NetBSD/sys/arch/sh3/include/bus.h

1007 lines
30 KiB
C

/* $NetBSD: bus.h,v 1.5 2001/01/30 04:15:10 msaitoh Exp $ */
/*-
* Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1996 Charles M. Hannum. All rights reserved.
* Copyright (c) 1996 Christopher G. Demetriou. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Christopher G. Demetriou
* for the NetBSD Project.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _SH3_BUS_H_
#define _SH3_BUS_H_
#include <machine/bswap.h>
#ifndef __BUS_SPACE_COMPAT_OLDDEFS
#define __BUS_SPACE_COMPAT_OLDDEFS
#endif
#define __BUS_SPACE_HAS_STREAM_METHODS
#define BUS_SPACE_ALIGNED_POINTER(p, t) ALIGNED_POINTER(p, t)
/*
* Values for the sh3 bus space tag, not to be used directly by MI code.
*/
#define SH3_BUS_SPACE_IO 0 /* space is i/o space */
#define SH3_BUS_SPACE_MEM 1 /* space is mem space */
#ifdef SH4_PCMCIA
#define SH3_BUS_SPACE_PCMCIA_IO 2 /* PCMCIA IO space */
#define SH3_BUS_SPACE_PCMCIA_MEM 3 /* PCMCIA Mem space */
#define SH3_BUS_SPACE_PCMCIA_ATT 4 /* PCMCIA Attr space */
#define SH3_BUS_SPACE_PCMCIA_8BIT 0x8000 /* PCMCIA BUS 8 BIT WIDTH */
#define SH3_BUS_SPACE_PCMCIA_IO8 \
(SH3_BUS_SPACE_PCMCIA_IO|SH3_BUS_SPACE_PCMCIA_8BIT)
#define SH3_BUS_SPACE_PCMCIA_MEM8 \
(SH3_BUS_SPACE_PCMCIA_MEM|SH3_BUS_SPACE_PCMCIA_8BIT)
#define SH3_BUS_SPACE_PCMCIA_ATT8 \
(SH3_BUS_SPACE_PCMCIA_ATT|SH3_BUS_SPACE_PCMCIA_8BIT)
#endif
/*
* Bus address and size types
*/
typedef u_long bus_addr_t;
typedef u_long bus_size_t;
/*
* Access methods for bus resources and address space.
*/
typedef int bus_space_tag_t;
typedef u_long bus_space_handle_t;
/*
* int bus_space_map __P((bus_space_tag_t t, bus_addr_t addr,
* bus_size_t size, int flags, bus_space_handle_t *bshp));
*
* Map a region of bus space.
*/
#define BUS_SPACE_MAP_CACHEABLE 0x01
#define BUS_SPACE_MAP_LINEAR 0x02
int bus_space_map __P((bus_space_tag_t, bus_addr_t, bus_size_t size,
int, bus_space_handle_t *));
#ifdef SH4_PCMCIA
int shpcmcia_memio_map __P((bus_space_tag_t, bus_addr_t, bus_size_t size,
int, bus_space_handle_t *));
int shpcmcia_mem_add_mapping __P((bus_addr_t, bus_size_t, int,
bus_space_handle_t *));
void shpcmcia_memio_unmap __P((bus_space_tag_t, bus_space_handle_t,
bus_size_t));
void shpcmcia_memio_free __P((bus_space_tag_t, bus_space_handle_t,
bus_size_t));
int shpcmcia_memio_subregion __P((bus_space_tag_t, bus_space_handle_t,
bus_size_t, bus_size_t,
bus_space_handle_t *));
#endif
/*
* u_intN_t bus_space_read_N __P((bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset));
*
* Read a 1, 2, 4, or 8 byte quantity from bus space
* described by tag/handle/offset.
