2453 lines
65 KiB
C
2453 lines
65 KiB
C
/* $NetBSD: uda.c,v 1.15 1996/03/17 22:56:50 ragge Exp $ */
|
|
/*
|
|
* Copyright (c) 1988 Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Chris Torek.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)uda.c 7.32 (Berkeley) 2/13/91
|
|
*/
|
|
|
|
/*
|
|
* UDA50/MSCP device driver
|
|
*/
|
|
|
|
#define POLLSTATS
|
|
|
|
/*
|
|
* TODO
|
|
* write bad block forwarding code
|
|
*/
|
|
|
|
#include "uda.h"
|
|
#include "ra.h"
|
|
|
|
/*
|
|
* CONFIGURATION OPTIONS. The next three defines are tunable -- tune away!
|
|
*
|
|
* COMPAT_42 enables 4.2/4.3 compatibility (label mapping)
|
|
*
|
|
* NRSPL2 and NCMDL2 control the number of response and command
|
|
* packets respectively. They may be any value from 0 to 7, though
|
|
* setting them higher than 5 is unlikely to be of any value.
|
|
* If you get warnings about your command ring being too small,
|
|
* try increasing the values by one.
|
|
*
|
|
* MAXUNIT controls the maximum unit number (number of drives per
|
|
* controller) we are prepared to handle.
|
|
*
|
|
* DEFAULT_BURST must be at least 1.
|
|
*/
|
|
#define COMPAT_42
|
|
#define todr() 0 /* XXX */
|
|
#define NRSPL2 5 /* log2 number of response packets */
|
|
#define NCMDL2 5 /* log2 number of command packets */
|
|
#define MAXUNIT 8 /* maximum allowed unit number */
|
|
#define DEFAULT_BURST 4 /* default DMA burst size */
|
|
|
|
#define ALLSTEPS (UDA_ERR|UDA_STEP4|UDA_STEP3|UDA_STEP2|UDA_STEP1)
|
|
|
|
#define STEP1MASK (ALLSTEPS | UDA_IE | UDA_NCNRMASK)
|
|
#define STEP1GOOD (UDA_STEP2 | UDA_IE | (NCMDL2 << 3) | NRSPL2)
|
|
|
|
#define STEP2MASK (ALLSTEPS | UDA_IE | UDA_IVECMASK)
|
|
#define STEP2GOOD (UDA_STEP3 | UDA_IE | (sc->sc_ivec >> 2))
|
|
|
|
#define STEP3MASK ALLSTEPS
|
|
#define STEP3GOOD UDA_STEP4
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/file.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/user.h>
|
|
#include <sys/map.h>
|
|
#include <sys/device.h>
|
|
#include <sys/dkstat.h>
|
|
#include <sys/disklabel.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/stat.h>
|
|
|
|
#include <machine/pte.h>
|
|
#include <machine/sid.h>
|
|
#include <machine/cpu.h>
|
|
|
|
#include <vax/uba/ubareg.h>
|
|
#include <vax/uba/ubavar.h>
|
|
|
|
#define NRSP (1 << NRSPL2)
|
|
#define NCMD (1 << NCMDL2)
|
|
|
|
#include <vax/uba/udareg.h>
|
|
#include <vax/vax/mscp.h>
|
|
#include <vax/vax/mscpvar.h>
|
|
#include <machine/mtpr.h>
|
|
|
|
extern int cold;
|
|
|
|
/*
|
|
* This macro is for delay during init. Some MSCP clone card (Dilog)
|
|
* can't handle fast read from its registers, and therefore need
|
|
* a delay between them.
|
|
*/
|
|
#define DELAYTEN 1000
|
|
#define Wait_step( mask, result, status ) { \
|
|
status = 1; \
|
|
if ((udaddr->udasa & mask) != result) { \
|
|
volatile int count = 0; \
|
|
while ((udaddr->udasa & mask) != result) { \
|
|
DELAY(10000); \
|
|
count += 1; \
|
|
if (count > DELAYTEN) \
|
|
break; \
|
|
} \
|
|
if (count > DELAYTEN) \
|
|
status = 0; \
|
|
} \
|
|
}
|
|
|
|
/*
|
|
* UDA communications area and MSCP packet pools, per controller.
|
|
*/
|
|
struct uda {
|
|
struct udaca uda_ca; /* communications area */
|
|
struct mscp uda_rsp[NRSP]; /* response packets */
|
|
struct mscp uda_cmd[NCMD]; /* command packets */
|
|
};
|
|
|
|
/*
|
|
* Software status, per controller.
|
|
*/
|
|
struct uda_softc {
|
|
struct uda *sc_uuda; /* Unibus address of uda struct */
|
|
struct uda sc_uda; /* Struct for uda communication */
|
|
short sc_state; /* UDA50 state; see below */
|
|
short sc_flags; /* flags; see below */
|
|
int sc_micro; /* microcode revision */
|
|
int sc_ivec; /* interrupt vector address */
|
|
short sc_ipl; /* interrupt priority, Q-bus */
|
|
struct mscp_info sc_mi;/* MSCP info (per mscpvar.h) */
|
|
#ifndef POLLSTATS
|
|
int sc_wticks; /* watchdog timer ticks */
|
|
#else
|
|
short sc_wticks;
|
|
short sc_ncmd;
|
|
#endif
|
|
} uda_softc[NUDA];
|
|
|
|
#ifdef POLLSTATS
|
|
struct udastats {
|
|
int ncmd;
|
|
int cmd[NCMD + 1];
|
|
} udastats = { NCMD + 1 };
|
|
#endif
|
|
|
|
int udamatch __P((struct device *, void *, void *));
|
|
void uda_attach __P((struct device *, struct device *, void *));
|
|
|
|
struct cfdriver uda_cd = {
|
|
NULL, "uda", DV_DULL
|
|
};
|
|
|
|
struct cfattach uda_ca = {
|
|
sizeof(struct device), udamatch, uda_attach
|
|
};
|
|
|
|
/*
|
|
* Controller states
|
|
*/
|
|
#define ST_IDLE 0 /* uninitialised */
|
|
#define ST_STEP1 1 /* in `STEP 1' */
|
|
#define ST_STEP2 2 /* in `STEP 2' */
|
|
#define ST_STEP3 3 /* in `STEP 3' */
|
|
#define ST_SETCHAR 4 /* in `Set Controller Characteristics' */
|
|
#define ST_RUN 5 /* up and running */
|
|
|
|
/*
|
|
* Flags
|
|
*/
|
|
#define SC_MAPPED 0x01 /* mapped in Unibus I/O space */
|
|
#define SC_INSTART 0x02 /* inside udastart() */
|
|
#define SC_GRIPED 0x04 /* griped about cmd ring too small */
|
|
#define SC_INSLAVE 0x08 /* inside udaslave() */
|
|
#define SC_DOWAKE 0x10 /* wakeup when ctlr init done */
|
|
#define SC_STARTPOLL 0x20 /* need to initiate polling */
|
|
|
|
/*
|
|
* Device to unit number and partition and back
|
|
*/
|
|
#define UNITSHIFT 3
|
|
#define UNITMASK 7
|
|
#define udaunit(dev) (minor(dev) >> UNITSHIFT)
|
|
#define udapart(dev) (minor(dev) & UNITMASK)
|
|
#define udaminor(u, p) (((u) << UNITSHIFT) | (p))
|
|
|
|
/*
|
|
* Drive status, per drive
|
|
*/
|
|
struct ra_info {
|
|
daddr_t ra_dsize; /* size in sectors */
|
|
/* u_long ra_type; /* drive type */
|
|
u_long ra_mediaid; /* media id */
|
|
int ra_state; /* open/closed state */
|
|
struct ra_geom { /* geometry information */
|
|
u_short rg_nsectors; /* sectors/track */
|
|
u_short rg_ngroups; /* track groups */
|
|
u_short rg_ngpc; /* groups/cylinder */
|
|
u_short rg_ntracks; /* ngroups*ngpc */
|
|
u_short rg_ncyl; /* ra_dsize/ntracks/nsectors */
|
|
#ifdef notyet
|
|
u_short rg_rctsize; /* size of rct */
|
|
u_short rg_rbns; /* replacement blocks per track */
|
|
u_short rg_nrct; /* number of rct copies */
|
|
#endif
|
|
} ra_geom;
|
|
int ra_wlabel; /* label sector is currently writable */
|
|
u_long ra_openpart; /* partitions open */
|
|
u_long ra_bopenpart; /* block partitions open */
|
|
u_long ra_copenpart; /* character partitions open */
|
|
} ra_info[NRA];
|
|
|
|
/*
|
|
* Software state, per drive
|
|
*/
|
|
#define CLOSED 0
|
|
#define WANTOPEN 1
|
|
#define RDLABEL 2
|
|
#define OPEN 3
|
|
#define OPENRAW 4
|
|
|
|
/*
|
|
* Definition of the driver for autoconf.
|
|
*/
|
|
int udaprobe(), udaslave(), udaattach(), udadgo(), udaintr();
|
|
struct uba_ctlr *udaminfo[NUDA];
|
|
struct uba_device *udadinfo[NRA];
|
|
struct disklabel udalabel[NRA];
|
|
|
|
u_short udastd[] = { 0 };
|
|
struct uba_driver udadriver =
|
|
{ udaprobe, udaslave, udaattach, udadgo, udastd, "ra", udadinfo, "uda",
|
|
udaminfo };
|
|
|
|
/*
|
|
* More driver definitions, for generic MSCP code.
|
|
*/
|
|
int udadgram(), udactlrdone(), udaunconf(), udaiodone();
|
|
int udaonline(), udagotstatus(), udaioerror(), udareplace(), udabb();
|
|
|
|
struct buf udautab[NRA]; /* per drive transfer queue */
|
|
|
|
struct mscp_driver udamscpdriver =
|
|
{ MAXUNIT, NRA, UNITSHIFT, udautab, udalabel, udadinfo,
|
|
udadgram, udactlrdone, udaunconf, udaiodone,
|
|
udaonline, udagotstatus, udareplace, udaioerror, udabb,
|
|
"uda", "ra" };
|
|
|
|
/*
|
|
* Miscellaneous private variables.
|
|
*/
|
|
char udasr_bits[] = UDASR_BITS;
|
|
|
|
struct uba_device *udaip[NUDA][MAXUNIT];
|
|
/* inverting pointers: ctlr & unit => Unibus
|
|
device pointer */
|
|
|
|
int udaburst[NUDA] = { 0 }; /* burst size, per UDA50, zero => default;
|
|
in data space so patchable via adb */
|
|
|
|
struct mscp udaslavereply; /* get unit status response packet, set
|
|
for udaslave by udaunconf, via udaintr */
|
|
|
|
static struct uba_ctlr *probeum;/* this is a hack---autoconf should pass ctlr
|
|
info to slave routine; instead, we remember
|
|
the last ctlr argument to probe */
|
|
|
|
int udawstart;
|
|
void udawatch(); /* watchdog timer */
|
|
|
|
/*
|
|
* Externals
|
|
*/
|
|
int hz;
|
|
|
|
/*
|
|
* Poke at a supposed UDA50 to see if it is there.
|
|
* This routine duplicates some of the code in udainit() only
|
|
* because autoconf has not set up the right information yet.
|
|
* We have to do everything `by hand'.
|
|
*/
|
|
int
|
|
udamatch(parent, match, aux)
|
|
struct device *parent;
|
|
void *match, *aux;
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
uda_attach(parent, self, aux)
|
|
struct device *parent, *self;
|
|
void *aux;
|
|
{
|
|
}
|
|
|
|
udaprobe(reg, ctlr, um, uhp)
|
|
caddr_t reg;
|
|
int ctlr;
|
|
struct uba_ctlr *um;
|
|
struct uba_softc *uhp;
|
|
{
|
|
struct uda_softc *sc;
|
|
volatile struct udadevice *udaddr;
|
|
struct mscp_info *mi;
|
|
struct uba_softc *ubasc;
|
|
extern int cpu_type;
|
|
int timeout, tries, count;
|
|
#ifdef notyet
|
|
int s;
|
|
#endif
|
|
|
|
#ifdef VAX750
|
|
/*
|
|
* The UDA50 wants to share BDPs on 750s, but not on 780s or
|
|
* 8600s. (730s have no BDPs anyway.) Toward this end, we
|
|
* here set the `keep bdp' flag in the per-driver information
|
|
* if this is a 750. (We just need to do it once, but it is
|
|
* easiest to do it now, for each UDA50.)
|
|
*/
|
|
if (MACHID(cpu_type) == VAX_750)
|
|
udadriver.ud_keepbdp = 1;
|
|
#endif
|
|
probeum = um; /* remember for udaslave() */
|
|
/*
|
|
* Set up the controller-specific generic MSCP driver info.
