NetBSD/sys/ufs/lfs/lfs_segment.c
2006-01-04 10:13:05 +00:00

2554 lines
69 KiB
C

/* $NetBSD: lfs_segment.c,v 1.169 2006/01/04 10:13:06 yamt Exp $ */
/*-
* Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Konrad E. Schroder <perseant@hhhh.org>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.169 2006/01/04 10:13:06 yamt Exp $");
#ifdef DEBUG
# define vndebug(vp, str) do { \
if (VTOI(vp)->i_flag & IN_CLEANING) \
DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
VTOI(vp)->i_number, (str), op)); \
} while(0)
#else
# define vndebug(vp, str)
#endif
#define ivndebug(vp, str) \
DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
#if defined(_KERNEL_OPT)
#include "opt_ddb.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/kernel.h>
#include <sys/resourcevar.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <miscfs/specfs/specdev.h>
#include <miscfs/fifofs/fifo.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/dir.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/lfs/lfs.h>
#include <ufs/lfs/lfs_extern.h>
#include <uvm/uvm.h>
#include <uvm/uvm_extern.h>
MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
extern int count_lock_queue(void);
extern struct simplelock vnode_free_list_slock; /* XXX */
extern struct simplelock bqueue_slock; /* XXX */
static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
static void lfs_super_aiodone(struct buf *);
static void lfs_cluster_aiodone(struct buf *);
static void lfs_cluster_callback(struct buf *);
/*
* Determine if it's OK to start a partial in this segment, or if we need
* to go on to a new segment.
*/
#define LFS_PARTIAL_FITS(fs) \
((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
fragstofsb((fs), (fs)->lfs_frag))
int lfs_match_fake(struct lfs *, struct buf *);
void lfs_newseg(struct lfs *);
/* XXX ondisk32 */
void lfs_shellsort(struct buf **, int32_t *, int, int);
void lfs_supercallback(struct buf *);
void lfs_updatemeta(struct segment *);
void lfs_writesuper(struct lfs *, daddr_t);
int lfs_writevnodes(struct lfs *fs, struct mount *mp,
struct segment *sp, int dirops);
int lfs_allclean_wakeup; /* Cleaner wakeup address. */
int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
int lfs_dirvcount = 0; /* # active dirops */
/* Statistics Counters */
int lfs_dostats = 1;
struct lfs_stats lfs_stats;
/* op values to lfs_writevnodes */
#define VN_REG 0
#define VN_DIROP 1
#define VN_EMPTY 2
#define VN_CLEAN 3
/*
* XXX KS - Set modification time on the Ifile, so the cleaner can
* read the fs mod time off of it. We don't set IN_UPDATE here,
* since we don't really need this to be flushed to disk (and in any
* case that wouldn't happen to the Ifile until we checkpoint).
*/
void
lfs_imtime(struct lfs *fs)
{
struct timespec ts;
struct inode *ip;
ASSERT_MAYBE_SEGLOCK(fs);
nanotime(&ts);
ip = VTOI(fs->lfs_ivnode);
ip->i_ffs1_mtime = ts.tv_sec;
ip->i_ffs1_mtimensec = ts.tv_nsec;
}
/*
* Ifile and meta data blocks are not marked busy, so segment writes MUST be
* single threaded. Currently, there are two paths into lfs_segwrite, sync()
* and getnewbuf(). They both mark the file system busy. Lfs_vflush()
* explicitly marks the file system busy. So lfs_segwrite is safe. I think.
*/
#define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
#define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
#define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
int
lfs_vflush(struct vnode *vp)
{
struct inode *ip;
struct lfs *fs;
struct segment *sp;
struct buf *bp, *nbp, *tbp, *tnbp;
int error, s;
int flushed;
#if 0
int redo;
#endif
ip = VTOI(vp);
fs = VFSTOUFS(vp->v_mount)->um_lfs;
ASSERT_NO_SEGLOCK(fs);
if (ip->i_flag & IN_CLEANING) {
ivndebug(vp,"vflush/in_cleaning");
LFS_CLR_UINO(ip, IN_CLEANING);
LFS_SET_UINO(ip, IN_MODIFIED);
/*
* Toss any cleaning buffers that have real counterparts
* to avoid losing new data.
*/
s = splbio();
for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
nbp = LIST_NEXT(bp, b_vnbufs);
if (!LFS_IS_MALLOC_BUF(bp))
continue;
/*
* Look for pages matching the range covered
* by cleaning blocks. It's okay if more dirty
* pages appear, so long as none disappear out
* from under us.
*/
if (bp->b_lblkno > 0 && vp->v_type == VREG &&
vp != fs->lfs_ivnode) {
struct vm_page *pg;
voff_t off;
simple_lock(&vp->v_interlock);
for (off = lblktosize(fs, bp->b_lblkno);
off < lblktosize(fs, bp->b_lblkno + 1);
off += PAGE_SIZE) {
pg = uvm_pagelookup(&vp->v_uobj, off);
if (pg == NULL)
continue;
if ((pg->flags & PG_CLEAN) == 0 ||
pmap_is_modified(pg)) {
fs->lfs_avail += btofsb(fs,
bp->b_bcount);
wakeup(&fs->lfs_avail);
lfs_freebuf(fs, bp);
bp = NULL;
goto nextbp;
}
}
simple_unlock(&vp->v_interlock);
}
for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
tbp = tnbp)
{
tnbp = LIST_NEXT(tbp, b_vnbufs);
if (tbp->b_vp == bp->b_vp
&& tbp->b_lblkno == bp->b_lblkno
&& tbp != bp)
{
fs->lfs_avail += btofsb(fs,
bp->b_bcount);
wakeup(&fs->lfs_avail);
lfs_freebuf(fs, bp);
bp = NULL;
break;
}
}
nextbp:
;
}
splx(s);
}
/* If the node is being written, wait until that is done */
simple_lock(&vp->v_interlock);
s = splbio();
if (WRITEINPROG(vp)) {
ivndebug(vp,"vflush/writeinprog");
ltsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock);
}
splx(s);
simple_unlock(&vp->v_interlock);
/* Protect against VXLOCK deadlock in vinvalbuf() */
lfs_seglock(fs, SEGM_SYNC);
/* If we're supposed to flush a freed inode, just toss it */
/* XXX - seglock, so these buffers can't be gathered, right? */
if (ip->i_mode == 0) {
DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
ip->i_number));
s = splbio();
for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
nbp = LIST_NEXT(bp, b_vnbufs);
if (bp->b_flags & B_DELWRI) { /* XXX always true? */
fs->lfs_avail += btofsb(fs, bp->b_bcount);
wakeup(&fs->lfs_avail);
}
/* Copied from lfs_writeseg */
if (bp->b_flags & B_CALL) {
biodone(bp);
} else {
bremfree(bp);
LFS_UNLOCK_BUF(bp);
bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
B_GATHERED);
bp->b_flags |= B_DONE;
reassignbuf(bp, vp);
brelse(bp);
}
}
splx(s);
LFS_CLR_UINO(ip, IN_CLEANING);
LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
ip->i_flag &= ~IN_ALLMOD;
DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
ip->i_number));
lfs_segunlock(fs);
return 0;
}
SET_FLUSHING(fs,vp);
if (fs->lfs_nactive > LFS_MAX_ACTIVE ||
(fs->lfs_sp->seg_flags & SEGM_CKP)) {
error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
CLR_FLUSHING(fs,vp);
lfs_segunlock(fs);
return error;
}
sp = fs->lfs_sp;
flushed = 0;
if (VPISEMPTY(vp)) {
lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
++flushed;
} else if ((ip->i_flag & IN_CLEANING) &&
(fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
ivndebug(vp,"vflush/clean");
lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
++flushed;
} else if (lfs_dostats) {
if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
++lfs_stats.vflush_invoked;
ivndebug(vp,"vflush");
}
#ifdef DIAGNOSTIC
if (vp->v_flag & VDIROP) {
DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n"));
/* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */
}
if (vp->v_usecount < 0) {
printf("usecount=%ld\n", (long)vp->v_usecount);
panic("lfs_vflush: usecount<0");
}
#endif
#if 1
do {
do {
if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
lfs_writefile(fs, sp, vp);
} while (lfs_writeinode(fs, sp, ip));
} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
#else
if (flushed && vp != fs->lfs_ivnode)
lfs_writeseg(fs, sp);
else do {
simple_lock(&fs->lfs_interlock);
fs->lfs_flags &= ~LFS_IFDIRTY;
simple_unlock(&fs->lfs_interlock);
lfs_writefile(fs, sp, vp);
redo = lfs_writeinode(fs, sp, ip);
redo += lfs_writeseg(fs, sp);
simple_lock(&fs->lfs_interlock);
redo += (fs->lfs_flags & LFS_IFDIRTY);
simple_unlock(&fs->lfs_interlock);
} while (redo && vp == fs->lfs_ivnode);
#endif
if (lfs_dostats) {
++lfs_stats.nwrites;
if (sp->seg_flags & SEGM_SYNC)
++lfs_stats.nsync_writes;
if (sp->seg_flags & SEGM_CKP)
++lfs_stats.ncheckpoints;
}
/*
* If we were called from somewhere that has already held the seglock
* (e.g., lfs_markv()), the lfs_segunlock will not wait for
* the write to complete because we are still locked.
