NetBSD/sys/arch/i386/i386/bus_machdep.c

1059 lines
24 KiB
C

/* $NetBSD: bus_machdep.c,v 1.14 2001/11/17 19:32:03 kleink Exp $ */
/*-
* Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum and by Jason R. Thorpe of the Numerical Aerospace
* Simulation Facility, NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: bus_machdep.c,v 1.14 2001/11/17 19:32:03 kleink Exp $");
#include "opt_largepages.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/extent.h>
#include <sys/proc.h>
#include <uvm/uvm_extern.h>
#define _I386_BUS_DMA_PRIVATE
#include <machine/bus.h>
#include <dev/isa/isareg.h>
#include <machine/isa_machdep.h>
/*
* Extent maps to manage I/O and memory space. Allocate
* storage for 8 regions in each, initially. Later, ioport_malloc_safe
* will indicate that it's safe to use malloc() to dynamically allocate
* region descriptors.
*
* N.B. At least two regions are _always_ allocated from the iomem
* extent map; (0 -> ISA hole) and (end of ISA hole -> end of RAM).
*
* The extent maps are not static! Machine-dependent ISA and EISA
* routines need access to them for bus address space allocation.
*/
static long ioport_ex_storage[EXTENT_FIXED_STORAGE_SIZE(8) / sizeof(long)];
static long iomem_ex_storage[EXTENT_FIXED_STORAGE_SIZE(8) / sizeof(long)];
struct extent *ioport_ex;
struct extent *iomem_ex;
static int ioport_malloc_safe;
int i386_mem_add_mapping __P((bus_addr_t, bus_size_t,
int, bus_space_handle_t *));
int _bus_dmamap_load_buffer __P((bus_dma_tag_t, bus_dmamap_t, void *,
bus_size_t, struct proc *, int, paddr_t *, int *, int));
void
i386_bus_space_init()
{
/*
* Initialize the I/O port and I/O mem extent maps.
* Note: we don't have to check the return value since
* creation of a fixed extent map will never fail (since
* descriptor storage has already been allocated).
*
* N.B. The iomem extent manages _all_ physical addresses
* on the machine. When the amount of RAM is found, the two
* extents of RAM are allocated from the map (0 -> ISA hole
* and end of ISA hole -> end of RAM).
*/
ioport_ex = extent_create("ioport", 0x0, 0xffff, M_DEVBUF,
(caddr_t)ioport_ex_storage, sizeof(ioport_ex_storage),
EX_NOCOALESCE|EX_NOWAIT);
iomem_ex = extent_create("iomem", 0x0, 0xffffffff, M_DEVBUF,
(caddr_t)iomem_ex_storage, sizeof(iomem_ex_storage),
EX_NOCOALESCE|EX_NOWAIT);
}
void
i386_bus_space_mallocok()
{
ioport_malloc_safe = 1;
}
int
i386_memio_map(t, bpa, size, flags, bshp)
bus_space_tag_t t;
bus_addr_t bpa;
bus_size_t size;
int flags;
bus_space_handle_t *bshp;
{
int error;
struct extent *ex;
/*
* Pick the appropriate extent map.
*/
if (t == I386_BUS_SPACE_IO) {
if (flags & BUS_SPACE_MAP_LINEAR)
return (EOPNOTSUPP);
ex = ioport_ex;
} else if (t == I386_BUS_SPACE_MEM)
ex = iomem_ex;
else
panic("i386_memio_map: bad bus space tag");
/*
* Before we go any further, let's make sure that this
* region is available.
*/
error = extent_alloc_region(ex, bpa, size,
EX_NOWAIT | (ioport_malloc_safe ? EX_MALLOCOK : 0));
if (error)
return (error);
/*
* For I/O space, that's all she wrote.
*/
if (t == I386_BUS_SPACE_IO) {
*bshp = bpa;
return (0);
}
if (bpa >= IOM_BEGIN && (bpa + size) <= IOM_END) {
*bshp = (bus_space_handle_t)ISA_HOLE_VADDR(bpa);
return(0);
}
/*
* For memory space, map the bus physical address to
* a kernel virtual address.
*/
error = i386_mem_add_mapping(bpa, size,
(flags & BUS_SPACE_MAP_CACHEABLE) != 0, bshp);
if (error) {
if (extent_free(ex, bpa, size, EX_NOWAIT |
(ioport_malloc_safe ? EX_MALLOCOK : 0))) {
printf("i386_memio_map: pa 0x%lx, size 0x%lx\n",
bpa, size);
printf("i386_memio_map: can't free region\n");
}
}
return (error);
}
int
_i386_memio_map(t, bpa, size, flags, bshp)
bus_space_tag_t t;
bus_addr_t bpa;
bus_size_t size;
int flags;
bus_space_handle_t *bshp;
{
/*
* For I/O space, just fill in the handle.