|
|
* Note that this should really be done in the (nonexistent)
|
|
* controller attach routine.
|
|
*/
|
|
sc = &uda_softc[ctlr];
|
|
mi = &sc->sc_mi;
|
|
mi->mi_md = &udamscpdriver;
|
|
mi->mi_ctlr = um->um_ctlr;
|
|
mi->mi_tab = (void*)&um->um_tab;
|
|
mi->mi_ip = udaip[ctlr];
|
|
mi->mi_cmd.mri_size = NCMD;
|
|
mi->mi_cmd.mri_desc = sc->sc_uda.uda_ca.ca_cmddsc;
|
|
mi->mi_cmd.mri_ring = sc->sc_uda.uda_cmd;
|
|
mi->mi_rsp.mri_size = NRSP;
|
|
mi->mi_rsp.mri_desc = sc->sc_uda.uda_ca.ca_rspdsc;
|
|
mi->mi_rsp.mri_ring = sc->sc_uda.uda_rsp;
|
|
mi->mi_wtab.b_actf = &mi->mi_wtab;
|
|
|
|
/*
|
|
* More controller specific variables. Again, this should
|
|
* be in the controller attach routine.
|
|
*/
|
|
if (udaburst[ctlr] == 0)
|
|
udaburst[ctlr] = DEFAULT_BURST;
|
|
|
|
/*
|
|
* Get an interrupt vector. Note that even if the controller
|
|
* does not respond, we keep the vector. This is not a serious
|
|
* problem; but it would be easily fixed if we had a controller
|
|
* attach routine. Sigh.
|
|
*/
|
|
ubasc = uhp;
|
|
sc->sc_ivec = ubasc->uh_lastiv -= 4;
|
|
udaddr = (struct udadevice *) reg;
|
|
|
|
/*
|
|
* Initialise the controller (partially). The UDA50 programmer's
|
|
* manual states that if initialisation fails, it should be retried
|
|
* at least once, but after a second failure the port should be
|
|
* considered `down'; it also mentions that the controller should
|
|
* initialise within ten seconds. Or so I hear; I have not seen
|
|
* this manual myself.
|
|
*/
|
|
#ifdef notyet
|
|
s = spl6();
|
|
#endif
|
|
tries = 0;
|
|
again:
|
|
udaddr->udaip = 0; /* start initialisation */
|
|
|
|
count = 0;
|
|
while ( count < DELAYTEN ) {
|
|
if ( (udaddr->udasa & UDA_STEP1) != 0 )
|
|
break;
|
|
DELAY(10000);
|
|
count += 1;
|
|
}
|
|
|
|
/* nothing there */
|
|
if ( count == DELAYTEN )
|
|
return(0);
|
|
|
|
udaddr->udasa = UDA_ERR | (NCMDL2 << 11) | (NRSPL2 << 8) | UDA_IE |
|
|
(sc->sc_ivec >> 2);
|
|
|
|
count = 0;
|
|
while (count < DELAYTEN) {
|
|
if ((udaddr->udasa & UDA_STEP2 ) != 0)
|
|
break;
|
|
DELAY(10000);
|
|
count += 1;
|
|
}
|
|
|
|
if (count == DELAYTEN) {
|
|
printf("udaprobe: uda%d: init step2 no change.\n",
|
|
um->um_ctlr);
|
|
goto bad;
|
|
}
|
|
|
|
/* should have interrupted by now */
|
|
#ifdef notyet
|
|
sc->sc_ipl = br = qbgetpri();
|
|
#else
|
|
sc->sc_ipl = 0x15;
|
|
#endif
|
|
return (sizeof (struct udadevice));
|
|
bad:
|
|
if (++tries < 2)
|
|
goto again;
|
|
#ifdef notyet
|
|
splx(s);
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Find a slave. We allow wildcard slave numbers (something autoconf
|
|
* is not really prepared to deal with); and we need to know the
|
|
* controller number to talk to the UDA. For the latter, we keep
|
|
* track of the last controller probed, since a controller probe
|
|
* immediately precedes all slave probes for that controller. For the
|
|
* former, we simply put the unit number into ui->ui_slave after we
|
|
* have found one.
|
|
*
|
|
* Note that by the time udaslave is called, the interrupt vector
|
|
* for the UDA50 has been set up (so that udaunconf() will be called).
|
|
*/
|
|
udaslave(ui, reg)
|
|
register struct uba_device *ui;
|
|
caddr_t reg;
|
|
{
|
|
register struct uba_ctlr *um = probeum;
|
|
volatile struct mscp *mp;
|
|
volatile struct uda_softc *sc;
|
|
int next = 0, timeout, tries;
|
|
volatile int i;
|
|
|
|
#ifdef lint
|
|
i = 0; i = i;
|
|
#endif
|
|
/*
|
|
* Make sure the controller is fully initialised, by waiting
|
|
* for it if necessary.
|
|
*/
|
|
sc = &uda_softc[um->um_ctlr];
|
|
if (sc->sc_state == ST_RUN)
|
|
goto findunit;
|
|
tries = 0;
|
|
again:
|
|
if (udainit(ui->ui_ctlr))
|
|
return (0);
|
|
timeout = 1000;
|
|
while (timeout-- > 0) {
|
|
DELAY(10000);
|
|
if (sc->sc_state == ST_RUN)
|
|
goto findunit;
|
|
}
|
|
|
|
if (++tries < 2)
|
|
goto again;
|
|
printf("uda%d: controller hung\n", um->um_ctlr);
|
|
return (0);
|
|
|
|
/*
|
|
* The controller is all set; go find the unit. Grab an
|
|
* MSCP packet and send out a Get Unit Status command, with
|
|
* the `next unit' modifier if we are looking for a generic
|
|
* unit. We set the `in slave' flag so that udaunconf()
|
|
* knows to copy the response to `udaslavereply'.
|
|
*/
|
|
findunit:
|
|
udaslavereply.mscp_opcode = 0;
|
|
sc->sc_flags |= SC_INSLAVE;
|
|
if ((mp = mscp_getcp(&sc->sc_mi, MSCP_DONTWAIT)) == NULL)
|
|
panic("udaslave"); /* `cannot happen' */
|
|
mp->mscp_opcode = M_OP_GETUNITST;
|
|
if (ui->ui_slave == '?') {
|
|
mp->mscp_unit = next;
|
|
mp->mscp_modifier = M_GUM_NEXTUNIT;
|
|
} else {
|
|
mp->mscp_unit = ui->ui_slave;
|
|
mp->mscp_modifier = 0;
|
|
}
|
|
*mp->mscp_addr |= MSCP_OWN | MSCP_INT;
|
|
i = ((struct udadevice *) reg)->udaip; /* initiate polling */
|
|
mp = &udaslavereply;
|
|
timeout = 1000;
|
|
while (timeout-- > 0) {
|
|
DELAY(10000);
|
|
if (mp->mscp_opcode)
|
|
goto gotit;
|
|
}
|
|
printf("uda%d: no response to Get Unit Status request\n",
|
|
um->um_ctlr);
|
|
sc->sc_flags &= ~SC_INSLAVE;
|
|
return (0);
|
|
|
|
gotit:
|
|
sc->sc_flags &= ~SC_INSLAVE;
|
|
|
|
/*
|
|
* Got a slave response. If the unit is there, use it.
|
|
*/
|
|
switch (mp->mscp_status & M_ST_MASK) {
|
|
|
|
case M_ST_SUCCESS: /* worked */
|
|
case M_ST_AVAILABLE: /* found another drive */
|
|
break; /* use it */
|
|
|
|
case M_ST_OFFLINE:
|
|
/*
|
|
* Figure out why it is off line. It may be because
|
|
* it is nonexistent, or because it is spun down, or
|
|
* for some other reason.
|
|
*/
|
|
switch (mp->mscp_status & ~M_ST_MASK) {
|
|
|
|
case M_OFFLINE_UNKNOWN:
|
|
/*
|
|
* No such drive, and there are none with
|
|
* higher unit numbers either, if we are
|
|
* using M_GUM_NEXTUNIT.
|
|
*/
|
|
return (0);
|
|
|
|
case M_OFFLINE_UNMOUNTED:
|
|
/*
|
|
* The drive is not spun up. Use it anyway.
|
|
*
|
|
* N.B.: this seems to be a common occurrance
|
|
* after a power failure. The first attempt
|
|
* to bring it on line seems to spin it up
|
|
* (and thus takes several minutes). Perhaps
|
|
* we should note here that the on-line may
|
|
* take longer than usual.
|
|
*/
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* In service, or something else equally unusable.
|
|
*/
|
|
printf("uda%d: unit %d off line: ", um->um_ctlr,
|
|
mp->mscp_unit);
|
|
mscp_printevent(mp);
|
|
goto try_another;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
printf("uda%d: unable to get unit status: ", um->um_ctlr);
|
|
mscp_printevent(mp);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Does this ever happen? What (if anything) does it mean?
|
|
*/
|
|
if (mp->mscp_unit < next) {
|
|
printf("uda%d: unit %d, next %d\n",
|
|
um->um_ctlr, mp->mscp_unit, next);
|
|
return (0);
|
|
}
|
|
|
|
if (mp->mscp_unit >= MAXUNIT) {
|
|
printf("uda%d: cannot handle unit number %d (max is %d)\n",
|
|
um->um_ctlr, mp->mscp_unit, MAXUNIT - 1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* See if we already handle this drive.
|
|
* (Only likely if ui->ui_slave=='?'.)
|
|
*/
|
|
if (udaip[um->um_ctlr][mp->mscp_unit] != NULL) {
|
|
try_another:
|
|
if (ui->ui_slave != '?')
|
|
return (0);
|
|
next = mp->mscp_unit + 1;
|
|
goto findunit;
|
|
}
|
|
|
|
/*
|
|
* Voila!
|
|
*/
|
|
uda_rasave(ui->ui_unit, mp, 0);
|
|
ui->ui_flags = 0; /* not on line, nor anything else */
|
|
ui->ui_slave = mp->mscp_unit;
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Attach a found slave. Make sure the watchdog timer is running.
|
|
* If this disk is being profiled, fill in the `wpms' value (used by
|
|
* what?). Set up the inverting pointer, and attempt to bring the
|
|
* drive on line and read its label.
|
|
*/
|
|
udaattach(ui)
|
|
register struct uba_device *ui;
|
|
{
|
|
register int unit = ui->ui_unit;
|
|
|
|
if (udawstart == 0) {
|
|
timeout(udawatch, (caddr_t) 0, hz);
|
|
udawstart++;
|
|
}
|
|
|
|
/*
|
|
* Floppies cannot be brought on line unless there is
|
|
* a disk in the drive. Since an ONLINE while cold
|
|
* takes ten seconds to fail, and (when notyet becomes now)
|
|
* no sensible person will swap to one, we just
|
|
* defer the ONLINE until someone tries to use the drive.
|
|
*
|
|
* THIS ASSUMES THAT DRIVE TYPES ?X? ARE FLOPPIES
|
|
*/
|
|
if (MSCP_MID_ECH(1, ra_info[unit].ra_mediaid) == 'X' - '@') {
|
|
printf(": floppy");
|
|
return;
|
|
}
|
|
if (ui->ui_dk >= 0)
|
|
dk_wpms[ui->ui_dk] = (60 * 31 * 256); /* approx */
|
|
udaip[ui->ui_ctlr][ui->ui_slave] = ui;
|
|
|
|
if (uda_rainit(ui, 0))
|
|
printf(": offline");
|
|
else if (ra_info[unit].ra_state == OPEN) {
|
|
printf(": %s, size = %d sectors",
|
|
udalabel[unit].d_typename, ra_info[unit].ra_dsize);
|
|
#ifdef notyet
|
|
addswap(makedev(UDADEVNUM, udaminor(unit, 0)), &udalabel[unit]);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialise a UDA50. Return true iff something goes wrong.
|
|
*/
|
|
udainit(ctlr)
|
|
int ctlr;
|
|
{
|
|
register struct uda_softc *sc;
|
|
volatile struct udadevice *udaddr;
|
|
struct uba_ctlr *um;
|
|
int timo, ubinfo, count, i, wait_status;
|
|
unsigned short hej;
|
|
/* printf("udainit\n"); */
|
|
sc = &uda_softc[ctlr];
|
|
um = udaminfo[ctlr];
|
|
if ((sc->sc_flags & SC_MAPPED) == 0) {
|
|
/*
|
|
* Map the communication area and command and
|
|
* response packets into Unibus space.