* Since lfs_vflush() must return the vnode with no dirty buffers,
* we must explicitly wait, if that is the case.
*
* We compare the iocount against 1, not 0, because it is
* artificially incremented by lfs_seglock().
*/
simple_lock(&fs->lfs_interlock);
if (fs->lfs_seglock > 1) {
while (fs->lfs_iocount > 1)
(void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
"lfs_vflush", 0, &fs->lfs_interlock);
}
simple_unlock(&fs->lfs_interlock);
lfs_segunlock(fs);
/* Wait for these buffers to be recovered by aiodoned */
s = splbio();
simple_lock(&global_v_numoutput_slock);
while (vp->v_numoutput > 0) {
vp->v_flag |= VBWAIT;
ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
&global_v_numoutput_slock);
}
simple_unlock(&global_v_numoutput_slock);
splx(s);
CLR_FLUSHING(fs,vp);
return (0);
}
int
lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
{
struct inode *ip;
struct vnode *vp, *nvp;
int inodes_written = 0, only_cleaning;
ASSERT_SEGLOCK(fs);
#ifndef LFS_NO_BACKVP_HACK
/* BEGIN HACK */
#define VN_OFFSET \
(((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
#define BACK_VP(VP) \
((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
#define BEG_OF_VLIST \
((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \
- VN_OFFSET))
/* Find last vnode. */
loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist);
vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
vp = LIST_NEXT(vp, v_mntvnodes));
for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
nvp = BACK_VP(vp);
#else
loop:
for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
nvp = LIST_NEXT(vp, v_mntvnodes);
#endif
/*
* If the vnode that we are about to sync is no longer
* associated with this mount point, start over.
*/
if (vp->v_mount != mp) {
DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
/*
* After this, pages might be busy
* due to our own previous putpages.
* Start actual segment write here to avoid deadlock.
*/
(void)lfs_writeseg(fs, sp);
goto loop;
}
if (vp->v_type == VNON) {
continue;
}
ip = VTOI(vp);
if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
(op != VN_DIROP && op != VN_CLEAN &&
(vp->v_flag & VDIROP))) {
vndebug(vp,"dirop");
continue;
}
if (op == VN_EMPTY && !VPISEMPTY(vp)) {
vndebug(vp,"empty");
continue;
}
if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
&& vp != fs->lfs_flushvp
&& !(ip->i_flag & IN_CLEANING)) {
vndebug(vp,"cleaning");
continue;
}
if (lfs_vref(vp)) {
vndebug(vp,"vref");
continue;
}
only_cleaning = 0;
/*
* Write the inode/file if dirty and it's not the IFILE.
*/
if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
only_cleaning =
((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
if (ip->i_number != LFS_IFILE_INUM) {
lfs_writefile(fs, sp, vp);
if (!VPISEMPTY(vp)) {
if (WRITEINPROG(vp)) {
ivndebug(vp,"writevnodes/write2");
} else if (!(ip->i_flag & IN_ALLMOD)) {
LFS_SET_UINO(ip, IN_MODIFIED);
}
}
(void) lfs_writeinode(fs, sp, ip);
inodes_written++;
}
}
if (lfs_clean_vnhead && only_cleaning)
lfs_vunref_head(vp);
else
lfs_vunref(vp);
}
return inodes_written;
}
/*
* Do a checkpoint.
*/
int
lfs_segwrite(struct mount *mp, int flags)
{
struct buf *bp;
struct inode *ip;
struct lfs *fs;
struct segment *sp;
struct vnode *vp;
SEGUSE *segusep;
int do_ckp, did_ckp, error, s;
unsigned n, segleft, maxseg, sn, i, curseg;
int writer_set = 0;
int dirty;
int redo;
fs = VFSTOUFS(mp)->um_lfs;
ASSERT_MAYBE_SEGLOCK(fs);
if (fs->lfs_ronly)
return EROFS;
lfs_imtime(fs);
/*
* Allocate a segment structure and enough space to hold pointers to
* the maximum possible number of buffers which can be described in a
* single summary block.
*/
do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
sp = fs->lfs_sp;
/*
* If lfs_flushvp is non-NULL, we are called from lfs_vflush,
* in which case we have to flush *all* buffers off of this vnode.
* We don't care about other nodes, but write any non-dirop nodes
* anyway in anticipation of another getnewvnode().
*
* If we're cleaning we only write cleaning and ifile blocks, and
* no dirops, since otherwise we'd risk corruption in a crash.
*/
if (sp->seg_flags & SEGM_CLEAN)
lfs_writevnodes(fs, mp, sp, VN_CLEAN);
else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
lfs_writevnodes(fs, mp, sp, VN_REG);
if (!fs->lfs_dirops || !fs->lfs_flushvp) {
error = lfs_writer_enter(fs, "lfs writer");
if (error) {
DLOG((DLOG_SEG, "segwrite mysterious error\n"));
/* XXX why not segunlock? */
pool_put(&fs->lfs_bpppool, sp->bpp);
sp->bpp = NULL;
pool_put(&fs->lfs_segpool, sp);
sp = fs->lfs_sp = NULL;
return (error);
}
writer_set = 1;
lfs_writevnodes(fs, mp, sp, VN_DIROP);
((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
}
}
/*
* If we are doing a checkpoint, mark everything since the
* last checkpoint as no longer ACTIVE.
*/
if (do_ckp) {
segleft = fs->lfs_nseg;
curseg = 0;
for (n = 0; n < fs->lfs_segtabsz; n++) {
dirty = 0;
if (bread(fs->lfs_ivnode,
fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
panic("lfs_segwrite: ifile read");
segusep = (SEGUSE *)bp->b_data;
maxseg = min(segleft, fs->lfs_sepb);
for (i = 0; i < maxseg; i++) {
sn = curseg + i;
if (sn != dtosn(fs, fs->lfs_curseg) &&
segusep->su_flags & SEGUSE_ACTIVE) {
segusep->su_flags &= ~SEGUSE_ACTIVE;
--fs->lfs_nactive;
++dirty;
}
fs->lfs_suflags[fs->lfs_activesb][sn] =
segusep->su_flags;
if (fs->lfs_version > 1)
++segusep;
else
segusep = (SEGUSE *)
((SEGUSE_V1 *)segusep + 1);
}
if (dirty)
error = LFS_BWRITE_LOG(bp); /* Ifile */
else
brelse(bp);
segleft -= fs->lfs_sepb;
curseg += fs->lfs_sepb;
}
}
LOCK_ASSERT(LFS_SEGLOCK_HELD(fs));
did_ckp = 0;
if (do_ckp || fs->lfs_doifile) {
vp = fs->lfs_ivnode;
vn_lock(vp, LK_EXCLUSIVE);
do {
#ifdef DEBUG
LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
#endif
simple_lock(&fs->lfs_interlock);
fs->lfs_flags &= ~LFS_IFDIRTY;
simple_unlock(&fs->lfs_interlock);
ip = VTOI(vp);
if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
lfs_writefile(fs, sp, vp);
if (ip->i_flag & IN_ALLMOD)
++did_ckp;
redo = lfs_writeinode(fs, sp, ip);
redo += lfs_writeseg(fs, sp);
simple_lock(&fs->lfs_interlock);
redo += (fs->lfs_flags & LFS_IFDIRTY);
simple_unlock(&fs->lfs_interlock);
} while (redo && do_ckp);
/*
* Unless we are unmounting, the Ifile may continue to have
* dirty blocks even after a checkpoint, due to changes to
* inodes' atime. If we're checkpointing, it's "impossible"
* for other parts of the Ifile to be dirty after the loop
* above, since we hold the segment lock.
*/
s = splbio();
if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
LFS_CLR_UINO(ip, IN_ALLMOD);
}
#ifdef DIAGNOSTIC
else if (do_ckp) {
int do_panic = 0;
LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
if (bp->b_lblkno < fs->lfs_cleansz +
fs->lfs_segtabsz &&
!(bp->b_flags & B_GATHERED)) {
printf("ifile lbn %ld still dirty (flags %lx)\n",
(long)bp->b_lblkno,
(long)bp->b_flags);
++do_panic;
}
}
if (do_panic)
panic("dirty blocks");
}
#endif
splx(s);
VOP_UNLOCK(vp, 0);
} else {
(void) lfs_writeseg(fs, sp);
}
/* Note Ifile no longer needs to be written */
fs->lfs_doifile = 0;
if (writer_set)
lfs_writer_leave(fs);
/*
* If we didn't write the Ifile, we didn't really do anything.