*/
if (t == I386_BUS_SPACE_IO) {
if (flags & BUS_SPACE_MAP_LINEAR)
return (EOPNOTSUPP);
*bshp = bpa;
return (0);
}
/*
* For memory space, map the bus physical address to
* a kernel virtual address.
*/
return (i386_mem_add_mapping(bpa, size,
(flags & BUS_SPACE_MAP_CACHEABLE) != 0, bshp));
}
int
i386_memio_alloc(t, rstart, rend, size, alignment, boundary, flags,
bpap, bshp)
bus_space_tag_t t;
bus_addr_t rstart, rend;
bus_size_t size, alignment, boundary;
int flags;
bus_addr_t *bpap;
bus_space_handle_t *bshp;
{
struct extent *ex;
u_long bpa;
int error;
/*
* Pick the appropriate extent map.
*/
if (t == I386_BUS_SPACE_IO) {
if (flags & BUS_SPACE_MAP_LINEAR)
return (EOPNOTSUPP);
ex = ioport_ex;
} else if (t == I386_BUS_SPACE_MEM)
ex = iomem_ex;
else
panic("i386_memio_alloc: bad bus space tag");
/*
* Sanity check the allocation against the extent's boundaries.
*/
if (rstart < ex->ex_start || rend > ex->ex_end)
panic("i386_memio_alloc: bad region start/end");
/*
* Do the requested allocation.
*/
error = extent_alloc_subregion(ex, rstart, rend, size, alignment,
boundary,
EX_FAST | EX_NOWAIT | (ioport_malloc_safe ? EX_MALLOCOK : 0),
&bpa);
if (error)
return (error);
/*
* For I/O space, that's all she wrote.
*/
if (t == I386_BUS_SPACE_IO) {
*bshp = *bpap = bpa;
return (0);
}
/*
* For memory space, map the bus physical address to
* a kernel virtual address.
*/
error = i386_mem_add_mapping(bpa, size,
(flags & BUS_SPACE_MAP_CACHEABLE) != 0, bshp);
if (error) {
if (extent_free(iomem_ex, bpa, size, EX_NOWAIT |
(ioport_malloc_safe ? EX_MALLOCOK : 0))) {
printf("i386_memio_alloc: pa 0x%lx, size 0x%lx\n",
bpa, size);
printf("i386_memio_alloc: can't free region\n");
}
}
*bpap = bpa;
return (error);
}
int
i386_mem_add_mapping(bpa, size, cacheable, bshp)
bus_addr_t bpa;
bus_size_t size;
int cacheable;
bus_space_handle_t *bshp;
{
u_long pa, endpa;
vaddr_t va;
pt_entry_t *pte;
pa = i386_trunc_page(bpa);
endpa = i386_round_page(bpa + size);
#ifdef DIAGNOSTIC
if (endpa <= pa)
panic("i386_mem_add_mapping: overflow");
#endif
va = uvm_km_valloc(kernel_map, endpa - pa);
if (va == 0)
return (ENOMEM);
*bshp = (bus_space_handle_t)(va + (bpa & PGOFSET));
for (; pa < endpa; pa += PAGE_SIZE, va += PAGE_SIZE) {
pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
/*
* PG_N doesn't exist on 386's, so we assume that
* the mainboard has wired up device space non-cacheable
* on those machines.
*/
if (cpu_class != CPUCLASS_386) {
pte = kvtopte(va);
if (cacheable)
*pte &= ~PG_N;
else
*pte |= PG_N;
#ifdef LARGEPAGES
if (*pte & PG_PS)
pmap_update_pg(va & PG_LGFRAME);
else
#endif
pmap_update_pg(va);
}
}
pmap_update(pmap_kernel());
return 0;
}
/*
* void _i386_memio_unmap(bus_space_tag bst, bus_space_handle bsh,
* bus_size_t size, bus_addr_t *adrp)
*
* This function unmaps memory- or io-space mapped by the function
* _i386_memio_map(). This function works nearly as same as
* i386_memio_unmap(), but this function does not ask kernel
* built-in extents and returns physical address of the bus space,
* for the convenience of the extra extent manager.
*/
void
_i386_memio_unmap(t, bsh, size, adrp)
bus_space_tag_t t;
bus_space_handle_t bsh;
bus_size_t size;
bus_addr_t *adrp;
{
u_long va, endva;
bus_addr_t bpa;
/*
* Find the correct extent and bus physical address.