|
|
*/
|
|
ubinfo = uballoc(um->um_ubanum, (caddr_t) &sc->sc_uda,
|
|
sizeof (struct uda), UBA_CANTWAIT);
|
|
if (ubinfo == 0) {
|
|
printf("uda%d: uballoc map failed\n", ctlr);
|
|
return (-1);
|
|
}
|
|
sc->sc_uuda = (struct uda *) UBAI_ADDR(ubinfo);
|
|
sc->sc_flags |= SC_MAPPED;
|
|
}
|
|
bzero(&sc->sc_uda, sizeof (struct uda));
|
|
|
|
/*
|
|
* While we are thinking about it, reset the next command
|
|
* and response indicies.
|
|
*/
|
|
sc->sc_mi.mi_cmd.mri_next = 0;
|
|
sc->sc_mi.mi_rsp.mri_next = 0;
|
|
|
|
/*
|
|
* Start up the hardware initialisation sequence.
|
|
*/
|
|
#define STEP0MASK (UDA_ERR | UDA_STEP4 | UDA_STEP3 | UDA_STEP2 | \
|
|
UDA_STEP1 | UDA_NV)
|
|
|
|
sc->sc_state = ST_IDLE; /* in case init fails */
|
|
udaddr = (struct udadevice *)um->um_addr;
|
|
udaddr->udaip = 0;
|
|
count = 0;
|
|
while (count < DELAYTEN) {
|
|
if ((udaddr->udasa & UDA_STEP1) != 0)
|
|
break;
|
|
DELAY(10000);
|
|
count += 1;
|
|
}
|
|
if (count == DELAYTEN) {
|
|
printf("uda%d: timeout during init\n", ctlr);
|
|
return (-1);
|
|
}
|
|
|
|
if ((udaddr->udasa & STEP0MASK) != UDA_STEP1) {
|
|
printf("uda%d: init failed, sa=%b\n", ctlr,
|
|
udaddr->udasa, udasr_bits);
|
|
udasaerror(um, 0);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Success! Record new state, and start step 1 initialisation.
|
|
* The rest is done in the interrupt handler.
|
|
*/
|
|
sc->sc_state = ST_STEP1;
|
|
udaddr->udasa = UDA_ERR | (NCMDL2 << 11) | (NRSPL2 << 8) | UDA_IE |
|
|
(sc->sc_ivec >> 2);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Open a drive.
|
|
*/
|
|
/*ARGSUSED*/
|
|
udaopen(dev, flag, fmt)
|
|
dev_t dev;
|
|
int flag, fmt;
|
|
{
|
|
register int unit;
|
|
register struct uba_device *ui;
|
|
register struct uda_softc *sc;
|
|
register struct disklabel *lp;
|
|
register struct partition *pp;
|
|
register struct ra_info *ra;
|
|
int s, i, part, mask, error = 0;
|
|
daddr_t start, end;
|
|
/* printf("udaopen\n"); */
|
|
/*
|
|
* Make sure this is a reasonable open request.
|
|
*/
|
|
unit = udaunit(dev);
|
|
if (unit >= NRA || (ui = udadinfo[unit]) == 0 || ui->ui_alive == 0)
|
|
return (ENXIO);
|
|
|
|
/*
|
|
* Make sure the controller is running, by (re)initialising it if
|
|
* necessary.
|
|
*/
|
|
sc = &uda_softc[ui->ui_ctlr];
|
|
s = splbio();
|
|
if (sc->sc_state != ST_RUN) {
|
|
if (sc->sc_state == ST_IDLE && udainit(ui->ui_ctlr)) {
|
|
splx(s);
|
|
return (EIO);
|
|
}
|
|
/*
|
|
* In case it does not come up, make sure we will be
|
|
* restarted in 10 seconds. This corresponds to the
|
|
* 10 second timeouts in udaprobe() and udaslave().
|
|
*/
|
|
sc->sc_flags |= SC_DOWAKE;
|
|
timeout(wakeup, (caddr_t) sc, 10 * hz);
|
|
sleep((caddr_t) sc, PRIBIO);
|
|
if (sc->sc_state != ST_RUN) {
|
|
splx(s);
|
|
printf("uda%d: controller hung\n", ui->ui_ctlr);
|
|
return (EIO);
|
|
}
|
|
untimeout(wakeup, (caddr_t) sc);
|
|
}
|
|
|
|
/*
|
|
* Wait for the state to settle
|
|
*/
|
|
ra = &ra_info[unit];
|
|
while (ra->ra_state != OPEN && ra->ra_state != OPENRAW &&
|
|
ra->ra_state != CLOSED)
|
|
if (error = tsleep((caddr_t)ra, (PZERO + 1) | PCATCH,
|
|
devopn, 0)) {
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* If not on line, or we are not sure of the label, reinitialise
|
|
* the drive.
|
|
*/
|
|
if ((ui->ui_flags & UNIT_ONLINE) == 0 ||
|
|
(ra->ra_state != OPEN && ra->ra_state != OPENRAW))
|
|
error = uda_rainit(ui, flag);
|
|
splx(s);
|
|
if (error)
|
|
return (error);
|
|
|
|
part = udapart(dev);
|
|
lp = &udalabel[unit];
|
|
if (part >= lp->d_npartitions)
|
|
return (ENXIO);
|
|
/*
|
|
* Warn if a partition is opened that overlaps another
|
|
* already open, unless either is the `raw' partition
|
|
* (whole disk).
|
|
*/
|
|
#define RAWPART 2 /* 'c' partition */ /* XXX */
|
|
mask = 1 << part;
|
|
if ((ra->ra_openpart & mask) == 0 && part != RAWPART) {
|
|
pp = &lp->d_partitions[part];
|
|
start = pp->p_offset;
|
|
end = pp->p_offset + pp->p_size;
|
|
for (pp = lp->d_partitions, i = 0;
|
|
i < lp->d_npartitions; pp++, i++) {
|
|
if (pp->p_offset + pp->p_size <= start ||
|
|
pp->p_offset >= end || i == RAWPART)
|
|
continue;
|
|
if (ra->ra_openpart & (1 << i))
|
|
log(LOG_WARNING,
|
|
"ra%d%c: overlaps open partition (%c)\n",
|
|
unit, part + 'a', i + 'a');
|
|
}
|
|
}
|
|
switch (fmt) {
|
|
case S_IFCHR:
|
|
ra->ra_copenpart |= mask;
|
|
break;
|
|
case S_IFBLK:
|
|
ra->ra_bopenpart |= mask;
|
|
break;
|
|
}
|
|
ra->ra_openpart |= mask;
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
udaclose(dev, flags, fmt)
|
|
dev_t dev;
|
|
int flags, fmt;
|
|
{
|
|
register int unit = udaunit(dev);
|
|
register struct ra_info *ra = &ra_info[unit];
|
|
int s, mask = (1 << udapart(dev));
|
|
/* printf("udaclose\n"); */
|
|
switch (fmt) {
|
|
case S_IFCHR:
|
|
ra->ra_copenpart &= ~mask;
|
|
break;
|
|
case S_IFBLK:
|
|
ra->ra_bopenpart &= ~mask;
|
|
break;
|
|
}
|
|
ra->ra_openpart = ra->ra_copenpart | ra->ra_bopenpart;
|
|
|
|
/*
|
|
* Should wait for I/O to complete on this partition even if
|
|
* others are open, but wait for work on blkflush().
|
|
*/
|
|
if (ra->ra_openpart == 0) {
|
|
s = splbio();
|
|
while (udautab[unit].b_actf)
|
|
sleep((caddr_t)&udautab[unit], PZERO - 1);
|
|
splx(s);
|
|
ra->ra_state = CLOSED;
|
|
ra->ra_wlabel = 0;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Initialise a drive. If it is not already, bring it on line,
|
|
* and set a timeout on it in case it fails to respond.
|
|
* When on line, read in the pack label.
|
|
*/
|
|
uda_rainit(ui, flags)
|
|
volatile struct uba_device *ui;
|
|
int flags;
|
|
{
|
|
register struct uda_softc *sc = &uda_softc[ui->ui_ctlr];
|
|
register struct disklabel *lp;
|
|
register struct mscp *mp;
|
|
register int unit = ui->ui_unit;
|
|
register struct ra_info *ra;
|
|
char *msg, *readdisklabel();
|
|
int s, i;
|
|
volatile int hej;
|
|
void udastrategy();
|
|
extern int cold;
|
|
|
|
ra = &ra_info[unit];
|
|
if ((ui->ui_flags & UNIT_ONLINE) == 0) {
|
|
mp = mscp_getcp(&sc->sc_mi, MSCP_WAIT);
|
|
mp->mscp_opcode = M_OP_ONLINE;
|
|
mp->mscp_unit = ui->ui_slave;
|
|
mp->mscp_cmdref = (long)&ui->ui_flags;
|
|
*mp->mscp_addr |= MSCP_OWN | MSCP_INT;
|
|
ra->ra_state = WANTOPEN;
|
|
if (!cold)
|
|
s = splbio();
|
|
hej = ((struct udadevice *)ui->ui_addr)->udaip;
|
|
|
|
if (cold) {
|
|
i = 1000;
|
|
while ((ui->ui_flags & UNIT_ONLINE) == 0) {
|
|
DELAY(10000);
|
|
if (i-- < 0)
|
|
break;
|
|
}
|
|
} else {
|
|
timeout(wakeup, (caddr_t)&ui->ui_flags, 10 * hz);
|
|
sleep((caddr_t)&ui->ui_flags, PSWP + 1);
|
|
splx(s);
|
|
untimeout(wakeup, (caddr_t)&ui->ui_flags);
|
|
}
|
|
if (ra->ra_state != OPENRAW) {
|
|
ra->ra_state = CLOSED;
|
|
wakeup((caddr_t)ra);
|
|
return (EIO);
|
|
}
|
|
}
|
|
|
|
lp = &udalabel[unit];
|
|
lp->d_secsize = DEV_BSIZE;
|
|
lp->d_secperunit = ra->ra_dsize;
|
|
|
|
if (flags & O_NDELAY)
|
|
return (0);
|
|
ra->ra_state = RDLABEL;
|
|
/*
|
|
* Set up default sizes until we have the label, or longer
|
|
* if there is none. Set secpercyl, as readdisklabel wants
|
|
* to compute b_cylin (although we do not need it), and set
|
|
* nsectors in case diskerr is called.
|
|
*/
|
|
lp->d_secpercyl = 1;
|
|
lp->d_npartitions = 1;
|
|
lp->d_secsize = 512;
|
|
lp->d_secperunit = ra->ra_dsize;
|
|
lp->d_nsectors = ra->ra_geom.rg_nsectors;
|
|
lp->d_partitions[0].p_size = lp->d_secperunit;
|
|
lp->d_partitions[0].p_offset = 0;
|
|
|
|
/*
|
|
* Read pack label.
|
|
*/
|
|
if ((msg = readdisklabel(udaminor(unit, 0), udastrategy, lp,NULL))
|
|
!= NULL) {
|
|
if (cold)
|
|
printf(": %s", msg);
|
|
else
|
|
log(LOG_ERR, "ra%d: %s", unit, msg);
|
|
#ifdef COMPAT_42
|
|
if (udamaptype(unit, lp))
|
|
ra->ra_state = OPEN;
|
|
else
|
|
ra->ra_state = OPENRAW;
|
|
#else
|
|
ra->ra_state = OPENRAW;
|
|
uda_makefakelabel(ra, lp);
|
|
#endif
|
|
} else
|
|
ra->ra_state = OPEN;
|
|
wakeup((caddr_t)ra);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Copy the geometry information for the given ra from a
|
|
* GET UNIT STATUS response. If check, see if it changed.
|
|
*/
|
|
uda_rasave(unit, mp, check)
|
|
int unit;
|
|
register struct mscp *mp;
|
|
int check;
|
|
{
|
|
register struct ra_info *ra = &ra_info[unit];
|
|
/* printf("uda_rasave\n"); */
|
|
if (check && ra->ra_mediaid != mp->mscp_guse.guse_mediaid) {
|
|
printf("ra%d: changed types! was %d now %d\n", unit,
|
|
ra->ra_mediaid, mp->mscp_guse.guse_mediaid);
|
|
ra->ra_state = CLOSED; /* ??? */
|
|
}
|
|
/* ra->ra_type = mp->mscp_guse.guse_drivetype; */
|
|
ra->ra_mediaid = mp->mscp_guse.guse_mediaid;
|
|
ra->ra_geom.rg_nsectors = mp->mscp_guse.guse_nspt;
|
|
ra->ra_geom.rg_ngroups = mp->mscp_guse.guse_group;
|
|
ra->ra_geom.rg_ngpc = mp->mscp_guse.guse_ngpc;
|
|
ra->ra_geom.rg_ntracks = ra->ra_geom.rg_ngroups * ra->ra_geom.rg_ngpc;
|
|
/* ra_geom.rg_ncyl cannot be computed until we have ra_dsize */
|
|
#ifdef notyet
|
|
ra->ra_geom.rg_rctsize = mp->mscp_guse.guse_rctsize;
|
|
ra->ra_geom.rg_rbns = mp->mscp_guse.guse_nrpt;
|
|
ra->ra_geom.rg_nrct = mp->mscp_guse.guse_nrct;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Queue a transfer request, and if possible, hand it to the controller.
