NetBSD/sys/arch/amiga/dev/grf_cv.c
1998-01-12 10:39:01 +00:00

2225 lines
53 KiB
C

/* $NetBSD: grf_cv.c,v 1.25 1998/01/12 10:39:33 thorpej Exp $ */
/*
* Copyright (c) 1995 Michael Teske
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Ezra Story, by Kari
* Mettinen, Michael Teske and by Bernd Ernesti.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "grfcv.h"
#if NGRFCV > 0
/*
* Graphics routines for the CyberVision 64 board, using the S3 Trio64.
*
* Modified for CV64 from
* Kari Mettinen's Cirrus driver by Michael Teske 10/95
*
* Thanks to Tekelec Airtronic for providing me with a S3 Trio64 documentation.
* Thanks to Bernd 'the fabulous bug-finder' Ernesti for bringing my messy
* source to NetBSD style :)
* Thanks to Harald Koenig for providing information about undocumented
* Trio64 Bugs.
*/
#include <sys/param.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/systm.h>
#include <sys/syslog.h>
#include <machine/cpu.h>
#include <dev/cons.h>
#include <amiga/dev/itevar.h>
#include <amiga/amiga/device.h>
#include <amiga/amiga/isr.h>
#include <amiga/dev/grfioctl.h>
#include <amiga/dev/grfvar.h>
#include <amiga/dev/grf_cvreg.h>
#include <amiga/dev/zbusvar.h>
int grfcvmatch __P((struct device *, struct cfdata *, void *));
void grfcvattach __P((struct device *, struct device *, void *));
int grfcvprint __P((void *, const char *));
int cvintr __P((void *));
static int cv_has_4mb __P((volatile caddr_t));
static unsigned short cv_compute_clock __P((unsigned long));
void cv_boardinit __P((struct grf_softc *));
int cv_getvmode __P((struct grf_softc *, struct grfvideo_mode *));
int cv_setvmode __P((struct grf_softc *, unsigned int));
int cv_blank __P((struct grf_softc *, int *));
int cv_mode __P((register struct grf_softc *, u_long, void *, u_long, int));
int cv_ioctl __P((register struct grf_softc *gp, u_long cmd, void *data));
int cv_setmonitor __P((struct grf_softc *, struct grfvideo_mode *));
int cv_getcmap __P((struct grf_softc *, struct grf_colormap *));
int cv_putcmap __P((struct grf_softc *, struct grf_colormap *));
int cv_toggle __P((struct grf_softc *));
int cv_mondefok __P((struct grfvideo_mode *));
int cv_load_mon __P((struct grf_softc *, struct grfcvtext_mode *));
void cv_inittextmode __P((struct grf_softc *));
static __inline void cv_write_port __P((unsigned short, volatile caddr_t));
static __inline void cvscreen __P((int, volatile caddr_t));
static __inline void gfx_on_off __P((int, volatile caddr_t));
#ifndef CV_NO_HARDWARE_CURSOR
int cv_getspritepos __P((struct grf_softc *, struct grf_position *));
int cv_setspritepos __P((struct grf_softc *, struct grf_position *));
int cv_getspriteinfo __P((struct grf_softc *,struct grf_spriteinfo *));
void cv_setup_hwc __P((struct grf_softc *));
int cv_setspriteinfo __P((struct grf_softc *,struct grf_spriteinfo *));
int cv_getspritemax __P((struct grf_softc *,struct grf_position *));
#endif /* !CV_NO_HARDWARE_CURSOR */
/*
* Extension to grf_softc for interrupt support
*/
struct grf_cv_softc {
struct grf_softc gcs_sc;
struct isr gcs_isr;
};
/* Graphics display definitions.
* These are filled by 'grfconfig' using GRFIOCSETMON.
*/
#define monitor_def_max 24
static struct grfvideo_mode monitor_def[24] = {
{0}, {0}, {0}, {0}, {0}, {0}, {0}, {0},
{0}, {0}, {0}, {0}, {0}, {0}, {0}, {0},
{0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}
};
static struct grfvideo_mode *monitor_current = &monitor_def[0];
#define MAXPIXELCLOCK 135000000 /* safety */
unsigned char cv_pass_toggle; /* passthru status tracker */
/* Console display definition.
* Default hardcoded text mode. This grf_cv is set up to
* use one text mode only, and this is it. You may use
* grfconfig to change the mode after boot.
*/
/* Console font */
#ifdef KFONT_8X11
#define S3FONT kernel_font_8x11
#define S3FONTY 11
#else
#define S3FONT kernel_font_8x8
#define S3FONTY 8
#endif
extern unsigned char S3FONT[];
/*
* Define default console mode
* (Internally, we still have to use hvalues/8!)
*/
struct grfcvtext_mode cvconsole_mode = {
{255, "", 25000000, 640, 480, 4, 640/8, 680/8, 768/8, 800/8,
481, 491, 493, 525, 0},
8, S3FONTY, 80, 480 / S3FONTY, S3FONT, 32, 255
};
/* Console colors */
unsigned char cvconscolors[16][3] = { /* background, foreground, hilite */
/* R G B */
{0x30, 0x30, 0x30},
{0x00, 0x00, 0x00},
{0x80, 0x00, 0x00},
{0x00, 0x80, 0x00},
{0x00, 0x00, 0x80},
{0x80, 0x80, 0x00},
{0x00, 0x80, 0x80},
{0x80, 0x00, 0x80},
{0xff, 0xff, 0xff},
{0x40, 0x40, 0x40},
{0xff, 0x00, 0x00},
{0x00, 0xff, 0x00},
{0x00, 0x00, 0xff},
{0xff, 0xff, 0x00},
{0x00, 0xff, 0xff},
{0x00, 0x00, 0xff}
};
static unsigned char clocks[]={
0x13, 0x61, 0x6b, 0x6d, 0x51, 0x69, 0x54, 0x69,
0x4f, 0x68, 0x6b, 0x6b, 0x18, 0x61, 0x7b, 0x6c,
0x51, 0x67, 0x24, 0x62, 0x56, 0x67, 0x77, 0x6a,
0x1d, 0x61, 0x53, 0x66, 0x6b, 0x68, 0x79, 0x69,
0x7c, 0x69, 0x7f, 0x69, 0x22, 0x61, 0x54, 0x65,
0x56, 0x65, 0x58, 0x65, 0x67, 0x66, 0x41, 0x63,
0x27, 0x61, 0x13, 0x41, 0x37, 0x62, 0x6b, 0x4d,
0x23, 0x43, 0x51, 0x49, 0x79, 0x66, 0x54, 0x49,
0x7d, 0x66, 0x34, 0x56, 0x4f, 0x63, 0x1f, 0x42,
0x6b, 0x4b, 0x7e, 0x4d, 0x18, 0x41, 0x2a, 0x43,
0x7b, 0x4c, 0x74, 0x4b, 0x51, 0x47, 0x65, 0x49,
0x24, 0x42, 0x68, 0x49, 0x56, 0x47, 0x75, 0x4a,
0x77, 0x4a, 0x31, 0x43, 0x1d, 0x41, 0x71, 0x49,
0x53, 0x46, 0x29, 0x42, 0x6b, 0x48, 0x1f, 0x41,
0x79, 0x49, 0x6f, 0x48, 0x7c, 0x49, 0x38, 0x43,
0x7f, 0x49, 0x5d, 0x46, 0x22, 0x41, 0x53, 0x45,
0x54, 0x45, 0x55, 0x45, 0x56, 0x45, 0x57, 0x45,
0x58, 0x45, 0x25, 0x41, 0x67, 0x46, 0x5b, 0x45,
0x41, 0x43, 0x78, 0x47, 0x27, 0x41, 0x51, 0x44,
0x13, 0x21, 0x7d, 0x47, 0x37, 0x42, 0x71, 0x46,
0x6b, 0x2d, 0x14, 0x21, 0x23, 0x23, 0x7d, 0x2f,
0x51, 0x29, 0x61, 0x2b, 0x79, 0x46, 0x1d, 0x22,
0x54, 0x29, 0x45, 0x27, 0x7d, 0x46, 0x7f, 0x46,
0x4f, 0x43, 0x2f, 0x41, 0x1f, 0x22, 0x6a, 0x2b,
0x6b, 0x2b, 0x5b, 0x29, 0x7e, 0x2d, 0x65, 0x44,
0x18, 0x21, 0x5e, 0x29, 0x2a, 0x23, 0x45, 0x26,
0x7b, 0x2c, 0x19, 0x21, 0x74, 0x2b, 0x75, 0x2b,
0x51, 0x27, 0x3f, 0x25, 0x65, 0x29, 0x40, 0x25,
0x24, 0x22, 0x41, 0x25, 0x68, 0x29, 0x42, 0x25,
0x56, 0x27, 0x7e, 0x2b, 0x75, 0x2a, 0x1c, 0x21,
0x77, 0x2a, 0x4f, 0x26, 0x31, 0x23, 0x6f, 0x29,
0x1d, 0x21, 0x32, 0x23, 0x71, 0x29, 0x72, 0x29,
0x53, 0x26, 0x69, 0x28, 0x29, 0x22, 0x75, 0x29,
0x6b, 0x28, 0x1f, 0x21, 0x1f, 0x21, 0x6d, 0x28,
0x79, 0x29, 0x2b, 0x22, 0x6f, 0x28, 0x59, 0x26,
0x7c, 0x29, 0x7d, 0x29, 0x38, 0x23, 0x21, 0x21,
0x7f, 0x29, 0x39, 0x23, 0x5d, 0x26, 0x75, 0x28,
0x22, 0x21, 0x77, 0x28, 0x53, 0x25, 0x6c, 0x27,
0x54, 0x25, 0x61, 0x26, 0x55, 0x25, 0x30, 0x22,
0x56, 0x25, 0x63, 0x26, 0x57, 0x25, 0x71, 0x27,
0x58, 0x25, 0x7f, 0x28, 0x25, 0x21, 0x74, 0x27,
0x67, 0x26, 0x40, 0x23, 0x5b, 0x25, 0x26, 0x21,
0x41, 0x23, 0x34, 0x22, 0x78, 0x27, 0x6b, 0x26,
0x27, 0x21, 0x35, 0x22, 0x51, 0x24, 0x7b, 0x27,
0x13, 0x1, 0x13, 0x1, 0x7d, 0x27, 0x4c, 0x9,
0x37, 0x22, 0x5b, 0xb, 0x71, 0x26, 0x5c, 0xb,
0x6b, 0xd, 0x47, 0x23, 0x14, 0x1, 0x4f, 0x9,
0x23, 0x3, 0x75, 0x26, 0x7d, 0xf, 0x1c, 0x2,
0x51, 0x9, 0x59, 0x24, 0x61, 0xb, 0x69, 0x25,
0x79, 0x26, 0x34, 0x5, 0x1d, 0x2, 0x6b, 0x25,
0x54, 0x9, 0x35, 0x5, 0x45, 0x7, 0x6d, 0x25,
0x7d, 0x26, 0x16, 0x1, 0x7f, 0x26, 0x77, 0xd,
0x4f, 0x23, 0x78, 0xd, 0x2f, 0x21, 0x27, 0x3,
0x1f, 0x2, 0x59, 0x9, 0x6a, 0xb, 0x73, 0x25,
0x6b, 0xb, 0x63, 0x24, 0x5b, 0x9, 0x20, 0x2,
0x7e, 0xd, 0x4b, 0x7, 0x65, 0x24, 0x43, 0x22,
0x18, 0x1, 0x6f, 0xb, 0x5e, 0x9, 0x70, 0xb,
0x2a, 0x3, 0x33, 0x4, 0x45, 0x6, 0x60, 0x9,
0x7b, 0xc, 0x19, 0x1, 0x19, 0x1, 0x7d, 0xc,
0x74, 0xb, 0x50, 0x7, 0x75, 0xb, 0x63, 0x9,
0x51, 0x7, 0x23, 0x2, 0x3f, 0x5, 0x1a, 0x1,
0x65, 0x9, 0x2d, 0x3, 0x40, 0x5, 0x0, 0x0,
};
/* Board Address of CV64 */
static volatile caddr_t cv_boardaddr;
static int cv_fbsize;
/*
* Memory clock (binpatchable).
