NetBSD/sys/dev/pcmcia/if_xi.c

1764 lines
43 KiB
C

/* $NetBSD: if_xi.c,v 1.22 2002/06/01 23:51:01 lukem Exp $ */
/* OpenBSD: if_xe.c,v 1.9 1999/09/16 11:28:42 niklas Exp */
/*
* XXX THIS DRIVER IS BROKEN WRT. MULTICAST LISTS AND PROMISC/ALLMULTI
* XXX FLAGS!
*/
/*
* Copyright (c) 1999 Niklas Hallqvist, Brandon Creighton, Job de Haas
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Niklas Hallqvist,
* Brandon Creighton and Job de Haas.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* A driver for Xircom CreditCard PCMCIA Ethernet adapters.
*/
/*
* Known Bugs:
*
* 1) Promiscuous mode doesn't work on at least the CE2.
* 2) Slow. ~450KB/s. Memory access would be better.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_xi.c,v 1.22 2002/06/01 23:51:01 lukem Exp $");
#include "opt_inet.h"
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/ioctl.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/socket.h>
#include "rnd.h"
#if NRND > 0
#include <sys/rnd.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_ether.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_inarp.h>
#endif
#ifdef IPX
#include <netipx/ipx.h>
#include <netipx/ipx_if.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#define ETHER_MIN_LEN 64
#define ETHER_CRC_LEN 4
/*
* Maximum number of bytes to read per interrupt. Linux recommends
* somewhere between 2000-22000.
* XXX This is currently a hard maximum.
*/
#define MAX_BYTES_INTR 12000
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pcmcia/pcmciareg.h>
#include <dev/pcmcia/pcmciavar.h>
#include <dev/pcmcia/pcmciadevs.h>
#include <dev/pcmcia/if_xireg.h>
#ifdef __GNUC__
#define INLINE __inline
#else
#define INLINE
#endif /* __GNUC__ */
#ifdef XIDEBUG
#define DPRINTF(cat, x) if (xidebug & (cat)) printf x
#define XID_CONFIG 0x1
#define XID_MII 0x2
#define XID_INTR 0x4
#define XID_FIFO 0x8
#ifdef XIDEBUG_VALUE
int xidebug = XIDEBUG_VALUE;
#else
int xidebug = 0;
#endif
#else
#define DPRINTF(cat, x) (void)0
#endif
int xi_pcmcia_match __P((struct device *, struct cfdata *, void *));
void xi_pcmcia_attach __P((struct device *, struct device *, void *));
int xi_pcmcia_detach __P((struct device *, int));
int xi_pcmcia_activate __P((struct device *, enum devact));
/*
* In case this chipset ever turns up out of pcmcia attachments (very
* unlikely) do the driver splitup.
*/
struct xi_softc {
struct device sc_dev; /* Generic device info */
struct ethercom sc_ethercom; /* Ethernet common part */
struct mii_data sc_mii; /* MII media information */
bus_space_tag_t sc_bst; /* Bus cookie */
bus_space_handle_t sc_bsh; /* Bus I/O handle */
bus_size_t sc_offset; /* Offset of registers */
u_int8_t sc_rev; /* Chip revision */
u_int32_t sc_flags; /* Misc. flags */
int sc_all_mcasts; /* Receive all multicasts */
u_int8_t sc_enaddr[ETHER_ADDR_LEN];
#if NRND > 0
rndsource_element_t sc_rnd_source;
#endif
};
struct xi_pcmcia_softc {
struct xi_softc sc_xi; /* Generic device info */
/* PCMCIA-specific goo */
struct pcmcia_function *sc_pf; /* PCMCIA function */
struct pcmcia_io_handle sc_pcioh; /* iospace info */
int sc_io_window; /* io window info */
void *sc_ih; /* Interrupt handler */
void *sc_powerhook; /* power hook descriptor */
int sc_resource; /* resource allocated */
#define XI_RES_PCIC 1
#define XI_RES_IO_ALLOC 2
#define XI_RES_IO_MAP 4
#define XI_RES_MI 8
};
struct cfattach xi_pcmcia_ca = {
sizeof(struct xi_pcmcia_softc),
xi_pcmcia_match,
xi_pcmcia_attach,
xi_pcmcia_detach,
xi_pcmcia_activate
};
static int xi_pcmcia_cis_quirks __P((struct pcmcia_function *));
static void xi_cycle_power __P((struct xi_softc *));
static int xi_ether_ioctl __P((struct ifnet *, u_long cmd, caddr_t));
static void xi_full_reset __P((struct xi_softc *));
static void xi_init __P((struct xi_softc *));
static int xi_intr __P((void *));
static int xi_ioctl __P((struct ifnet *, u_long, caddr_t));
static int xi_mdi_read __P((struct device *, int, int));
static void xi_mdi_write __P((struct device *, int, int, int));
static int xi_mediachange __P((struct ifnet *));
static void xi_mediastatus __P((struct ifnet *, struct ifmediareq *));
static int xi_pcmcia_funce_enaddr __P((struct device *, u_int8_t *));
static int xi_pcmcia_lan_nid_ciscallback __P((struct pcmcia_tuple *, void *));
static int xi_pcmcia_manfid_ciscallback __P((struct pcmcia_tuple *, void *));
static u_int16_t xi_get __P((struct xi_softc *));
static void xi_reset __P((struct xi_softc *));
static void xi_set_address __P((struct xi_softc *));
static void xi_start __P((struct ifnet *));
static void xi_statchg __P((struct device *));
static void xi_stop __P((struct xi_softc *));
static void xi_watchdog __P((struct ifnet *));
const struct xi_pcmcia_product *xi_pcmcia_identify __P((struct device *,
struct pcmcia_attach_args *));
static int xi_pcmcia_enable __P((struct xi_pcmcia_softc *));
static void xi_pcmcia_disable __P((struct xi_pcmcia_softc *));
static void xi_pcmcia_power __P((int, void *));
/* flags */
#define XIFLAGS_MOHAWK 0x001 /* 100Mb capabilities (has phy) */
#define XIFLAGS_DINGO 0x002 /* realport cards ??? */
#define XIFLAGS_MODEM 0x004 /* modem also present */