* That means that (1) there is a checkpoint on disk and (2)
* nothing has changed since it was written.
*
* Take the flags off of the segment so that lfs_segunlock
* doesn't have to write the superblock either.
*/
if (do_ckp && !did_ckp) {
sp->seg_flags &= ~SEGM_CKP;
}
if (lfs_dostats) {
++lfs_stats.nwrites;
if (sp->seg_flags & SEGM_SYNC)
++lfs_stats.nsync_writes;
if (sp->seg_flags & SEGM_CKP)
++lfs_stats.ncheckpoints;
}
lfs_segunlock(fs);
return (0);
}
/*
* Write the dirty blocks associated with a vnode.
*/
void
lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
{
struct buf *bp;
struct finfo *fip;
struct inode *ip;
IFILE *ifp;
int i, frag;
ASSERT_SEGLOCK(fs);
ip = VTOI(vp);
if (sp->seg_bytes_left < fs->lfs_bsize ||
sp->sum_bytes_left < sizeof(struct finfo))
(void) lfs_writeseg(fs, sp);
sp->sum_bytes_left -= FINFOSIZE;
++((SEGSUM *)(sp->segsum))->ss_nfinfo;
if (vp->v_flag & VDIROP)
((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
fip = sp->fip;
fip->fi_nblocks = 0;
fip->fi_ino = ip->i_number;
LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
fip->fi_version = ifp->if_version;
brelse(bp);
if (sp->seg_flags & SEGM_CLEAN) {
lfs_gather(fs, sp, vp, lfs_match_fake);
/*
* For a file being flushed, we need to write *all* blocks.
* This means writing the cleaning blocks first, and then
* immediately following with any non-cleaning blocks.
* The same is true of the Ifile since checkpoints assume
* that all valid Ifile blocks are written.
*/
if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) {
lfs_gather(fs, sp, vp, lfs_match_data);
/*
* Don't call VOP_PUTPAGES: if we're flushing,
* we've already done it, and the Ifile doesn't
* use the page cache.
*/
}
} else {
lfs_gather(fs, sp, vp, lfs_match_data);
/*
* If we're flushing, we've already called VOP_PUTPAGES
* so don't do it again. Otherwise, we want to write
* everything we've got.
*/
if (!IS_FLUSHING(fs, vp)) {
simple_lock(&vp->v_interlock);
VOP_PUTPAGES(vp, 0, 0,
PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
}
}
/*
* It may not be necessary to write the meta-data blocks at this point,
* as the roll-forward recovery code should be able to reconstruct the
* list.
*
* We have to write them anyway, though, under two conditions: (1) the
* vnode is being flushed (for reuse by vinvalbuf); or (2) we are
* checkpointing.
*
* BUT if we are cleaning, we might have indirect blocks that refer to
* new blocks not being written yet, in addition to fragments being
* moved out of a cleaned segment. If that is the case, don't
* write the indirect blocks, or the finfo will have a small block
* in the middle of it!
* XXX in this case isn't the inode size wrong too?
*/
frag = 0;
if (sp->seg_flags & SEGM_CLEAN) {
for (i = 0; i < NDADDR; i++)
if (ip->i_lfs_fragsize[i] > 0 &&
ip->i_lfs_fragsize[i] < fs->lfs_bsize)
++frag;
}
#ifdef DIAGNOSTIC
if (frag > 1)
panic("lfs_writefile: more than one fragment!");
#endif
if (IS_FLUSHING(fs, vp) ||
(frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
lfs_gather(fs, sp, vp, lfs_match_indir);
lfs_gather(fs, sp, vp, lfs_match_dindir);
lfs_gather(fs, sp, vp, lfs_match_tindir);
}
fip = sp->fip;
if (fip->fi_nblocks != 0) {
sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
sizeof(int32_t) * (fip->fi_nblocks));
sp->start_lbp = &sp->fip->fi_blocks[0];
} else {
sp->sum_bytes_left += FINFOSIZE;
--((SEGSUM *)(sp->segsum))->ss_nfinfo;
}
}
int
lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
{
struct buf *bp, *ibp;
struct ufs1_dinode *cdp;
IFILE *ifp;
SEGUSE *sup;
daddr_t daddr;
int32_t *daddrp; /* XXX ondisk32 */
ino_t ino;
int error, i, ndx, fsb = 0;
int redo_ifile = 0;
int gotblk = 0;
ASSERT_SEGLOCK(fs);
if (!(ip->i_flag & IN_ALLMOD))
return (0);
/* Allocate a new inode block if necessary. */
if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
sp->ibp == NULL) {
/* Allocate a new segment if necessary. */
if (sp->seg_bytes_left < fs->lfs_ibsize ||
sp->sum_bytes_left < sizeof(int32_t))
(void) lfs_writeseg(fs, sp);
/* Get next inode block. */
daddr = fs->lfs_offset;
fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
sp->ibp = *sp->cbpp++ =
getblk(VTOI(fs->lfs_ivnode)->i_devvp,
fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
gotblk++;
/* Zero out inode numbers */
for (i = 0; i < INOPB(fs); ++i)
((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
0;
++sp->start_bpp;
fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
/* Set remaining space counters. */
sp->seg_bytes_left -= fs->lfs_ibsize;
sp->sum_bytes_left -= sizeof(int32_t);
ndx = fs->lfs_sumsize / sizeof(int32_t) -
sp->ninodes / INOPB(fs) - 1;
((int32_t *)(sp->segsum))[ndx] = daddr;
}
/* Update the inode times and copy the inode onto the inode page. */
/* XXX kludge --- don't redirty the ifile just to put times on it */
if (ip->i_number != LFS_IFILE_INUM)
LFS_ITIMES(ip, NULL, NULL, NULL);
/*
* If this is the Ifile, and we've already written the Ifile in this
* partial segment, just overwrite it (it's not on disk yet) and
* continue.
*
* XXX we know that the bp that we get the second time around has
* already been gathered.
*/
if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
*(sp->idp) = *ip->i_din.ffs1_din;
ip->i_lfs_osize = ip->i_size;
return 0;
}
bp = sp->ibp;
cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
*cdp = *ip->i_din.ffs1_din;
/*
* If we are cleaning, ensure that we don't write UNWRITTEN disk
* addresses to disk; possibly change the on-disk record of
* the inode size, either by reverting to the previous size
* (in the case of cleaning) or by verifying the inode's block
* holdings (in the case of files being allocated as they are being
* written).
* XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
* XXX count on disk wrong by the same amount. We should be
* XXX able to "borrow" from lfs_avail and return it after the
* XXX Ifile is written. See also in lfs_writeseg.
*/
/* Check file size based on highest allocated block */
if (((ip->i_ffs1_mode & IFMT) == IFREG ||
(ip->i_ffs1_mode & IFMT) == IFDIR) &&
ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
}
if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
if (ip->i_flags & IN_CLEANING)
cdp->di_size = ip->i_lfs_osize;
DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
" at %x\n", ip->i_number, ip->i_lfs_effnblks,
ip->i_ffs1_blocks, fs->lfs_offset));
for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
daddrp++) {
if (*daddrp == UNWRITTEN) {
DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
*daddrp = 0;
}
}
} else {
/* If all blocks are going to disk, update "size on disk" */
ip->i_lfs_osize = ip->i_size;
}
#ifdef DIAGNOSTIC
/*
* Check dinode held blocks against dinode size.
* This should be identical to the check in lfs_vget().
*/
for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
i < NDADDR; i++) {
KASSERT(i >= 0);
if ((cdp->di_mode & IFMT) == IFLNK)
continue;
if (((cdp->di_mode & IFMT) == IFBLK ||
(cdp->di_mode & IFMT) == IFCHR) && i == 0)
continue;
if (cdp->di_db[i] != 0) {
# ifdef DEBUG
lfs_dump_dinode(cdp);
# endif
panic("writing inconsistent inode");
}
}
#endif /* DIAGNOSTIC */
if (ip->i_flag & IN_CLEANING)
LFS_CLR_UINO(ip, IN_CLEANING);
else {
/* XXX IN_ALLMOD */
LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
IN_UPDATE | IN_MODIFY);
if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
LFS_CLR_UINO(ip, IN_MODIFIED);
else
DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real blks=%d, "
"eff=%d\n", ip->i_number, ip->i_ffs1_blocks,
ip->i_lfs_effnblks));
}
if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
sp->idp = ((struct ufs1_dinode *)bp->b_data) +
(sp->ninodes % INOPB(fs));
if (gotblk) {
LFS_LOCK_BUF(bp);
brelse(bp);
}
/* Increment inode count in segment summary block. */
++((SEGSUM *)(sp->segsum))->ss_ninos;
/* If this page is full, set flag to allocate a new page. */
if (++sp->ninodes % INOPB(fs) == 0)
sp->ibp = NULL;
/*
* If updating the ifile, update the super-block. Update the disk
* address and access times for this inode in the ifile.