* Let's be defensive: 50 MHz runs on all boards I know of.
* 55 MHz runs on most boards. But you should know what you're doing
* if you set this flag. Again: This flag may destroy your CV Board.
* Use it at your own risk!!!
* Anyway, this doesn't imply that I'm responsible if your board breaks
* without setting this flag :-).
*/
#ifdef CV_AGGRESSIVE_TIMING
long cv_memclk = 55000000;
#else
long cv_memclk = 50000000;
#endif
/* standard driver stuff */
struct cfattach grfcv_ca = {
sizeof(struct grf_cv_softc), grfcvmatch, grfcvattach
};
static struct cfdata *cfdata;
#define CV_INT_NUM 6 /* CV interrupt Level: #2 or #6 */
#define CV_ULCURSOR 1 /* Underlined Cursor in textmode */
#ifndef CV_NO_HARDWARE_CURSOR
#define HWC_OFF (cv_fbsize - 1024*2)
#define HWC_SIZE 1024
static unsigned short cv_cursor_storage[HWC_SIZE/2];
static short curs_update_flag = 0;
#endif /* !CV_NO_HARDWARE_CURSOR */
/*
* Interrupt handler
* This is used for updating the cursor shape (because it _must not_
* be changed while cursor is displayed)
* and maybe later to avoid busy waiting
* for Vertical Blank and/or gfx engine busy
*/
int
cvintr(arg)
void * arg;
{
#ifndef CV_NO_HARDWARE_CURSOR
register unsigned long *csrc, *cdest;
int i;
#endif
struct grf_softc *gp = arg;
volatile caddr_t ba = gp->g_regkva;
unsigned char test;
unsigned char cridx; /* Save the cr Register index */
if (gp == NULL)
return 0;
test = vgar(ba, GREG_INPUT_STATUS0_R);
if (test & 0x80) { /* VR int pending */
/* Save old CR index */
cridx = vgar (ba, CRT_ADDRESS);
#if 0
test = RCrt(ba, CRT_ID_END_VER_RETR);
/* Clear int (bit 4) */
test &= ~0x10;
WCrt(ba, CRT_ID_END_VER_RETR, test);
#else
vgaw(ba, CRT_ADDRESS, CRT_ID_END_VER_RETR);
asm volatile("bclr #4,%0@(0x3d5);nop" : : "a" (ba));
#endif
#ifndef CV_NO_HARDWARE_CURSOR
/* update the hardware cursor, if necessary */
if (curs_update_flag) {
csrc = (unsigned long *)cv_cursor_storage;
cdest = (unsigned long *)((volatile char *)gp->g_fbkva
+ HWC_OFF);
for (i = 0; i < HWC_SIZE / sizeof(long); i++)
*cdest++ = *csrc++;
curs_update_flag = 0;
}
/* Reenable int */
#if 0
test |= 0x10;
WCrt(ba, CRT_ID_END_VER_RETR, test);
#else
/* I don't trust the optimizer here... */
asm volatile("bset #4,%0@(0x3d5);nop" : : "a" (ba));
#endif
cv_setspritepos (gp, NULL);
/* Restore the old CR index */
vgaw(ba, CRT_ADDRESS, cridx);
asm volatile("nop");
#endif /* !CV_NO_HARDWARE_CURSOR */
return (1);
}
return (0);
}
/*
* Get frambuffer memory size.
* phase5 didn't provide the bit in CR36,
* so we have to do it this way.
* Return 0 for 2MB, 1 for 4MB
*/
static int
cv_has_4mb(fb)
volatile caddr_t fb;
{
volatile unsigned long *testfbw, *testfbr;
/* write patterns in memory and test if they can be read */
testfbw = (volatile unsigned long *)fb;
testfbr = (volatile unsigned long *)(fb + 0x02000000);
*testfbw = 0x87654321;
if (*testfbr != 0x87654321)
return (0);
/* upper memory region */
testfbw = (volatile unsigned long *)(fb + 0x00200000);
testfbr = (volatile unsigned long *)(fb + 0x02200000);
*testfbw = 0x87654321;
if (*testfbr != 0x87654321)
return (0);
*testfbw = 0xAAAAAAAA;
if (*testfbr != 0xAAAAAAAA)
return (0);
*testfbw = 0x55555555;
if (*testfbr != 0x55555555)
return (0);
return (1);
}
int
grfcvmatch(pdp, cfp, auxp)
struct device *pdp;
struct cfdata *cfp;
void *auxp;
{
#ifdef CV64CONSOLE
static int cvcons_unit = -1;
#endif
struct zbus_args *zap;
zap = auxp;
if (amiga_realconfig == 0)
#ifdef CV64CONSOLE
if (cvcons_unit != -1)
#endif
return (0);
/* Lets be Paranoid: Test man and prod id */
if (zap->manid != 8512 || zap->prodid != 34)
return (0);
cv_boardaddr = zap->va;
#ifdef CV64CONSOLE
if (amiga_realconfig == 0) {
cvcons_unit = cfp->cf_unit;
cfdata = cfp;
}
#endif
return (1);
}
void
grfcvattach(pdp, dp, auxp)
struct device *pdp, *dp;
void *auxp;
{
static struct grf_cv_softc congrf;
struct zbus_args *zap;
struct grf_softc *gp;
struct grf_cv_softc *gcp;
static char attachflag = 0;
zap = auxp;
/*
* This function is called twice, once on console init (dp == NULL)
* and once on "normal" grf5 init.
*/
if (dp == NULL) /* console init */
gcp = &congrf;
else
gcp = (struct grf_cv_softc *)dp;
gp = &gcp->gcs_sc;
if (dp != NULL && congrf.gcs_sc.g_regkva != 0) {
/*
* inited earlier, just copy (not device struct)
*/
printf("\n");
bcopy(&congrf.gcs_sc.g_display, &gp->g_display,
(char *) &gcp->gcs_isr - (char *) &gp->g_display);
/* ... and transfer the isr */
gcp->gcs_isr.isr_ipl = CV_INT_NUM;
gcp->gcs_isr.isr_intr = cvintr;
gcp->gcs_isr.isr_arg = (void *)gp;
/* First add new isr */
add_isr(&gcp->gcs_isr);
remove_isr(&congrf.gcs_isr);
} else {
gp->g_regkva = (volatile caddr_t)cv_boardaddr + 0x02000000;
gp->g_fbkva = (volatile caddr_t)cv_boardaddr + 0x01400000;
gp->g_unit = GRF_CV64_UNIT;
gp->g_mode = cv_mode;
gp->g_conpri = grfcv_cnprobe();
gp->g_flags = GF_ALIVE;
/* add Interrupt Handler */
gcp->gcs_isr.isr_ipl = CV_INT_NUM;
gcp->gcs_isr.isr_intr = cvintr;
gcp->gcs_isr.isr_arg = (void *)gp;
add_isr(&gcp->gcs_isr);
/* wakeup the board */
cv_boardinit(gp);
#ifdef CV64CONSOLE
grfcv_iteinit(gp);
(void)cv_load_mon(gp, &cvconsole_mode);
#endif
}
/*
* attach grf
*/
if (amiga_config_found(cfdata, &gp->g_device, gp, grfcvprint)) {
if (dp != NULL)
printf("grfcv: CyberVision64 with %dMB being used\n",
cv_fbsize/0x100000);
attachflag = 1;
} else {
if (!attachflag)
/*printf("grfcv unattached!!\n")*/;
}
}
int
grfcvprint(auxp, pnp)
void *auxp;
const char *pnp;
{
if (pnp)
printf("ite at %s: ", pnp);
return (UNCONF);
}
/*
* Computes M, N, and R values from
* given input frequency. It uses a table of
* precomputed values, to keep CPU time low.