const struct xi_pcmcia_product {
u_int32_t xpp_vendor; /* vendor ID */
u_int32_t xpp_product; /* product ID */
int xpp_expfunc; /* expected function number */
int xpp_flags; /* initial softc flags */
const char *xpp_name; /* device name */
} xi_pcmcia_products[] = {
#ifdef NOT_SUPPORTED
{ PCMCIA_VENDOR_XIRCOM, 0x0141,
0, 0,
PCMCIA_STR_XIRCOM_CE },
#endif
{ PCMCIA_VENDOR_XIRCOM, 0x0141,
0, 0,
PCMCIA_STR_XIRCOM_CE2 },
{ PCMCIA_VENDOR_XIRCOM, 0x0142,
0, 0,
PCMCIA_STR_XIRCOM_CE2 },
{ PCMCIA_VENDOR_XIRCOM, 0x0143,
0, XIFLAGS_MOHAWK,
PCMCIA_STR_XIRCOM_CE3 },
{ PCMCIA_VENDOR_COMPAQ2, 0x0143,
0, XIFLAGS_MOHAWK,
PCMCIA_STR_COMPAQ2_CPQ_10_100 },
{ PCMCIA_VENDOR_INTEL, 0x0143,
0, XIFLAGS_MOHAWK | XIFLAGS_MODEM,
PCMCIA_STR_INTEL_EEPRO100 },
{ PCMCIA_VENDOR_XIRCOM, PCMCIA_PRODUCT_XIRCOM_XE2000,
0, XIFLAGS_MOHAWK,
PCMCIA_STR_XIRCOM_XE2000 },
{ PCMCIA_VENDOR_XIRCOM, PCMCIA_PRODUCT_XIRCOM_REM56,
0, XIFLAGS_MOHAWK | XIFLAGS_DINGO | XIFLAGS_MODEM,
PCMCIA_STR_XIRCOM_REM56 },
#ifdef NOT_SUPPORTED
{ PCMCIA_VENDOR_XIRCOM, 0x1141,
0, XIFLAGS_MODEM,
PCMCIA_STR_XIRCOM_CEM },
#endif
{ PCMCIA_VENDOR_XIRCOM, 0x1142,
0, XIFLAGS_MODEM,
PCMCIA_STR_XIRCOM_CEM },
{ PCMCIA_VENDOR_XIRCOM, 0x1143,
0, XIFLAGS_MODEM,
PCMCIA_STR_XIRCOM_CEM },
{ PCMCIA_VENDOR_XIRCOM, 0x1144,
0, XIFLAGS_MODEM,
PCMCIA_STR_XIRCOM_CEM33 },
{ PCMCIA_VENDOR_XIRCOM, 0x1145,
0, XIFLAGS_MOHAWK | XIFLAGS_MODEM,
PCMCIA_STR_XIRCOM_CEM56 },
{ PCMCIA_VENDOR_XIRCOM, 0x1146,
0, XIFLAGS_MOHAWK | XIFLAGS_DINGO | XIFLAGS_MODEM,
PCMCIA_STR_XIRCOM_REM56 },
{ PCMCIA_VENDOR_XIRCOM, 0x1147,
0, XIFLAGS_MOHAWK | XIFLAGS_DINGO | XIFLAGS_MODEM,
PCMCIA_STR_XIRCOM_REM56 },
{ 0, 0,
0, 0,
NULL },
};
const struct xi_pcmcia_product *
xi_pcmcia_identify(dev, pa)
struct device *dev;
struct pcmcia_attach_args *pa;
{
const struct xi_pcmcia_product *xpp;
u_int8_t id;
u_int32_t prod;
/*
* The Xircom ethernet cards swap the revision and product fields
* inside the CIS, which makes identification just a little
* bit different.
*/
pcmcia_scan_cis(dev, xi_pcmcia_manfid_ciscallback, &id);
prod = (pa->product & ~0xff) | id;
DPRINTF(XID_CONFIG, ("product=0x%x\n", prod));
for (xpp = xi_pcmcia_products; xpp->xpp_name != NULL; xpp++)
if (pa->manufacturer == xpp->xpp_vendor &&
prod == xpp->xpp_product &&
pa->pf->number == xpp->xpp_expfunc)
return (xpp);
return (NULL);
}
/*
* The quirks are done here instead of the traditional framework because
* of the difficulty in identifying the devices.
*/
static int
xi_pcmcia_cis_quirks(pf)
struct pcmcia_function *pf;
{
struct pcmcia_config_entry *cfe;
/* Tell the pcmcia framework where the CCR is. */
pf->ccr_base = 0x800;
pf->ccr_mask = 0x67;
/* Fake a cfe. */
SIMPLEQ_FIRST(&pf->cfe_head) = cfe = (struct pcmcia_config_entry *)
malloc(sizeof(*cfe), M_DEVBUF, M_NOWAIT|M_ZERO);
if (cfe == NULL)
return -1;
/*
* XXX Use preprocessor symbols instead.
* Enable ethernet & its interrupts, wiring them to -INT
* No I/O base.
*/
cfe->number = 0x5;
cfe->flags = 0; /* XXX Check! */
cfe->iftype = PCMCIA_IFTYPE_IO;
cfe->num_iospace = 0;
cfe->num_memspace = 0;
cfe->irqmask = 0x8eb0;
return 0;
}
int
xi_pcmcia_match(parent, match, aux)
struct device *parent;
struct cfdata *match;
void *aux;
{
struct pcmcia_attach_args *pa = aux;
if (pa->manufacturer == PCMCIA_VENDOR_XIRCOM &&
pa->product == 0x110a)
return (2); /* prevent attach to com_pcmcia */
if (pa->pf->function != PCMCIA_FUNCTION_NETWORK)
return (0);
if (pa->manufacturer == PCMCIA_VENDOR_COMPAQ2 &&
pa->product == PCMCIA_PRODUCT_COMPAQ2_CPQ_10_100)
return (1);
if (pa->manufacturer == PCMCIA_VENDOR_INTEL &&
pa->product == PCMCIA_PRODUCT_INTEL_EEPRO100)
return (1);
if (pa->manufacturer == PCMCIA_VENDOR_XIRCOM &&
((pa->product >> 8) == XIMEDIA_ETHER ||
(pa->product >> 8) == (XIMEDIA_ETHER | XIMEDIA_MODEM)))
return (1);
return (0);
}
void
xi_pcmcia_attach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct xi_pcmcia_softc *psc = (struct xi_pcmcia_softc *)self;
struct xi_softc *sc = &psc->sc_xi;
struct pcmcia_attach_args *pa = aux;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
const struct xi_pcmcia_product *xpp;
if (xi_pcmcia_cis_quirks(pa->pf) < 0) {
printf(": function enable failed\n");
return;
}
/* Enable the card */
psc->sc_pf = pa->pf;
pcmcia_function_init(psc->sc_pf, SIMPLEQ_FIRST(&psc->sc_pf->cfe_head));
if (pcmcia_function_enable(psc->sc_pf)) {
printf(": function enable failed\n");
goto fail;
}
psc->sc_resource |= XI_RES_PCIC;
/* allocate/map ISA I/O space */
if (pcmcia_io_alloc(psc->sc_pf, 0, XI_IOSIZE, XI_IOSIZE,
&psc->sc_pcioh) != 0) {
printf(": I/O allocation failed\n");
goto fail;
}
psc->sc_resource |= XI_RES_IO_ALLOC;
sc->sc_bst = psc->sc_pcioh.iot;
sc->sc_bsh = psc->sc_pcioh.ioh;
sc->sc_offset = 0;
if (pcmcia_io_map(psc->sc_pf, PCMCIA_WIDTH_AUTO, 0, XI_IOSIZE,
&psc->sc_pcioh, &psc->sc_io_window)) {
printf(": can't map I/O space\n");
goto fail;
}
psc->sc_resource |= XI_RES_IO_MAP;
xpp = xi_pcmcia_identify(parent,pa);
if (xpp == NULL) {
printf(": unrecognised model\n");
return;
}
sc->sc_flags = xpp->xpp_flags;
printf(": %s\n", xpp->xpp_name);
/*
* Configuration as advised by DINGO documentation.