|
|
*
|
|
* This routine is broken into two so that the internal version
|
|
* udastrat1() can be called by the (nonexistent, as yet) bad block
|
|
* revectoring routine.
|
|
*/
|
|
void
|
|
udastrategy(bp)
|
|
register struct buf *bp;
|
|
{
|
|
register int unit;
|
|
register struct uba_device *ui;
|
|
register struct ra_info *ra;
|
|
struct partition *pp;
|
|
int p;
|
|
daddr_t sz, maxsz;
|
|
/* printf("udastrategy\n"); */
|
|
/*
|
|
* Make sure this is a reasonable drive to use.
|
|
*/
|
|
if ((unit = udaunit(bp->b_dev)) >= NRA ||
|
|
(ui = udadinfo[unit]) == NULL || ui->ui_alive == 0 ||
|
|
(ra = &ra_info[unit])->ra_state == CLOSED) {
|
|
bp->b_error = ENXIO;
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* If drive is open `raw' or reading label, let it at it.
|
|
*/
|
|
if (ra->ra_state < OPEN) {
|
|
udastrat1(bp);
|
|
return;
|
|
}
|
|
p = udapart(bp->b_dev);
|
|
if ((ra->ra_openpart & (1 << p)) == 0) {
|
|
bp->b_error = ENODEV;
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* Determine the size of the transfer, and make sure it is
|
|
* within the boundaries of the partition.
|
|
*/
|
|
pp = &udalabel[unit].d_partitions[p];
|
|
maxsz = pp->p_size;
|
|
if (pp->p_offset + pp->p_size > ra->ra_dsize)
|
|
maxsz = ra->ra_dsize - pp->p_offset;
|
|
sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
|
|
if (bp->b_blkno + pp->p_offset <= LABELSECTOR &&
|
|
#if LABELSECTOR != 0
|
|
bp->b_blkno + pp->p_offset + sz > LABELSECTOR &&
|
|
#endif
|
|
(bp->b_flags & B_READ) == 0 && ra->ra_wlabel == 0) {
|
|
bp->b_error = EROFS;
|
|
goto bad;
|
|
}
|
|
if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
|
|
/* if exactly at end of disk, return an EOF */
|
|
if (bp->b_blkno == maxsz) {
|
|
bp->b_resid = bp->b_bcount;
|
|
biodone(bp);
|
|
return;
|
|
}
|
|
/* or truncate if part of it fits */
|
|
sz = maxsz - bp->b_blkno;
|
|
if (sz <= 0) {
|
|
bp->b_error = EINVAL; /* or hang it up */
|
|
goto bad;
|
|
}
|
|
bp->b_bcount = sz << DEV_BSHIFT;
|
|
}
|
|
udastrat1(bp);
|
|
return;
|
|
bad:
|
|
bp->b_flags |= B_ERROR;
|
|
biodone(bp);
|
|
}
|
|
|
|
/*
|
|
* Work routine for udastrategy.
|
|
*/
|
|
udastrat1(bp)
|
|
register struct buf *bp;
|
|
{
|
|
register int unit = udaunit(bp->b_dev);
|
|
register struct uba_ctlr *um;
|
|
register struct buf *dp;
|
|
struct uba_device *ui;
|
|
int s = splbio();
|
|
/* printf("udastrat1\n"); */
|
|
/*
|
|
* Append the buffer to the drive queue, and if it is not
|
|
* already there, the drive to the controller queue. (However,
|
|
* if the drive queue is marked to be requeued, we must be
|
|
* awaiting an on line or get unit status command; in this
|
|
* case, leave it off the controller queue.)
|
|
*/
|
|
um = (ui = udadinfo[unit])->ui_mi;
|
|
dp = &udautab[unit];
|
|
MSCP_APPEND(bp, dp, b_actf);
|
|
if (dp->b_active == 0 && (ui->ui_flags & UNIT_REQUEUE) == 0) {
|
|
MSCP_APPEND(dp, &um->um_tab, b_hash.le_next);
|
|
dp->b_active++;
|
|
}
|
|
/* Was: MSCP_APPEND(bp, dp, av_forw);
|
|
if (dp->b_active == 0 && (ui->ui_flags & UNIT_REQUEUE) == 0) {
|
|
MSCP_APPEND(dp, &um->um_tab, b_forw);
|
|
dp->b_active++;
|
|
}
|
|
*/
|
|
/*
|
|
* Start activity on the controller. Note that unlike other
|
|
* Unibus drivers, we must always do this, not just when the
|
|
* controller is not active.
|
|
*/
|
|
udastart(um);
|
|
splx(s);
|
|
}
|
|
|
|
int
|
|
udaread(dev, uio)
|
|
dev_t dev;
|
|
struct uio *uio;
|
|
{
|
|
|
|
return (physio(udastrategy, NULL, dev, B_READ, minphys, uio));
|
|
}
|
|
|
|
int
|
|
udawrite(dev, uio)
|
|
dev_t dev;
|
|
struct uio *uio;
|
|
{
|
|
|
|
return (physio(udastrategy, NULL, dev, B_WRITE, minphys, uio));
|
|
}
|
|
|
|
/*
|
|
* Start up whatever transfers we can find.
|
|
* Note that udastart() must be called at splbio().
|
|
*/
|
|
udastart(um)
|
|
register struct uba_ctlr *um;
|
|
{
|
|
volatile struct uda_softc *sc = &uda_softc[um->um_ctlr];
|
|
register struct buf *bp, *dp;
|
|
register struct mscp *mp;
|
|
struct uba_device *ui;
|
|
volatile struct udadevice *udaddr;
|
|
struct partition *pp;
|
|
int sz;
|
|
volatile int i;
|
|
/* printf("udastart\n"); */
|
|
#ifdef lint
|
|
i = 0; i = i;
|
|
#endif
|
|
/*
|
|
* If it is not running, try (again and again...) to initialise
|
|
* it. If it is currently initialising just ignore it for now.
|
|
*/
|
|
if (sc->sc_state != ST_RUN) {
|
|
if (sc->sc_state == ST_IDLE && udainit(um->um_ctlr))
|
|
printf("uda%d: still hung\n", um->um_ctlr);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If um_cmd is nonzero, this controller is on the Unibus
|
|
* resource wait queue. It will not help to try more requests;
|
|
* instead, when the Unibus unblocks and calls udadgo(), we
|
|
* will call udastart() again.
|
|
*/
|
|
if (um->um_cmd)
|
|
return;
|
|
|
|
sc->sc_flags |= SC_INSTART;
|
|
udaddr = (struct udadevice *) um->um_addr;
|
|
|
|
loop:
|
|
/*
|
|
* Service the drive at the head of the queue. It may not
|
|
* need anything, in which case it might be shutting down
|
|
* in udaclose().
|
|
*/
|
|
if ((dp = um->um_tab.b_actf) == NULL)
|
|
goto out;
|
|
if ((bp = dp->b_actf) == NULL) {
|
|
dp->b_active = 0;
|
|
um->um_tab.b_actf = dp->b_hash.le_next;
|
|
/* Was: um->um_tab.b_actf = dp->b_forw; */
|
|
if (ra_info[dp - udautab].ra_openpart == 0)
|
|
wakeup((caddr_t)dp); /* finish close protocol */
|
|
goto loop;
|
|
}
|
|
|
|
if (udaddr->udasa & UDA_ERR) { /* ctlr fatal error */
|
|
udasaerror(um, 1);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Get an MSCP packet, then figure out what to do. If
|
|
* we cannot get a command packet, the command ring may
|
|
* be too small: We should have at least as many command
|
|
* packets as credits, for best performance.
|
|
*/
|
|
if ((mp = mscp_getcp(&sc->sc_mi, MSCP_DONTWAIT)) == NULL) {
|
|
if (sc->sc_mi.mi_credits > MSCP_MINCREDITS &&
|
|
(sc->sc_flags & SC_GRIPED) == 0) {
|
|
log(LOG_NOTICE, "uda%d: command ring too small\n",
|
|
um->um_ctlr);
|
|
sc->sc_flags |= SC_GRIPED;/* complain only once */
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Bring the drive on line if it is not already. Get its status
|
|
* if we do not already have it. Otherwise just start the transfer.
|
|
*/
|
|
ui = udadinfo[udaunit(bp->b_dev)];
|
|
if ((ui->ui_flags & UNIT_ONLINE) == 0) {
|
|
mp->mscp_opcode = M_OP_ONLINE;
|
|
goto common;
|
|
}
|
|
if ((ui->ui_flags & UNIT_HAVESTATUS) == 0) {
|
|
mp->mscp_opcode = M_OP_GETUNITST;
|
|
common:
|
|
if (ui->ui_flags & UNIT_REQUEUE) panic("udastart");
|
|
/*
|
|
* Take the drive off the controller queue. When the
|
|
* command finishes, make sure the drive is requeued.
|
|
*/
|
|
um->um_tab.b_actf = dp->b_hash.le_next;
|
|
/* Was: um->um_tab.b_actf = dp->b_forw; */
|
|
dp->b_active = 0;
|
|
ui->ui_flags |= UNIT_REQUEUE;
|
|
mp->mscp_unit = ui->ui_slave;
|
|
*mp->mscp_addr |= MSCP_OWN | MSCP_INT;
|
|
sc->sc_flags |= SC_STARTPOLL;
|
|
#ifdef POLLSTATS
|
|
sc->sc_ncmd++;
|
|
#endif
|
|
goto loop;
|
|
}
|
|
|
|
pp = &udalabel[ui->ui_unit].d_partitions[udapart(bp->b_dev)];
|
|
mp->mscp_opcode = (bp->b_flags & B_READ) ? M_OP_READ : M_OP_WRITE;
|
|
mp->mscp_unit = ui->ui_slave;
|
|
mp->mscp_seq.seq_lbn = bp->b_blkno + pp->p_offset;
|
|
sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
|
|
mp->mscp_seq.seq_bytecount = bp->b_blkno + sz > pp->p_size ?
|
|
(pp->p_size - bp->b_blkno) >> DEV_BSHIFT : bp->b_bcount;
|
|
/* mscp_cmdref is filled in by mscp_go() */
|
|
|
|
/*
|
|
* Drop the packet pointer into the `command' field so udadgo()
|
|
* can tell what to start. If ubago returns 1, we can do another
|
|
* transfer. If not, um_cmd will still point at mp, so we will
|
|
* know that we are waiting for resources.
|
|
*/
|
|
um->um_cmd = (int)mp;
|
|
if (ubago(ui))
|
|
goto loop;
|
|
|
|
/*
|
|
* All done, or blocked in ubago(). If we managed to
|
|
* issue some commands, start up the beast.
|
|
*/
|
|
out:
|
|
if (sc->sc_flags & SC_STARTPOLL) {
|
|
#ifdef POLLSTATS
|
|
udastats.cmd[sc->sc_ncmd]++;
|
|
sc->sc_ncmd = 0;
|
|
#endif
|
|
i = ((struct udadevice *)um->um_addr)->udaip;
|
|
}
|
|
sc->sc_flags &= ~(SC_INSTART | SC_STARTPOLL);
|
|
}
|
|
|
|
/*
|
|
* Start a transfer.
|
|
*
|
|
* If we are not called from within udastart(), we must have been
|
|
* blocked, so call udastart to do more requests (if any). If
|
|
* this calls us again immediately we will not recurse, because
|
|
* that time we will be in udastart(). Clever....
|
|
*/
|
|
udadgo(um)
|
|
register struct uba_ctlr *um;
|
|
{
|
|
struct uda_softc *sc = &uda_softc[um->um_ctlr];
|
|
struct mscp *mp = (struct mscp *)um->um_cmd;
|
|
/* printf("udago\n"); */
|
|
um->um_tab.b_active++; /* another transfer going */
|
|
|
|
/*
|
|
* Fill in the MSCP packet and move the buffer to the
|
|
* I/O wait queue. Mark the controller as no longer on
|
|
* the resource queue, and remember to initiate polling.