*
* The return value consist of:
* lower byte: Bits 4-0: N Divider Value
* Bits 5-6: R Value for e.g. SR10 or SR12
* higher byte: Bits 0-6: M divider value for e.g. SR11 or SR13
*/
static unsigned short
cv_compute_clock(freq)
unsigned long freq;
{
static unsigned char *mnr, *save; /* M, N + R vals */
unsigned long work_freq, r;
unsigned short erg;
long diff, d2;
if (freq < 12500000 || freq > MAXPIXELCLOCK) {
printf("grfcv: Illegal clock frequency: %ldMHz\n", freq/1000000);
printf("grfcv: Using default frequency: 25MHz\n");
printf("grfcv: See the manpage of grfconfig for more informations.\n");
freq = 25000000;
}
mnr = clocks; /* there the vals are stored */
d2 = 0x7fffffff;
while (*mnr) { /* mnr vals are 0-terminated */
work_freq = (0x37EE * (mnr[0] + 2)) / ((mnr[1] & 0x1F) + 2);
r = (mnr[1] >> 5) & 0x03;
if (r != 0)
work_freq=work_freq >> r; /* r is the freq divider */
work_freq *= 0x3E8; /* 2nd part of OSC */
diff = abs(freq - work_freq);
if (d2 >= diff) {
d2 = diff;
/* In save are the vals for minimal diff */
save = mnr;
}
mnr += 2;
}
erg = *((unsigned short *)save);
return (erg);
}
void
cv_boardinit(gp)
struct grf_softc *gp;
{
volatile caddr_t ba;
unsigned char test;
unsigned int clockpar;
int i;
struct grfinfo *gi;
ba = gp->g_regkva;
/* Reset board */
for (i = 0; i < 6; i++)
cv_write_port (0xff, ba - 0x02000000); /* Clear all bits */
/* Return to operational Mode */
cv_write_port(0x8004, ba - 0x02000000);
/* Wakeup Chip */
vgaw(ba, SREG_VIDEO_SUBS_ENABLE, 0x10);
vgaw(ba, SREG_OPTION_SELECT, 0x01);
vgaw(ba, SREG_VIDEO_SUBS_ENABLE, 0x08);
vgaw(ba, GREG_MISC_OUTPUT_W, 0x03);
WCrt(ba, CRT_ID_REGISTER_LOCK_1, 0x48); /* unlock S3 VGA regs */
WCrt(ba, CRT_ID_REGISTER_LOCK_2, 0xA5); /* unlock syscontrol */
/*
* The default board interrupt is #6.
* Set the roxxler register to use interrupt #2, not #6.
*/
#if CV_INT_NUM == 2
cv_write_port(0x8080, ba - 0x02000000);
#endif
/* Enable board interrupts */
cv_write_port(0x8008, ba - 0x02000000);
test = RCrt(ba, CRT_ID_SYSTEM_CONFIG);
test = test | 0x01; /* enable enhaced register access */
test = test & 0xEF; /* clear bit 4, 0 wait state */
WCrt(ba, CRT_ID_SYSTEM_CONFIG, test);
/*
* bit 1=1: enable enhanced mode functions
* bit 4=1: enable linear adressing
* bit 5=1: enable MMIO
*/
vgaw(ba, ECR_ADV_FUNC_CNTL, 0x31);
/* enable color mode (bit0), cpu acess (bit1), high 64k page (bit5) */
vgaw(ba, GREG_MISC_OUTPUT_W, 0xe3);
/* Cpu base addr */
WCrt(ba, CRT_ID_EXT_SYS_CNTL_4, 0x00);
/* Reset. This does nothing, but everyone does it:) */
WSeq(ba, SEQ_ID_RESET, 0x03);
WSeq(ba, SEQ_ID_CLOCKING_MODE, 0x01); /* 8 Dot Clock */
WSeq(ba, SEQ_ID_MAP_MASK, 0x0f); /* Enable write planes */
WSeq(ba, SEQ_ID_CHAR_MAP_SELECT, 0x00); /* Character Font */
WSeq(ba, SEQ_ID_MEMORY_MODE, 0x02); /* Complete mem access */
WSeq(ba, SEQ_ID_UNLOCK_EXT, 0x06); /* Unlock extensions */
test = RSeq(ba, SEQ_ID_BUS_REQ_CNTL); /* Bus Request */
/* enable 4MB fast Page Mode */
test = test | 1 << 6;
WSeq(ba, SEQ_ID_BUS_REQ_CNTL, test);
/* faster LUT write */
WSeq(ba, SEQ_ID_RAMDAC_CNTL, 0xC0);
test = RSeq(ba, SEQ_ID_CLKSYN_CNTL_2); /* Clksyn2 read */
/* immediately Clkload bit clear */
test = test & 0xDF;
/* 2 MCLK Memory Write.... */
if (cv_memclk >= 55000000)
test |= 0x80;
WSeq(ba, SEQ_ID_CLKSYN_CNTL_2, test);
/* Memory CLK */
clockpar = cv_compute_clock(cv_memclk);
test = (clockpar & 0xFF00) >> 8;
WSeq(ba, SEQ_ID_MCLK_HI, test); /* PLL N-Divider Value */
test = clockpar & 0xFF;
WSeq(ba, SEQ_ID_MCLK_LO, test); /* PLL M-Divider Value */
if (RCrt(ba, CRT_ID_REVISION) == 0x10) /* bugfix for new S3 chips */
WSeq(ba, SEQ_ID_MORE_MAGIC, test);
/* We now load an 25 MHz, 31 kHz, 640x480 standard VGA Mode. */
/* DCLK */
WSeq(ba, SEQ_ID_DCLK_HI, 0x13);
WSeq(ba, SEQ_ID_DCLK_LO, 0x41);
test = RSeq (ba, SEQ_ID_CLKSYN_CNTL_2);
test = test | 0x22;
/* DCLK + MCLK Clock immediate load! */
WSeq(ba,SEQ_ID_CLKSYN_CNTL_2, test);
/* DCLK load */
test = vgar(ba, 0x3cc);
test = test | 0x0c;
vgaw(ba, 0x3c2, test);
/* Clear bit 5 again, prevent further loading. */
WSeq(ba, SEQ_ID_CLKSYN_CNTL_2, 0x02);
WCrt(ba, CRT_ID_HOR_TOTAL, 0x5F);
WCrt(ba, CRT_ID_HOR_DISP_ENA_END, 0x4F);
WCrt(ba, CRT_ID_START_HOR_BLANK, 0x50);
WCrt(ba, CRT_ID_END_HOR_BLANK, 0x82);
WCrt(ba, CRT_ID_START_HOR_RETR, 0x54);
WCrt(ba, CRT_ID_END_HOR_RETR, 0x80);
WCrt(ba, CRT_ID_VER_TOTAL, 0xBF);
WCrt(ba, CRT_ID_OVERFLOW, 0x1F); /* overflow reg */
WCrt(ba, CRT_ID_PRESET_ROW_SCAN, 0x00); /* no panning */
WCrt(ba, CRT_ID_MAX_SCAN_LINE, 0x40); /* vscan */
WCrt(ba, CRT_ID_CURSOR_START, 0x00);
WCrt(ba, CRT_ID_CURSOR_END, 0x00);
/* Display start adress */
WCrt(ba, CRT_ID_START_ADDR_HIGH, 0x00);
WCrt(ba, CRT_ID_START_ADDR_LOW, 0x00);
/* Cursor location */
WCrt(ba, CRT_ID_CURSOR_LOC_HIGH, 0x00);
WCrt(ba, CRT_ID_CURSOR_LOC_LOW, 0x00);
/* Vertical retrace */
WCrt(ba, CRT_ID_START_VER_RETR, 0x9C);
WCrt(ba, CRT_ID_END_VER_RETR, 0x0E);
WCrt(ba, CRT_ID_VER_DISP_ENA_END, 0x8F);
WCrt(ba, CRT_ID_SCREEN_OFFSET, 0x50);
WCrt(ba, CRT_ID_UNDERLINE_LOC, 0x00);
WCrt(ba, CRT_ID_START_VER_BLANK, 0x96);
WCrt(ba, CRT_ID_END_VER_BLANK, 0xB9);
WCrt(ba, CRT_ID_MODE_CONTROL, 0xE3);
WCrt(ba, CRT_ID_LINE_COMPARE, 0xFF);
WCrt(ba, CRT_ID_BACKWAD_COMP_3, 0x10); /* FIFO enabled */
/* Refresh count 1, High speed text font, enhanced color mode */
WCrt(ba, CRT_ID_MISC_1, 0x35);
/* start fifo position */
WCrt(ba, CRT_ID_DISPLAY_FIFO, 0x5a);
WCrt(ba, CRT_ID_EXT_MEM_CNTL_2, 0x70);
/* address window position */
WCrt(ba, CRT_ID_LAW_POS_LO, 0x40);
/* N Parameter for Display FIFO */
WCrt(ba, CRT_ID_EXT_MEM_CNTL_3, 0xFF);
WGfx(ba, GCT_ID_SET_RESET, 0x00);
WGfx(ba, GCT_ID_ENABLE_SET_RESET, 0x00);
WGfx(ba, GCT_ID_COLOR_COMPARE, 0x00);
WGfx(ba, GCT_ID_DATA_ROTATE, 0x00);
WGfx(ba, GCT_ID_READ_MAP_SELECT, 0x00);
WGfx(ba, GCT_ID_GRAPHICS_MODE, 0x40);
WGfx(ba, GCT_ID_MISC, 0x01);
WGfx(ba, GCT_ID_COLOR_XCARE, 0x0F);
WGfx(ba, GCT_ID_BITMASK, 0xFF);
/* colors for text mode */