* Dingo has some extra configuration registers in the CCR space.
*/
if (sc->sc_flags & XIFLAGS_DINGO) {
struct pcmcia_mem_handle pcmh;
int ccr_window;
bus_addr_t ccr_offset;
/* get access to the DINGO CCR space */
if (pcmcia_mem_alloc(psc->sc_pf, PCMCIA_CCR_SIZE_DINGO,
&pcmh)) {
DPRINTF(XID_CONFIG, ("xi: bad mem alloc\n"));
goto fail;
}
if (pcmcia_mem_map(psc->sc_pf, PCMCIA_MEM_ATTR,
psc->sc_pf->ccr_base, PCMCIA_CCR_SIZE_DINGO,
&pcmh, &ccr_offset, &ccr_window)) {
DPRINTF(XID_CONFIG, ("xi: bad mem map\n"));
pcmcia_mem_free(psc->sc_pf, &pcmh);
goto fail;
}
/* enable the second function - usually modem */
bus_space_write_1(pcmh.memt, pcmh.memh,
ccr_offset + PCMCIA_CCR_DCOR0, PCMCIA_CCR_DCOR0_SFINT);
bus_space_write_1(pcmh.memt, pcmh.memh,
ccr_offset + PCMCIA_CCR_DCOR1,
PCMCIA_CCR_DCOR1_FORCE_LEVIREQ | PCMCIA_CCR_DCOR1_D6);
bus_space_write_1(pcmh.memt, pcmh.memh,
ccr_offset + PCMCIA_CCR_DCOR2, 0);
bus_space_write_1(pcmh.memt, pcmh.memh,
ccr_offset + PCMCIA_CCR_DCOR3, 0);
bus_space_write_1(pcmh.memt, pcmh.memh,
ccr_offset + PCMCIA_CCR_DCOR4, 0);
/* We don't need them anymore and can free them (I think). */
pcmcia_mem_unmap(psc->sc_pf, ccr_window);
pcmcia_mem_free(psc->sc_pf, &pcmh);
}
/*
* Get the ethernet address from FUNCE/LAN_NID tuple.
*/
xi_pcmcia_funce_enaddr(parent, sc->sc_enaddr);
if (!sc->sc_enaddr) {
printf("%s: unable to get ethernet address\n",
sc->sc_dev.dv_xname);
goto fail;
}
printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
ether_sprintf(sc->sc_enaddr));
ifp = &sc->sc_ethercom.ec_if;
memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_start = xi_start;
ifp->if_ioctl = xi_ioctl;
ifp->if_watchdog = xi_watchdog;
ifp->if_flags =
IFF_BROADCAST | IFF_NOTRAILERS | IFF_SIMPLEX | IFF_MULTICAST;
IFQ_SET_READY(&ifp->if_snd);
/* Reset and initialize the card. */
xi_full_reset(sc);
/*
* Initialize our media structures and probe the MII.
*/
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = xi_mdi_read;
sc->sc_mii.mii_writereg = xi_mdi_write;
sc->sc_mii.mii_statchg = xi_statchg;
ifmedia_init(&sc->sc_mii.mii_media, 0, xi_mediachange,
xi_mediastatus);
DPRINTF(XID_MII | XID_CONFIG,
("xi: bmsr %x\n", xi_mdi_read(&sc->sc_dev, 0, 1)));
mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, 0);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL)
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO, 0,
NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
/* 802.1q capability */
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
/* Attach the interface. */
if_attach(ifp);
ether_ifattach(ifp, sc->sc_enaddr);
psc->sc_resource |= XI_RES_MI;
#if NRND > 0
rnd_attach_source(&sc->sc_rnd_source, sc->sc_dev.dv_xname,
RND_TYPE_NET, 0);
#endif
/*
* Reset and initialize the card again for DINGO (as found in Linux
* driver). Without this Dingo will get a watchdog timeout the first
* time. The ugly media tickling seems to be necessary for getting
* autonegotiation to work too.