*/
static __inline u_int8_t bus_space_read_1
__P((bus_space_tag_t, bus_space_handle_t, bus_size_t));
static __inline u_int16_t bus_space_read_2
__P((bus_space_tag_t, bus_space_handle_t, bus_size_t));
static __inline u_int32_t bus_space_read_4
__P((bus_space_tag_t, bus_space_handle_t, bus_size_t));
u_int8_t
bus_space_read_1(tag, bsh, offset)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
{
return *(volatile u_int8_t *)(bsh + offset);
}
u_int16_t
bus_space_read_2(tag, bsh, offset)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
{
return bswap16(*(volatile u_int16_t *)(bsh + offset));
}
u_int32_t
bus_space_read_4(tag, bsh, offset)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
{
return bswap32(*(volatile u_int32_t *)(bsh + offset));
}
static __inline u_int16_t bus_space_read_stream_2
__P((bus_space_tag_t, bus_space_handle_t, bus_size_t));
static __inline u_int32_t bus_space_read_stream_4
__P((bus_space_tag_t, bus_space_handle_t, bus_size_t));
u_int16_t
bus_space_read_stream_2(tag, bsh, offset)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
{
return *(volatile u_int16_t *)(bsh + offset);
}
u_int32_t
bus_space_read_stream_4(tag, bsh, offset)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
{
return *(volatile u_int32_t *)(bsh + offset);
}
/*
* void bus_space_read_multi_N __P((bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset,
* u_intN_t *addr, size_t count));
*
* Read `count' 1, 2, 4, or 8 byte quantities from bus space
* described by tag/handle/offset and copy into buffer provided.
*/
static __inline void bus_space_read_multi_1 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int8_t *, bus_size_t));
static __inline void bus_space_read_multi_2 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int16_t *, bus_size_t));
static __inline void bus_space_read_multi_4 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int32_t *, bus_size_t));
void
bus_space_read_multi_1(tag, bsh, offset, addr, count)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int8_t *addr;
bus_size_t count;
{
while (count--)
*addr++ = bus_space_read_1(tag, bsh, offset);
}
void
bus_space_read_multi_2(tag, bsh, offset, addr, count)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int16_t *addr;
bus_size_t count;
{
while (count--)
*addr++ = bus_space_read_2(tag, bsh, offset);
}
void
bus_space_read_multi_4(tag, bsh, offset, addr, count)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int32_t *addr;
bus_size_t count;
{
while (count--)
*addr++ = bus_space_read_4(tag, bsh, offset);
}
static __inline void bus_space_read_multi_stream_2 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int16_t *, bus_size_t));
static __inline void bus_space_read_multi_stream_4 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int32_t *, bus_size_t));
void
bus_space_read_multi_stream_2(tag, bsh, offset, addr, count)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int16_t *addr;
bus_size_t count;
{
while (count--)
*addr++ = *(volatile u_int16_t *)(bsh + offset);
}
void
bus_space_read_multi_stream_4(tag, bsh, offset, addr, count)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int32_t *addr;
bus_size_t count;
{
while (count--)
*addr++ = *(volatile u_int32_t *)(bsh + offset);
}
/*
* int bus_space_alloc __P((bus_space_tag_t t, bus_addr_t rstart,
* bus_addr_t rend, bus_size_t size, bus_size_t align,
* bus_size_t boundary, int flags, bus_addr_t *addrp,
* bus_space_handle_t *bshp));
*
* Allocate a region of bus space.
*/
int sh_memio_alloc __P((bus_space_tag_t, bus_addr_t, bus_addr_t, bus_size_t,
bus_size_t, bus_size_t, int,
bus_addr_t *, bus_space_handle_t *));
#define bus_space_alloc(t, rs, re, s, a, b, f, ap, hp) \
sh_memio_alloc((t), (rs), (re), (s), (a), (b), (f), (ap), (hp))
/*
* int bus_space_free __P((bus_space_tag_t t,
* bus_space_handle_t bsh, bus_size_t size));
*
* Free a region of bus space.
*/
void sh_memio_free __P((bus_space_tag_t, bus_space_handle_t, bus_size_t));
#define bus_space_free(t, h, s) \
sh_memio_free((t), (h), (s))
/*
* int bus_space_unmap __P((bus_space_tag_t t,
* bus_space_handle_t bsh, bus_size_t size));
*
* Unmap a region of bus space.
*/
void sh_memio_unmap __P((bus_space_tag_t, bus_space_handle_t, bus_size_t));
#define bus_space_unmap(t, h, s) \
sh_memio_unmap((t), (h), (s))
/*
* int bus_space_subregion __P((bus_space_tag_t t,
* bus_space_handle_t bsh, bus_size_t offset, bus_size_t size,
* bus_space_handle_t *nbshp));
*
* Get a new handle for a subregion of an already-mapped area of bus space.