for (i = 0; i <= 0xf; i++)
WAttr (ba, i, i);
WAttr(ba, ACT_ID_ATTR_MODE_CNTL, 0x41);
WAttr(ba, ACT_ID_OVERSCAN_COLOR, 0x01);
WAttr(ba, ACT_ID_COLOR_PLANE_ENA, 0x0F);
WAttr(ba, ACT_ID_HOR_PEL_PANNING, 0x00);
WAttr(ba, ACT_ID_COLOR_SELECT, 0x00);
vgaw(ba, VDAC_MASK, 0xFF); /* DAC Mask */
*((unsigned long *)(ba + ECR_FRGD_COLOR)) = 0xFF;
*((unsigned long *)(ba + ECR_BKGD_COLOR)) = 0;
/* colors initially set to greyscale */
vgaw(ba, VDAC_ADDRESS_W, 0);
for (i = 255; i >= 0 ; i--) {
vgaw(ba, VDAC_DATA, i);
vgaw(ba, VDAC_DATA, i);
vgaw(ba, VDAC_DATA, i);
}
/* GFx hardware cursor off */
WCrt(ba, CRT_ID_HWGC_MODE, 0x00);
/* Set first to 4 MB, so test will work */
WCrt(ba, CRT_ID_LAW_CNTL, 0x13);
/* find *correct* fbsize of z3 board */
if (cv_has_4mb((volatile caddr_t)cv_boardaddr + 0x01400000)) {
cv_fbsize = 1024 * 1024 * 4;
WCrt(ba, CRT_ID_LAW_CNTL, 0x13); /* 4 MB */
} else {
cv_fbsize = 1024 * 1024 * 2;
WCrt(ba, CRT_ID_LAW_CNTL, 0x12); /* 2 MB */
}
/* Initialize graphics engine */
GfxBusyWait(ba);
vgaw16(ba, ECR_FRGD_MIX, 0x27);
vgaw16(ba, ECR_BKGD_MIX, 0x07);
vgaw16(ba, ECR_READ_REG_DATA, 0x1000);
delay(200000);
vgaw16(ba, ECR_READ_REG_DATA, 0x2000);
GfxBusyWait(ba);
vgaw16(ba, ECR_READ_REG_DATA, 0x3fff);
GfxBusyWait(ba);
delay(200000);
vgaw16(ba, ECR_READ_REG_DATA, 0x4fff);
GfxBusyWait(ba);
vgaw16(ba, ECR_BITPLANE_WRITE_MASK, ~0);
GfxBusyWait (ba);
vgaw16(ba, ECR_READ_REG_DATA, 0xe000);
vgaw16(ba, ECR_CURRENT_Y_POS2, 0x00);
vgaw16(ba, ECR_CURRENT_X_POS2, 0x00);
vgaw16(ba, ECR_READ_REG_DATA, 0xa000);
vgaw16(ba, ECR_DEST_Y__AX_STEP, 0x00);
vgaw16(ba, ECR_DEST_Y2__AX_STEP2, 0x00);
vgaw16(ba, ECR_DEST_X__DIA_STEP, 0x00);
vgaw16(ba, ECR_DEST_X2__DIA_STEP2, 0x00);
vgaw16(ba, ECR_SHORT_STROKE, 0x00);
vgaw16(ba, ECR_DRAW_CMD, 0x01);
GfxBusyWait (ba);
/* It ain't easy to write here, so let's do it again */
vgaw16(ba, ECR_READ_REG_DATA, 0x4fff);
vgaw16(ba, ECR_BKGD_COLOR, 0x01);
vgaw16(ba, ECR_FRGD_COLOR, 0x00);
/* Enable Video Display (Set Bit 5) */
WAttr(ba, 0x33, 0);
gi = &gp->g_display;
gi->gd_regaddr = (caddr_t) kvtop (ba);
gi->gd_regsize = 64 * 1024;
gi->gd_fbaddr = (caddr_t) kvtop (gp->g_fbkva);
gi->gd_fbsize = cv_fbsize;
}
int
cv_getvmode(gp, vm)
struct grf_softc *gp;
struct grfvideo_mode *vm;
{
struct grfvideo_mode *gv;
#ifdef CV64CONSOLE
/* Handle grabbing console mode */
if (vm->mode_num == 255) {
bcopy(&cvconsole_mode, vm, sizeof(struct grfvideo_mode));
/* XXX so grfconfig can tell us the correct text dimensions. */
vm->depth = cvconsole_mode.fy;
} else
#endif
{
if (vm->mode_num == 0)
vm->mode_num = (monitor_current - monitor_def) + 1;
if (vm->mode_num < 1 || vm->mode_num > monitor_def_max)
return (EINVAL);
gv = monitor_def + (vm->mode_num - 1);
if (gv->mode_num == 0)
return (EINVAL);
bcopy(gv, vm, sizeof(struct grfvideo_mode));
}
/* adjust internal values to pixel values */
vm->hblank_start *= 8;
vm->hsync_start *= 8;
vm->hsync_stop *= 8;
vm->htotal *= 8;
return (0);
}
int
cv_setvmode(gp, mode)
struct grf_softc *gp;
unsigned mode;
{
if (!mode || (mode > monitor_def_max) ||
monitor_def[mode - 1].mode_num == 0)
return (EINVAL);
monitor_current = monitor_def + (mode - 1);
return (0);
}
int
cv_blank(gp, on)
struct grf_softc *gp;
int *on;
{
volatile caddr_t ba;
ba = gp->g_regkva;
gfx_on_off(*on > 0 ? 0 : 1, ba);
return (0);
}
/*
* Change the mode of the display.
* Return a UNIX error number or 0 for success.
*/
int
cv_mode(gp, cmd, arg, a2, a3)
register struct grf_softc *gp;
u_long cmd;
void *arg;
u_long a2;
int a3;
{
int error;
switch (cmd) {
case GM_GRFON:
error = cv_load_mon (gp,
(struct grfcvtext_mode *) monitor_current) ? 0 : EINVAL;
return (error);
case GM_GRFOFF:
#ifndef CV64CONSOLE
cvscreen(1, gp->g_regkva - 0x02000000);
#else
cv_load_mon(gp, &cvconsole_mode);
ite_reinit(gp->g_itedev);
#endif
return (0);
case GM_GRFCONFIG:
return (0);
case GM_GRFGETVMODE:
return (cv_getvmode (gp, (struct grfvideo_mode *) arg));
case GM_GRFSETVMODE:
error = cv_setvmode (gp, *(unsigned *) arg);
if (!error && (gp->g_flags & GF_GRFON))
cv_load_mon(gp,
(struct grfcvtext_mode *) monitor_current);
return (error);
case GM_GRFGETNUMVM:
*(int *)arg = monitor_def_max;
return (0);
case GM_GRFIOCTL:
return (cv_ioctl (gp, a2, arg));
default:
break;
}
return (EINVAL);
}
int
cv_ioctl (gp, cmd, data)
register struct grf_softc *gp;
u_long cmd;
void *data;
{
switch (cmd) {
#ifndef CV_NO_HARDWARE_CURSOR
case GRFIOCGSPRITEPOS:
return(cv_getspritepos (gp, (struct grf_position *) data));
case GRFIOCSSPRITEPOS:
return(cv_setspritepos (gp, (struct grf_position *) data));
case GRFIOCSSPRITEINF:
return(cv_setspriteinfo (gp, (struct grf_spriteinfo *) data));
case GRFIOCGSPRITEINF:
return(cv_getspriteinfo (gp, (struct grf_spriteinfo *) data));
case GRFIOCGSPRITEMAX:
return(cv_getspritemax (gp, (struct grf_position *) data));
#else /* !CV_NO_HARDWARE_CURSOR */
case GRFIOCGSPRITEPOS:
case GRFIOCSSPRITEPOS:
case GRFIOCSSPRITEINF:
case GRFIOCGSPRITEINF:
case GRFIOCGSPRITEMAX:
break;
#endif /* !CV_NO_HARDWARE_CURSOR */
case GRFIOCGETCMAP:
return (cv_getcmap (gp, (struct grf_colormap *) data));
case GRFIOCPUTCMAP:
return (cv_putcmap (gp, (struct grf_colormap *) data));
case GRFIOCBITBLT:
break;
case GRFTOGGLE:
return (cv_toggle (gp));
case GRFIOCSETMON:
return (cv_setmonitor (gp, (struct grfvideo_mode *)data));
case GRFIOCBLANK:
return (cv_blank (gp, (int *)data));
}
return (EINVAL);
}
int
cv_setmonitor(gp, gv)
struct grf_softc *gp;
struct grfvideo_mode *gv;
{
struct grfvideo_mode *md;
if (!cv_mondefok(gv))
return (EINVAL);
#ifdef CV64CONSOLE
/* handle interactive setting of console mode */
if (gv->mode_num == 255) {
bcopy(gv, &cvconsole_mode.gv, sizeof(struct grfvideo_mode));
cvconsole_mode.gv.hblank_start /= 8;
cvconsole_mode.gv.hsync_start /= 8;
cvconsole_mode.gv.hsync_stop /= 8;
cvconsole_mode.gv.htotal /= 8;
cvconsole_mode.rows = gv->disp_height / cvconsole_mode.fy;
cvconsole_mode.cols = gv->disp_width / cvconsole_mode.fx;