*/
if (sc->sc_flags & XIFLAGS_DINGO) {
xi_full_reset(sc);
xi_init(sc);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_NONE);
xi_stop(sc);
}
psc->sc_powerhook = powerhook_establish(xi_pcmcia_power, sc);
pcmcia_function_disable(psc->sc_pf);
psc->sc_resource &= ~XI_RES_PCIC;
return;
fail:
if ((psc->sc_resource & XI_RES_IO_MAP) != 0) {
pcmcia_io_unmap(psc->sc_pf, psc->sc_io_window);
psc->sc_resource &= ~XI_RES_IO_MAP;
}
if ((psc->sc_resource & XI_RES_IO_ALLOC) != 0) {
pcmcia_io_free(psc->sc_pf, &psc->sc_pcioh);
psc->sc_resource &= ~XI_RES_IO_ALLOC;
}
if (psc->sc_resource & XI_RES_PCIC) {
pcmcia_function_disable(pa->pf);
psc->sc_resource &= ~XI_RES_PCIC;
}
free(SIMPLEQ_FIRST(&psc->sc_pf->cfe_head), M_DEVBUF);
}
int
xi_pcmcia_detach(self, flags)
struct device *self;
int flags;
{
struct xi_pcmcia_softc *psc = (struct xi_pcmcia_softc *)self;
struct xi_softc *sc = &psc->sc_xi;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
DPRINTF(XID_CONFIG, ("xi_pcmcia_detach()\n"));
if (psc->sc_powerhook != NULL)
powerhook_disestablish(psc->sc_powerhook);
#if NRND > 0
rnd_detach_source(&sc->sc_rnd_source);
#endif
if ((psc->sc_resource & XI_RES_MI) != 0) {
mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
ether_ifdetach(ifp);
if_detach(ifp);
psc->sc_resource &= ~XI_RES_MI;
}
if (psc->sc_resource & XI_RES_IO_MAP) {
pcmcia_io_unmap(psc->sc_pf, psc->sc_io_window);
psc->sc_resource &= ~XI_RES_IO_MAP;
}
if ((psc->sc_resource & XI_RES_IO_ALLOC) != 0) {
pcmcia_io_free(psc->sc_pf, &psc->sc_pcioh);
psc->sc_resource &= ~XI_RES_IO_ALLOC;
}
xi_pcmcia_disable(psc);
free(SIMPLEQ_FIRST(&psc->sc_pf->cfe_head), M_DEVBUF);
return 0;
}
int
xi_pcmcia_activate(self, act)
struct device *self;
enum devact act;
{
struct xi_pcmcia_softc *psc = (struct xi_pcmcia_softc *)self;
struct xi_softc *sc = &psc->sc_xi;
int s, rv=0;
DPRINTF(XID_CONFIG, ("xi_pcmcia_activate()\n"));
s = splnet();
switch (act) {
case DVACT_ACTIVATE:
rv = EOPNOTSUPP;
break;
case DVACT_DEACTIVATE:
if_deactivate(&sc->sc_ethercom.ec_if);
break;
}
splx(s);
return (rv);
}
static int
xi_pcmcia_enable(psc)
struct xi_pcmcia_softc *psc;
{
struct xi_softc *sc = &psc->sc_xi;
DPRINTF(XID_CONFIG,("xi_pcmcia_enable()\n"));
if (pcmcia_function_enable(psc->sc_pf))
return (1);
psc->sc_resource |= XI_RES_PCIC;
/* establish the interrupt. */
psc->sc_ih = pcmcia_intr_establish(psc->sc_pf, IPL_NET, xi_intr, sc);
if (psc->sc_ih == NULL) {
printf("%s: couldn't establish interrupt\n",
sc->sc_dev.dv_xname);
pcmcia_function_disable(psc->sc_pf);
psc->sc_resource &= ~XI_RES_PCIC;
return (1);
}
xi_full_reset(sc);
return (0);
}
static void
xi_pcmcia_disable(psc)
struct xi_pcmcia_softc *psc;
{
DPRINTF(XID_CONFIG,("xi_pcmcia_disable()\n"));
if (psc->sc_resource & XI_RES_PCIC) {
pcmcia_intr_disestablish(psc->sc_pf, psc->sc_ih);
pcmcia_function_disable(psc->sc_pf);
psc->sc_resource &= ~XI_RES_PCIC;
}
}
static void
xi_pcmcia_power(why, arg)
int why;
void *arg;
{
struct xi_pcmcia_softc *psc = arg;
struct xi_softc *sc = &psc->sc_xi;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int s;
DPRINTF(XID_CONFIG,("xi_pcmcia_power()\n"));
s = splnet();
switch (why) {
case PWR_SUSPEND:
case PWR_STANDBY:
if (ifp->if_flags & IFF_RUNNING) {
xi_stop(sc);
}
ifp->if_flags &= ~IFF_RUNNING;
ifp->if_timer = 0;
break;
case PWR_RESUME:
if ((ifp->if_flags & IFF_RUNNING) == 0) {
xi_init(sc);
}
ifp->if_flags |= IFF_RUNNING;
break;
case PWR_SOFTSUSPEND:
case PWR_SOFTSTANDBY:
case PWR_SOFTRESUME:
break;
}
splx(s);
}
/*
* XXX These two functions might be OK to factor out into pcmcia.c since
* if_sm_pcmcia.c uses similar ones.
*/
static int
xi_pcmcia_funce_enaddr(parent, myla)
struct device *parent;
u_int8_t *myla;
{
/* XXX The Linux driver has more ways to do this in case of failure. */
return (pcmcia_scan_cis(parent, xi_pcmcia_lan_nid_ciscallback, myla));
}
static int
xi_pcmcia_lan_nid_ciscallback(tuple, arg)
struct pcmcia_tuple *tuple;
void *arg;
{
u_int8_t *myla = arg;
int i;
DPRINTF(XID_CONFIG, ("xi_pcmcia_lan_nid_ciscallback()\n"));
if (tuple->code == PCMCIA_CISTPL_FUNCE) {
if (tuple->length < 2)
return (0);
switch (pcmcia_tuple_read_1(tuple, 0)) {
case PCMCIA_TPLFE_TYPE_LAN_NID:
if (pcmcia_tuple_read_1(tuple, 1) != ETHER_ADDR_LEN)
return (0);
break;
case 0x02:
/*
* Not sure about this, I don't have a CE2
* that puts the ethernet addr here.
*/
if (pcmcia_tuple_read_1(tuple, 1) != 13)
return (0);
break;
default:
return (0);
}
for (i = 0; i < ETHER_ADDR_LEN; i++)
myla[i] = pcmcia_tuple_read_1(tuple, i + 2);
return (1);
}
/* Yet another spot where this might be. */
if (tuple->code == 0x89) {
pcmcia_tuple_read_1(tuple, 1);
for (i = 0; i < ETHER_ADDR_LEN; i++)
myla[i] = pcmcia_tuple_read_1(tuple, i + 2);
return (1);
}
return (0);
}
int
xi_pcmcia_manfid_ciscallback(tuple, arg)
struct pcmcia_tuple *tuple;
void *arg;
{
u_int8_t *id = arg;
DPRINTF(XID_CONFIG, ("xi_pcmcia_manfid_callback()\n"));
if (tuple->code != PCMCIA_CISTPL_MANFID)
return (0);
if (tuple->length < 2)
return (0);
*id = pcmcia_tuple_read_1(tuple, 4);
return (1);
}
static int
xi_intr(arg)
void *arg;
{
struct xi_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
u_int8_t esr, rsr, isr, rx_status, savedpage;
u_int16_t tx_status, recvcount = 0, tempint;
DPRINTF(XID_CONFIG, ("xi_intr()\n"));
#if 0
if (!(ifp->if_flags & IFF_RUNNING))
return (0);
#endif
ifp->if_timer = 0; /* turn watchdog timer off */
if (sc->sc_flags & XIFLAGS_MOHAWK) {
/* Disable interrupt (Linux does it). */
bus_space_write_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + CR,
0);
}
savedpage =
bus_space_read_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + PR);
PAGE(sc, 0);
esr = bus_space_read_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + ESR);
isr = bus_space_read_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + ISR0);
rsr = bus_space_read_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + RSR);
/* Check to see if card has been ejected. */
if (isr == 0xff) {
#ifdef DIAGNOSTIC
printf("%s: interrupt for dead card\n", sc->sc_dev.dv_xname);
#endif
goto end;
}
PAGE(sc, 40);
rx_status =
bus_space_read_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + RXST0);
tx_status =
bus_space_read_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + TXST0);
/*
* XXX Linux writes to RXST0 and TXST* here. My CE2 works just fine
* without it, and I can't see an obvious reason for it.