*/
int sh_memio_subregion __P((bus_space_tag_t, bus_space_handle_t,
bus_size_t, bus_size_t, bus_space_handle_t *));
#define bus_space_subregion(t, h, o, s, nhp) \
sh_memio_subregion((t), (h), (o), (s), (nhp))
/*
* void bus_space_read_region_N __P((bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset,
* u_intN_t *addr, size_t count));
*
* Read `count' 1, 2, 4, or 8 byte quantities from bus space
* described by tag/handle and starting at `offset' and copy into
* buffer provided.
*/
static __inline void bus_space_read_region_1 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int8_t *, bus_size_t));
static __inline void bus_space_read_region_2 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int16_t *, bus_size_t));
static __inline void bus_space_read_region_4 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int32_t *, bus_size_t));
void
bus_space_read_region_1(tag, bsh, offset, addr, count)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int8_t *addr;
bus_size_t count;
{
u_int8_t *p = (u_int8_t *)(bsh + offset);
while (count--)
*addr++ = *p++;
}
void
bus_space_read_region_2(tag, bsh, offset, addr, count)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int16_t *addr;
bus_size_t count;
{
u_int16_t *p = (u_int16_t *)(bsh + offset);
while (count--)
*addr++ = bswap16(*p++);
}
void
bus_space_read_region_4(tag, bsh, offset, addr, count)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int32_t *addr;
bus_size_t count;
{
u_int32_t *p = (u_int32_t *)(bsh + offset);
while (count--)
*addr++ = bswap32(*p++);
}
/*
* void bus_space_write_region_N __P((bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset,
* const u_intN_t *addr, size_t count));
*
* Write `count' 1, 2, 4, or 8 byte quantities from the buffer provided
* to bus space described by tag/handle starting at `offset'.
*/
static __inline void bus_space_write_region_1 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, const u_int8_t *, bus_size_t));
static __inline void bus_space_write_region_2 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, const u_int16_t *, bus_size_t));
static __inline void bus_space_write_region_4 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, const u_int32_t *, bus_size_t));
void
bus_space_write_region_1(tag, bsh, offset, addr, count)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
const u_int8_t *addr;
bus_size_t count;
{
u_int8_t *p = (u_int8_t *)(bsh + offset);
while (count--)
*p++ = *addr++;
}
void
bus_space_write_region_2(tag, bsh, offset, addr, count)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
const u_int16_t *addr;
bus_size_t count;
{
u_int16_t *p = (u_int16_t *)(bsh + offset);
while (count--)
*p++ = bswap16(*addr++);
}
void
bus_space_write_region_4(tag, bsh, offset, addr, count)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
const u_int32_t *addr;
bus_size_t count;
{
u_int32_t *p = (u_int32_t *)(bsh + offset);
while (count--)
*p++ = bswap32(*addr++);
}
/*
* void bus_space_write_N __P((bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset,
* u_intN_t value));
*
* Write the 1, 2, 4, or 8 byte value `value' to bus space
* described by tag/handle/offset.
*/
static __inline void bus_space_write_1 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int8_t));
static __inline void bus_space_write_2 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int16_t));
static __inline void bus_space_write_4 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int32_t));
void
bus_space_write_1(tag, bsh, offset, value)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int8_t value;
{
*(volatile u_int8_t *)(bsh + offset) = value;
}
void
bus_space_write_2(tag, bsh, offset, value)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int16_t value;
{
*(volatile u_int16_t *)(bsh + offset) = bswap16(value);
}
void
bus_space_write_4(tag, bsh, offset, value)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int32_t value;
{
*(volatile u_int32_t *)(bsh + offset) = bswap32(value);
}
static __inline void bus_space_write_stream_2 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int16_t));
static __inline void bus_space_write_stream_4 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int32_t));
void
bus_space_write_stream_2(tag, bsh, offset, value)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int16_t value;
{
*(volatile u_int16_t *)(bsh + offset) = value;
}
void
bus_space_write_stream_4(tag, bsh, offset, value)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int32_t value;
{
*(volatile u_int32_t *)(bsh + offset) = value;
}
/*
* void bus_space_write_multi_N __P((bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset,
* const u_intN_t *addr, size_t count));
*
* Write `count' 1, 2, 4, or 8 byte quantities from the buffer
* provided to bus space described by tag/handle/offset.
