|
||
}
|
||
|
||
/* Fall through. Let output_addr_const deal with it. */
|
||
|
||
default :
|
||
output_addr_const (file, x);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Print a memory address as an operand to reference that memory location. */
|
||
|
||
void
|
||
m32r_print_operand_address (file, addr)
|
||
FILE * file;
|
||
rtx addr;
|
||
{
|
||
register rtx base;
|
||
register rtx index = 0;
|
||
int offset = 0;
|
||
|
||
switch (GET_CODE (addr))
|
||
{
|
||
case REG :
|
||
fputs (reg_names[REGNO (addr)], file);
|
||
break;
|
||
|
||
case PLUS :
|
||
if (GET_CODE (XEXP (addr, 0)) == CONST_INT)
|
||
offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);
|
||
else if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
|
||
offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);
|
||
else
|
||
base = XEXP (addr, 0), index = XEXP (addr, 1);
|
||
if (GET_CODE (base) == REG)
|
||
{
|
||
/* Print the offset first (if present) to conform to the manual. */
|
||
if (index == 0)
|
||
{
|
||
if (offset != 0)
|
||
fprintf (file, "%d,", offset);
|
||
fputs (reg_names[REGNO (base)], file);
|
||
}
|
||
/* The chip doesn't support this, but left in for generality. */
|
||
else if (GET_CODE (index) == REG)
|
||
fprintf (file, "%s,%s",
|
||
reg_names[REGNO (base)], reg_names[REGNO (index)]);
|
||
/* Not sure this can happen, but leave in for now. */
|
||
else if (GET_CODE (index) == SYMBOL_REF)
|
||
{
|
||
output_addr_const (file, index);
|
||
fputc (',', file);
|
||
fputs (reg_names[REGNO (base)], file);
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
else if (GET_CODE (base) == LO_SUM)
|
||
{
|
||
if (index != 0
|
||
|| GET_CODE (XEXP (base, 0)) != REG)
|
||
abort ();
|
||
if (small_data_operand (XEXP (base, 1), VOIDmode))
|
||
fputs ("sda(", file);
|
||
else
|
||
fputs ("low(", file);
|
||
output_addr_const (file, plus_constant (XEXP (base, 1), offset));
|
||
fputs ("),", file);
|
||
fputs (reg_names[REGNO (XEXP (base, 0))], file);
|
||
}
|
||
else
|
||
abort ();
|
||
break;
|
||
|
||
case LO_SUM :
|
||
if (GET_CODE (XEXP (addr, 0)) != REG)
|
||
abort ();
|
||
if (small_data_operand (XEXP (addr, 1), VOIDmode))
|
||
fputs ("sda(", file);
|
||
else
|
||
fputs ("low(", file);
|
||
output_addr_const (file, XEXP (addr, 1));
|
||
fputs ("),", file);
|
||
fputs (reg_names[REGNO (XEXP (addr, 0))], file);
|
||
break;
|
||
|
||
case PRE_INC : /* Assume SImode */
|
||
fprintf (file, "+%s", reg_names[REGNO (XEXP (addr, 0))]);
|
||
break;
|
||
|
||
case PRE_DEC : /* Assume SImode */
|
||
fprintf (file, "-%s", reg_names[REGNO (XEXP (addr, 0))]);
|
||
break;
|
||
|
||
case POST_INC : /* Assume SImode */
|
||
fprintf (file, "%s+", reg_names[REGNO (XEXP (addr, 0))]);
|
||
break;
|
||
|
||
default :
|
||
output_addr_const (file, addr);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Return true if the operands are the constants 0 and 1. */
|
||
int
|
||
zero_and_one (operand1, operand2)
|
||
rtx operand1;
|
||
rtx operand2;
|
||
{
|
||
return
|
||
GET_CODE (operand1) == CONST_INT
|
||
&& GET_CODE (operand2) == CONST_INT
|
||
&& ( ((INTVAL (operand1) == 0) && (INTVAL (operand2) == 1))