|
|
*/
|
|
mp->mscp_seq.seq_buffer = UBAI_ADDR(um->um_ubinfo) |
|
|
(UBAI_BDP(um->um_ubinfo) << 24);
|
|
mscp_go(&sc->sc_mi, mp, um->um_ubinfo);
|
|
um->um_cmd = 0;
|
|
um->um_ubinfo = 0; /* tyke it awye */
|
|
sc->sc_flags |= SC_STARTPOLL;
|
|
#ifdef POLLSTATS
|
|
sc->sc_ncmd++;
|
|
#endif
|
|
if ((sc->sc_flags & SC_INSTART) == 0)
|
|
udastart(um);
|
|
}
|
|
|
|
udaiodone(mi, bp, info)
|
|
register struct mscp_info *mi;
|
|
struct buf *bp;
|
|
int info;
|
|
{
|
|
register struct uba_ctlr *um = udaminfo[mi->mi_ctlr];
|
|
/* printf("udaiodone\n"); */
|
|
um->um_ubinfo = info;
|
|
ubadone(um);
|
|
biodone(bp);
|
|
if (um->um_bdp && mi->mi_wtab.b_actf == &mi->mi_wtab)
|
|
ubarelse(um->um_ubanum, &um->um_bdp);
|
|
/* Was: if (um->um_bdp && mi->mi_wtab.av_forw == &mi->mi_wtab)
|
|
ubarelse(um->um_ubanum, &um->um_bdp); */
|
|
um->um_tab.b_active--; /* another transfer done */
|
|
}
|
|
|
|
static struct saerr {
|
|
int code; /* error code (including UDA_ERR) */
|
|
char *desc; /* what it means: Efoo => foo error */
|
|
} saerr[] = {
|
|
{ 0100001, "Eunibus packet read" },
|
|
{ 0100002, "Eunibus packet write" },
|
|
{ 0100003, "EUDA ROM and RAM parity" },
|
|
{ 0100004, "EUDA RAM parity" },
|
|
{ 0100005, "EUDA ROM parity" },
|
|
{ 0100006, "Eunibus ring read" },
|
|
{ 0100007, "Eunibus ring write" },
|
|
{ 0100010, " unibus interrupt master failure" },
|
|
{ 0100011, "Ehost access timeout" },
|
|
{ 0100012, " host exceeded command limit" },
|
|
{ 0100013, " unibus bus master failure" },
|
|
{ 0100014, " DM XFC fatal error" },
|
|
{ 0100015, " hardware timeout of instruction loop" },
|
|
{ 0100016, " invalid virtual circuit id" },
|
|
{ 0100017, "Eunibus interrupt write" },
|
|
{ 0104000, "Efatal sequence" },
|
|
{ 0104040, " D proc ALU" },
|
|
{ 0104041, "ED proc control ROM parity" },
|
|
{ 0105102, "ED proc w/no BD#2 or RAM parity" },
|
|
{ 0105105, "ED proc RAM buffer" },
|
|
{ 0105152, "ED proc SDI" },
|
|
{ 0105153, "ED proc write mode wrap serdes" },
|
|
{ 0105154, "ED proc read mode serdes, RSGEN & ECC" },
|
|
{ 0106040, "EU proc ALU" },
|
|
{ 0106041, "EU proc control reg" },
|
|
{ 0106042, " U proc DFAIL/cntl ROM parity/BD #1 test CNT" },
|
|
{ 0106047, " U proc const PROM err w/D proc running SDI test" },
|
|
{ 0106055, " unexpected trap" },
|
|
{ 0106071, "EU proc const PROM" },
|
|
{ 0106072, "EU proc control ROM parity" },
|
|
{ 0106200, "Estep 1 data" },
|
|
{ 0107103, "EU proc RAM parity" },
|
|
{ 0107107, "EU proc RAM buffer" },
|
|
{ 0107115, " test count wrong (BD 12)" },
|
|
{ 0112300, "Estep 2" },
|
|
{ 0122240, "ENPR" },
|
|
{ 0122300, "Estep 3" },
|
|
{ 0142300, "Estep 4" },
|
|
{ 0, " unknown error code" }
|
|
};
|
|
|
|
/*
|
|
* If the error bit was set in the controller status register, gripe,
|
|
* then (optionally) reset the controller and requeue pending transfers.
|
|
*/
|
|
udasaerror(um, doreset)
|
|
register struct uba_ctlr *um;
|
|
int doreset;
|
|
{
|
|
register int code = ((struct udadevice *)um->um_addr)->udasa;
|
|
register struct saerr *e;
|
|
/*printf("udasaerror\n"); */
|
|
if ((code & UDA_ERR) == 0)
|
|
return;
|
|
for (e = saerr; e->code; e++)
|
|
if (e->code == code)
|
|
break;
|
|
printf("uda%d: controller error, sa=0%o (%s%s)\n",
|
|
um->um_ctlr, code, e->desc + 1,
|
|
*e->desc == 'E' ? " error" : "");
|
|
if (doreset) {
|
|
mscp_requeue(&uda_softc[um->um_ctlr].sc_mi);
|
|
(void) udainit(um->um_ctlr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Interrupt routine. Depending on the state of the controller,
|
|
* continue initialisation, or acknowledge command and response
|
|
* interrupts, and process responses.
|
|
*/
|
|
udaintr(ctlr)
|
|
{
|
|
struct uba_ctlr *um = udaminfo[ctlr];
|
|
struct uda_softc *sc = &uda_softc[ctlr];
|
|
volatile struct udadevice *udaddr = (struct udadevice *)um->um_addr;
|
|
struct uda *ud;
|
|
struct mscp *mp;
|
|
volatile int i, wait_status;
|
|
extern int cpu_type;
|
|
|
|
#ifdef QBA
|
|
if(cpunumber == VAX_78032)
|
|
splx(sc->sc_ipl); /* Qbus interrupt protocol is odd */
|
|
#endif
|
|
sc->sc_wticks = 0; /* reset interrupt watchdog */
|
|
|
|
/*
|
|
* Combinations during steps 1, 2, and 3: STEPnMASK
|
|
* corresponds to which bits should be tested;
|
|
* STEPnGOOD corresponds to the pattern that should
|
|
* appear after the interrupt from STEPn initialisation.
|
|
* All steps test the bits in ALLSTEPS.
|
|
*/
|
|
|
|
switch (sc->sc_state) {
|
|
|
|
case ST_IDLE:
|
|
/*
|
|
* Ignore unsolicited interrupts.
|
|
*/
|
|
log(LOG_WARNING, "uda%d: stray intr\n", ctlr);
|
|
return;
|
|
|
|
case ST_STEP1:
|
|
/*
|
|
* Begin step two initialisation.
|
|
*/
|
|
i = 0;
|
|
Wait_step(STEP1MASK, STEP1GOOD, wait_status);
|
|
if (!wait_status) {
|
|
initfailed:
|
|
printf("uda%d: init step %d failed, sa=%b\n",
|
|
ctlr, i, udaddr->udasa, udasr_bits);
|
|
udasaerror(um, 0);
|
|
sc->sc_state = ST_IDLE;
|
|
if (sc->sc_flags & SC_DOWAKE) {
|
|
sc->sc_flags &= ~SC_DOWAKE;
|
|
wakeup((caddr_t)sc);
|
|
}
|
|
return;
|
|
}
|
|
udaddr->udasa = (int)&sc->sc_uuda->uda_ca.ca_rspdsc[0] |
|
|
(MACHID(cpu_type) == VAX_780 || MACHID(cpu_type)
|
|
== VAX_8600 ? UDA_PI : 0);
|
|
sc->sc_state = ST_STEP2;
|
|
return;
|
|
|
|
case ST_STEP2:
|
|
/*
|
|
* Begin step 3 initialisation.
|
|
*/
|
|
i = 2;
|
|
Wait_step(STEP2MASK, STEP2GOOD, wait_status);
|
|
if (!wait_status)
|
|
goto initfailed;
|
|
|
|
udaddr->udasa = ((int)&sc->sc_uuda->uda_ca.ca_rspdsc[0]) >> 16;
|
|
sc->sc_state = ST_STEP3;
|
|
return;
|
|
|
|
case ST_STEP3:
|
|
/*
|
|
* Set controller characteristics (finish initialisation).
|
|
*/
|
|
i = 3;
|
|
Wait_step(STEP3MASK, STEP3GOOD, wait_status);
|
|
if (!wait_status)
|
|
goto initfailed;
|
|
|
|
i = udaddr->udasa & 0xff;
|
|
if (i != sc->sc_micro) {
|
|
sc->sc_micro = i;
|
|
printf("uda%d: version %d model %d\n",
|
|
ctlr, i & 0xf, i >> 4);
|
|
}
|
|
|
|
/*
|
|
* Present the burst size, then remove it. Why this
|
|
* should be done this way, I have no idea.
|
|
*
|
|
* Note that this assumes udaburst[ctlr] > 0.
|
|
*/
|
|
udaddr->udasa = UDA_GO | (udaburst[ctlr] - 1) << 2;
|
|
udaddr->udasa = UDA_GO;
|
|
printf("uda%d: DMA burst size set to %d\n",
|
|
ctlr, udaburst[ctlr]);
|
|
|
|
udainitds(ctlr); /* initialise data structures */
|
|
|
|
/*
|
|
* Before we can get a command packet, we need some
|
|
* credits. Fake some up to keep mscp_getcp() happy,
|
|
* get a packet, and cancel all credits (the right
|
|
* number should come back in the response to the
|
|
* SCC packet).
|
|
*/
|
|
sc->sc_mi.mi_credits = MSCP_MINCREDITS + 1;
|
|
mp = mscp_getcp(&sc->sc_mi, MSCP_DONTWAIT);
|
|
if (mp == NULL) /* `cannot happen' */
|
|
panic("udaintr");
|
|
sc->sc_mi.mi_credits = 0;
|
|
mp->mscp_opcode = M_OP_SETCTLRC;
|
|
mp->mscp_unit = 0;
|
|
mp->mscp_sccc.sccc_ctlrflags = M_CF_ATTN | M_CF_MISC |
|
|
M_CF_THIS;
|
|
*mp->mscp_addr |= MSCP_OWN | MSCP_INT;
|
|
i = udaddr->udaip;
|
|
sc->sc_state = ST_SETCHAR;
|
|
return;
|
|
|
|
case ST_SETCHAR:
|
|
case ST_RUN:
|
|
/*
|
|
* Handle Set Ctlr Characteristics responses and operational
|
|
* responses (via mscp_dorsp).
|
|
*/
|
|
break;
|
|
|
|
default:
|
|
printf("uda%d: driver bug, state %d\n", ctlr, sc->sc_state);
|
|
panic("udastate");
|
|
}
|
|
|
|
if (udaddr->udasa & UDA_ERR) { /* ctlr fatal error */
|
|
udasaerror(um, 1);
|
|
return;
|
|
}
|
|
|
|
ud = &sc->sc_uda;
|
|
|
|
/*
|
|
* Handle buffer purge requests.
|
|
*/
|
|
if (ud->uda_ca.ca_bdp) {
|
|
UBAPURGE(um->um_hd->uh_uba, ud->uda_ca.ca_bdp);
|
|
ud->uda_ca.ca_bdp = 0;
|
|
udaddr->udasa = 0; /* signal purge complete */
|
|
}
|
|
|
|
/*
|
|
* Check for response and command ring transitions.
|
|
*/
|
|
if (ud->uda_ca.ca_rspint) {
|
|
ud->uda_ca.ca_rspint = 0;
|
|
mscp_dorsp(&sc->sc_mi);
|
|
}
|
|
if (ud->uda_ca.ca_cmdint) {
|
|
ud->uda_ca.ca_cmdint = 0;
|
|
MSCP_DOCMD(&sc->sc_mi);
|
|
}
|
|
udastart(um);
|
|
}
|
|
|
|
/*
|
|
* Initialise the various data structures that control the UDA50.
|
|
*/
|
|
udainitds(ctlr)
|
|
int ctlr;
|
|
{
|
|
register struct uda *uud = uda_softc[ctlr].sc_uuda;
|
|
register struct uda *ud = &uda_softc[ctlr].sc_uda;
|
|
register struct mscp *mp;
|
|
register int i;
|
|
/* printf("udainitds\n"); */
|
|
for (i = 0, mp = ud->uda_rsp; i < NRSP; i++, mp++) {
|
|
ud->uda_ca.ca_rspdsc[i] = MSCP_OWN | MSCP_INT |
|
|
(long)&uud->uda_rsp[i].mscp_cmdref;
|
|
mp->mscp_addr = &ud->uda_ca.ca_rspdsc[i];
|
|
mp->mscp_msglen = MSCP_MSGLEN;
|
|
}
|
|
for (i = 0, mp = ud->uda_cmd; i < NCMD; i++, mp++) {
|
|
ud->uda_ca.ca_cmddsc[i] = MSCP_INT |
|
|
(long)&uud->uda_cmd[i].mscp_cmdref;
|
|
mp->mscp_addr = &ud->uda_ca.ca_cmddsc[i];
|
|
mp->mscp_msglen = MSCP_MSGLEN;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle an error datagram.