*/
static __inline void bus_space_write_multi_1 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int8_t *, bus_size_t));
static __inline void bus_space_write_multi_2 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int16_t *, bus_size_t));
static __inline void bus_space_write_multi_4 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int32_t *, bus_size_t));
void
bus_space_write_multi_1(tag, bsh, offset, addr, count)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int8_t *addr;
bus_size_t count;
{
while (count--)
bus_space_write_1(tag, bsh, offset, *addr++);
}
void
bus_space_write_multi_2(tag, bsh, offset, addr, count)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int16_t *addr;
bus_size_t count;
{
while (count--)
bus_space_write_2(tag, bsh, offset, *addr++);
}
void
bus_space_write_multi_4(tag, bsh, offset, addr, count)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int32_t *addr;
bus_size_t count;
{
while (count--)
bus_space_write_4(tag, bsh, offset, *addr++);
}
static __inline void bus_space_write_multi_stream_2 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int16_t *, bus_size_t));
static __inline void bus_space_write_multi_stream_4 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int32_t *, bus_size_t));
void
bus_space_write_multi_stream_2(tag, bsh, offset, addr, count)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int16_t *addr;
bus_size_t count;
{
while (count--)
bus_space_write_stream_2(tag, bsh, offset, *addr++);
}
void
bus_space_write_multi_stream_4(tag, bsh, offset, addr, count)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int32_t *addr;
bus_size_t count;
{
while (count--)
bus_space_write_stream_4(tag, bsh, offset, *addr++);
}
/*
* void bus_space_set_multi_N __P((bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset, u_intN_t val,
* size_t count));
*
* Write the 1, 2, 4, or 8 byte value `val' to bus space described
* by tag/handle/offset `count' times.
*/
static __inline void bus_space_set_multi_1 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int8_t, bus_size_t));
static __inline void bus_space_set_multi_2 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int16_t, bus_size_t));
static __inline void bus_space_set_multi_4 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int32_t, bus_size_t));
void
bus_space_set_multi_1(tag, bsh, offset, val, count)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int8_t val;
bus_size_t count;
{
while (count--)
bus_space_write_1(tag, bsh, offset, val);
}
void
bus_space_set_multi_2(tag, bsh, offset, val, count)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int16_t val;
bus_size_t count;
{
while (count--)
bus_space_write_2(tag, bsh, offset, val);
}
void
bus_space_set_multi_4(tag, bsh, offset, val, count)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int32_t val;
bus_size_t count;
{
while (count--)
bus_space_write_4(tag, bsh, offset, val);
}
/*
* void bus_space_set_region_N __P((bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset, u_intN_t val,
* size_t count));
*
* Write `count' 1, 2, 4, or 8 byte value `val' to bus space described
* by tag/handle starting at `offset'.
*/
static __inline void bus_space_set_region_1 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int8_t, bus_size_t));
static __inline void bus_space_set_region_2 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int16_t, bus_size_t));
static __inline void bus_space_set_region_4 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int32_t, bus_size_t));
void
bus_space_set_region_1(tag, bsh, offset, val, count)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int8_t val;
bus_size_t count;
{
volatile u_int8_t *addr = (void *)(bsh + offset);
while (count--)
*addr++ = val;
}
void
bus_space_set_region_2(tag, bsh, offset, val, count)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int16_t val;
bus_size_t count;
{
volatile u_int16_t *addr = (void *)(bsh + offset);
val = bswap16(val);
while (count--)
*addr++ = val;
}
void
bus_space_set_region_4(tag, bsh, offset, val, count)
bus_space_tag_t tag;
bus_space_handle_t bsh;
bus_size_t offset;
u_int32_t val;
bus_size_t count;
{
volatile u_int32_t *addr = (void *)(bsh + offset);
val = bswap32(val);
while (count--)
*addr++ = val;
}
/*
* void bus_space_copy_region_N __P((bus_space_tag_t tag,
* bus_space_handle_t bsh1, bus_size_t off1,
* bus_space_handle_t bsh2, bus_size_t off2,
* size_t count));
*
* Copy `count' 1, 2, 4, or 8 byte values from bus space starting
* at tag/bsh1/off1 to bus space starting at tag/bsh2/off2.