|
||
||((INTVAL (operand1) == 1) && (INTVAL (operand2) == 0)));
|
||
}
|
||
|
||
/* Return non-zero if the operand is suitable for use in a conditional move sequence. */
|
||
int
|
||
conditional_move_operand (operand, int_mode)
|
||
rtx operand;
|
||
int int_mode;
|
||
{
|
||
enum machine_mode mode = (enum machine_mode)int_mode;
|
||
|
||
/* Only defined for simple integers so far... */
|
||
if (mode != SImode && mode != HImode && mode != QImode)
|
||
return FALSE;
|
||
|
||
/* At the moment we can hanndle moving registers and loading constants. */
|
||
/* To be added: Addition/subtraction/bitops/multiplication of registers. */
|
||
|
||
switch (GET_CODE (operand))
|
||
{
|
||
case REG:
|
||
return 1;
|
||
|
||
case CONST_INT:
|
||
return INT8_P (INTVAL (operand));
|
||
|
||
default:
|
||
#if 0
|
||
fprintf (stderr, "Test for cond move op of type: %s\n",
|
||
GET_RTX_NAME (GET_CODE (operand)));
|
||
#endif
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return true if the code is a test of the carry bit */
|
||
int
|
||
carry_compare_operand (op, int_mode)
|
||
rtx op;
|
||
int int_mode;
|
||
{
|
||
rtx x;
|
||
|
||
if (GET_MODE (op) != CCmode && GET_MODE (op) != VOIDmode)
|
||
return FALSE;
|
||
|
||
if (GET_CODE (op) != NE && GET_CODE (op) != EQ)
|
||
return FALSE;
|
||
|
||
x = XEXP (op, 0);
|
||
if (GET_CODE (x) != REG || REGNO (x) != CARRY_REGNUM)
|
||
return FALSE;
|
||
|
||
x = XEXP (op, 1);
|
||
if (GET_CODE (x) != CONST_INT || INTVAL (x) != 0)
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Generate the correct assembler code to handle the conditional loading of a
|
||
value into a register. It is known that the operands satisfy the
|
||
conditional_move_operand() function above. The destination is operand[0].
|
||
The condition is operand [1]. The 'true' value is operand [2] and the
|
||
'false' value is operand [3]. */
|
||
char *
|
||
emit_cond_move (operands, insn)
|
||
rtx * operands;
|
||
rtx insn;
|
||
{
|
||
static char buffer [100];
|
||
|
||
buffer [0] = 0;
|
||
|
||
/* Destination must be a register. */
|
||
if (GET_CODE (operands [0]) != REG)
|
||
abort();
|
||
if (! conditional_move_operand (operands [2], SImode))
|
||
abort();
|
||
if (! conditional_move_operand (operands [3], SImode))
|
||
abort();
|
||
|
||
|
||
/* Check to see if the test is reversed. */
|
||
if (GET_CODE (operands [1]) == NE)
|
||
{
|
||
rtx tmp = operands [2];
|
||
operands [2] = operands [3];
|
||
operands [3] = tmp;
|
||
}
|
||
|
||
/* Catch a special case where 0 or 1 is being loaded into the destination.
|
||
Since we already have these values in the C bit we can use a special
|
||
instruction. */
|
||
if (zero_and_one (operands [2], operands [3]))
|
||
{
|
||
char * dest = reg_names [REGNO (operands [0])];
|
||
|
||
sprintf (buffer, "mvfc %s, cbr", dest);
|
||
|
||
/* If the true value was '0' then we need to invert the results of the move. */
|
||
if (INTVAL (operands [2]) == 0)
|
||
sprintf (buffer + strlen (buffer), "\n\txor3 %s, %s, #1",
|
||
dest, dest);
|
||
|
||
return buffer;
|
||
}
|
||
|
||
|
||
return buffer;
|
||
}
|
||
|