*/
PAGE(sc, 0);
while (esr & FULL_PKT_RCV) {
if (!(rsr & RSR_RX_OK))
break;
/* Compare bytes read this interrupt to hard maximum. */
if (recvcount > MAX_BYTES_INTR) {
DPRINTF(XID_INTR,
("xi: too many bytes this interrupt\n"));
ifp->if_iqdrops++;
/* Drop packet. */
bus_space_write_2(sc->sc_bst, sc->sc_bsh,
sc->sc_offset + DO0, DO_SKIP_RX_PKT);
}
tempint = xi_get(sc); /* XXX doesn't check the error! */
recvcount += tempint;
ifp->if_ibytes += tempint;
esr = bus_space_read_1(sc->sc_bst, sc->sc_bsh,
sc->sc_offset + ESR);
rsr = bus_space_read_1(sc->sc_bst, sc->sc_bsh,
sc->sc_offset + RSR);
}
/* Packet too long? */
if (rsr & RSR_TOO_LONG) {
ifp->if_ierrors++;
DPRINTF(XID_INTR, ("xi: packet too long\n"));
}
/* CRC error? */
if (rsr & RSR_CRCERR) {
ifp->if_ierrors++;
DPRINTF(XID_INTR, ("xi: CRC error detected\n"));
}
/* Alignment error? */
if (rsr & RSR_ALIGNERR) {
ifp->if_ierrors++;
DPRINTF(XID_INTR, ("xi: alignment error detected\n"));
}
/* Check for rx overrun. */
if (rx_status & RX_OVERRUN) {
bus_space_write_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + CR,
CLR_RX_OVERRUN);
DPRINTF(XID_INTR, ("xi: overrun cleared\n"));
}
/* Try to start more packets transmitting. */
if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
xi_start(ifp);
/* Detected excessive collisions? */
if ((tx_status & EXCESSIVE_COLL) && ifp->if_opackets > 0) {
DPRINTF(XID_INTR, ("xi: excessive collisions\n"));
bus_space_write_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + CR,
RESTART_TX);
ifp->if_oerrors++;
}
if ((tx_status & TX_ABORT) && ifp->if_opackets > 0)
ifp->if_oerrors++;
end:
/* Reenable interrupts. */
PAGE(sc, savedpage);
bus_space_write_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + CR,
ENABLE_INT);
/* have handled the interrupt */
#if NRND > 0
rnd_add_uint32(&sc->sc_rnd_source, tx_status);
#endif
return (1);
}
/*
* Pull a packet from the card into an mbuf chain.
*/
static u_int16_t
xi_get(sc)
struct xi_softc *sc;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mbuf *top, **mp, *m;
u_int16_t pktlen, len, recvcount = 0;
u_int8_t *data;
u_int8_t rsr;
DPRINTF(XID_CONFIG, ("xi_get()\n"));
PAGE(sc, 0);
rsr = bus_space_read_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + RSR);
pktlen =
bus_space_read_2(sc->sc_bst, sc->sc_bsh, sc->sc_offset + RBC0) &
RBC_COUNT_MASK;
DPRINTF(XID_CONFIG, ("xi_get: pktlen=%d\n", pktlen));
if (pktlen == 0) {
/*
* XXX At least one CE2 sets RBC0 == 0 occasionally, and only
* when MPE is set. It is not known why.
*/
return (0);
}
/* XXX should this be incremented now ? */
recvcount += pktlen;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == 0)
return (recvcount);
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = pktlen;
m->m_flags |= M_HASFCS;
len = MHLEN;
top = 0;
mp = &top;
while (pktlen > 0) {
if (top) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == 0) {
m_freem(top);
return (recvcount);
}
len = MLEN;
}
if (pktlen >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
m_freem(top);
return (recvcount);
}
len = MCLBYTES;
}
if (!top) {
caddr_t newdata = (caddr_t)ALIGN(m->m_data +
sizeof(struct ether_header)) -
sizeof(struct ether_header);
len -= newdata - m->m_data;
m->m_data = newdata;
}
len = min(pktlen, len);
data = mtod(m, u_int8_t *);
if (len > 1) {
len &= ~1;
bus_space_read_multi_2(sc->sc_bst, sc->sc_bsh,
sc->sc_offset + EDP, (u_int16_t *)data, len>>1);
} else
*data = bus_space_read_1(sc->sc_bst, sc->sc_bsh,
sc->sc_offset + EDP);
m->m_len = len;
pktlen -= len;
*mp = m;
mp = &m->m_next;
}
/* Skip Rx packet. */
bus_space_write_2(sc->sc_bst, sc->sc_bsh, sc->sc_offset + DO0,
DO_SKIP_RX_PKT);
ifp->if_ipackets++;
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, top);
#endif
(*ifp->if_input)(ifp, top);
return (recvcount);
}
/*
* Serial management for the MII.
* The DELAY's below stem from the fact that the maximum frequency
* acceptable on the MDC pin is 2.5 MHz and fast processors can easily
* go much faster than that.