|
|
*/
|
|
udadgram(mi, mp)
|
|
struct mscp_info *mi;
|
|
struct mscp *mp;
|
|
{
|
|
/* printf("udadgram\n"); */
|
|
mscp_decodeerror(mi->mi_md->md_mname, mi->mi_ctlr, mp);
|
|
/*
|
|
* SDI status information bytes 10 and 11 are the microprocessor
|
|
* error code and front panel code respectively. These vary per
|
|
* drive type and are printed purely for field service information.
|
|
*/
|
|
if (mp->mscp_format == M_FM_SDI)
|
|
printf("\tsdi uproc error code 0x%x, front panel code 0x%x\n",
|
|
mp->mscp_erd.erd_sdistat[10],
|
|
mp->mscp_erd.erd_sdistat[11]);
|
|
}
|
|
|
|
/*
|
|
* The Set Controller Characteristics command finished.
|
|
* Record the new state of the controller.
|
|
*/
|
|
udactlrdone(mi, mp)
|
|
register struct mscp_info *mi;
|
|
struct mscp *mp;
|
|
{
|
|
register struct uda_softc *sc = &uda_softc[mi->mi_ctlr];
|
|
/* printf("udactlrdone\n"); */
|
|
if ((mp->mscp_status & M_ST_MASK) == M_ST_SUCCESS)
|
|
sc->sc_state = ST_RUN;
|
|
else {
|
|
printf("uda%d: SETCTLRC failed: ",
|
|
mi->mi_ctlr, mp->mscp_status);
|
|
mscp_printevent(mp);
|
|
sc->sc_state = ST_IDLE;
|
|
}
|
|
if (sc->sc_flags & SC_DOWAKE) {
|
|
sc->sc_flags &= ~SC_DOWAKE;
|
|
wakeup((caddr_t)sc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Received a response from an as-yet unconfigured drive. Configure it
|
|
* in, if possible.
|
|
*/
|
|
udaunconf(mi, mp)
|
|
struct mscp_info *mi;
|
|
register struct mscp *mp;
|
|
{
|
|
/* printf("udaunconf\n"); */
|
|
/*
|
|
* If it is a slave response, copy it to udaslavereply for
|
|
* udaslave() to look at.
|
|
*/
|
|
if (mp->mscp_opcode == (M_OP_GETUNITST | M_OP_END) &&
|
|
(uda_softc[mi->mi_ctlr].sc_flags & SC_INSLAVE) != 0) {
|
|
bcopy(mp, &udaslavereply, sizeof(struct mscp));
|
|
/* udaslavereply = *mp; */
|
|
return (MSCP_DONE);
|
|
}
|
|
|
|
/*
|
|
* Otherwise, it had better be an available attention response.
|
|
*/
|
|
if (mp->mscp_opcode != M_OP_AVAILATTN)
|
|
return (MSCP_FAILED);
|
|
|
|
/* do what autoconf does */
|
|
return (MSCP_FAILED); /* not yet, arwhite, not yet */
|
|
}
|
|
|
|
/*
|
|
* A drive came on line. Check its type and size. Return DONE if
|
|
* we think the drive is truly on line. In any case, awaken anyone
|
|
* sleeping on the drive on-line-ness.
|
|
*/
|
|
udaonline(ui, mp)
|
|
register struct uba_device *ui;
|
|
struct mscp *mp;
|
|
{
|
|
register struct ra_info *ra = &ra_info[ui->ui_unit];
|
|
/* printf("udaonline\n"); */
|
|
wakeup((caddr_t)&ui->ui_flags);
|
|
if ((mp->mscp_status & M_ST_MASK) != M_ST_SUCCESS) {
|
|
if (!cold)
|
|
printf("uda%d: ra%d", ui->ui_ctlr, ui->ui_unit);
|
|
printf(": attempt to bring on line failed: ");
|
|
mscp_printevent(mp);
|
|
ra->ra_state = CLOSED;
|
|
return (MSCP_FAILED);
|
|
}
|
|
|
|
ra->ra_state = OPENRAW;
|
|
ra->ra_dsize = (daddr_t)mp->mscp_onle.onle_unitsize;
|
|
if (!cold)
|
|
printf("ra%d: uda%d, unit %d, size = %d sectors\n", ui->ui_unit,
|
|
ui->ui_ctlr, mp->mscp_unit, ra->ra_dsize);
|
|
/* can now compute ncyl */
|
|
ra->ra_geom.rg_ncyl = ra->ra_dsize / ra->ra_geom.rg_ntracks /
|
|
ra->ra_geom.rg_nsectors;
|
|
return (MSCP_DONE);
|
|
}
|
|
|
|
/*
|
|
* We got some (configured) unit's status. Return DONE if it succeeded.
|
|
*/
|
|
udagotstatus(ui, mp)
|
|
register struct uba_device *ui;
|
|
register struct mscp *mp;
|
|
{
|
|
/* printf("udagotstatus\n"); */
|
|
if ((mp->mscp_status & M_ST_MASK) != M_ST_SUCCESS) {
|
|
printf("uda%d: attempt to get status for ra%d failed: ",
|
|
ui->ui_ctlr, ui->ui_unit);
|
|
mscp_printevent(mp);
|
|
return (MSCP_FAILED);
|
|
}
|
|
/* record for (future) bad block forwarding and whatever else */
|
|
uda_rasave(ui->ui_unit, mp, 1);
|
|
return (MSCP_DONE);
|
|
}
|
|
|
|
/*
|
|
* A transfer failed. We get a chance to fix or restart it.
|
|
* Need to write the bad block forwaring code first....
|
|
*/
|
|
/*ARGSUSED*/
|
|
udaioerror(ui, mp, bp)
|
|
register struct uba_device *ui;
|
|
register struct mscp *mp;
|
|
struct buf *bp;
|
|
{
|
|
/* printf("udaioerror\n"); */
|
|
if (mp->mscp_flags & M_EF_BBLKR) {
|
|
/*
|
|
* A bad block report. Eventually we will
|
|
* restart this transfer, but for now, just
|
|
* log it and give up.
|
|
*/
|
|
log(LOG_ERR, "ra%d: bad block report: %d%s\n",
|
|
ui->ui_unit, mp->mscp_seq.seq_lbn,
|
|
mp->mscp_flags & M_EF_BBLKU ? " + others" : "");
|
|
} else {
|
|
/*
|
|
* What the heck IS a `serious exception' anyway?
|
|
* IT SURE WOULD BE NICE IF DEC SOLD DOCUMENTATION
|
|
* FOR THEIR OWN CONTROLLERS.
|
|
*/
|
|
if (mp->mscp_flags & M_EF_SEREX)
|
|
log(LOG_ERR, "ra%d: serious exception reported\n",
|
|
ui->ui_unit);
|
|
}
|
|
return (MSCP_FAILED);
|
|
}
|
|
|
|
/*
|
|
* A replace operation finished.
|
|
*/
|
|
/*ARGSUSED*/
|
|
udareplace(ui, mp)
|
|
struct uba_device *ui;
|
|
struct mscp *mp;
|
|
{
|
|
|
|
panic("udareplace");
|
|
}
|
|
|
|
/*
|
|
* A bad block related operation finished.
|
|
*/
|
|
/*ARGSUSED*/
|
|
udabb(ui, mp, bp)
|
|
struct uba_device *ui;
|
|
struct mscp *mp;
|
|
struct buf *bp;
|
|
{
|
|
|
|
panic("udabb");
|
|
}
|
|
|
|
|
|
/*
|
|
* I/O controls.
|
|
*/
|
|
udaioctl(dev, cmd, data, flag)
|
|
dev_t dev;
|
|
int cmd;
|
|
caddr_t data;
|
|
int flag;
|
|
{
|
|
register int unit = udaunit(dev);
|
|
register struct disklabel *lp;
|
|
register struct ra_info *ra = &ra_info[unit];
|
|
int error = 0;
|
|
/* printf("udaioctl\n"); */
|
|
lp = &udalabel[unit];
|
|
|
|
switch (cmd) {
|
|
|
|
case DIOCGDINFO:
|
|
*(struct disklabel *)data = *lp;
|
|
break;
|
|
|
|
case DIOCGPART:
|
|
((struct partinfo *)data)->disklab = lp;
|
|
((struct partinfo *)data)->part =
|
|
&lp->d_partitions[udapart(dev)];
|
|
break;
|
|
|
|
case DIOCSDINFO:
|
|
if ((flag & FWRITE) == 0)
|
|
error = EBADF;
|
|
else
|
|
error = setdisklabel(lp, (struct disklabel *)data,
|
|
(ra->ra_state == OPENRAW) ? 0 : ra->ra_openpart,0);
|
|
break;
|
|
|
|
case DIOCWLABEL:
|
|
if ((flag & FWRITE) == 0)
|
|
error = EBADF;
|
|
else
|
|
ra->ra_wlabel = *(int *)data;
|
|
break;
|
|
|
|
case DIOCWDINFO:
|
|
if ((flag & FWRITE) == 0)
|
|
error = EBADF;
|
|
else if ((error = setdisklabel(lp, (struct disklabel *)data,
|
|
(ra->ra_state == OPENRAW) ? 0 : ra->ra_openpart,0)) == 0) {
|
|
int wlab;
|
|
|
|
ra->ra_state = OPEN;
|
|
/* simulate opening partition 0 so write succeeds */
|
|
ra->ra_openpart |= (1 << 0); /* XXX */
|
|
wlab = ra->ra_wlabel;
|
|
ra->ra_wlabel = 1;
|
|
error = writedisklabel(dev, udastrategy, lp,0);
|
|
ra->ra_openpart = ra->ra_copenpart | ra->ra_bopenpart;
|
|
ra->ra_wlabel = wlab;
|
|
}
|
|
break;
|
|
|
|
#ifdef notyet
|
|
case UDAIOCREPLACE:
|
|
/*
|
|
* Initiate bad block replacement for the given LBN.
|
|
* (Should we allow modifiers?)
|
|
*/
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
|
|
case UDAIOCGMICRO:
|
|
/*
|
|
* Return the microcode revision for the UDA50 running
|
|
* this drive.
|
|
*/
|
|
*(int *)data = uda_softc[uddinfo[unit]->ui_ctlr].sc_micro;
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
error = ENOTTY;
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* A Unibus reset has occurred on UBA uban. Reinitialise the controller(s)
|
|
* on that Unibus, and requeue outstanding I/O.
|
|
*/
|
|
udareset(uban)
|
|
int uban;
|
|
{
|
|
register struct uba_ctlr *um;
|
|
register struct uda_softc *sc;
|
|
register int ctlr;
|
|
/* printf("udareset\n"); */
|
|
for (ctlr = 0, sc = uda_softc; ctlr < NUDA; ctlr++, sc++) {
|
|
if ((um = udaminfo[ctlr]) == NULL || um->um_ubanum != uban ||
|
|
um->um_alive == 0)
|
|
continue;
|
|
printf(" uda%d", ctlr);
|
|
|
|
/*
|
|
* Our BDP (if any) is gone; our command (if any) is
|
|
* flushed; the device is no longer mapped; and the
|
|
* UDA50 is not yet initialised.
|
|
*/
|
|
if (um->um_bdp) {
|
|
printf("<%d>", UBAI_BDP(um->um_bdp));
|
|
um->um_bdp = 0;
|
|
}
|
|
um->um_ubinfo = 0;
|
|
um->um_cmd = 0;
|
|
sc->sc_flags &= ~SC_MAPPED;
|
|
sc->sc_state = ST_IDLE;
|
|
|
|
/* reset queues and requeue pending transfers */
|
|
mscp_requeue(&sc->sc_mi);
|
|
|
|
/*
|
|
* If it fails to initialise we will notice later and
|
|
* try again (and again...). Do not call udastart()
|
|
* here; it will be done after the controller finishes
|
|
* initialisation.
|
|
*/
|
|
if (udainit(ctlr))
|
|
printf(" (hung)");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Watchdog timer: If the controller is active, and no interrupts
|
|
* have occurred for 30 seconds, assume it has gone away.
|
|
*/
|
|
void
|
|
udawatch()
|
|
{
|
|
register int i;
|
|
register struct uba_ctlr *um;
|
|
register struct uda_softc *sc;
|
|
timeout(udawatch, (caddr_t) 0, hz); /* every second */
|
|
for (i = 0, sc = uda_softc; i < NUDA; i++, sc++) {
|
|
if ((um = udaminfo[i]) == 0 || !um->um_alive)
|
|
continue;
|
|
if (sc->sc_state == ST_IDLE)
|
|
continue;
|
|
if (sc->sc_state == ST_RUN && !um->um_tab.b_active)
|
|
sc->sc_wticks = 0;
|
|
else if (++sc->sc_wticks >= 30) {
|
|
sc->sc_wticks = 0;
|
|
printf("uda%d: lost interrupt\n", i);
|
|
ubareset(um->um_ubanum);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Do a panic dump. We set up the controller for one command packet
|
|
* and one response packet, for which we use `struct uda1'.