*/
static __inline void bus_space_copy_region_1 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, bus_space_handle_t, bus_size_t,
bus_size_t));
static __inline void bus_space_copy_region_2 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, bus_space_handle_t, bus_size_t,
bus_size_t));
static __inline void bus_space_copy_region_4 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, bus_space_handle_t, bus_size_t,
bus_size_t));
void
bus_space_copy_region_1(t, h1, o1, h2, o2, c)
bus_space_tag_t t;
bus_space_handle_t h1;
bus_size_t o1;
bus_space_handle_t h2;
bus_size_t o2;
bus_size_t c;
{
volatile u_int8_t *addr1 = (void *)(h1 + o1);
volatile u_int8_t *addr2 = (void *)(h2 + o2);
if (addr1 >= addr2) { /* src after dest: copy forward */
while (c--)
*addr2++ = *addr1++;
} else { /* dest after src: copy backwards */
addr1 += c - 1;
addr2 += c - 1;
while (c--)
*addr2-- = *addr1--;
}
}
void
bus_space_copy_region_2(t, h1, o1, h2, o2, c)
bus_space_tag_t t;
bus_space_handle_t h1;
bus_size_t o1;
bus_space_handle_t h2;
bus_size_t o2;
bus_size_t c;
{
volatile u_int16_t *addr1 = (void *)(h1 + o1);
volatile u_int16_t *addr2 = (void *)(h2 + o2);
if (addr1 >= addr2) { /* src after dest: copy forward */
while (c--)
*addr2++ = *addr1++;
} else { /* dest after src: copy backwards */
addr1 += c - 1;
addr2 += c - 1;
while (c--)
*addr2-- = *addr1--;
}
}
void
bus_space_copy_region_4(t, h1, o1, h2, o2, c)
bus_space_tag_t t;
bus_space_handle_t h1;
bus_size_t o1;
bus_space_handle_t h2;
bus_size_t o2;
bus_size_t c;
{
volatile u_int32_t *addr1 = (void *)(h1 + o1);
volatile u_int32_t *addr2 = (void *)(h2 + o2);
if (addr1 >= addr2) { /* src after dest: copy forward */
while (c--)
*addr2++ = *addr1++;
} else { /* dest after src: copy backwards */
addr1 += c - 1;
addr2 += c - 1;
while (c--)
*addr2-- = *addr1--;
}
}
#ifdef __BUS_SPACE_COMPAT_OLDDEFS
/* compatibility definitions; deprecated */
#define bus_space_copy_1(t, h1, o1, h2, o2, c) \
bus_space_copy_region_1((t), (h1), (o1), (h2), (o2), (c))
#define bus_space_copy_2(t, h1, o1, h2, o2, c) \
bus_space_copy_region_2((t), (h1), (o1), (h2), (o2), (c))
#define bus_space_copy_4(t, h1, o1, h2, o2, c) \
bus_space_copy_region_4((t), (h1), (o1), (h2), (o2), (c))
#define bus_space_copy_8(t, h1, o1, h2, o2, c) \
bus_space_copy_region_8((t), (h1), (o1), (h2), (o2), (c))
#endif
/*
* Bus read/write barrier methods.
*
* void bus_space_barrier __P((bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset,
* bus_size_t len, int flags));
*
* Note: the sh3 does not currently require barriers, but we must
* provide the flags to MI code.
*/
#define bus_space_barrier(t, h, o, l, f) \
((void)((void)(t), (void)(h), (void)(o), (void)(l), (void)(f)))
#define BUS_SPACE_BARRIER_READ 0x01 /* force read barrier */
#define BUS_SPACE_BARRIER_WRITE 0x02 /* force write barrier */
#ifdef __BUS_SPACE_COMPAT_OLDDEFS
/* compatibility definitions; deprecated */
#define BUS_BARRIER_READ BUS_SPACE_BARRIER_READ
#define BUS_BARRIER_WRITE BUS_SPACE_BARRIER_WRITE
#endif
/*
* Flags used in various bus DMA methods.