if (!(gp->g_flags & GF_GRFON))
cv_load_mon(gp, &cvconsole_mode);
ite_reinit(gp->g_itedev);
return (0);
}
#endif
md = monitor_def + (gv->mode_num - 1);
/*
* Prevent user from crashing the system by using
* grfconfig while in X
*/
if (gp->g_flags & GF_GRFON)
if (md == monitor_current) {
printf("grfcv: Changing the used mode not allowed!\n");
return (EINVAL);
}
bcopy(gv, md, sizeof(struct grfvideo_mode));
/* adjust pixel oriented values to internal rep. */
md->hblank_start /= 8;
md->hsync_start /= 8;
md->hsync_stop /= 8;
md->htotal /= 8;
return (0);
}
int
cv_getcmap(gfp, cmap)
struct grf_softc *gfp;
struct grf_colormap *cmap;
{
volatile caddr_t ba;
u_char red[256], green[256], blue[256], *rp, *gp, *bp;
short x;
int error;
ba = gfp->g_regkva;
if (cmap->count == 0 || cmap->index >= 256)
return (0);
if (cmap->index + cmap->count > 256)
cmap->count = 256 - cmap->index;
/* first read colors out of the chip, then copyout to userspace */
vgaw (ba, VDAC_ADDRESS_W, cmap->index);
x = cmap->count - 1;
rp = red + cmap->index;
gp = green + cmap->index;
bp = blue + cmap->index;
do {
*rp++ = vgar (ba, VDAC_DATA) << 2;
*gp++ = vgar (ba, VDAC_DATA) << 2;
*bp++ = vgar (ba, VDAC_DATA) << 2;
} while (x-- > 0);
if (!(error = copyout (red + cmap->index, cmap->red, cmap->count))
&& !(error = copyout (green + cmap->index, cmap->green, cmap->count))
&& !(error = copyout (blue + cmap->index, cmap->blue, cmap->count)))
return (0);
return (error);
}
int
cv_putcmap(gfp, cmap)
struct grf_softc *gfp;
struct grf_colormap *cmap;
{
volatile caddr_t ba;
u_char red[256], green[256], blue[256], *rp, *gp, *bp;
short x;
int error;
ba = gfp->g_regkva;
if (cmap->count == 0 || cmap->index >= 256)
return (0);
if (cmap->index + cmap->count > 256)
cmap->count = 256 - cmap->index;
/* first copy the colors into kernelspace */
if (!(error = copyin (cmap->red, red + cmap->index, cmap->count))
&& !(error = copyin (cmap->green, green + cmap->index, cmap->count))
&& !(error = copyin (cmap->blue, blue + cmap->index, cmap->count))) {
vgaw (ba, VDAC_ADDRESS_W, cmap->index);
x = cmap->count - 1;
rp = red + cmap->index;
gp = green + cmap->index;
bp = blue + cmap->index;
do {
vgaw (ba, VDAC_DATA, *rp++ >> 2);
vgaw (ba, VDAC_DATA, *gp++ >> 2);
vgaw (ba, VDAC_DATA, *bp++ >> 2);
} while (x-- > 0);
return (0);
} else
return (error);
}
int
cv_toggle(gp)
struct grf_softc *gp;
{
volatile caddr_t ba;
ba = gp->g_regkva;
#ifndef CV64CONSOLE
cv_pass_toggle = 1;
#endif /* !CV64CONSOLE */
if (cv_pass_toggle) {
cvscreen(0, ba - 0x02000000);
cv_pass_toggle = 0;
} else {
cvscreen(1, ba - 0x02000000);
cv_pass_toggle = 1;
}
return (0);
}
int
cv_mondefok(gv)
struct grfvideo_mode *gv;
{
unsigned long maxpix;
if (gv->mode_num < 1 || gv->mode_num > monitor_def_max) {
if (gv->mode_num != 255 || gv->depth != 4)
return (0);
}
switch(gv->depth) {
case 4:
maxpix = MAXPIXELCLOCK - 55000000;
break;
case 8:
maxpix = MAXPIXELCLOCK;
break;
case 15:
case 16:
#ifdef CV_AGGRESSIVE_TIMING
maxpix = MAXPIXELCLOCK - 35000000;
#else
maxpix = MAXPIXELCLOCK - 55000000;
#endif
break;
case 24:
case 32:
#ifdef CV_AGGRESSIVE_TIMING
maxpix = MAXPIXELCLOCK - 75000000;
#else
maxpix = MAXPIXELCLOCK - 85000000;
#endif
break;
default:
printf("grfcv: Illegal depth in mode %d\n",
(int) gv->mode_num);
return (0);
}
if (gv->pixel_clock > maxpix) {
printf("grfcv: Pixelclock too high in mode %d\n",
(int) gv->mode_num);
return (0);
}
if (gv->mode_num == 255) { /* console mode */
if ((gv->disp_width / 8) > MAXCOLS) {
printf ("grfcv: Too many columns for console\n");
return (0);
} else if ((gv->disp_height / S3FONTY) > MAXROWS) {
printf ("grfcv: Too many rows for console\n");
return (0);
}
}
if (gv->disp_flags & GRF_FLAGS_SYNC_ON_GREEN) {
printf("grfcv: sync-on-green is not supported\n");
return (0);
}
return (1);
}
int
cv_load_mon(gp, md)
struct grf_softc *gp;
struct grfcvtext_mode *md;
{
struct grfvideo_mode *gv;
struct grfinfo *gi;
volatile caddr_t ba, fb;
unsigned short mnr;
unsigned short HT, HDE, HBS, HBE, HSS, HSE, VDE, VBS, VBE, VSS,
VSE, VT;
int cr50, sr15, sr18, clock_mode, test;
int m, n; /* For calc'ing display FIFO */
int tfillm, temptym; /* FIFO fill and empty mclk's */
int hmul; /* Multiplier for hor. Values */
unsigned char hvsync_pulse;
char TEXT, CONSOLE;
/* identity */
gv = &md->gv;
TEXT = (gv->depth == 4);
CONSOLE = (gv->mode_num == 255);
if (!cv_mondefok(gv)) {
printf("grfcv: Monitor definition not ok\n");
return (0);
}
ba = gp->g_regkva;
fb = gp->g_fbkva;
/* Disable Interrupts */
test = RCrt(ba, CRT_ID_BACKWAD_COMP_1);
test &= ~0x10;
WCrt(ba, CRT_ID_BACKWAD_COMP_1, test);
/* turn gfx off, don't mess up the display */
gfx_on_off(1, ba);
/* provide all needed information in grf device-independant locations */
gp->g_data = (caddr_t) gv;
gi = &gp->g_display;
gi->gd_colors = 1 << gv->depth;
gi->gd_planes = gv->depth;
gi->gd_fbwidth = gv->disp_width;
gi->gd_fbheight = gv->disp_height;
gi->gd_fbx = 0;
gi->gd_fby = 0;
if (CONSOLE) {
gi->gd_dwidth = md->fx * md->cols;
gi->gd_dheight = md->fy * md->rows;
} else {
gi->gd_dwidth = gv->disp_width;
gi->gd_dheight = gv->disp_height;
}
gi->gd_dx = 0;
gi->gd_dy = 0;
/* get display mode parameters */
switch (gv->depth) {
case 15:
case 16:
hmul = 2;
break;
default:
hmul = 1;
break;
}
HBS = gv->hblank_start * hmul;
HSS = gv->hsync_start * hmul;
HSE = gv->hsync_stop * hmul;
HBE = gv->htotal * hmul - 6;
HT = gv->htotal * hmul - 5;
VBS = gv->vblank_start - 1;
VSS = gv->vsync_start;
VSE = gv->vsync_stop;
VBE = gv->vtotal - 3;
VT = gv->vtotal - 2;
/* Disable enhanced Mode for text display */
vgaw(ba, ECR_ADV_FUNC_CNTL, (TEXT ? 0x00 : 0x31));
if (TEXT)
HDE = ((gv->disp_width + md->fx - 1) / md->fx) - 1;
else
HDE = (gv->disp_width + 3) * hmul / 8 - 1; /*HBS;*/
VDE = gv->disp_height - 1;
/* adjustments */
if (gv->disp_flags & GRF_FLAGS_LACE) {
VDE = VDE / 2;
VBS = VBS / 2;
VSS = VSS / 2;
VSE = VSE / 2;
VBE = VBE / 2;