|
|
*/
|
|
struct uda1 {
|
|
struct uda1ca uda1_ca; /* communications area */
|
|
struct mscp uda1_rsp; /* response packet */
|
|
struct mscp uda1_cmd; /* command packet */
|
|
} uda1;
|
|
|
|
#define DBSIZE 32 /* dump 16K at a time */
|
|
|
|
udadump(dev)
|
|
dev_t dev;
|
|
{
|
|
struct udadevice *udaddr;
|
|
struct uda1 *ud_ubaddr;
|
|
char *start;
|
|
int num, blk, unit, maxsz, blkoff, reg;
|
|
struct partition *pp;
|
|
struct uba_regs *uba;
|
|
struct uba_device *ui;
|
|
struct uda1 *ud;
|
|
struct pte *io;
|
|
int i;
|
|
|
|
/*
|
|
* Make sure the device is a reasonable place on which to dump.
|
|
*/
|
|
unit = udaunit(dev);
|
|
if (unit >= NRA)
|
|
return (ENXIO);
|
|
#define phys(cast, addr) ((cast) ((int)addr & 0x7fffffff))
|
|
ui = phys(struct uba_device *, udadinfo[unit]);
|
|
if (ui == NULL || ui->ui_alive == 0)
|
|
return (ENXIO);
|
|
|
|
/*
|
|
* Find and initialise the UBA; get the physical address of the
|
|
* device registers, and of communications area and command and
|
|
* response packet.
|
|
*/
|
|
uba = phys(struct uba_softc *, ui->ui_hd)->uh_physuba;
|
|
ubainit(ui->ui_hd);
|
|
udaddr = (struct udadevice *)ui->ui_physaddr;
|
|
ud = phys(struct uda1 *, &uda1);
|
|
/*
|
|
* Map the ca+packets into Unibus I/O space so the UDA50 can get
|
|
* at them. Use the registers at the end of the Unibus map (since
|
|
* we will use the registers at the beginning to map the memory
|
|
* we are dumping).
|
|
*/
|
|
num = btoc(sizeof(struct uda1)) + 1;
|
|
reg = NUBMREG - num;
|
|
io = (void *)&uba->uba_map[reg];
|
|
for (i = 0; i < num; i++)
|
|
*(int *)io++ = UBAMR_MRV | (btop(ud) + i);
|
|
ud_ubaddr = (struct uda1 *)(((int)ud & PGOFSET) | (reg << 9));
|
|
|
|
/*
|
|
* Initialise the controller, with one command and one response
|
|
* packet.
|
|
*/
|
|
udaddr->udaip = 0;
|
|
if (udadumpwait(udaddr, UDA_STEP1))
|
|
return (EFAULT);
|
|
udaddr->udasa = UDA_ERR;
|
|
if (udadumpwait(udaddr, UDA_STEP2))
|
|
return (EFAULT);
|
|
udaddr->udasa = (int)&ud_ubaddr->uda1_ca.ca_rspdsc;
|
|
if (udadumpwait(udaddr, UDA_STEP3))
|
|
return (EFAULT);
|
|
udaddr->udasa = ((int)&ud_ubaddr->uda1_ca.ca_rspdsc) >> 16;
|
|
if (udadumpwait(udaddr, UDA_STEP4))
|
|
return (EFAULT);
|
|
uda_softc[ui->ui_ctlr].sc_micro = udaddr->udasa & 0xff;
|
|
udaddr->udasa = UDA_GO;
|
|
|
|
/*
|
|
* Set up the command and response descriptor, then set the
|
|
* controller characteristics and bring the drive on line.
|
|
* Note that all uninitialised locations in uda1_cmd are zero.
|
|
*/
|
|
ud->uda1_ca.ca_rspdsc = (long)&ud_ubaddr->uda1_rsp.mscp_cmdref;
|
|
ud->uda1_ca.ca_cmddsc = (long)&ud_ubaddr->uda1_cmd.mscp_cmdref;
|
|
/* ud->uda1_cmd.mscp_sccc.sccc_ctlrflags = 0; */
|
|
/* ud->uda1_cmd.mscp_sccc.sccc_version = 0; */
|
|
if (udadumpcmd(M_OP_SETCTLRC, ud, ui))
|
|
return (EFAULT);
|
|
ud->uda1_cmd.mscp_unit = ui->ui_slave;
|
|
if (udadumpcmd(M_OP_ONLINE, ud, ui))
|
|
return (EFAULT);
|
|
|
|
pp = phys(struct partition *,
|
|
&udalabel[unit].d_partitions[udapart(dev)]);
|
|
maxsz = pp->p_size;
|
|
blkoff = pp->p_offset;
|
|
|
|
/*
|
|
* Dump all of physical memory, or as much as will fit in the
|
|
* space provided.
|
|
*/
|
|
start = 0;
|
|
printf("Dumpar {r inte implementerade {n :) \n");
|
|
asm("halt");
|
|
/* num = maxfree; */
|
|
if (dumplo + num >= maxsz)
|
|
num = maxsz - dumplo;
|
|
blkoff += dumplo;
|
|
|
|
/*
|
|
* Write out memory, DBSIZE pages at a time.
|
|
* N.B.: this code depends on the fact that the sector
|
|
* size == the page size.
|
|
*/
|
|
while (num > 0) {
|
|
blk = num > DBSIZE ? DBSIZE : num;
|
|
io = (void *)uba->uba_map;
|
|
/*
|
|
* Map in the pages to write, leaving an invalid entry
|
|
* at the end to guard against wild Unibus transfers.
|
|
* Then do the write.
|
|
*/
|
|
for (i = 0; i < blk; i++)
|
|
*(int *)io++ = UBAMR_MRV | (btop(start) + i);
|
|
*(int *)io = 0;
|
|
ud->uda1_cmd.mscp_unit = ui->ui_slave;
|
|
ud->uda1_cmd.mscp_seq.seq_lbn = btop(start) + blkoff;
|
|
ud->uda1_cmd.mscp_seq.seq_bytecount = blk << PGSHIFT;
|
|
if (udadumpcmd(M_OP_WRITE, ud, ui))
|
|
return (EIO);
|
|
start += blk << PGSHIFT;
|
|
num -= blk;
|
|
}
|
|
return (0); /* made it! */
|
|
}
|
|
|
|
/*
|
|
* Wait for some of the bits in `bits' to come on. If the error bit
|
|
* comes on, or ten seconds pass without response, return true (error).
|
|
*/
|
|
udadumpwait(udaddr, bits)
|
|
volatile struct udadevice *udaddr;
|
|
register int bits;
|
|
{
|
|
register int timo = todr() + 1000;
|
|
|
|
while ((udaddr->udasa & bits) == 0) {
|
|
if (udaddr->udasa & UDA_ERR) {
|
|
printf("udasa=%b\ndump ", udaddr->udasa, udasr_bits);
|
|
return (1);
|
|
}
|
|
if (todr() >= timo) {
|
|
printf("timeout\ndump ");
|
|
return (1);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Feed a command to the UDA50, wait for its response, and return
|
|
* true iff something went wrong.
|
|
*/
|
|
udadumpcmd(op, ud, ui)
|
|
int op;
|
|
register struct uda1 *ud;
|
|
struct uba_device *ui;
|
|
{
|
|
volatile struct udadevice *udaddr;
|
|
volatile int n;
|
|
#define mp (&ud->uda1_rsp)
|
|
|
|
udaddr = (struct udadevice *)ui->ui_physaddr;
|
|
ud->uda1_cmd.mscp_opcode = op;
|
|
ud->uda1_cmd.mscp_msglen = MSCP_MSGLEN;
|
|
ud->uda1_rsp.mscp_msglen = MSCP_MSGLEN;
|
|
ud->uda1_ca.ca_rspdsc |= MSCP_OWN | MSCP_INT;
|
|
ud->uda1_ca.ca_cmddsc |= MSCP_OWN | MSCP_INT;
|
|
if (udaddr->udasa & UDA_ERR) {
|
|
printf("udasa=%b\ndump ", udaddr->udasa, udasr_bits);
|
|
return (1);
|
|
}
|
|
n = udaddr->udaip;
|
|
n = todr() + 1000;
|
|
for (;;) {
|
|
if (todr() > n) {
|
|
printf("timeout\ndump ");
|
|
return (1);
|
|
}
|
|
if (ud->uda1_ca.ca_cmdint)
|
|
ud->uda1_ca.ca_cmdint = 0;
|
|
if (ud->uda1_ca.ca_rspint == 0)
|
|
continue;
|
|
ud->uda1_ca.ca_rspint = 0;
|
|
if (mp->mscp_opcode == (op | M_OP_END))
|
|
break;
|
|
printf("\n");
|
|
switch (MSCP_MSGTYPE(mp->mscp_msgtc)) {
|
|
|
|
case MSCPT_SEQ:
|
|
printf("sequential");
|
|
break;
|
|
|
|
case MSCPT_DATAGRAM:
|
|
mscp_decodeerror("uda", ui->ui_ctlr, mp);
|
|
printf("datagram");
|
|
break;
|
|
|
|
case MSCPT_CREDITS:
|
|
printf("credits");
|
|
break;
|
|
|
|
case MSCPT_MAINTENANCE:
|
|
printf("maintenance");
|
|
break;
|
|
|
|
default:
|
|
printf("unknown (type 0x%x)",
|
|
MSCP_MSGTYPE(mp->mscp_msgtc));
|
|
break;
|
|
}
|
|
printf(" ignored\ndump ");
|
|
ud->uda1_ca.ca_rspdsc |= MSCP_OWN | MSCP_INT;
|
|
}
|
|
if ((mp->mscp_status & M_ST_MASK) != M_ST_SUCCESS) {
|
|
printf("error: op 0x%x => 0x%x status 0x%x\ndump ", op,
|
|
mp->mscp_opcode, mp->mscp_status);
|
|
return (1);
|
|
}
|
|
return (0);
|
|
#undef mp
|
|
}
|
|
|
|
/*
|
|
* Return the size of a partition, if known, or -1 if not.
|
|
*/
|
|
udasize(dev)
|
|
dev_t dev;
|
|
{
|
|
register int unit = udaunit(dev);
|
|
register struct uba_device *ui;
|
|
|
|
if (unit >= NRA || (ui = udadinfo[unit]) == NULL ||
|
|
ui->ui_alive == 0 || (ui->ui_flags & UNIT_ONLINE) == 0 ||
|
|
ra_info[unit].ra_state != OPEN)
|
|
return (-1);
|
|
return ((int)udalabel[unit].d_partitions[udapart(dev)].p_size);
|
|
}
|
|
|
|
#ifdef COMPAT_42
|
|
/*
|
|
* Tables mapping unlabelled drives.
|
|
*/
|
|
struct size {
|
|
daddr_t nblocks;
|
|
daddr_t blkoff;
|
|
} ra60_sizes[8] = {
|
|
15884, 0, /* A=sectors 0 thru 15883 */
|
|
33440, 15884, /* B=sectors 15884 thru 49323 */
|
|
400176, 0, /* C=sectors 0 thru 400175 */
|
|
82080, 49324, /* 4.2 G => D=sectors 49324 thru 131403 */
|
|
268772, 131404, /* 4.2 H => E=sectors 131404 thru 400175 */
|
|
350852, 49324, /* F=sectors 49324 thru 400175 */
|
|
157570, 242606, /* UCB G => G=sectors 242606 thru 400175 */
|
|
193282, 49324, /* UCB H => H=sectors 49324 thru 242605 */
|
|
}, ra70_sizes[8] = {
|
|
15884, 0, /* A=blk 0 thru 15883 */
|
|
33440, 15972, /* B=blk 15972 thru 49323 */
|
|
-1, 0, /* C=blk 0 thru end */
|
|
15884, 341220, /* D=blk 341220 thru 357103 */
|
|
55936, 357192, /* E=blk 357192 thru 413127 */
|
|
-1, 413457, /* F=blk 413457 thru end */
|
|
-1, 341220, /* G=blk 341220 thru end */
|
|
291346, 49731, /* H=blk 49731 thru 341076 */
|
|
}, ra80_sizes[8] = {
|
|
15884, 0, /* A=sectors 0 thru 15883 */
|
|
33440, 15884, /* B=sectors 15884 thru 49323 */
|
|
242606, 0, /* C=sectors 0 thru 242605 */
|
|
0, 0, /* D=unused */
|
|
193282, 49324, /* UCB H => E=sectors 49324 thru 242605 */
|
|
82080, 49324, /* 4.2 G => F=sectors 49324 thru 131403 */
|
|
192696, 49910, /* G=sectors 49910 thru 242605 */
|
|
111202, 131404, /* 4.2 H => H=sectors 131404 thru 242605 */
|
|
}, ra81_sizes[8] ={
|
|
/*
|
|
* These are the new standard partition sizes for ra81's.