*/
#define BUS_DMA_WAITOK 0x00 /* safe to sleep (pseudo-flag) */
#define BUS_DMA_NOWAIT 0x01 /* not safe to sleep */
#define BUS_DMA_ALLOCNOW 0x02 /* perform resource allocation now */
#define BUS_DMAMEM_NOSYNC 0x04 /* map memory to not require sync */
#define BUS_DMA_BUS1 0x10 /* placeholders for bus functions... */
#define BUS_DMA_BUS2 0x20
#define BUS_DMA_BUS3 0x40
#define BUS_DMA_BUS4 0x80
/* Forwards needed by prototypes below. */
struct mbuf;
struct uio;
#if 0
/*
* bus_dmasync_op_t
*
* Operations performed by bus_dmamap_sync().
*/
typedef enum {
BUS_DMASYNC_PREREAD,
BUS_DMASYNC_POSTREAD,
BUS_DMASYNC_PREWRITE,
BUS_DMASYNC_POSTWRITE,
} bus_dmasync_op_t;
typedef struct sh3_bus_dma_tag *bus_dma_tag_t;
typedef struct sh3_bus_dmamap *bus_dmamap_t;
/*
* bus_dma_segment_t
*
* Describes a single contiguous DMA transaction. Values
* are suitable for programming into DMA registers.
*/
struct sh3_bus_dma_segment {
bus_addr_t ds_addr; /* DMA address */
bus_size_t ds_len; /* length of transfer */
};
typedef struct sh3_bus_dma_segment bus_dma_segment_t;
/*
* bus_dma_tag_t
*
* A machine-dependent opaque type describing the implementation of
* DMA for a given bus.
*/
struct sh3_bus_dma_tag {
void *_cookie; /* cookie used in the guts */
/*
* DMA mapping methods.
*/
int (*_dmamap_create) __P((bus_dma_tag_t, bus_size_t, int,
bus_size_t, bus_size_t, int, bus_dmamap_t *));
void (*_dmamap_destroy) __P((bus_dma_tag_t, bus_dmamap_t));
int (*_dmamap_load) __P((bus_dma_tag_t, bus_dmamap_t, void *,
bus_size_t, struct proc *, int));
int (*_dmamap_load_mbuf) __P((bus_dma_tag_t, bus_dmamap_t,
struct mbuf *, int));
int (*_dmamap_load_uio) __P((bus_dma_tag_t, bus_dmamap_t,
struct uio *, int));
int (*_dmamap_load_raw) __P((bus_dma_tag_t, bus_dmamap_t,
bus_dma_segment_t *, int, bus_size_t, int));
void (*_dmamap_unload) __P((bus_dma_tag_t, bus_dmamap_t));
void (*_dmamap_sync) __P((bus_dma_tag_t, bus_dmamap_t,
bus_dmasync_op_t));
/*
* DMA memory utility functions.