VT = VT / 2;
}
/* Horizontal/Vertical Sync Pulse */
/*
* GREG_MISC_OUTPUT_W Register:
* bit description (0/1)
* 0 Monochrome/Color emulation
* 1 Disable/Enable access of the display memory from the CPU
* 5 Select the low/high 64K page of memory
* 6 Select a positive/negative horizontal retrace sync pulse
* 7 Select a positive/negative vertical retrace sync pulse
*/
hvsync_pulse = vgar(ba, GREG_MISC_OUTPUT_R);
if (gv->disp_flags & GRF_FLAGS_PHSYNC)
hvsync_pulse &= ~0x40;
else
hvsync_pulse |= 0x40;
if (gv->disp_flags & GRF_FLAGS_PVSYNC)
hvsync_pulse &= ~0x80;
else
hvsync_pulse |= 0x80;
vgaw(ba, GREG_MISC_OUTPUT_W, hvsync_pulse);
/* GFX hardware cursor off */
WCrt(ba, CRT_ID_HWGC_MODE, 0x00);
WCrt(ba, CRT_ID_EXT_DAC_CNTL, 0x00);
WSeq(ba, SEQ_ID_MEMORY_MODE, (TEXT || (gv->depth == 1)) ? 0x06 : 0x0e);
WGfx(ba, GCT_ID_READ_MAP_SELECT, 0x00);
WSeq(ba, SEQ_ID_MAP_MASK, (gv->depth == 1) ? 0x01 : 0xff);
WSeq(ba, SEQ_ID_CHAR_MAP_SELECT, 0x00);
/* Set clock */
mnr = cv_compute_clock(gv->pixel_clock);
WSeq(ba, SEQ_ID_DCLK_HI, ((mnr & 0xFF00) >> 8));
WSeq(ba, SEQ_ID_DCLK_LO, (mnr & 0xFF));
/* load display parameters into board */
WCrt(ba, CRT_ID_EXT_HOR_OVF,
((HT & 0x100) ? 0x01 : 0x00) |
((HDE & 0x100) ? 0x02 : 0x00) |
((HBS & 0x100) ? 0x04 : 0x00) |
/* ((HBE & 0x40) ? 0x08 : 0x00) | */ /* Later... */
((HSS & 0x100) ? 0x10 : 0x00) |
/* ((HSE & 0x20) ? 0x20 : 0x00) | */
(((HT-5) & 0x100) ? 0x40 : 0x00) );
WCrt(ba, CRT_ID_EXT_VER_OVF,
0x40 | /* Line compare */
((VT & 0x400) ? 0x01 : 0x00) |
((VDE & 0x400) ? 0x02 : 0x00) |
((VBS & 0x400) ? 0x04 : 0x00) |
((VSS & 0x400) ? 0x10 : 0x00) );
WCrt(ba, CRT_ID_HOR_TOTAL, HT);
WCrt(ba, CRT_ID_DISPLAY_FIFO, HT - 5);
WCrt(ba, CRT_ID_HOR_DISP_ENA_END, ((HDE >= HBS) ? (HBS - 1) : HDE));
WCrt(ba, CRT_ID_START_HOR_BLANK, HBS);
WCrt(ba, CRT_ID_END_HOR_BLANK, ((HBE & 0x1f) | 0x80));
WCrt(ba, CRT_ID_START_HOR_RETR, HSS);
WCrt(ba, CRT_ID_END_HOR_RETR,
(HSE & 0x1f) |
((HBE & 0x20) ? 0x80 : 0x00) );
WCrt(ba, CRT_ID_VER_TOTAL, VT);
WCrt(ba, CRT_ID_OVERFLOW,
0x10 |
((VT & 0x100) ? 0x01 : 0x00) |
((VDE & 0x100) ? 0x02 : 0x00) |
((VSS & 0x100) ? 0x04 : 0x00) |
((VBS & 0x100) ? 0x08 : 0x00) |
((VT & 0x200) ? 0x20 : 0x00) |
((VDE & 0x200) ? 0x40 : 0x00) |
((VSS & 0x200) ? 0x80 : 0x00) );
WCrt(ba, CRT_ID_MAX_SCAN_LINE,
0x40 | /* TEXT ? 0x00 ??? */
((gv->disp_flags & GRF_FLAGS_DBLSCAN) ? 0x80 : 0x00) |
((VBS & 0x200) ? 0x20 : 0x00) |
(TEXT ? ((md->fy - 1) & 0x1f) : 0x00));
WCrt(ba, CRT_ID_MODE_CONTROL, 0xe3);
/* text cursor */
if (TEXT) {
#if CV_ULCURSOR
WCrt(ba, CRT_ID_CURSOR_START, (md->fy & 0x1f) - 2);
WCrt(ba, CRT_ID_CURSOR_END, (md->fy & 0x1f) - 1);
#else
WCrt(ba, CRT_ID_CURSOR_START, 0x00);
WCrt(ba, CRT_ID_CURSOR_END, md->fy & 0x1f);
#endif
WCrt(ba, CRT_ID_UNDERLINE_LOC, (md->fy - 1) & 0x1f);
WCrt(ba, CRT_ID_CURSOR_LOC_HIGH, 0x00);
WCrt(ba, CRT_ID_CURSOR_LOC_LOW, 0x00);
}
WCrt(ba, CRT_ID_START_ADDR_HIGH, 0x00);
WCrt(ba, CRT_ID_START_ADDR_LOW, 0x00);
WCrt(ba, CRT_ID_START_VER_RETR, VSS);
WCrt(ba, CRT_ID_END_VER_RETR, (VSE & 0x0f));
WCrt(ba, CRT_ID_VER_DISP_ENA_END, VDE);
WCrt(ba, CRT_ID_START_VER_BLANK, VBS);
WCrt(ba, CRT_ID_END_VER_BLANK, VBE);
WCrt(ba, CRT_ID_LINE_COMPARE, 0xff);
WCrt(ba, CRT_ID_LACE_RETR_START, HT / 2);
WCrt(ba, CRT_ID_LACE_CONTROL,
((gv->disp_flags & GRF_FLAGS_LACE) ? 0x20 : 0x00));
WGfx(ba, GCT_ID_GRAPHICS_MODE,
((TEXT || (gv->depth == 1)) ? 0x00 : 0x40));
WGfx(ba, GCT_ID_MISC, (TEXT ? 0x04 : 0x01));
WSeq (ba, SEQ_ID_MEMORY_MODE,
((TEXT || (gv->depth == 1)) ? 0x06 : 0x02));
vgaw(ba, VDAC_MASK, 0xff);
/* Blank border */
test = RCrt(ba, CRT_ID_BACKWAD_COMP_2);
WCrt(ba, CRT_ID_BACKWAD_COMP_2, (test | 0x20));
sr15 = RSeq(ba, SEQ_ID_CLKSYN_CNTL_2);
sr15 &= ~0x10;
sr18 = RSeq(ba, SEQ_ID_RAMDAC_CNTL);
sr18 &= ~0x80;
clock_mode = 0x00;
cr50 = 0x00;
test = RCrt(ba, CRT_ID_EXT_MISC_CNTL_2);
test &= 0xd;
/* clear roxxler byte-swapping... */
cv_write_port(0x0040, cv_boardaddr);
cv_write_port(0x0020, cv_boardaddr);
switch (gv->depth) {
case 1:
case 4: /* text */
HDE = gv->disp_width / 16;
break;
case 8:
if (gv->pixel_clock > 80000000) {
clock_mode = 0x10 | 0x02;
sr15 |= 0x10;
sr18 |= 0x80;
}
HDE = gv->disp_width / 8;
cr50 |= 0x00;
break;
case 15:
cv_write_port (0x8020, cv_boardaddr);
clock_mode = 0x30;
HDE = gv->disp_width / 4;
cr50 |= 0x10;
break;
case 16:
cv_write_port (0x8020, cv_boardaddr);
clock_mode = 0x50;
HDE = gv->disp_width / 4;
cr50 |= 0x10;
break;
case 24: /* this is really 32 Bit on CV64 */
case 32:
cv_write_port(0x8040, cv_boardaddr);
clock_mode = 0xd0;
HDE = (gv->disp_width / 2);
cr50 |= 0x30;
break;
}
WCrt(ba, CRT_ID_EXT_MISC_CNTL_2, clock_mode | test);
WSeq(ba, SEQ_ID_CLKSYN_CNTL_2, sr15);
WSeq(ba, SEQ_ID_RAMDAC_CNTL, sr18);
WCrt(ba, CRT_ID_SCREEN_OFFSET, HDE);
WCrt(ba, CRT_ID_MISC_1, (TEXT ? 0x05 : 0x35));
test = RCrt(ba, CRT_ID_EXT_SYS_CNTL_2);
test &= ~0x30;
/* HDE Overflow in bits 4-5 */
test |= (HDE >> 4) & 0x30;
WCrt(ba, CRT_ID_EXT_SYS_CNTL_2, test);
/* Set up graphics engine */
switch (gv->disp_width) {
case 1024:
cr50 |= 0x00;
break;
case 640:
cr50 |= 0x40;
break;
case 800:
cr50 |= 0x80;
break;
case 1280:
cr50 |= 0xc0;
break;
case 1152:
cr50 |= 0x01;
break;
case 1600:
cr50 |= 0x81;
break;
default: /* XXX The Xserver has to handle this */
break;
}
WCrt(ba, CRT_ID_EXT_SYS_CNTL_1, cr50);
delay(100000);
WAttr(ba, ACT_ID_ATTR_MODE_CNTL, (TEXT ? 0x08 : 0x41));
delay(100000);
WAttr(ba, ACT_ID_COLOR_PLANE_ENA,
(gv->depth == 1) ? 0x01 : 0x0f);
delay(100000);
/*
* M-Parameter of Display FIFO
* This is dependant on the pixel clock and the memory clock.
* The FIFO filling bandwidth is 240 MHz and the FIFO is 96 Byte wide.
* Then the time to fill the FIFO is tfill = (96/240000000) sec, the time
* to empty the FIFO is tempty = (96/pixelclock) sec.
* Then the M parameter maximum is ((tempty-tfill)*cv_memclk-9)/2.
* This seems to be logical, ain't it?
* Remember: We have to use integer arithmetics :(
* Divide by 1000 to prevent overflows.