*/
ino = ip->i_number;
if (ino == LFS_IFILE_INUM) {
daddr = fs->lfs_idaddr;
fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
} else {
LFS_IENTRY(ifp, fs, ino, ibp);
daddr = ifp->if_daddr;
ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
error = LFS_BWRITE_LOG(ibp); /* Ifile */
}
/*
* The inode's last address should not be in the current partial
* segment, except under exceptional circumstances (lfs_writevnodes
* had to start over, and in the meantime more blocks were written
* to a vnode). Both inodes will be accounted to this segment
* in lfs_writeseg so we need to subtract the earlier version
* here anyway. The segment count can temporarily dip below
* zero here; keep track of how many duplicates we have in
* "dupino" so we don't panic below.
*/
if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
++sp->ndupino;
DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
"(ino %d daddr 0x%llx) ndupino=%d\n", ino,
(long long)daddr, sp->ndupino));
}
/*
* Account the inode: it no longer belongs to its former segment,
* though it will not belong to the new segment until that segment
* is actually written.
*/
if (daddr != LFS_UNUSED_DADDR) {
u_int32_t oldsn = dtosn(fs, daddr);
#ifdef DIAGNOSTIC
int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
#endif
LFS_SEGENTRY(sup, fs, oldsn, bp);
#ifdef DIAGNOSTIC
if (sup->su_nbytes +
sizeof (struct ufs1_dinode) * ndupino
< sizeof (struct ufs1_dinode)) {
printf("lfs_writeinode: negative bytes "
"(segment %" PRIu32 " short by %d, "
"oldsn=%" PRIu32 ", cursn=%" PRIu32
", daddr=%" PRId64 ", su_nbytes=%u, "
"ndupino=%d)\n",
dtosn(fs, daddr),
(int)sizeof (struct ufs1_dinode) *
(1 - sp->ndupino) - sup->su_nbytes,
oldsn, sp->seg_number, daddr,
(unsigned int)sup->su_nbytes,
sp->ndupino);
panic("lfs_writeinode: negative bytes");
sup->su_nbytes = sizeof (struct ufs1_dinode);
}
#endif
DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
sup->su_nbytes -= sizeof (struct ufs1_dinode);
redo_ifile =
(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
if (redo_ifile) {
simple_lock(&fs->lfs_interlock);
fs->lfs_flags |= LFS_IFDIRTY;
simple_unlock(&fs->lfs_interlock);
}
LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
}
return (redo_ifile);
}
int
lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
{
struct lfs *fs;
int vers;
int j, blksinblk;
ASSERT_SEGLOCK(sp->fs);
/*
* If full, finish this segment. We may be doing I/O, so
* release and reacquire the splbio().
*/
#ifdef DIAGNOSTIC
if (sp->vp == NULL)
panic ("lfs_gatherblock: Null vp in segment");
#endif
fs = sp->fs;
blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
sp->seg_bytes_left < bp->b_bcount) {
if (sptr)
splx(*sptr);
lfs_updatemeta(sp);
vers = sp->fip->fi_version;
(void) lfs_writeseg(fs, sp);
sp->fip->fi_version = vers;
sp->fip->fi_ino = VTOI(sp->vp)->i_number;
/* Add the current file to the segment summary. */
++((SEGSUM *)(sp->segsum))->ss_nfinfo;
sp->sum_bytes_left -= FINFOSIZE;
if (sptr)
*sptr = splbio();
return (1);
}
if (bp->b_flags & B_GATHERED) {
DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
" lbn %" PRId64 "\n",
sp->fip->fi_ino, bp->b_lblkno));
return (0);
}
/* Insert into the buffer list, update the FINFO block. */
bp->b_flags |= B_GATHERED;
*sp->cbpp++ = bp;
for (j = 0; j < blksinblk; j++) {
sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
/* This block's accounting moves from lfs_favail to lfs_avail */
lfs_deregister_block(sp->vp, bp->b_lblkno + j);
}
sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
sp->seg_bytes_left -= bp->b_bcount;
return (0);
}
int
lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
int (*match)(struct lfs *, struct buf *))
{
struct buf *bp, *nbp;
int s, count = 0;
ASSERT_SEGLOCK(fs);
KASSERT(sp->vp == NULL);
sp->vp = vp;
s = splbio();
#ifndef LFS_NO_BACKBUF_HACK
/* This is a hack to see if ordering the blocks in LFS makes a difference. */
# define BUF_OFFSET \
(((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
# define BACK_BUF(BP) \
((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
# define BEG_OF_LIST \
((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
loop:
/* Find last buffer. */
for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
bp && LIST_NEXT(bp, b_vnbufs) != NULL;
bp = LIST_NEXT(bp, b_vnbufs))
/* nothing */;
for (; bp && bp != BEG_OF_LIST; bp = nbp) {
nbp = BACK_BUF(bp);
#else /* LFS_NO_BACKBUF_HACK */
loop:
for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
nbp = LIST_NEXT(bp, b_vnbufs);
#endif /* LFS_NO_BACKBUF_HACK */
if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
#ifdef DEBUG
if (vp == fs->lfs_ivnode &&
(bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
DLOG((DLOG_SEG, "lfs_gather: ifile lbn %"
PRId64 " busy (%x)",
bp->b_lblkno, bp->b_flags));
#endif
continue;
}
if (vp->v_type == VBLK) {
/* For block devices, just write the blocks. */
/* XXX Do we even need to do this? */
/*
* Get the block before bwrite,
* so we don't corrupt the free list
*/
bp->b_flags |= B_BUSY;
bremfree(bp);
bwrite(bp);
} else {
#ifdef DIAGNOSTIC
# ifdef LFS_USE_B_INVAL
if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
" is B_INVAL\n", bp->b_lblkno));
VOP_PRINT(bp->b_vp);
}
# endif /* LFS_USE_B_INVAL */
if (!(bp->b_flags & B_DELWRI))
panic("lfs_gather: bp not B_DELWRI");
if (!(bp->b_flags & B_LOCKED)) {
DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
" blk %" PRId64 " not B_LOCKED\n",
bp->b_lblkno,
dbtofsb(fs, bp->b_blkno)));
VOP_PRINT(bp->b_vp);
panic("lfs_gather: bp not B_LOCKED");
}
#endif
if (lfs_gatherblock(sp, bp, &s)) {
goto loop;
}
}
count++;
}
splx(s);
lfs_updatemeta(sp);
KASSERT(sp->vp == vp);
sp->vp = NULL;
return count;
}
#if DEBUG
# define DEBUG_OOFF(n) do { \
if (ooff == 0) { \
DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
"ino %d lbn %" PRId64 " at 0x%" PRIx32 \
", was 0x0 (or %" PRId64 ")\n", \
(n), ip->i_number, lbn, ndaddr, daddr)); \
} \
} while (0)
#else
# define DEBUG_OOFF(n)
#endif
/*
* Change the given block's address to ndaddr, finding its previous
* location using ufs_bmaparray().
*
* Account for this change in the segment table.
*
* called with sp == NULL by roll-forwarding code.
*/
void
lfs_update_single(struct lfs *fs, struct segment *sp, struct vnode *vp,
daddr_t lbn, int32_t ndaddr, int size)
{
SEGUSE *sup;
struct buf *bp;
struct indir a[NIADDR + 2], *ap;
struct inode *ip;
daddr_t daddr, ooff;
int num, error;
int bb, osize, obb;
ASSERT_SEGLOCK(fs);
KASSERT(sp == NULL || sp->vp == vp);
ip = VTOI(vp);
error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
if (error)
panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
KASSERT(daddr <= LFS_MAX_DADDR);
if (daddr > 0)
daddr = dbtofsb(fs, daddr);
bb = fragstofsb(fs, numfrags(fs, size));
switch (num) {
case 0:
ooff = ip->i_ffs1_db[lbn];
DEBUG_OOFF(0);
if (ooff == UNWRITTEN)
ip->i_ffs1_blocks += bb;
else {
/* possible fragment truncation or extension */
obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
ip->i_ffs1_blocks += (bb - obb);
}
ip->i_ffs1_db[lbn] = ndaddr;
break;
case 1:
ooff = ip->i_ffs1_ib[a[0].in_off];
DEBUG_OOFF(1);
if (ooff == UNWRITTEN)
ip->i_ffs1_blocks += bb;
ip->i_ffs1_ib[a[0].in_off] = ndaddr;
break;
default:
ap = &a[num - 1];
if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
panic("lfs_updatemeta: bread bno %" PRId64,
ap->in_lbn);
/* XXX ondisk32 */
ooff = ((int32_t *)bp->b_data)[ap->in_off];
DEBUG_OOFF(num);
if (ooff == UNWRITTEN)
ip->i_ffs1_blocks += bb;
/* XXX ondisk32 */
((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
(void) VOP_BWRITE(bp);
}
KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
/* Update hiblk when extending the file */
if (lbn > ip->i_lfs_hiblk)
ip->i_lfs_hiblk = lbn;
/*
* Though we'd rather it couldn't, this *can* happen right now
* if cleaning blocks and regular blocks coexist.