*/
/* Let the MII serial management be idle for one period. */
static INLINE void xi_mdi_idle __P((struct xi_softc *));
static INLINE void
xi_mdi_idle(sc)
struct xi_softc *sc;
{
bus_space_tag_t bst = sc->sc_bst;
bus_space_handle_t bsh = sc->sc_bsh;
bus_addr_t offset = sc->sc_offset;
/* Drive MDC low... */
bus_space_write_1(bst, bsh, offset + GP2, MDC_LOW);
DELAY(1);
/* and high again. */
bus_space_write_1(bst, bsh, offset + GP2, MDC_HIGH);
DELAY(1);
}
/* Pulse out one bit of data. */
static INLINE void xi_mdi_pulse __P((struct xi_softc *, int));
static INLINE void
xi_mdi_pulse(sc, data)
struct xi_softc *sc;
int data;
{
bus_space_tag_t bst = sc->sc_bst;
bus_space_handle_t bsh = sc->sc_bsh;
bus_addr_t offset = sc->sc_offset;
u_int8_t bit = data ? MDIO_HIGH : MDIO_LOW;
/* First latch the data bit MDIO with clock bit MDC low...*/
bus_space_write_1(bst, bsh, offset + GP2, bit | MDC_LOW);
DELAY(1);
/* then raise the clock again, preserving the data bit. */
bus_space_write_1(bst, bsh, offset + GP2, bit | MDC_HIGH);
DELAY(1);
}
/* Probe one bit of data. */
static INLINE int xi_mdi_probe __P((struct xi_softc *sc));
static INLINE int
xi_mdi_probe(sc)
struct xi_softc *sc;
{
bus_space_tag_t bst = sc->sc_bst;
bus_space_handle_t bsh = sc->sc_bsh;
bus_size_t offset = sc->sc_offset;
u_int8_t x;
/* Pull clock bit MDCK low... */
bus_space_write_1(bst, bsh, offset + GP2, MDC_LOW);
DELAY(1);
/* Read data and drive clock high again. */
x = bus_space_read_1(bst, bsh, offset + GP2) & MDIO;
bus_space_write_1(bst, bsh, offset + GP2, MDC_HIGH);
DELAY(1);
return (x);
}
/* Pulse out a sequence of data bits. */
static INLINE void xi_mdi_pulse_bits __P((struct xi_softc *, u_int32_t, int));
static INLINE void
xi_mdi_pulse_bits(sc, data, len)
struct xi_softc *sc;
u_int32_t data;
int len;
{
u_int32_t mask;
for (mask = 1 << (len - 1); mask; mask >>= 1)
xi_mdi_pulse(sc, data & mask);
}
/* Read a PHY register. */
static int
xi_mdi_read(self, phy, reg)
struct device *self;
int phy;
int reg;
{
struct xi_softc *sc = (struct xi_softc *)self;
int i;
u_int32_t mask;
u_int32_t data = 0;
PAGE(sc, 2);
for (i = 0; i < 32; i++) /* Synchronize. */
xi_mdi_pulse(sc, 1);
xi_mdi_pulse_bits(sc, 0x06, 4); /* Start + Read opcode */
xi_mdi_pulse_bits(sc, phy, 5); /* PHY address */
xi_mdi_pulse_bits(sc, reg, 5); /* PHY register */
xi_mdi_idle(sc); /* Turn around. */
xi_mdi_probe(sc); /* Drop initial zero bit. */
for (mask = 1 << 15; mask; mask >>= 1) {
if (xi_mdi_probe(sc))
data |= mask;
}
xi_mdi_idle(sc);
DPRINTF(XID_MII,
("xi_mdi_read: phy %d reg %d -> %x\n", phy, reg, data));
return (data);
}
/* Write a PHY register. */
static void
xi_mdi_write(self, phy, reg, value)
struct device *self;
int phy;
int reg;
int value;
{
struct xi_softc *sc = (struct xi_softc *)self;
int i;
PAGE(sc, 2);
for (i = 0; i < 32; i++) /* Synchronize. */
xi_mdi_pulse(sc, 1);
xi_mdi_pulse_bits(sc, 0x05, 4); /* Start + Write opcode */
xi_mdi_pulse_bits(sc, phy, 5); /* PHY address */
xi_mdi_pulse_bits(sc, reg, 5); /* PHY register */
xi_mdi_pulse_bits(sc, 0x02, 2); /* Turn around. */
xi_mdi_pulse_bits(sc, value, 16); /* Write the data */
xi_mdi_idle(sc); /* Idle away. */
DPRINTF(XID_MII,
("xi_mdi_write: phy %d reg %d val %x\n", phy, reg, value));
}
static void
xi_statchg(self)
struct device *self;
{
/* XXX Update ifp->if_baudrate */
}
/*
* Change media according to request.
*/
static int
xi_mediachange(ifp)
struct ifnet *ifp;
{
DPRINTF(XID_CONFIG, ("xi_mediachange()\n"));
if (ifp->if_flags & IFF_UP)
xi_init(ifp->if_softc);
return (0);
}
/*
* Notify the world which media we're using.
*/
static void
xi_mediastatus(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct xi_softc *sc = ifp->if_softc;
DPRINTF(XID_CONFIG, ("xi_mediastatus()\n"));
mii_pollstat(&sc->sc_mii);
ifmr->ifm_status = sc->sc_mii.mii_media_status;
ifmr->ifm_active = sc->sc_mii.mii_media_active;
}
static void
xi_reset(sc)
struct xi_softc *sc;
{
int s;
DPRINTF(XID_CONFIG, ("xi_reset()\n"));
s = splnet();
xi_stop(sc);
xi_full_reset(sc);
xi_init(sc);
splx(s);
}
static void
xi_watchdog(ifp)
struct ifnet *ifp;
{
struct xi_softc *sc = ifp->if_softc;
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
++ifp->if_oerrors;
xi_reset(sc);
}
static void
xi_stop(sc)
register struct xi_softc *sc;
{
DPRINTF(XID_CONFIG, ("xi_stop()\n"));
/* Disable interrupts. */
PAGE(sc, 0);
bus_space_write_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + CR, 0);
PAGE(sc, 1);
bus_space_write_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + IMR0, 0);
/* Power down, wait. */
PAGE(sc, 4);
bus_space_write_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + GP1, 0);
DELAY(40000);
/* Cancel watchdog timer. */
sc->sc_ethercom.ec_if.if_timer = 0;
}
static void
xi_init(sc)
struct xi_softc *sc;
{
struct xi_pcmcia_softc *psc = (struct xi_pcmcia_softc *)sc;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int s;
DPRINTF(XID_CONFIG, ("xi_init()\n"));
if ((psc->sc_resource & XI_RES_PCIC) == 0)
xi_pcmcia_enable(psc);
s = splnet();
xi_set_address(sc);
/* Set current media. */
mii_mediachg(&sc->sc_mii);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
splx(s);
}
/*
* Start outputting on the interface.
* Always called as splnet().
*/
static void
xi_start(ifp)
struct ifnet *ifp;
{
struct xi_softc *sc = ifp->if_softc;
bus_space_tag_t bst = sc->sc_bst;
bus_space_handle_t bsh = sc->sc_bsh;
bus_addr_t offset = sc->sc_offset;
unsigned int s, len, pad = 0;
struct mbuf *m0, *m;
u_int16_t space;
DPRINTF(XID_CONFIG, ("xi_start()\n"));
/* Don't transmit if interface is busy or not running. */
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
DPRINTF(XID_CONFIG, ("xi: interface busy or not running\n"));
return;
}
/* Peek at the next packet. */
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == 0)
return;
/* We need to use m->m_pkthdr.len, so require the header. */
if (!(m0->m_flags & M_PKTHDR))
panic("xi_start: no header mbuf");
len = m0->m_pkthdr.len;
/* Pad to ETHER_MIN_LEN - ETHER_CRC_LEN. */
if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
pad = ETHER_MIN_LEN - ETHER_CRC_LEN - len;
PAGE(sc, 0);
space = bus_space_read_2(bst, bsh, offset + TSO0) & 0x7fff;
if (len + pad + 2 > space) {
DPRINTF(XID_FIFO,
("xi: not enough space in output FIFO (%d > %d)\n",
len + pad + 2, space));
return;
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m0);
#endif
/*
* Do the output at splhigh() so that an interrupt from another device
* won't cause a FIFO underrun.