*/
tfillm = (96 * (cv_memclk/1000))/240000;
switch(gv->depth) {
case 32:
case 24:
temptym = (24 * (cv_memclk/1000)) / (gv->pixel_clock/1000);
break;
case 15:
case 16:
temptym = (48 * (cv_memclk/1000)) / (gv->pixel_clock/1000);
break;
case 4:
temptym = (192 * (cv_memclk/1000)) / (gv->pixel_clock/1000);
break;
default:
temptym = (96 * (cv_memclk/1000)) / (gv->pixel_clock/1000);
break;
}
m = (temptym - tfillm - 9) / 2;
if (m < 0)
m = 0; /* prevent underflow */
m = (m & 0x1f) << 3;
if (m < 0x18)
m = 0x18;
n = 0xff;
WCrt(ba, CRT_ID_EXT_MEM_CNTL_2, m);
WCrt(ba, CRT_ID_EXT_MEM_CNTL_3, n);
delay(10000);
/* text initialization */
if (TEXT) {
cv_inittextmode(gp);
}
if (CONSOLE) {
int i;
vgaw(ba, VDAC_ADDRESS_W, 0);
for (i = 0; i < 16; i++) {
vgaw(ba, VDAC_DATA, cvconscolors[i][0]);
vgaw(ba, VDAC_DATA, cvconscolors[i][1]);
vgaw(ba, VDAC_DATA, cvconscolors[i][2]);
}
}
/* Set display enable flag */
WAttr(ba, 0x33, 0);
/* turn gfx on again */
gfx_on_off(0, ba);
/* enable interrupts */
test = RCrt(ba, CRT_ID_BACKWAD_COMP_1);
test |= 0x10;
WCrt(ba, CRT_ID_BACKWAD_COMP_1, test);
test = RCrt(ba, CRT_ID_END_VER_RETR);
test &= ~0x20;
WCrt(ba, CRT_ID_END_VER_RETR, test);
test &= ~0x10;
WCrt(ba, CRT_ID_END_VER_RETR, test);
test |= 0x10;
WCrt(ba, CRT_ID_END_VER_RETR, test);
#ifndef CV_NO_HARDWARE_CURSOR
cv_setup_hwc(gp);
#endif
/* Pass-through */
cvscreen(0, ba - 0x02000000);
return (1);
}
void
cv_inittextmode(gp)
struct grf_softc *gp;
{
struct grfcvtext_mode *tm = (struct grfcvtext_mode *)gp->g_data;
volatile caddr_t ba, fb;
unsigned char *c, *f, y;
unsigned short z;
ba = gp->g_regkva;
fb = gp->g_fbkva;
/* load text font into beginning of display memory.
* Each character cell is 32 bytes long (enough for 4 planes)
* In linear adressing text mode, the memory is organized
* so, that the Bytes of all 4 planes are interleaved.
* 1st byte plane 0, 1st byte plane 1, 1st byte plane 2,
* 1st byte plane 3, 2nd byte plane 0, 2nd byte plane 1,...
* The font is loaded in plane 2.
*/
c = (unsigned char *) fb;
/* clear screen */
for (z = 0; z < tm->cols * tm->rows * 3; z++) {
*c++ = 0x20;
*c++ = 0x07;
*c++ = 0;
*c++ = 0;
}
c = (unsigned char *) (fb) + (32 * tm->fdstart * 4 + 2);
f = tm->fdata;
for (z = tm->fdstart; z <= tm->fdend; z++, c += (32 - tm->fy) * 4)
for (y = 0; y < tm->fy; y++) {
*c = *f++;
c += 4;
}
/* print out a little init msg */
c = (unsigned char *)(fb) + (tm->cols - 6) * 4;
*c++ = 'C';
*c++ = 0x0a;
c +=2;
*c++ = 'V';
*c++ = 0x0b;
c +=2;
*c++ = '6';
*c++ = 0x0c;
c +=2;
*c++ = '4';
*c++ = 0x0d;
}
static __inline void
cv_write_port(bits, BoardAddr)
unsigned short bits;
volatile caddr_t BoardAddr;
{
volatile caddr_t addr;
static unsigned char CVPortBits = 0; /* mirror port bits here */
addr = BoardAddr + 0x40001;
if (bits & 0x8000)
CVPortBits |= bits & 0xFF; /* Set bits */
else {
bits = bits & 0xFF;
bits = (~bits) & 0xFF ;
CVPortBits &= bits; /* Clear bits */
}
*addr = CVPortBits;
}
/*
* Monitor Switch
* 0 = CyberVision Signal
* 1 = Amiga Signal,
* ba = boardaddr
*/
static __inline void
cvscreen(toggle, ba)
int toggle;
volatile caddr_t ba;
{
if (toggle == 1)
cv_write_port (0x10, ba);
else
cv_write_port (0x8010, ba);
}
/* 0 = on, 1= off */
/* ba= registerbase */
static __inline void
gfx_on_off(toggle, ba)
int toggle;
volatile caddr_t ba;
{
int r;
toggle &= 0x1;
toggle = toggle << 5;
r = RSeq(ba, SEQ_ID_CLOCKING_MODE);
r &= ~0x20; /* set Bit 5 to 0 */
WSeq(ba, SEQ_ID_CLOCKING_MODE, r | toggle);
}
#ifndef CV_NO_HARDWARE_CURSOR
static unsigned char cv_hotx = 0, cv_hoty = 0;
static char cv_cursor_on = 0;
/* Hardware Cursor handling routines */
int
cv_getspritepos(gp, pos)
struct grf_softc *gp;
struct grf_position *pos;
{
int hi,lo;
volatile caddr_t ba = gp->g_regkva;
hi = RCrt(ba, CRT_ID_HWGC_ORIGIN_Y_HI);
lo = RCrt(ba, CRT_ID_HWGC_ORIGIN_Y_LO);
pos->y = (hi << 8) + lo;
hi = RCrt(ba, CRT_ID_HWGC_ORIGIN_X_HI);
lo = RCrt(ba, CRT_ID_HWGC_ORIGIN_X_LO);
pos->x = (hi << 8) + lo;
return (0);
}
int
cv_setspritepos(gp, pos)
struct grf_softc *gp;
struct grf_position *pos;
{
volatile caddr_t ba = gp->g_regkva;
short x, y;
static short savex, savey;
short xoff, yoff;
if (pos) {
x = pos->x;
y = pos->y;
savex = x;
savey= y;
} else { /* restore cursor */
x = savex;
y = savey;
}
x -= cv_hotx;
y -= cv_hoty;
if (x < 0) {
xoff = ((-x) & 0xFE);
x = 0;
} else {
xoff = 0;
}
if (y < 0) {
yoff = ((-y) & 0xFE);
y = 0;
} else {
yoff = 0;
}
WCrt(ba, CRT_ID_HWGC_ORIGIN_X_HI, (x >> 8));
WCrt(ba, CRT_ID_HWGC_ORIGIN_X_LO, (x & 0xff));
WCrt(ba, CRT_ID_HWGC_ORIGIN_Y_LO, (y & 0xff));
WCrt(ba, CRT_ID_HWGC_DSTART_X, xoff);
WCrt(ba, CRT_ID_HWGC_DSTART_Y, yoff);
WCrt(ba, CRT_ID_HWGC_ORIGIN_Y_HI, (y >> 8));
return(0);
}
static __inline short
M2I(short val) {
return ( ((val & 0xff00) >> 8) | ((val & 0xff) << 8));
}
int
cv_getspriteinfo(gp, info)
struct grf_softc *gp;
struct grf_spriteinfo *info;
{
volatile caddr_t ba, fb;
ba = gp->g_regkva;
fb = gp->g_fbkva;
if (info->set & GRFSPRSET_ENABLE)
info->enable = RCrt(ba, CRT_ID_HWGC_MODE) & 0x01;
if (info->set & GRFSPRSET_POS)
cv_getspritepos (gp, &info->pos);
#if 0 /* XXX */
if (info->set & GRFSPRSET_SHAPE) {
u_char image[512], mask[512];
volatile u_long *hwp;
u_char *imp, *mp;
short row;
info->size.x = 64;
info->size.y = 64;
for (row = 0, hwp = (u_long *)(fb + HWC_OFF),
mp = mask, imp = image;
row < 64;
row++) {
u_long bp10, bp20, bp11, bp21;
bp10 = *hwp++;
bp20 = *hwp++;
bp11 = *hwp++;
bp21 = *hwp++;
M2I (bp10);
M2I (bp20);
M2I (bp11);
M2I (bp21);
*imp++ = (~bp10) & bp11;
*imp++ = (~bp20) & bp21;
*mp++ = (~bp10) | (bp10 & ~bp11);
*mp++ = (~bp20) & (bp20 & ~bp21);
}
copyout (image, info->image, sizeof (image));
copyout (mask, info->mask, sizeof (mask));
}
#endif
return(0);
}
void
cv_setup_hwc(gp)
struct grf_softc *gp;
{
volatile caddr_t ba = gp->g_regkva;
volatile caddr_t hwc;
int test;
if (gp->g_display.gd_planes <= 4)
cv_cursor_on = 0; /* don't enable hwc in text modes */
if (cv_cursor_on == 0)
return;
/* reset colour stack */
#if 0
test = RCrt(ba, CRT_ID_HWGC_MODE);
asm volatile("nop");
#else
/* do it in assembler, the above does't seem to work */
asm volatile ("moveb #0x45, %1@(0x3d4); \
moveb %1@(0x3d5),%0" : "=r" (test) : "a" (ba));
#endif
WCrt (ba, CRT_ID_HWGC_FG_STACK, 0);
hwc = ba + CRT_ADDRESS_W;
*hwc = 0;
*hwc = 0;
#if 0
test = RCrt(ba, CRT_ID_HWGC_MODE);
asm volatile("nop");
#else
/* do it in assembler, the above does't seem to work */
asm volatile ("moveb #0x45, %1@(0x3d4); \
moveb %1@(0x3d5),%0" : "=r" (test) : "a" (ba));
#endif
switch (gp->g_display.gd_planes) {
case 8:
WCrt (ba, CRT_ID_HWGC_BG_STACK, 0x1);
*hwc = 1;
break;
default:
WCrt (ba, CRT_ID_HWGC_BG_STACK, 0xff);
*hwc = 0xff;
*hwc = 0xff;
}
test = HWC_OFF / HWC_SIZE;
WCrt (ba, CRT_ID_HWGC_START_AD_HI, (test >> 8));
WCrt (ba, CRT_ID_HWGC_START_AD_LO, (test & 0xff));
WCrt (ba, CRT_ID_HWGC_DSTART_X , 0);
WCrt (ba, CRT_ID_HWGC_DSTART_Y , 0);
WCrt (ba, CRT_ID_EXT_DAC_CNTL, 0x10); /* Cursor X11 Mode */
/*
* Put it into Windoze Mode or you'll see sometimes a white stripe
* on the right side (in double clocking modes with a screen bigger
* > 1023 pixels).