*/
/* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
/*
* Update segment usage information, based on old size
* and location.
*/
if (daddr > 0) {
u_int32_t oldsn = dtosn(fs, daddr);
#ifdef DIAGNOSTIC
int ndupino;
if (sp && sp->seg_number == oldsn) {
ndupino = sp->ndupino;
} else {
ndupino = 0;
}
#endif
KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg);
if (lbn >= 0 && lbn < NDADDR)
osize = ip->i_lfs_fragsize[lbn];
else
osize = fs->lfs_bsize;
LFS_SEGENTRY(sup, fs, oldsn, bp);
#ifdef DIAGNOSTIC
if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
< osize) {
printf("lfs_updatemeta: negative bytes "
"(segment %" PRIu32 " short by %" PRId64
")\n", dtosn(fs, daddr),
(int64_t)osize -
(sizeof (struct ufs1_dinode) * ndupino +
sup->su_nbytes));
printf("lfs_updatemeta: ino %llu, lbn %" PRId64
", addr = 0x%" PRIx64 "\n",
(unsigned long long)ip->i_number, lbn, daddr);
printf("lfs_updatemeta: ndupino=%d\n", ndupino);
panic("lfs_updatemeta: negative bytes");
sup->su_nbytes = osize -
sizeof (struct ufs1_dinode) * ndupino;
}
#endif
DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
" db 0x%" PRIx64 "\n",
dtosn(fs, daddr), osize,
ip->i_number, lbn, daddr));
sup->su_nbytes -= osize;
if (!(bp->b_flags & B_GATHERED)) {
simple_lock(&fs->lfs_interlock);
fs->lfs_flags |= LFS_IFDIRTY;
simple_unlock(&fs->lfs_interlock);
}
LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
}
/*
* Now that this block has a new address, and its old
* segment no longer owns it, we can forget about its
* old size.
*/
if (lbn >= 0 && lbn < NDADDR)
ip->i_lfs_fragsize[lbn] = size;
}
/*
* Update the metadata that points to the blocks listed in the FINFO
* array.
*/
void
lfs_updatemeta(struct segment *sp)
{
struct buf *sbp;
struct lfs *fs;
struct vnode *vp;
daddr_t lbn;
int i, nblocks, num;
int bb;
int bytesleft, size;
ASSERT_SEGLOCK(sp->fs);
vp = sp->vp;
nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
KASSERT(nblocks >= 0);
KASSERT(vp != NULL);
if (nblocks == 0)
return;
/*
* This count may be high due to oversize blocks from lfs_gop_write.
* Correct for this. (XXX we should be able to keep track of these.)
*/
fs = sp->fs;
for (i = 0; i < nblocks; i++) {
if (sp->start_bpp[i] == NULL) {
DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
nblocks = i;
break;
}
num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
nblocks -= num - 1;
}
KASSERT(vp->v_type == VREG ||
nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
KASSERT(nblocks == sp->cbpp - sp->start_bpp);
/*
* Sort the blocks.
*
* We have to sort even if the blocks come from the
* cleaner, because there might be other pending blocks on the
* same inode...and if we don't sort, and there are fragments
* present, blocks may be written in the wrong place.
*/
lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
/*
* Record the length of the last block in case it's a fragment.
* If there are indirect blocks present, they sort last. An
* indirect block will be lfs_bsize and its presence indicates
* that you cannot have fragments.
*
* XXX This last is a lie. A cleaned fragment can coexist with
* XXX a later indirect block. This will continue to be
* XXX true until lfs_markv is fixed to do everything with
* XXX fake blocks (including fake inodes and fake indirect blocks).
*/
sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
fs->lfs_bmask) + 1;
/*
* Assign disk addresses, and update references to the logical
* block and the segment usage information.
*/
for (i = nblocks; i--; ++sp->start_bpp) {
sbp = *sp->start_bpp;
lbn = *sp->start_lbp;
KASSERT(sbp->b_lblkno == lbn);
sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
/*
* If we write a frag in the wrong place, the cleaner won't
* be able to correctly identify its size later, and the
* segment will be uncleanable. (Even worse, it will assume
* that the indirect block that actually ends the list
* is of a smaller size!)
*/
if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
panic("lfs_updatemeta: fragment is not last block");
/*
* For each subblock in this possibly oversized block,
* update its address on disk.
*/
KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
KASSERT(vp == sbp->b_vp);
for (bytesleft = sbp->b_bcount; bytesleft > 0;
bytesleft -= fs->lfs_bsize) {
size = MIN(bytesleft, fs->lfs_bsize);
bb = fragstofsb(fs, numfrags(fs, size));
lbn = *sp->start_lbp++;
lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
size);
fs->lfs_offset += bb;
}
}
}
/*
* Move lfs_offset to a segment earlier than sn.
*/
int
lfs_rewind(struct lfs *fs, int newsn)
{
int sn, osn, isdirty;
struct buf *bp;
SEGUSE *sup;
ASSERT_SEGLOCK(fs);
osn = dtosn(fs, fs->lfs_offset);
if (osn < newsn)
return 0;
/* lfs_avail eats the remaining space in this segment */
fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
/* Find a low-numbered segment */
for (sn = 0; sn < fs->lfs_nseg; ++sn) {
LFS_SEGENTRY(sup, fs, sn, bp);
isdirty = sup->su_flags & SEGUSE_DIRTY;
brelse(bp);
if (!isdirty)
break;
}
if (sn == fs->lfs_nseg)
panic("lfs_rewind: no clean segments");
if (sn >= newsn)
return ENOENT;
fs->lfs_nextseg = sn;
lfs_newseg(fs);
fs->lfs_offset = fs->lfs_curseg;
return 0;
}
/*
* Start a new partial segment.
*
* Return 1 when we entered to a new segment.
* Otherwise, return 0.
*/
int
lfs_initseg(struct lfs *fs)
{
struct segment *sp = fs->lfs_sp;
SEGSUM *ssp;
struct buf *sbp; /* buffer for SEGSUM */
int repeat = 0; /* return value */
ASSERT_SEGLOCK(fs);
/* Advance to the next segment. */
if (!LFS_PARTIAL_FITS(fs)) {
SEGUSE *sup;
struct buf *bp;
/* lfs_avail eats the remaining space */
fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
fs->lfs_curseg);
/* Wake up any cleaning procs waiting on this file system. */
wakeup(&lfs_allclean_wakeup);
wakeup(&fs->lfs_nextseg);
lfs_newseg(fs);
repeat = 1;
fs->lfs_offset = fs->lfs_curseg;
sp->seg_number = dtosn(fs, fs->lfs_curseg);
sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
/*
* If the segment contains a superblock, update the offset
* and summary address to skip over it.