*/
int (*_dmamem_alloc) __P((bus_dma_tag_t, bus_size_t, bus_size_t,
bus_size_t, bus_dma_segment_t *, int, int *, int));
void (*_dmamem_free) __P((bus_dma_tag_t,
bus_dma_segment_t *, int));
int (*_dmamem_map) __P((bus_dma_tag_t, bus_dma_segment_t *,
int, size_t, caddr_t *, int));
void (*_dmamem_unmap) __P((bus_dma_tag_t, caddr_t, size_t));
paddr_t (*_dmamem_mmap) __P((bus_dma_tag_t, bus_dma_segment_t *,
int, off_t, int, int));
};
#define bus_dmamap_create(t, s, n, m, b, f, p) \
(*(t)->_dmamap_create)((t), (s), (n), (m), (b), (f), (p))
#define bus_dmamap_destroy(t, p) \
(*(t)->_dmamap_destroy)((t), (p))
#define bus_dmamap_load(t, m, b, s, p, f) \
(*(t)->_dmamap_load)((t), (m), (b), (s), (p), (f))
#define bus_dmamap_load_mbuf(t, m, b, f) \
(*(t)->_dmamap_load_mbuf)((t), (m), (b), (f))
#define bus_dmamap_load_uio(t, m, u, f) \
(*(t)->_dmamap_load_uio)((t), (m), (u), (f))
#define bus_dmamap_load_raw(t, m, sg, n, s, f) \
(*(t)->_dmamap_load_raw)((t), (m), (sg), (n), (s), (f))
#define bus_dmamap_unload(t, p) \
(*(t)->_dmamap_unload)((t), (p))
#define bus_dmamap_sync(t, p, o) \
(void)((t)->_dmamap_sync ? \
(*(t)->_dmamap_sync)((t), (p), (o)) : (void)0)
#define bus_dmamem_alloc(t, s, a, b, sg, n, r, f) \
(*(t)->_dmamem_alloc)((t), (s), (a), (b), (sg), (n), (r), (f))
#define bus_dmamem_free(t, sg, n) \
(*(t)->_dmamem_free)((t), (sg), (n))
#define bus_dmamem_map(t, sg, n, s, k, f) \
(*(t)->_dmamem_map)((t), (sg), (n), (s), (k), (f))
#define bus_dmamem_unmap(t, k, s) \
(*(t)->_dmamem_unmap)((t), (k), (s))
#define bus_dmamem_mmap(t, sg, n, o, p, f) \
(*(t)->_dmamem_mmap)((t), (sg), (n), (o), (p), (f))
/*
* bus_dmamap_t
*
* Describes a DMA mapping.
*/
struct sh3_bus_dmamap {
/*
* PRIVATE MEMBERS: not for use my machine-independent code.
*/
bus_size_t _dm_size; /* largest DMA transfer mappable */
int _dm_segcnt; /* number of segs this map can map */
bus_size_t _dm_maxsegsz; /* largest possible segment */
bus_size_t _dm_boundary; /* don't cross this */
int _dm_flags; /* misc. flags */
void *_dm_cookie; /* cookie for bus-specific functions */
/*
* PUBLIC MEMBERS: these are used by machine-independent code.
*/
int dm_nsegs; /* # valid segments in mapping */
bus_dma_segment_t dm_segs[1]; /* segments; variable length */
};
#ifdef _SH3_BUS_DMA_PRIVATE
int _bus_dmamap_create __P((bus_dma_tag_t, bus_size_t, int, bus_size_t,
bus_size_t, int, bus_dmamap_t *));
void _bus_dmamap_destroy __P((bus_dma_tag_t, bus_dmamap_t));
int _bus_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
bus_size_t, struct proc *, int));
int _bus_dmamap_load_mbuf __P((bus_dma_tag_t, bus_dmamap_t,
struct mbuf *, int));
int _bus_dmamap_load_uio __P((bus_dma_tag_t, bus_dmamap_t,
struct uio *, int));
int _bus_dmamap_load_raw __P((bus_dma_tag_t, bus_dmamap_t,
bus_dma_segment_t *, int, bus_size_t, int));
void _bus_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
void _bus_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t, bus_dmasync_op_t));
int _bus_dmamem_alloc __P((bus_dma_tag_t tag, bus_size_t size,
bus_size_t alignment, bus_size_t boundary,
bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags));
void _bus_dmamem_free __P((bus_dma_tag_t tag, bus_dma_segment_t *segs,
int nsegs));
int _bus_dmamem_map __P((bus_dma_tag_t tag, bus_dma_segment_t *segs,
int nsegs, size_t size, caddr_t *kvap, int flags));
void _bus_dmamem_unmap __P((bus_dma_tag_t tag, caddr_t kva,
size_t size));
paddr_t _bus_dmamem_mmap __P((bus_dma_tag_t tag, bus_dma_segment_t *segs,
int nsegs, off_t off, int prot, int flags));
int _bus_dmamem_alloc_range __P((bus_dma_tag_t tag, bus_size_t size,
bus_size_t alignment, bus_size_t boundary,
bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags,
vm_offset_t low, vm_offset_t high));
#endif /* _SH3_BUS_DMA_PRIVATE */
#endif /* 0 */
#endif /* _SH3_BUS_H_ */