NetBSD/sys/arch/sandpoint/stand/netboot/sip.c
2009-01-12 09:41:58 +00:00

429 lines
11 KiB
C

/* $NetBSD: sip.c,v 1.16 2009/01/12 09:41:59 tsutsui Exp $ */
/*-
* Copyright (c) 2007 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Tohru Nishimura.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <lib/libsa/stand.h>
#include <lib/libsa/net.h>
#include "globals.h"
/*
* - reverse endian access every CSR.
* - no VTOPHYS() translation, vaddr_t == paddr_t.
* - PIPT writeback cache aware.
*/
#define CSR_READ(l, r) in32rb((l)->csr+(r))
#define CSR_WRITE(l, r, v) out32rb((l)->csr+(r), (v))
#define VTOPHYS(va) (uint32_t)(va)
#define DEVTOV(pa) (uint32_t)(pa)
#define wbinv(adr, siz) _wbinv(VTOPHYS(adr), (uint32_t)(siz))
#define inv(adr, siz) _inv(VTOPHYS(adr), (uint32_t)(siz))
#define DELAY(n) delay(n)
#define ALLOC(T,A) (T *)((unsigned)alloc(sizeof(T) + (A)) &~ ((A) - 1))
struct desc {
uint32_t xd0, xd1, xd2;
uint32_t hole;
};
#define XD1_OWN (1U << 31)
#define XD1_OK (1U << 27)
#define SIP_CR 0x00
#define CR_RST (1U << 8) /* software reset */
#define CR_RXR (1U << 5) /* Rx abort and reset */
#define CR_TXR (1U << 4) /* Tx abort and reset */
#define CR_RXD (1U << 3) /* graceful Rx stop */
#define CR_RXE (1U << 2) /* run and activate Rx */
#define CR_TXD (1U << 1) /* graceful Tx stop */
#define CR_TXE (1U << 0) /* run and activate Tx */
#define SIP_CFG 0x04
#define SIP_MEAR 0x08
#define MEAR_EESEL (1U << 3) /* SEEP chipselect */
#define MEAR_EECLK (1U << 2) /* clock */
#define MEAR_EEDO (1U << 1) /* bit retrieve */
#define MEAR_EEDI (1U << 0) /* bit feed */
#define SIP_IMR 0x14
#define SIP_IER 0x18
#define SIP_TXDP 0x20
#define SIP_TXCFG 0x24
#define TXCFG_CSI (1U << 31)
#define TXCFG_HBI (1U << 30)
#define TXCFG_ATP (1U << 28)
#define TXCFG_DMA256 0x300000
#define SIP_RXDP 0x30
#define SIP_RXCFG 0x34
#define RXCFG_ATX (1U << 28)
#define RXCFG_DMA256 0x300000
#define SIP_RFCR 0x48
#define RFCR_RFEN (1U << 31) /* activate Rx filter */
#define RFCR_APM (1U << 27) /* accept perfect match */
#define SIP_RFDR 0x4c
#define SIP_MIBC 0x5c
#define SIP_BMCR 0x80
#define SIP_PHYSTS 0xc0
#define SIP_PHYCR 0xe4
#define FRAMESIZE 1536
struct local {
struct desc txd;
struct desc rxd[2];
uint8_t store[2][FRAMESIZE];
unsigned csr, rx;
unsigned phy, bmsr, anlpar;
unsigned cr;
};
static int read_eeprom(struct local *, int);
static unsigned mii_read(struct local *, int, int);
static void mii_write(struct local *, int, int, int);
static void mii_initphy(struct local *);
static void mii_dealan(struct local *, unsigned);
/* Table and macro to bit-reverse an octet. */
static const uint8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
#define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
int
sip_match(unsigned tag, void *data)
{
unsigned v;
v = pcicfgread(tag, PCI_ID_REG);
switch (v) {
case PCI_DEVICE(0x100b, 0x0020):
return 1;
}
return 0;
}
void *
sip_init(unsigned tag, void *data)
{
unsigned val, i, fdx, txc, rxc;
struct local *l;
struct desc *txd, *rxd;
uint16_t eedata[4], *ee;
uint8_t *en;
val = pcicfgread(tag, PCI_ID_REG);
if (PCI_DEVICE(0x100b, 0x0020) != val)
return NULL;
l = ALLOC(struct local, sizeof(struct desc)); /* desc alignment */
memset(l, 0, sizeof(struct local));
l->csr = DEVTOV(pcicfgread(tag, 0x14)); /* use mem space */
CSR_WRITE(l, SIP_IER, 0);