*/
s = splhigh();
bus_space_write_2(bst, bsh, offset + TSO2, (u_int16_t)len + pad + 2);
bus_space_write_2(bst, bsh, offset + EDP, (u_int16_t)len + pad);
for (m = m0; m; ) {
if (m->m_len > 1)
bus_space_write_multi_2(bst, bsh, offset + EDP,
mtod(m, u_int16_t *), m->m_len>>1);
if (m->m_len & 1)
bus_space_write_1(bst, bsh, offset + EDP,
*(mtod(m, u_int8_t *) + m->m_len - 1));
MFREE(m, m0);
m = m0;
}
if (sc->sc_flags & XIFLAGS_MOHAWK)
bus_space_write_1(bst, bsh, offset + CR, TX_PKT | ENABLE_INT);
else {
for (; pad > 1; pad -= 2)
bus_space_write_2(bst, bsh, offset + EDP, 0);
if (pad == 1)
bus_space_write_1(bst, bsh, offset + EDP, 0);
}
splx(s);
ifp->if_timer = 5;
++ifp->if_opackets;
}
static int
xi_ether_ioctl(ifp, cmd, data)
struct ifnet *ifp;
u_long cmd;
caddr_t data;
{
struct ifaddr *ifa = (struct ifaddr *)data;
struct xi_softc *sc = ifp->if_softc;
DPRINTF(XID_CONFIG, ("xi_ether_ioctl()\n"));
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
xi_init(sc);
arp_ifinit(ifp, ifa);
break;
#endif /* INET */
#ifdef NS
case AF_NS:
{
struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
if (ns_nullhost(*ina))
ina->x_host = *(union ns_host *)
LLADDR(ifp->if_sadl);
else
memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host,
ifp->if_addrlen);
/* Set new address. */
xi_init(sc);
break;
}
#endif /* NS */
default:
xi_init(sc);
break;
}
break;
default:
return (EINVAL);
}
return (0);
}
static int
xi_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct xi_pcmcia_softc *psc = ifp->if_softc;
struct xi_softc *sc = &psc->sc_xi;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
DPRINTF(XID_CONFIG, ("xi_ioctl()\n"));
s = splnet();
switch (command) {
case SIOCSIFADDR:
error = xi_ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
sc->sc_all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
PAGE(sc, 0x42);
if ((ifp->if_flags & IFF_PROMISC) ||
(ifp->if_flags & IFF_ALLMULTI))
bus_space_write_1(sc->sc_bst, sc->sc_bsh,
sc->sc_offset + SWC1,
SWC1_PROMISC | SWC1_MCAST_PROM);
else
bus_space_write_1(sc->sc_bst, sc->sc_bsh,
sc->sc_offset + SWC1, 0);
/*
* If interface is marked up and not running, then start it.
* If it is marked down and running, stop it.
* XXX If it's up then re-initialize it. This is so flags
* such as IFF_PROMISC are handled.
*/
if (ifp->if_flags & IFF_UP) {
xi_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING) {
xi_pcmcia_disable(psc);
xi_stop(sc);
ifp->if_flags &= ~IFF_RUNNING;
}
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
sc->sc_all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
error = (command == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_ethercom) :
ether_delmulti(ifr, &sc->sc_ethercom);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware
* filter accordingly.
*/
if (!sc->sc_all_mcasts &&
!(ifp->if_flags & IFF_PROMISC))
xi_set_address(sc);
/*
* xi_set_address() can turn on all_mcasts if we run
* out of space, so check it again rather than else {}.
*/
if (sc->sc_all_mcasts)
xi_init(sc);
error = 0;
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error =
ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
break;
default:
error = EINVAL;
}
splx(s);
return (error);
}
static void
xi_set_address(sc)
struct xi_softc *sc;
{
bus_space_tag_t bst = sc->sc_bst;
bus_space_handle_t bsh = sc->sc_bsh;
bus_addr_t offset = sc->sc_offset;
struct ethercom *ether = &sc->sc_ethercom;
#if 0
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
#endif
#if WORKING_MULTICAST
struct ether_multistep step;
struct ether_multi *enm;
int page, pos, num;
#endif
int i;
DPRINTF(XID_CONFIG, ("xi_set_address()\n"));
PAGE(sc, 0x50);
for (i = 0; i < ETHER_ADDR_LEN; i++) {
bus_space_write_1(bst, bsh, offset + IA + i,
sc->sc_enaddr[(sc->sc_flags & XIFLAGS_MOHAWK) ? 5-i : i]);
}
if (ether->ec_multicnt > 0) {
#ifdef WORKING_MULTICAST
if (ether->ec_multicnt > 9) {
#else
{
#endif
PAGE(sc, 0x42);
bus_space_write_1(sc->sc_bst, sc->sc_bsh,
sc->sc_offset + SWC1,
SWC1_PROMISC | SWC1_MCAST_PROM);
return;
}
#ifdef WORKING_MULTICAST
ETHER_FIRST_MULTI(step, ether, enm);
pos = IA + 6;
for (page = 0x50, num = ether->ec_multicnt; num > 0 && enm;
num--) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
sizeof(enm->enm_addrlo)) != 0) {
/*
* The multicast address is really a range;
* it's easier just to accept all multicasts.
* XXX should we be setting IFF_ALLMULTI here?