*/
WCrt (ba, CRT_ID_EXT_DAC_CNTL, 0x00); /* Cursor Windoze Mode */
WCrt (ba, CRT_ID_HWGC_MODE, 0x01);
}
/*
* This was the reason why you shouldn't use the HWC in the Kernel:(
* Obsoleted now by use of interrupts :-)
*/
#define VerticalRetraceWait(ba) \
{ \
while (vgar(ba, GREG_INPUT_STATUS1_R) == 0x00) ; \
while ((vgar(ba, GREG_INPUT_STATUS1_R) & 0x08) == 0x08) ; \
while ((vgar(ba, GREG_INPUT_STATUS1_R) & 0x08) == 0x00) ; \
}
int
cv_setspriteinfo (gp, info)
struct grf_softc *gp;
struct grf_spriteinfo *info;
{
volatile caddr_t ba, fb;
int depth = gp->g_display.gd_planes;
ba = gp->g_regkva;
fb = gp->g_fbkva;
if (info->set & GRFSPRSET_SHAPE) {
/*
* For an explanation of these weird actions here, see above
* when reading the shape. We set the shape directly into
* the video memory, there's no reason to keep 1k on the
* kernel stack just as template
*/
u_char *image, *mask;
volatile u_short *hwp;
u_char *imp, *mp;
unsigned short row;
#ifdef CV_NO_INT
/* Cursor off */
WCrt (ba, CRT_ID_HWGC_MODE, 0x00);
/*
* The Trio64 crashes if the cursor data is written
* while the cursor is displayed.
* Sadly, turning the cursor off is not enough.
* What we have to do is:
* 1. Wait for vertical retrace, to make sure no-one
* has moved the cursor in this sync period (because
* another write then would have no effect, argh!).
* 2. Move the cursor off-screen
* 3. Another wait for v. retrace to make sure the cursor
* is really off.
* 4. Write the data, finally.
* (thanks to Harald Koenig for this tip!)
*/
/*
* Remark 06/06/96: Update in interrupt obsoletes this,
* but the warning should stay there!
*/
VerticalRetraceWait(ba);
WCrt (ba, CRT_ID_HWGC_ORIGIN_X_HI, 0x7);
WCrt (ba, CRT_ID_HWGC_ORIGIN_X_LO, 0xff);
WCrt (ba, CRT_ID_HWGC_ORIGIN_Y_LO, 0xff);
WCrt (ba, CRT_ID_HWGC_DSTART_X, 0x3f);
WCrt (ba, CRT_ID_HWGC_DSTART_Y, 0x3f);
WCrt (ba, CRT_ID_HWGC_ORIGIN_Y_HI, 0x7);
#endif /* CV_NO_INT */
if (info->size.y > 64)
info->size.y = 64;
if (info->size.x > 64)
info->size.x = 64;
if (info->size.x < 32)
info->size.x = 32;
image = malloc(HWC_SIZE, M_TEMP, M_WAITOK);
mask = image + HWC_SIZE/2;
copyin(info->image, image, info->size.y * info->size.x / 8);
copyin(info->mask, mask, info->size.y * info->size.x / 8);
#ifdef CV_NO_INT
hwp = (u_short *)(fb +HWC_OFF);
/* This is necessary in order not to crash the board */
VerticalRetraceWait(ba);
#else /* CV_NO_INT */
hwp = (u_short *) cv_cursor_storage;
#endif /* CV_NO_INT */
/*
* setting it is slightly more difficult, because we can't
* force the application to not pass a *smaller* than
* supported bitmap
*/
for (row = 0, mp = mask, imp = image;
row < info->size.y; row++) {
u_short im1, im2, im3, im4, m1, m2, m3, m4;
m1 = ~(*(unsigned short *)mp);
im1 = *(unsigned short *)imp & *(unsigned short *)mp;
mp += 2;
imp += 2;
m2 = ~(*(unsigned short *)mp);
im2 = *(unsigned short *)imp & *(unsigned short *)mp;
mp += 2;
imp += 2;
if (info->size.x > 32) {
m3 = ~(*(unsigned short *)mp);
im3 = *(unsigned short *)imp & *(unsigned short *)mp;
mp += 2;
imp += 2;
m4 = ~(*(unsigned short *)mp);
im4 = *(unsigned short *)imp & *(unsigned short *)mp;
mp += 2;
imp += 2;
} else {
m3 = 0xffff;
im3 = 0;
m4 = 0xffff;
im4 = 0;
}
switch (depth) {
case 8:
*hwp++ = m1;
*hwp++ = im1;
*hwp++ = m2;
*hwp++ = im2;
*hwp++ = m3;
*hwp++ = im3;
*hwp++ = m4;
*hwp++ = im4;
break;
case 15:
case 16:
*hwp++ = M2I(m1);
*hwp++ = M2I(im1);
*hwp++ = M2I(m2);
*hwp++ = M2I(im2);
*hwp++ = M2I(m3);
*hwp++ = M2I(im3);
*hwp++ = M2I(m4);
*hwp++ = M2I(im4);
break;
case 24:
case 32:
*hwp++ = M2I(im1);
*hwp++ = M2I(m1);
*hwp++ = M2I(im2);
*hwp++ = M2I(m2);
*hwp++ = M2I(im3);
*hwp++ = M2I(m3);
*hwp++ = M2I(im4);
*hwp++ = M2I(m4);
break;
}
}
if (depth < 24) {
for (; row < 64; row++) {
*hwp++ = 0xffff;
*hwp++ = 0x0000;
*hwp++ = 0xffff;
*hwp++ = 0x0000;
*hwp++ = 0xffff;
*hwp++ = 0x0000;
*hwp++ = 0xffff;
*hwp++ = 0x0000;
}
} else {
for (; row < 64; row++) {
*hwp++ = 0x0000;
*hwp++ = 0xffff;
*hwp++ = 0x0000;
*hwp++ = 0xffff;
*hwp++ = 0x0000;
*hwp++ = 0xffff;
*hwp++ = 0x0000;
*hwp++ = 0xffff;
}
}
free(image, M_TEMP);
/* cv_setup_hwc(gp); */
cv_hotx = info->hot.x;
cv_hoty = info->hot.y;
#ifdef CV_NO_INT
/* One must not write twice per vertical blank :-( */
VerticalRetraceWait(ba);
cv_setspritepos (gp, &info->pos);
#else /* CV_NO_INT */
cv_setspritepos (gp, &info->pos);
curs_update_flag = 1;
#endif /* CV_NO_INT */
}
if (info->set & GRFSPRSET_CMAP) {
volatile caddr_t hwc;
int test;
/* reset colour stack */
test = RCrt(ba, CRT_ID_HWGC_MODE);
asm volatile("nop");
switch (depth) {
case 8:
case 15:
case 16:
WCrt (ba, CRT_ID_HWGC_FG_STACK, 0);
hwc = ba + CRT_ADDRESS_W;
*hwc = 0;
break;
case 32:
case 24:
WCrt (ba, CRT_ID_HWGC_FG_STACK, 0);
hwc = ba + CRT_ADDRESS_W;
*hwc = 0;
*hwc = 0;
break;
}
test = RCrt(ba, CRT_ID_HWGC_MODE);
asm volatile("nop");
switch (depth) {
case 8:
WCrt (ba, CRT_ID_HWGC_BG_STACK, 1);
hwc = ba + CRT_ADDRESS_W;
*hwc = 1;
break;
case 15:
case 16:
WCrt (ba, CRT_ID_HWGC_BG_STACK, 0xff);
hwc = ba + CRT_ADDRESS_W;
*hwc = 0xff;
break;
case 32:
case 24:
WCrt (ba, CRT_ID_HWGC_BG_STACK, 0xff);
hwc = ba + CRT_ADDRESS_W;
*hwc = 0xff;
*hwc = 0xff;
break;
}
}
if (info->set & GRFSPRSET_ENABLE) {
if (info->enable) {
cv_cursor_on = 1;
cv_setup_hwc(gp);
/* WCrt(ba, CRT_ID_HWGC_MODE, 0x01); */
} else
WCrt(ba, CRT_ID_HWGC_MODE, 0x00);
}
if (info->set & GRFSPRSET_POS)
cv_setspritepos(gp, &info->pos);
if (info->set & GRFSPRSET_HOT) {
cv_hotx = info->hot.x;
cv_hoty = info->hot.y;
cv_setspritepos (gp, &info->pos);
}
return(0);
}
int
cv_getspritemax (gp, pos)
struct grf_softc *gp;
struct grf_position *pos;
{
pos->x = 64;
pos->y = 64;
return(0);
}
#endif /* !CV_NO_HARDWARE_CURSOR */
#endif /* NGRFCV */