*/
LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
if (sup->su_flags & SEGUSE_SUPERBLOCK) {
fs->lfs_offset += btofsb(fs, LFS_SBPAD);
sp->seg_bytes_left -= LFS_SBPAD;
}
brelse(bp);
/* Segment zero could also contain the labelpad */
if (fs->lfs_version > 1 && sp->seg_number == 0 &&
fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
fs->lfs_offset +=
btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
sp->seg_bytes_left -=
LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
}
} else {
sp->seg_number = dtosn(fs, fs->lfs_curseg);
sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
(fs->lfs_offset - fs->lfs_curseg));
}
fs->lfs_lastpseg = fs->lfs_offset;
/* Record first address of this partial segment */
if (sp->seg_flags & SEGM_CLEAN) {
fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
/* "1" is the artificial inc in lfs_seglock */
simple_lock(&fs->lfs_interlock);
while (fs->lfs_iocount > 1) {
ltsleep(&fs->lfs_iocount, PRIBIO + 1,
"lfs_initseg", 0, &fs->lfs_interlock);
}
simple_unlock(&fs->lfs_interlock);
fs->lfs_cleanind = 0;
}
}
sp->fs = fs;
sp->ibp = NULL;
sp->idp = NULL;
sp->ninodes = 0;
sp->ndupino = 0;
sp->cbpp = sp->bpp;
/* Get a new buffer for SEGSUM */
sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
/* ... and enter it into the buffer list. */
*sp->cbpp = sbp;
sp->cbpp++;
fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
sp->start_bpp = sp->cbpp;
/* Set point to SEGSUM, initialize it. */
ssp = sp->segsum = sbp->b_data;
memset(ssp, 0, fs->lfs_sumsize);
ssp->ss_next = fs->lfs_nextseg;
ssp->ss_nfinfo = ssp->ss_ninos = 0;
ssp->ss_magic = SS_MAGIC;
/* Set pointer to first FINFO, initialize it. */
sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
sp->fip->fi_nblocks = 0;
sp->start_lbp = &sp->fip->fi_blocks[0];
sp->fip->fi_lastlength = 0;
sp->seg_bytes_left -= fs->lfs_sumsize;
sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
return (repeat);
}
/*
* Remove SEGUSE_INVAL from all segments.
*/
void
lfs_unset_inval_all(struct lfs *fs)
{
SEGUSE *sup;
struct buf *bp;
int i;
for (i = 0; i < fs->lfs_nseg; i++) {
LFS_SEGENTRY(sup, fs, i, bp);
if (sup->su_flags & SEGUSE_INVAL) {
sup->su_flags &= ~SEGUSE_INVAL;
VOP_BWRITE(bp);
} else
brelse(bp);
}
}
/*
* Return the next segment to write.
*/
void
lfs_newseg(struct lfs *fs)
{
CLEANERINFO *cip;
SEGUSE *sup;
struct buf *bp;
int curseg, isdirty, sn, skip_inval;
ASSERT_SEGLOCK(fs);
LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
dtosn(fs, fs->lfs_nextseg)));
sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
sup->su_nbytes = 0;
sup->su_nsums = 0;
sup->su_ninos = 0;
LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
LFS_CLEANERINFO(cip, fs, bp);
--cip->clean;
++cip->dirty;
fs->lfs_nclean = cip->clean;
LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
fs->lfs_lastseg = fs->lfs_curseg;
fs->lfs_curseg = fs->lfs_nextseg;
skip_inval = 1;
for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
sn = (sn + 1) % fs->lfs_nseg;
if (sn == curseg) {
if (skip_inval)
skip_inval = 0;
else
panic("lfs_nextseg: no clean segments");
}
LFS_SEGENTRY(sup, fs, sn, bp);
isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
/* Check SEGUSE_EMPTY as we go along */
if (isdirty && sup->su_nbytes == 0 &&
!(sup->su_flags & SEGUSE_EMPTY))
LFS_WRITESEGENTRY(sup, fs, sn, bp);
else
brelse(bp);
if (!isdirty)
break;
}
if (skip_inval == 0)
lfs_unset_inval_all(fs);
++fs->lfs_nactive;
fs->lfs_nextseg = sntod(fs, sn);
if (lfs_dostats) {
++lfs_stats.segsused;
}
}
static struct buf *
lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
{
struct lfs_cluster *cl;
struct buf **bpp, *bp;
ASSERT_SEGLOCK(fs);
cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
memset(cl, 0, sizeof(*cl));
cl->fs = fs;
cl->bpp = bpp;
cl->bufcount = 0;
cl->bufsize = 0;
/* If this segment is being written synchronously, note that */
if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
cl->flags |= LFS_CL_SYNC;
cl->seg = fs->lfs_sp;
++cl->seg->seg_iocount;
}
/* Get an empty buffer header, or maybe one with something on it */
bp = getiobuf();
bp->b_flags = B_BUSY | B_CALL;
bp->b_dev = NODEV;
bp->b_blkno = bp->b_lblkno = addr;
bp->b_iodone = lfs_cluster_callback;
bp->b_private = cl;
bp->b_vp = vp;
return bp;
}
int
lfs_writeseg(struct lfs *fs, struct segment *sp)
{
struct buf **bpp, *bp, *cbp, *newbp;
SEGUSE *sup;
SEGSUM *ssp;
int i, s;
int do_again, nblocks, byteoffset;
size_t el_size;
struct lfs_cluster *cl;
u_short ninos;
struct vnode *devvp;
char *p = NULL;
struct vnode *vp;
int32_t *daddrp; /* XXX ondisk32 */
int changed;
u_int32_t sum;
ASSERT_SEGLOCK(fs);
/*
* If there are no buffers other than the segment summary to write
* and it is not a checkpoint, don't do anything. On a checkpoint,
* even if there aren't any buffers, you need to write the superblock.
*/
if ((nblocks = sp->cbpp - sp->bpp) == 1)
return (0);
devvp = VTOI(fs->lfs_ivnode)->i_devvp;
/* Update the segment usage information. */
LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
/* Loop through all blocks, except the segment summary. */
for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
if ((*bpp)->b_vp != devvp) {
sup->su_nbytes += (*bpp)->b_bcount;
DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
" lbn %" PRId64 " db 0x%" PRIx64 "\n",
sp->seg_number, (*bpp)->b_bcount,
VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
(*bpp)->b_blkno));
}
}
ssp = (SEGSUM *)sp->segsum;
ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
ssp->ss_ninos));
sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
/* sup->su_nbytes += fs->lfs_sumsize; */
if (fs->lfs_version == 1)
sup->su_olastmod = time.tv_sec;
else
sup->su_lastmod = time.tv_sec;
sup->su_ninos += ninos;
++sup->su_nsums;
fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
fs->lfs_ibsize));
fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
do_again = !(bp->b_flags & B_GATHERED);
LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
/*
* Mark blocks B_BUSY, to prevent then from being changed between
* the checksum computation and the actual write.
*
* If we are cleaning, check indirect blocks for UNWRITTEN, and if
* there are any, replace them with copies that have UNASSIGNED
* instead.
*/
for (bpp = sp->bpp, i = nblocks - 1; i--;) {
++bpp;
bp = *bpp;
if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
bp->b_flags |= B_BUSY;
continue;
}
simple_lock(&bp->b_interlock);
s = splbio();
while (bp->b_flags & B_BUSY) {
DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
" data summary corruption for ino %d, lbn %"
PRId64 "\n",
VTOI(bp->b_vp)->i_number, bp->b_lblkno));
bp->b_flags |= B_WANTED;
ltsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0,
&bp->b_interlock);
splx(s);
s = splbio();
}
bp->b_flags |= B_BUSY;
splx(s);
simple_unlock(&bp->b_interlock);
/*
* Check and replace indirect block UNWRITTEN bogosity.
* XXX See comment in lfs_writefile.
*/
if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
VTOI(bp->b_vp)->i_ffs1_blocks !=
VTOI(bp->b_vp)->i_lfs_effnblks) {
DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
VTOI(bp->b_vp)->i_number,
VTOI(bp->b_vp)->i_lfs_effnblks,
VTOI(bp->b_vp)->i_ffs1_blocks));
/* Make a copy we'll make changes to */
newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
bp->b_bcount, LFS_NB_IBLOCK);
newbp->b_blkno = bp->b_blkno;
memcpy(newbp->b_data, bp->b_data,
newbp->b_bcount);
changed = 0;
/* XXX ondisk32 */
for (daddrp = (int32_t *)(newbp->b_data);
daddrp < (int32_t *)(newbp->b_data +
newbp->b_bcount); daddrp++) {
if (*daddrp == UNWRITTEN) {
++changed;
*daddrp = 0;
}
}
/*
* Get rid of the old buffer. Don't mark it clean,
* though, if it still has dirty data on it.
*/
if (changed) {
DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
" bp = %p newbp = %p\n", changed, bp,
newbp));
*bpp = newbp;
bp->b_flags &= ~(B_ERROR | B_GATHERED);
if (bp->b_flags & B_CALL) {
DLOG((DLOG_SEG, "lfs_writeseg: "
"indir bp should not be B_CALL\n"));
s = splbio();
biodone(bp);
splx(s);
bp = NULL;
} else {
/* Still on free list, leave it there */
s = splbio();
bp->b_flags &= ~B_BUSY;
if (bp->b_flags & B_WANTED)
wakeup(bp);
splx(s);
/*
* We have to re-decrement lfs_avail
* since this block is going to come
* back around to us in the next
* segment.
*/
fs->lfs_avail -=
btofsb(fs, bp->b_bcount);
}
} else {
lfs_freebuf(fs, newbp);
}
}
}
/*
* Compute checksum across data and then across summary; the first
* block (the summary block) is skipped. Set the create time here
* so that it's guaranteed to be later than the inode mod times.