*/
#if 0
ifp->if_flags |= IFF_ALLMULTI;
#endif
sc->sc_all_mcasts=1;
break;
}
for (i = 0; i < ETHER_ADDR_LEN; i++) {
printf("%x:", enm->enm_addrlo[i]);
bus_space_write_1(bst, bsh, offset + pos,
enm->enm_addrlo[
(sc->sc_flags & XIFLAGS_MOHAWK) ? 5-i : i]);
if (++pos > 15) {
pos = IA;
page++;
PAGE(sc, page);
}
}
printf("\n");
ETHER_NEXT_MULTI(step, enm);
}
#endif
}
}
static void
xi_cycle_power(sc)
struct xi_softc *sc;
{
bus_space_tag_t bst = sc->sc_bst;
bus_space_handle_t bsh = sc->sc_bsh;
bus_addr_t offset = sc->sc_offset;
DPRINTF(XID_CONFIG, ("xi_cycle_power()\n"));
PAGE(sc, 4);
DELAY(1);
bus_space_write_1(bst, bsh, offset + GP1, 0);
DELAY(40000);
if (sc->sc_flags & XIFLAGS_MOHAWK)
bus_space_write_1(bst, bsh, offset + GP1, POWER_UP);
else
/* XXX What is bit 2 (aka AIC)? */
bus_space_write_1(bst, bsh, offset + GP1, POWER_UP | 4);
DELAY(20000);
}
static void
xi_full_reset(sc)
struct xi_softc *sc;
{
bus_space_tag_t bst = sc->sc_bst;
bus_space_handle_t bsh = sc->sc_bsh;
bus_addr_t offset = sc->sc_offset;
DPRINTF(XID_CONFIG, ("xi_full_reset()\n"));
/* Do an as extensive reset as possible on all functions. */
xi_cycle_power(sc);
bus_space_write_1(bst, bsh, offset + CR, SOFT_RESET);
DELAY(20000);
bus_space_write_1(bst, bsh, offset + CR, 0);
DELAY(20000);
if (sc->sc_flags & XIFLAGS_MOHAWK) {
PAGE(sc, 4);
/*
* Drive GP1 low to power up ML6692 and GP2 high to power up
* the 10Mhz chip. XXX What chip is that? The phy?
*/
bus_space_write_1(bst, bsh, offset + GP0,
GP1_OUT | GP2_OUT | GP2_WR);
}
DELAY(500000);
/* Get revision information. XXX Symbolic constants. */
sc->sc_rev = bus_space_read_1(bst, bsh, offset + BV) &
((sc->sc_flags & XIFLAGS_MOHAWK) ? 0x70 : 0x30) >> 4;
/* Media selection. XXX Maybe manual overriding too? */
if (!(sc->sc_flags & XIFLAGS_MOHAWK)) {
PAGE(sc, 4);
/*
* XXX I have no idea what this really does, it is from the
* Linux driver.
*/
bus_space_write_1(bst, bsh, offset + GP0, GP1_OUT);
}
DELAY(40000);
/* Setup the ethernet interrupt mask. */
PAGE(sc, 1);
#if 1
bus_space_write_1(bst, bsh, offset + IMR0,
ISR_TX_OFLOW | ISR_PKT_TX | ISR_MAC_INT | /* ISR_RX_EARLY | */
ISR_RX_FULL | ISR_RX_PKT_REJ | ISR_FORCED_INT);
#else
bus_space_write_1(bst, bsh, offset + IMR0, 0xff);
#endif
if (!(sc->sc_flags & XIFLAGS_DINGO)) {
/* XXX What is this? Not for Dingo at least. */
/* Unmask TX underrun detection */
bus_space_write_1(bst, bsh, offset + IMR1, 1);
}
/*
* Disable source insertion.
* XXX Dingo does not have this bit, but Linux does it unconditionally.
*/
if (!(sc->sc_flags & XIFLAGS_DINGO)) {
PAGE(sc, 0x42);
bus_space_write_1(bst, bsh, offset + SWC0, 0x20);
}
/* Set the local memory dividing line. */
if (sc->sc_rev != 1) {
PAGE(sc, 2);
/* XXX Symbolic constant preferrable. */
bus_space_write_2(bst, bsh, offset + RBS0, 0x2000);
}
xi_set_address(sc);
/*
* Apparently the receive byte pointer can be bad after a reset, so
* we hardwire it correctly.
*/
PAGE(sc, 0);
bus_space_write_2(bst, bsh, offset + DO0, DO_CHG_OFFSET);
/* Setup ethernet MAC registers. XXX Symbolic constants. */
PAGE(sc, 0x40);
bus_space_write_1(bst, bsh, offset + RX0MSK,
PKT_TOO_LONG | CRC_ERR | RX_OVERRUN | RX_ABORT | RX_OK);
bus_space_write_1(bst, bsh, offset + TX0MSK,
CARRIER_LOST | EXCESSIVE_COLL | TX_UNDERRUN | LATE_COLLISION |
SQE | TX_ABORT | TX_OK);
if (!(sc->sc_flags & XIFLAGS_DINGO))
/* XXX From Linux, dunno what 0xb0 means. */
bus_space_write_1(bst, bsh, offset + TX1MSK, 0xb0);
bus_space_write_1(bst, bsh, offset + RXST0, 0);
bus_space_write_1(bst, bsh, offset + TXST0, 0);
bus_space_write_1(bst, bsh, offset + TXST1, 0);
/* Enable MII function if available. */
if (LIST_FIRST(&sc->sc_mii.mii_phys)) {
PAGE(sc, 2);
bus_space_write_1(bst, bsh, offset + MSR,
bus_space_read_1(bst, bsh, offset + MSR) | SELECT_MII);
DELAY(20000);
} else {
PAGE(sc, 0);
/* XXX Do we need to do this? */
PAGE(sc, 0x42);
bus_space_write_1(bst, bsh, offset + SWC1, SWC1_AUTO_MEDIA);
DELAY(50000);
/* XXX Linux probes the media here. */
}
/* Configure the LED registers. */
PAGE(sc, 2);
/* XXX This is not good for 10base2. */
bus_space_write_1(bst, bsh, offset + LED,
LED_TX_ACT << LED1_SHIFT | LED_10MB_LINK << LED0_SHIFT);
if (sc->sc_flags & XIFLAGS_DINGO)
bus_space_write_1(bst, bsh, offset + LED3,
LED_100MB_LINK << LED3_SHIFT);
/* Enable receiver and go online. */
PAGE(sc, 0x40);
bus_space_write_1(bst, bsh, offset + CMD0, ENABLE_RX | ONLINE);
#if 0
/* XXX Linux does this here - is it necessary? */
PAGE(sc, 1);
bus_space_write_1(bst, bsh, offset + IMR0, 0xff);
if (!(sc->sc_flags & XIFLAGS_DINGO)) {
/* XXX What is this? Not for Dingo at least. */
bus_space_write_1(bst, bsh, offset + IMR1, 1);
}
#endif
/* Enable interrupts. */
PAGE(sc, 0);
bus_space_write_1(bst, bsh, offset + CR, ENABLE_INT);
/* XXX This is pure magic for me, found in the Linux driver. */
if ((sc->sc_flags & (XIFLAGS_DINGO | XIFLAGS_MODEM)) == XIFLAGS_MODEM) {
if ((bus_space_read_1(bst, bsh, offset + 0x10) & 0x01) == 0)
/* Unmask the master interrupt bit. */
bus_space_write_1(bst, bsh, offset + 0x10, 0x11);
}
/*
* The Linux driver says this:
* We should switch back to page 0 to avoid a bug in revision 0
* where regs with offset below 8 can't be read after an access
* to the MAC registers.
*/
PAGE(sc, 0);
}