|
|
* An RA_COMPAT system is compiled with D, E, and F corresponding
|
|
* to the 4.2 partitions for G, H, and F respectively.
|
|
*/
|
|
#ifndef UCBRA
|
|
15884, 0, /* A=sectors 0 thru 15883 */
|
|
66880, 16422, /* B=sectors 16422 thru 83301 */
|
|
891072, 0, /* C=sectors 0 thru 891071 */
|
|
#ifdef RA_COMPAT
|
|
82080, 49324, /* 4.2 G => D=sectors 49324 thru 131403 */
|
|
759668, 131404, /* 4.2 H => E=sectors 131404 thru 891071 */
|
|
478582, 412490, /* 4.2 F => F=sectors 412490 thru 891071 */
|
|
#else
|
|
15884, 375564, /* D=sectors 375564 thru 391447 */
|
|
307200, 391986, /* E=sectors 391986 thru 699185 */
|
|
191352, 699720, /* F=sectors 699720 thru 891071 */
|
|
#endif RA_COMPAT
|
|
515508, 375564, /* G=sectors 375564 thru 891071 */
|
|
291346, 83538, /* H=sectors 83538 thru 374883 */
|
|
|
|
/*
|
|
* These partitions correspond to the sizes used by sites at Berkeley,
|
|
* and by those sites that have received copies of the Berkeley driver
|
|
* with deltas 6.2 or greater (11/15/83).
|
|
*/
|
|
#else UCBRA
|
|
|
|
15884, 0, /* A=sectors 0 thru 15883 */
|
|
33440, 15884, /* B=sectors 15884 thru 49323 */
|
|
891072, 0, /* C=sectors 0 thru 891071 */
|
|
15884, 242606, /* D=sectors 242606 thru 258489 */
|
|
307200, 258490, /* E=sectors 258490 thru 565689 */
|
|
325382, 565690, /* F=sectors 565690 thru 891071 */
|
|
648466, 242606, /* G=sectors 242606 thru 891071 */
|
|
193282, 49324, /* H=sectors 49324 thru 242605 */
|
|
|
|
#endif UCBRA
|
|
}, ra82_sizes[8] = {
|
|
15884, 0, /* A=blk 0 thru 15883 */
|
|
66880, 16245, /* B=blk 16245 thru 83124 */
|
|
-1, 0, /* C=blk 0 thru end */
|
|
15884, 375345, /* D=blk 375345 thru 391228 */
|
|
307200, 391590, /* E=blk 391590 thru 698789 */
|
|
-1, 699390, /* F=blk 699390 thru end */
|
|
-1, 375345, /* G=blk 375345 thru end */
|
|
291346, 83790, /* H=blk 83790 thru 375135 */
|
|
}, ra90_sizes[8] = {
|
|
15884, 0, /* A=sectors 0 thru 15883 */
|
|
66880, 16146, /* B=sectors 16146 thru 83025 */
|
|
2376153,0, /* C=sectors 0 thru 2376152 */
|
|
15884, 374946, /* D=sectors 374946 thru 390829 */
|
|
307200, 391092, /* E=sectors 391092 thru 698291 */
|
|
1677390,698763, /* F=sectors 698763 thru 2376152 */
|
|
2001207,374946, /* G=sectors 374946 thru 2376152 */
|
|
291346, 83421, /* H=sectors 83421 thru 374766 */
|
|
}, ra92_sizes[8] = {
|
|
15884, 0, /* A=sectors 0 thru 15883 */
|
|
66880, 16146, /* B=sectors 16146 thru 83025 */
|
|
2941263,0, /* C=sectors 0 thru 2941262 */
|
|
15884, 374946, /* D=sectors 374946 thru 390829 */
|
|
307200, 391092, /* E=sectors 391092 thru 698291 */
|
|
2242500,698763, /* F=sectors 698763 thru 2941262 */
|
|
2566317,374946, /* G=sectors 374946 thru 2941262 */
|
|
291346, 83421, /* H=sectors 83421 thru 374766 */
|
|
}, rc25_sizes[8] = {
|
|
15884, 0, /* A=blk 0 thru 15883 */
|
|
10032, 15884, /* B=blk 15884 thru 49323 */
|
|
-1, 0, /* C=blk 0 thru end */
|
|
0, 0, /* D=blk 340670 thru 356553 */
|
|
0, 0, /* E=blk 356554 thru 412489 */
|
|
0, 0, /* F=blk 412490 thru end */
|
|
-1, 25916, /* G=blk 49324 thru 131403 */
|
|
0, 0, /* H=blk 131404 thru end */
|
|
}, rd52_sizes[8] = {
|
|
15884, 0, /* A=blk 0 thru 15883 */
|
|
9766, 15884, /* B=blk 15884 thru 25649 */
|
|
-1, 0, /* C=blk 0 thru end */
|
|
0, 0, /* D=unused */
|
|
0, 0, /* E=unused */
|
|
0, 0, /* F=unused */
|
|
-1, 25650, /* G=blk 25650 thru end */
|
|
0, 0, /* H=unused */
|
|
}, rd53_sizes[8] = {
|
|
15884, 0, /* A=blk 0 thru 15883 */
|
|
33440, 15884, /* B=blk 15884 thru 49323 */
|
|
-1, 0, /* C=blk 0 thru end */
|
|
0, 0, /* D=unused */
|
|
33440, 0, /* E=blk 0 thru 33439 */
|
|
-1, 33440, /* F=blk 33440 thru end */
|
|
-1, 49324, /* G=blk 49324 thru end */
|
|
-1, 15884, /* H=blk 15884 thru end */
|
|
}, rd54_sizes[8] = {
|
|
15884, 0, /* A=blk 0 thru 15883 */
|
|
33440, 15884, /* B=blk 15884 thru 49323 */
|
|
-1, 0, /* C=blk 0 thru end */
|
|
130938, 49324, /* D=blk 49324 thru 180261 */
|
|
130938, 180262, /* E=blk 180262 thru 311199 (end) */
|
|
0, 0, /* F=unused */
|
|
261876, 49324, /* G=blk 49324 thru 311199 (end) */
|
|
0, 0, /* H=unused */
|
|
}, rx50_sizes[8] = {
|
|
800, 0, /* A=blk 0 thru 799 */
|
|
0, 0,
|
|
-1, 0, /* C=blk 0 thru end */
|
|
0, 0,
|
|
0, 0,
|
|
0, 0,
|
|
0, 0,
|
|
0, 0,
|
|
};
|
|
|
|
/*
|
|
* Media ID decoding table.
|
|
*/
|
|
struct udatypes {
|
|
u_long ut_id; /* media drive ID */
|
|
char *ut_name; /* drive type name */
|
|
struct size *ut_sizes; /* partition tables */
|
|
int ut_nsectors, ut_ntracks, ut_ncylinders;
|
|
} udatypes[] = {
|
|
{ MSCP_MKDRIVE2('R', 'A', 60), "ra60", ra60_sizes, 42, 4, 2382 },
|
|
{ MSCP_MKDRIVE2('R', 'A', 70), "ra70", ra70_sizes, 33, 11, 1507 },
|
|
{ MSCP_MKDRIVE2('R', 'A', 80), "ra80", ra80_sizes, 31, 14, 559 },
|
|
{ MSCP_MKDRIVE2('R', 'A', 81), "ra81", ra81_sizes, 51, 14, 1248 },
|
|
{ MSCP_MKDRIVE2('R', 'A', 82), "ra82", ra82_sizes, 57, 15, 1423 },
|
|
{ MSCP_MKDRIVE2('R', 'A', 90), "ra90", ra90_sizes, 69, 13, 2649 },
|
|
{ MSCP_MKDRIVE2('R', 'A', 92), "ra92", ra92_sizes, 69, 13, 3279 },
|
|
{ MSCP_MKDRIVE2('R', 'C', 25), "rc25-removable",
|
|
rc25_sizes, 42, 4, 302 },
|
|
{ MSCP_MKDRIVE3('R', 'C', 'F', 25), "rc25-fixed",
|
|
rc25_sizes, 42, 4, 302 },
|
|
{ MSCP_MKDRIVE2('R', 'D', 52), "rd52", rd52_sizes, 18, 7, 480 },
|
|
{ MSCP_MKDRIVE2('R', 'D', 53), "rd53", rd53_sizes, 17, 8, 1019 },
|
|
{ MSCP_MKDRIVE2('R', 'D', 32), "rd54-from-rd32",
|
|
rd54_sizes, 17, 15, 1220 },
|
|
{ MSCP_MKDRIVE2('R', 'D', 54), "rd54", rd54_sizes, 17, 15, 1220 },
|
|
{ MSCP_MKDRIVE2('R', 'X', 50), "rx50", rx50_sizes, 10, 1, 80 },
|
|
0
|
|
};
|
|
|
|
#define NTYPES (sizeof(udatypes) / sizeof(*udatypes))
|
|
|
|
udamaptype(unit, lp)
|
|
int unit;
|
|
register struct disklabel *lp;
|
|
{
|
|
register struct udatypes *ut;
|
|
register struct size *sz;
|
|
register struct partition *pp;
|
|
register char *p;
|
|
register int i;
|
|
register struct ra_info *ra = &ra_info[unit];
|
|
|
|
i = MSCP_MEDIA_DRIVE(ra->ra_mediaid);
|
|
for (ut = udatypes; ut->ut_id; ut++)
|
|
if (ut->ut_id == i &&
|
|
ut->ut_nsectors == ra->ra_geom.rg_nsectors &&
|
|
ut->ut_ntracks == ra->ra_geom.rg_ntracks &&
|
|
ut->ut_ncylinders == ra->ra_geom.rg_ncyl)
|
|
goto found;
|
|
|
|
/* not one we know; fake up a label for the whole drive */
|
|
uda_makefakelabel(ra, lp);
|
|
i = ra->ra_mediaid; /* print the port type too */
|
|
addlog(": no partition table for %c%c %c%c%c%d, size %d;\n\
|
|
using (s,t,c)=(%d,%d,%d)",
|
|
MSCP_MID_CHAR(4, i), MSCP_MID_CHAR(3, i),
|
|
MSCP_MID_CHAR(2, i), MSCP_MID_CHAR(1, i),
|
|
MSCP_MID_CHAR(0, i), MSCP_MID_NUM(i), lp->d_secperunit,
|
|
lp->d_nsectors, lp->d_ntracks, lp->d_ncylinders);
|
|
if (!cold)
|
|
addlog("\n");
|
|
return (0);
|
|
found:
|
|
p = ut->ut_name;
|
|
for (i = 0; i < sizeof(lp->d_typename) - 1 && *p; i++)
|
|
lp->d_typename[i] = *p++;
|
|
lp->d_typename[i] = 0;
|
|
sz = ut->ut_sizes;
|
|
lp->d_nsectors = ut->ut_nsectors;
|
|
lp->d_ntracks = ut->ut_ntracks;
|
|
lp->d_ncylinders = ut->ut_ncylinders;
|
|
lp->d_npartitions = 8;
|
|
lp->d_secpercyl = lp->d_nsectors * lp->d_ntracks;
|
|
for (pp = lp->d_partitions; pp < &lp->d_partitions[8]; pp++, sz++) {
|
|
pp->p_offset = sz->blkoff;
|
|
if ((pp->p_size = sz->nblocks) == (u_long)-1)
|
|
pp->p_size = ra->ra_dsize - sz->blkoff;
|
|
}
|
|
return (1);
|
|
}
|
|
#endif /* COMPAT_42 */
|
|
|
|
/*
|
|
* Construct a label for a drive from geometry information
|
|
* if we have no better information.
|
|
*/
|
|
uda_makefakelabel(ra, lp)
|
|
register struct ra_info *ra;
|
|
register struct disklabel *lp;
|
|
{
|
|
lp->d_nsectors = ra->ra_geom.rg_nsectors;
|
|
lp->d_ntracks = ra->ra_geom.rg_ntracks;
|
|
lp->d_ncylinders = ra->ra_geom.rg_ncyl;
|
|
lp->d_secpercyl = lp->d_nsectors * lp->d_ntracks;
|
|
bcopy("ra??", lp->d_typename, sizeof("ra??"));
|
|
lp->d_npartitions = 1;
|
|
lp->d_partitions[0].p_offset = 0;
|
|
lp->d_partitions[0].p_size = lp->d_secperunit;
|
|
}
|