*/
sum = 0;
if (fs->lfs_version == 1)
el_size = sizeof(u_long);
else
el_size = sizeof(u_int32_t);
for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
++bpp;
/* Loop through gop_write cluster blocks */
for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
byteoffset += fs->lfs_bsize) {
#ifdef LFS_USE_B_INVAL
if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
(B_CALL | B_INVAL)) {
if (copyin((caddr_t)(*bpp)->b_saveaddr +
byteoffset, dp, el_size)) {
panic("lfs_writeseg: copyin failed [1]:"
" ino %d blk %" PRId64,
VTOI((*bpp)->b_vp)->i_number,
(*bpp)->b_lblkno);
}
} else
#endif /* LFS_USE_B_INVAL */
{
sum = lfs_cksum_part(
(*bpp)->b_data + byteoffset, el_size, sum);
}
}
}
if (fs->lfs_version == 1)
ssp->ss_ocreate = time.tv_sec;
else {
ssp->ss_create = time.tv_sec;
ssp->ss_serial = ++fs->lfs_serial;
ssp->ss_ident = fs->lfs_ident;
}
ssp->ss_datasum = lfs_cksum_fold(sum);
ssp->ss_sumsum = cksum(&ssp->ss_datasum,
fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
simple_lock(&fs->lfs_interlock);
fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
btofsb(fs, fs->lfs_sumsize));
simple_unlock(&fs->lfs_interlock);
/*
* When we simply write the blocks we lose a rotation for every block
* written. To avoid this problem, we cluster the buffers into a
* chunk and write the chunk. MAXPHYS is the largest size I/O
* devices can handle, use that for the size of the chunks.
*
* Blocks that are already clusters (from GOP_WRITE), however, we
* don't bother to copy into other clusters.
*/
#define CHUNKSIZE MAXPHYS
if (devvp == NULL)
panic("devvp is NULL");
for (bpp = sp->bpp, i = nblocks; i;) {
cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
cl = cbp->b_private;
cbp->b_flags |= B_ASYNC | B_BUSY;
cbp->b_bcount = 0;
#if defined(DEBUG) && defined(DIAGNOSTIC)
if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
/ sizeof(int32_t)) {
panic("lfs_writeseg: real bpp overwrite");
}
if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
panic("lfs_writeseg: theoretical bpp overwrite");
}
#endif
/*
* Construct the cluster.
*/
simple_lock(&fs->lfs_interlock);
++fs->lfs_iocount;
simple_unlock(&fs->lfs_interlock);
while (i && cbp->b_bcount < CHUNKSIZE) {
bp = *bpp;
if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
break;
if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
break;
/* Clusters from GOP_WRITE are expedited */
if (bp->b_bcount > fs->lfs_bsize) {
if (cbp->b_bcount > 0)
/* Put in its own buffer */
break;
else {
cbp->b_data = bp->b_data;
}
} else if (cbp->b_bcount == 0) {
p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
LFS_NB_CLUSTER);
cl->flags |= LFS_CL_MALLOC;
}
#ifdef DIAGNOSTIC
if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
btodb(bp->b_bcount - 1))) !=
sp->seg_number) {
printf("blk size %d daddr %" PRIx64
" not in seg %d\n",
bp->b_bcount, bp->b_blkno,
sp->seg_number);
panic("segment overwrite");
}
#endif
#ifdef LFS_USE_B_INVAL
/*
* Fake buffers from the cleaner are marked as B_INVAL.
* We need to copy the data from user space rather than
* from the buffer indicated.
* XXX == what do I do on an error?
*/
if ((bp->b_flags & (B_CALL|B_INVAL)) ==
(B_CALL|B_INVAL)) {
if (copyin(bp->b_saveaddr, p, bp->b_bcount))
panic("lfs_writeseg: "
"copyin failed [2]");
} else
#endif /* LFS_USE_B_INVAL */
if (cl->flags & LFS_CL_MALLOC) {
/* copy data into our cluster. */
memcpy(p, bp->b_data, bp->b_bcount);
p += bp->b_bcount;
}
cbp->b_bcount += bp->b_bcount;
cl->bufsize += bp->b_bcount;
bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
cl->bpp[cl->bufcount++] = bp;
vp = bp->b_vp;
s = splbio();
reassignbuf(bp, vp);
V_INCR_NUMOUTPUT(vp);
splx(s);
bpp++;
i--;
}
if (fs->lfs_sp->seg_flags & SEGM_SYNC)
BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
else
BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
s = splbio();
V_INCR_NUMOUTPUT(devvp);
splx(s);
VOP_STRATEGY(devvp, cbp);
curproc->p_stats->p_ru.ru_oublock++;
}
if (lfs_dostats) {
++lfs_stats.psegwrites;
lfs_stats.blocktot += nblocks - 1;
if (fs->lfs_sp->seg_flags & SEGM_SYNC)
++lfs_stats.psyncwrites;
if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
++lfs_stats.pcleanwrites;
lfs_stats.cleanblocks += nblocks - 1;
}
}
return (lfs_initseg(fs) || do_again);
}
void
lfs_writesuper(struct lfs *fs, daddr_t daddr)
{
struct buf *bp;
int s;
struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
ASSERT_MAYBE_SEGLOCK(fs);
#ifdef DIAGNOSTIC
KASSERT(fs->lfs_magic == LFS_MAGIC);
#endif
/*
* If we can write one superblock while another is in
* progress, we risk not having a complete checkpoint if we crash.
* So, block here if a superblock write is in progress.
*/
simple_lock(&fs->lfs_interlock);
s = splbio();
while (fs->lfs_sbactive) {
ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
&fs->lfs_interlock);
}
fs->lfs_sbactive = daddr;
splx(s);
simple_unlock(&fs->lfs_interlock);
/* Set timestamp of this version of the superblock */
if (fs->lfs_version == 1)
fs->lfs_otstamp = time.tv_sec;
fs->lfs_tstamp = time.tv_sec;
/* Checksum the superblock and copy it into a buffer. */
fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
bp = lfs_newbuf(fs, devvp,
fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
memset(bp->b_data + sizeof(struct dlfs), 0,
LFS_SBPAD - sizeof(struct dlfs));
*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
bp->b_iodone = lfs_supercallback;
if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
else
BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
curproc->p_stats->p_ru.ru_oublock++;
s = splbio();
V_INCR_NUMOUTPUT(bp->b_vp);
splx(s);
simple_lock(&fs->lfs_interlock);
++fs->lfs_iocount;
simple_unlock(&fs->lfs_interlock);
VOP_STRATEGY(devvp, bp);
}
/*
* Logical block number match routines used when traversing the dirty block
* chain.
*/
int
lfs_match_fake(struct lfs *fs, struct buf *bp)
{
ASSERT_SEGLOCK(fs);
return LFS_IS_MALLOC_BUF(bp);
}
#if 0
int
lfs_match_real(struct lfs *fs, struct buf *bp)
{
ASSERT_SEGLOCK(fs);
return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
}
#endif
int
lfs_match_data(struct lfs *fs, struct buf *bp)
{
ASSERT_SEGLOCK(fs);
return (bp->b_lblkno >= 0);
}
int
lfs_match_indir(struct lfs *fs, struct buf *bp)
{
daddr_t lbn;
ASSERT_SEGLOCK(fs);
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
}
int
lfs_match_dindir(struct lfs *fs, struct buf *bp)
{
daddr_t lbn;
ASSERT_SEGLOCK(fs);
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
}
int
lfs_match_tindir(struct lfs *fs, struct buf *bp)
{
daddr_t lbn;
ASSERT_SEGLOCK(fs);
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
}
/*
* XXX - The only buffers that are going to hit these functions are the
* segment write blocks, or the segment summaries, or the superblocks.
*
* All of the above are created by lfs_newbuf, and so do not need to be
* released via brelse.