CSR_WRITE(l, SIP_IMR, 0);
CSR_WRITE(l, SIP_RFCR, 0);
CSR_WRITE(l, SIP_CR, CR_RST);
do {
val = CSR_READ(l, SIP_CR);
} while (val & CR_RST); /* S1C */
mii_initphy(l);
ee = eedata; en = data;
ee[0] = read_eeprom(l, 6);
ee[1] = read_eeprom(l, 7);
ee[2] = read_eeprom(l, 8);
ee[3] = read_eeprom(l, 9);
en[0] = ((*ee & 0x1) << 7);
ee++;
en[0] |= ((*ee & 0xFE00) >> 9);
en[1] = ((*ee & 0x1FE) >> 1);
en[2] = ((*ee & 0x1) << 7);
ee++;
en[2] |= ((*ee & 0xFE00) >> 9);
en[3] = ((*ee & 0x1FE) >> 1);
en[4] = ((*ee & 0x1) << 7);
ee++;
en[4] |= ((*ee & 0xFE00) >> 9);
en[5] = ((*ee & 0x1FE) >> 1);
for (i = 0; i < 6; i++)
en[i] = bbr(en[i]);
printf("MAC address %02x:%02x:%02x:%02x:%02x:%02x, ",
en[0], en[1], en[2], en[3], en[4], en[5]);
printf("PHY %d (%04x.%04x)\n", l->phy,
mii_read(l, l->phy, 2), mii_read(l, l->phy, 3));
mii_dealan(l, 5);
/* speed and duplexity are found in CFG */
val = CSR_READ(l, SIP_CFG);
fdx = !!(val & (1U << 29));
printf("%s", (val & (1U << 30)) ? "100Mbps" : "10Mbps");
if (fdx)
printf("-FDX");
printf("\n");
txd = &l->txd;
txd->xd0 = htole32(VTOPHYS(txd));
rxd = l->rxd;
rxd[0].xd0 = htole32(VTOPHYS(&rxd[1]));
rxd[0].xd1 = htole32(XD1_OWN | FRAMESIZE);
rxd[0].xd2 = htole32(VTOPHYS(l->store[0]));
rxd[1].xd0 = htole32(VTOPHYS(&rxd[0]));
rxd[1].xd1 = htole32(XD1_OWN | FRAMESIZE);
rxd[1].xd2 = htole32(VTOPHYS(l->store[1]));
wbinv(l, sizeof(struct local));
l->rx = 0;
CSR_WRITE(l, SIP_RFCR, 0);
CSR_WRITE(l, SIP_RFDR, (en[1] << 8) | en[0]);
CSR_WRITE(l, SIP_RFCR, 2);
CSR_WRITE(l, SIP_RFDR, (en[3] << 8) | en[2]);
CSR_WRITE(l, SIP_RFCR, 4);
CSR_WRITE(l, SIP_RFDR, (en[5] << 8) | en[4]);
CSR_WRITE(l, SIP_RFCR, RFCR_RFEN | RFCR_APM);
txc = TXCFG_ATP | TXCFG_DMA256 | 0x1002;
rxc = RXCFG_DMA256 | 0x20;
if (fdx) {
txc |= TXCFG_CSI | TXCFG_HBI;
rxc |= RXCFG_ATX;
}
l->cr = CR_RXE;
CSR_WRITE(l, SIP_TXDP, VTOPHYS(txd));
CSR_WRITE(l, SIP_RXDP, VTOPHYS(rxd));
CSR_WRITE(l, SIP_TXCFG, txc);
CSR_WRITE(l, SIP_RXCFG, rxc);
CSR_WRITE(l, SIP_CR, l->cr);
return l;
}
int
sip_send(void *dev, char *buf, unsigned len)
{
struct local *l = dev;
volatile struct desc *txd;
unsigned loop;
wbinv(buf, len);
txd = &l->txd;
txd->xd2 = htole32(VTOPHYS(buf));
txd->xd1 = htole32(XD1_OWN | (len & 0xfff));
wbinv(txd, sizeof(struct desc));
CSR_WRITE(l, SIP_CR, l->cr | CR_TXE);
loop = 100;
do {
if ((le32toh(txd->xd1) & XD1_OWN) == 0)
goto done;
DELAY(10);
inv(txd, sizeof(struct desc));
} while (--loop != 0);
printf("xmit failed\n");
return -1;
done:
return len;
}
int
sip_recv(void *dev, char *buf, unsigned maxlen, unsigned timo)
{
struct local *l = dev;
volatile struct desc *rxd;
unsigned bound, rxstat, len;
uint8_t *ptr;
bound = 1000 * timo;
printf("recving with %u sec. timeout\n", timo);
again:
rxd = &l->rxd[l->rx];
do {
inv(rxd, sizeof(struct desc));
rxstat = le32toh(rxd->xd1);
if ((rxstat & XD1_OWN) == 0)
goto gotone;
DELAY(1000); /* 1 milli second */
} while (--bound > 0);
errno = 0;
return -1;
gotone:
if ((rxstat & XD1_OK) == 0) {
rxd->xd1 = htole32(XD1_OWN | FRAMESIZE);
wbinv(rxd, sizeof(struct desc));
l->rx ^= 1;
goto again;
}
/* good frame */
len = (rxstat & 0xfff) - 4 /* HASFCS */;
if (len > maxlen)
len = maxlen;
ptr = l->store[l->rx];
inv(ptr, len);
memcpy(buf, ptr, len);
rxd->xd1 = htole32(XD1_OWN | FRAMESIZE);
wbinv(rxd, sizeof(struct desc));
l->rx ^= 1;
CSR_WRITE(l, SIP_CR, l->cr);
return len;
}
static int
read_eeprom(struct local *l, int loc)
{
#define R110 06 /* SEEPROM READ op. */
unsigned data, v, i;
/* hold chip select */
v = MEAR_EESEL;
CSR_WRITE(l, SIP_MEAR, v);
data = (R110 << 6) | (loc & 0x3f); /* 6 bit addressing */
/* instruct R110 op. at loc in MSB first order */
for (i = (1 << 8); i != 0; i >>= 1) {
if (data & i)
v |= MEAR_EEDI;
else
v &= ~MEAR_EEDI;
CSR_WRITE(l, SIP_MEAR, v);
CSR_WRITE(l, SIP_MEAR, v | MEAR_EECLK);
DELAY(4);
CSR_WRITE(l, SIP_MEAR, v);
DELAY(4);
}
v = MEAR_EESEL;
/* read 16bit quantity in MSB first order */
data = 0;
for (i = 0; i < 16; i++) {
CSR_WRITE(l, SIP_MEAR, v | MEAR_EECLK);
DELAY(4);
data = (data << 1) | !!(CSR_READ(l, SIP_MEAR) & MEAR_EEDO);
CSR_WRITE(l, SIP_MEAR, v);
DELAY(4);
}
/* turn off chip select */
CSR_WRITE(l, SIP_MEAR, 0);
DELAY(4);
return data;
}
#define MII_BMCR 0x00 /* Basic mode control register (rw) */
#define BMCR_RESET 0x8000 /* reset */
#define BMCR_AUTOEN 0x1000 /* autonegotiation enable */
#define BMCR_ISO 0x0400 /* isolate */
#define BMCR_STARTNEG 0x0200 /* restart autonegotiation */
#define MII_BMSR 0x01 /* Basic mode status register (ro) */
#define BMSR_ACOMP 0x0020 /* Autonegotiation complete */
#define BMSR_LINK 0x0004 /* Link status */
#define MII_ANAR 0x04 /* Autonegotiation advertisement (rw) */
#define ANAR_FC 0x0400 /* local device supports PAUSE */
#define ANAR_TX_FD 0x0100 /* local device supports 100bTx FD */
#define ANAR_TX 0x0080 /* local device supports 100bTx */
#define ANAR_10_FD 0x0040 /* local device supports 10bT FD */
#define ANAR_10 0x0020 /* local device supports 10bT */
#define ANAR_CSMA 0x0001 /* protocol selector CSMA/CD */
#define MII_ANLPAR 0x05 /* Autonegotiation lnk partner abilities (rw) */
unsigned
mii_read(struct local *l, int phy, int reg)
{
unsigned val;
do {
val = CSR_READ(l, SIP_BMCR + (reg << 2));
} while (reg == MII_BMSR && val == 0);
return val & 0xffff;
}
void
mii_write(struct local *l, int phy, int reg, int val)
{
CSR_WRITE(l, SIP_BMCR + (reg << 2), val);
}
void
mii_initphy(struct local *l)
{
int phy, ctl, sts, bound;
for (phy = 0; phy < 32; phy++) {
ctl = mii_read(l, phy, MII_BMCR);
sts = mii_read(l, phy, MII_BMSR);
if (ctl != 0xffff && sts != 0xffff)
goto found;
}
printf("MII: no PHY found\n");
return;
found:
ctl = mii_read(l, phy, MII_BMCR);
mii_write(l, phy, MII_BMCR, ctl | BMCR_RESET);
bound = 100;
do {
DELAY(10);
ctl = mii_read(l, phy, MII_BMCR);
if (ctl == 0xffff) {
printf("MII: PHY %d has died after reset\n", phy);
return;
}
} while (bound-- > 0 && (ctl & BMCR_RESET));
if (bound == 0) {
printf("PHY %d reset failed\n", phy);
}
ctl &= ~BMCR_ISO;
mii_write(l, phy, MII_BMCR, ctl);
sts = mii_read(l, phy, MII_BMSR) |
mii_read(l, phy, MII_BMSR); /* read twice */
l->phy = phy; /* should be 0 */
l->bmsr = sts;
}
void
mii_dealan(struct local *l, unsigned timo)
{
unsigned anar, bound;
anar = ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA;
mii_write(l, l->phy, MII_ANAR, anar);
mii_write(l, l->phy, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
l->anlpar = 0;
bound = getsecs() + timo;
do {
l->bmsr = mii_read(l, l->phy, MII_BMSR) |
mii_read(l, l->phy, MII_BMSR); /* read twice */
if ((l->bmsr & BMSR_LINK) && (l->bmsr & BMSR_ACOMP)) {
l->anlpar = mii_read(l, l->phy, MII_ANLPAR);
break;
}
DELAY(10 * 1000);
} while (getsecs() < bound);
return;
}