*/
void
lfs_callback(struct buf *bp)
{
struct lfs *fs;
fs = bp->b_private;
ASSERT_NO_SEGLOCK(fs);
lfs_freebuf(fs, bp);
}
static void
lfs_super_aiodone(struct buf *bp)
{
struct lfs *fs;
fs = bp->b_private;
ASSERT_NO_SEGLOCK(fs);
simple_lock(&fs->lfs_interlock);
fs->lfs_sbactive = 0;
if (--fs->lfs_iocount <= 1)
wakeup(&fs->lfs_iocount);
simple_unlock(&fs->lfs_interlock);
wakeup(&fs->lfs_sbactive);
lfs_freebuf(fs, bp);
}
static void
lfs_cluster_aiodone(struct buf *bp)
{
struct lfs_cluster *cl;
struct lfs *fs;
struct buf *tbp, *fbp;
struct vnode *vp, *devvp;
struct inode *ip;
int s, error=0;
if (bp->b_flags & B_ERROR)
error = bp->b_error;
cl = bp->b_private;
fs = cl->fs;
devvp = VTOI(fs->lfs_ivnode)->i_devvp;
ASSERT_NO_SEGLOCK(fs);
/* Put the pages back, and release the buffer */
while (cl->bufcount--) {
tbp = cl->bpp[cl->bufcount];
KASSERT(tbp->b_flags & B_BUSY);
if (error) {
tbp->b_flags |= B_ERROR;
tbp->b_error = error;
}
/*
* We're done with tbp. If it has not been re-dirtied since
* the cluster was written, free it. Otherwise, keep it on
* the locked list to be written again.
*/
vp = tbp->b_vp;
tbp->b_flags &= ~B_GATHERED;
LFS_BCLEAN_LOG(fs, tbp);
if (!(tbp->b_flags & B_CALL)) {
KASSERT(tbp->b_flags & B_LOCKED);
s = splbio();
simple_lock(&bqueue_slock);
bremfree(tbp);
simple_unlock(&bqueue_slock);
if (vp)
reassignbuf(tbp, vp);
splx(s);
tbp->b_flags |= B_ASYNC; /* for biodone */
}
if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
LFS_UNLOCK_BUF(tbp);
if (tbp->b_flags & B_DONE) {
DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
cl->bufcount, (long)tbp->b_flags));
}
if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
/*
* A buffer from the page daemon.
* We use the same iodone as it does,
* so we must manually disassociate its
* buffers from the vp.
*/
if (tbp->b_vp) {
/* This is just silly */
s = splbio();
brelvp(tbp);
tbp->b_vp = vp;
splx(s);
}
/* Put it back the way it was */
tbp->b_flags |= B_ASYNC;
/* Master buffers have B_AGE */
if (tbp->b_private == tbp)
tbp->b_flags |= B_AGE;
}
s = splbio();
biodone(tbp);
/*
* If this is the last block for this vnode, but
* there are other blocks on its dirty list,
* set IN_MODIFIED/IN_CLEANING depending on what
* sort of block. Only do this for our mount point,
* not for, e.g., inode blocks that are attached to
* the devvp.
* XXX KS - Shouldn't we set *both* if both types
* of blocks are present (traverse the dirty list?)
*/
simple_lock(&global_v_numoutput_slock);
if (vp != devvp && vp->v_numoutput == 0 &&
(fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
ip = VTOI(vp);
DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
ip->i_number));
if (LFS_IS_MALLOC_BUF(fbp))
LFS_SET_UINO(ip, IN_CLEANING);
else
LFS_SET_UINO(ip, IN_MODIFIED);
}
simple_unlock(&global_v_numoutput_slock);
splx(s);
wakeup(vp);
}
/* Fix up the cluster buffer, and release it */
if (cl->flags & LFS_CL_MALLOC)
lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
putiobuf(bp);
/* Note i/o done */
if (cl->flags & LFS_CL_SYNC) {
if (--cl->seg->seg_iocount == 0)
wakeup(&cl->seg->seg_iocount);
}
simple_lock(&fs->lfs_interlock);
#ifdef DIAGNOSTIC
if (fs->lfs_iocount == 0)
panic("lfs_cluster_aiodone: zero iocount");
#endif
if (--fs->lfs_iocount <= 1)
wakeup(&fs->lfs_iocount);
simple_unlock(&fs->lfs_interlock);
pool_put(&fs->lfs_bpppool, cl->bpp);
cl->bpp = NULL;
pool_put(&fs->lfs_clpool, cl);
}
static void
lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
{
/* reset b_iodone for when this is a single-buf i/o. */
bp->b_iodone = aiodone;
simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */
TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
wakeup(&uvm.aiodoned);
simple_unlock(&uvm.aiodoned_lock);
}
static void
lfs_cluster_callback(struct buf *bp)
{
lfs_generic_callback(bp, lfs_cluster_aiodone);
}
void
lfs_supercallback(struct buf *bp)
{
lfs_generic_callback(bp, lfs_super_aiodone);
}
/*
* Shellsort (diminishing increment sort) from Data Structures and
* Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
* see also Knuth Vol. 3, page 84. The increments are selected from
* formula (8), page 95. Roughly O(N^3/2).
*/
/*
* This is our own private copy of shellsort because we want to sort
* two parallel arrays (the array of buffer pointers and the array of
* logical block numbers) simultaneously. Note that we cast the array
* of logical block numbers to a unsigned in this routine so that the
* negative block numbers (meta data blocks) sort AFTER the data blocks.
*/
void
lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
{
static int __rsshell_increments[] = { 4, 1, 0 };
int incr, *incrp, t1, t2;
struct buf *bp_temp;
#ifdef DEBUG
incr = 0;
for (t1 = 0; t1 < nmemb; t1++) {
for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
/* dump before panic */
printf("lfs_shellsort: nmemb=%d, size=%d\n",
nmemb, size);
incr = 0;
for (t1 = 0; t1 < nmemb; t1++) {
const struct buf *bp = bp_array[t1];
printf("bp[%d]: lbn=%" PRIu64 ", size=%"
PRIu64 "\n", t1,
(uint64_t)bp->b_bcount,
(uint64_t)bp->b_lblkno);
printf("lbns:");
for (t2 = 0; t2 * size < bp->b_bcount;
t2++) {
printf(" %" PRId32,
lb_array[incr++]);
}
printf("\n");
}
panic("lfs_shellsort: inconsistent input");
}
}
}
#endif
for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
for (t1 = incr; t1 < nmemb; ++t1)
for (t2 = t1 - incr; t2 >= 0;)
if ((u_int32_t)bp_array[t2]->b_lblkno >
(u_int32_t)bp_array[t2 + incr]->b_lblkno) {
bp_temp = bp_array[t2];
bp_array[t2] = bp_array[t2 + incr];
bp_array[t2 + incr] = bp_temp;
t2 -= incr;
} else
break;
/* Reform the list of logical blocks */
incr = 0;
for (t1 = 0; t1 < nmemb; t1++) {
for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
}
}
}
/*
* Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
*/
int
lfs_vref(struct vnode *vp)
{
ASSERT_MAYBE_SEGLOCK(VTOI(vp)->i_lfs);
/*
* If we return 1 here during a flush, we risk vinvalbuf() not
* being able to flush all of the pages from this vnode, which
* will cause it to panic. So, return 0 if a flush is in progress.
*/
if (vp->v_flag & VXLOCK) {
if (IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
return 0;
}
return (1);
}
return (vget(vp, 0));
}
/*
* This is vrele except that we do not want to VOP_INACTIVE this vnode. We
* inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
*/
void
lfs_vunref(struct vnode *vp)
{
ASSERT_MAYBE_SEGLOCK(VTOI(vp)->i_lfs);
/*
* Analogous to lfs_vref, if the node is flushing, fake it.
*/
if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
return;
}
simple_lock(&vp->v_interlock);
#ifdef DIAGNOSTIC
if (vp->v_usecount <= 0) {
printf("lfs_vunref: inum is %llu\n", (unsigned long long)
VTOI(vp)->i_number);
printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
panic("lfs_vunref: v_usecount < 0");
}
#endif
vp->v_usecount--;
if (vp->v_usecount > 0) {
simple_unlock(&vp->v_interlock);
return;
}
/*
* insert at tail of LRU list
*/
simple_lock(&vnode_free_list_slock);
if (vp->v_holdcnt > 0)
TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
else
TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
simple_unlock(&vnode_free_list_slock);
simple_unlock(&vp->v_interlock);
}
/*
* We use this when we have vnodes that were loaded in solely for cleaning.
* There is no reason to believe that these vnodes will be referenced again
* soon, since the cleaning process is unrelated to normal filesystem
* activity. Putting cleaned vnodes at the tail of the list has the effect
* of flushing the vnode LRU. So, put vnodes that were loaded only for
* cleaning at the head of the list, instead.
*/
void
lfs_vunref_head(struct vnode *vp)
{
ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
simple_lock(&vp->v_interlock);
#ifdef DIAGNOSTIC
if (vp->v_usecount == 0) {
panic("lfs_vunref: v_usecount<0");
}
#endif
vp->v_usecount--;
if (vp->v_usecount > 0) {
simple_unlock(&vp->v_interlock);
return;
}
/*
* insert at head of LRU list
*/
simple_lock(&vnode_free_list_slock);
if (vp->v_holdcnt > 0)
TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
else
TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
simple_unlock(&vnode_free_list_slock);
simple_unlock(&vp->v_interlock);
}