*/
if (t == I386_BUS_SPACE_IO) {
bpa = bsh;
} else if (t == I386_BUS_SPACE_MEM) {
if (bsh >= atdevbase && (bsh + size) <= (atdevbase + IOM_SIZE)) {
bpa = (bus_addr_t)ISA_PHYSADDR(bsh);
} else {
va = i386_trunc_page(bsh);
endva = i386_round_page(bsh + size);
#ifdef DIAGNOSTIC
if (endva <= va) {
panic("_i386_memio_unmap: overflow");
}
#endif
#if __NetBSD_Version__ > 104050000
if (pmap_extract(pmap_kernel(), va, &bpa) == FALSE) {
panic("_i386_memio_unmap:"
"i386/rbus_machdep.c wrong virtual address");
}
bpa += (bsh & PGOFSET);
#else
bpa = pmap_extract(pmap_kernel(), va) + (bsh & PGOFSET);
#endif
/*
* Free the kernel virtual mapping.
*/
uvm_km_free(kernel_map, va, endva - va);
}
} else {
panic("_i386_memio_unmap: bad bus space tag");
}
if (adrp != NULL) {
*adrp = bpa;
}
}
void
i386_memio_unmap(t, bsh, size)
bus_space_tag_t t;
bus_space_handle_t bsh;
bus_size_t size;
{
struct extent *ex;
u_long va, endva;
bus_addr_t bpa;
/*
* Find the correct extent and bus physical address.
*/
if (t == I386_BUS_SPACE_IO) {
ex = ioport_ex;
bpa = bsh;
} else if (t == I386_BUS_SPACE_MEM) {
ex = iomem_ex;
if (bsh >= atdevbase &&
(bsh + size) <= (atdevbase + IOM_SIZE)) {
bpa = (bus_addr_t)ISA_PHYSADDR(bsh);
goto ok;
}
va = i386_trunc_page(bsh);
endva = i386_round_page(bsh + size);
#ifdef DIAGNOSTIC
if (endva <= va)
panic("i386_memio_unmap: overflow");
#endif
(void) pmap_extract(pmap_kernel(), va, &bpa);
bpa += (bsh & PGOFSET);
/*
* Free the kernel virtual mapping.
*/
uvm_km_free(kernel_map, va, endva - va);
} else
panic("i386_memio_unmap: bad bus space tag");
ok:
if (extent_free(ex, bpa, size,
EX_NOWAIT | (ioport_malloc_safe ? EX_MALLOCOK : 0))) {
printf("i386_memio_unmap: %s 0x%lx, size 0x%lx\n",
(t == I386_BUS_SPACE_IO) ? "port" : "pa", bpa, size);
printf("i386_memio_unmap: can't free region\n");
}
}
void
i386_memio_free(t, bsh, size)
bus_space_tag_t t;
bus_space_handle_t bsh;
bus_size_t size;
{
/* i386_memio_unmap() does all that we need to do. */
i386_memio_unmap(t, bsh, size);
}
int
i386_memio_subregion(t, bsh, offset, size, nbshp)
bus_space_tag_t t;
bus_space_handle_t bsh;
bus_size_t offset, size;
bus_space_handle_t *nbshp;
{
*nbshp = bsh + offset;
return (0);
}
paddr_t
i386_memio_mmap(t, addr, off, prot, flags)
bus_space_tag_t t;
bus_addr_t addr;
off_t off;
int prot;
int flags;
{
/* Can't mmap I/O space. */
if (t == I386_BUS_SPACE_IO)
return (-1);
/*
* "addr" is the base address of the device we're mapping.
* "off" is the offset into that device.
*
* Note we are called for each "page" in the device that
* the upper layers want to map.
*/
return (i386_btop(addr + off));
}
/*
* Common function for DMA map creation. May be called by bus-specific
* DMA map creation functions.
*/
int
_bus_dmamap_create(t, size, nsegments, maxsegsz, boundary, flags, dmamp)
bus_dma_tag_t t;
bus_size_t size;
int nsegments;
bus_size_t maxsegsz;
bus_size_t boundary;
int flags;
bus_dmamap_t *dmamp;
{
struct i386_bus_dmamap *map;
void *mapstore;
size_t mapsize;
/*
* Allocate and initialize the DMA map. The end of the map
* is a variable-sized array of segments, so we allocate enough
* room for them in one shot.
*
* Note we don't preserve the WAITOK or NOWAIT flags. Preservation
* of ALLOCNOW notifies others that we've reserved these resources,
* and they are not to be freed.
*
* The bus_dmamap_t includes one bus_dma_segment_t, hence
* the (nsegments - 1).
*/
mapsize = sizeof(struct i386_bus_dmamap) +
(sizeof(bus_dma_segment_t) * (nsegments - 1));
if ((mapstore = malloc(mapsize, M_DMAMAP,
(flags & BUS_DMA_NOWAIT) ? M_NOWAIT : M_WAITOK)) == NULL)
return (ENOMEM);
memset(mapstore, 0, mapsize);
map = (struct i386_bus_dmamap *)mapstore;
map->_dm_size = size;
map->_dm_segcnt = nsegments;
map->_dm_maxsegsz = maxsegsz;
map->_dm_boundary = boundary;
map->_dm_bounce_thresh = t->_bounce_thresh;
map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
map->dm_mapsize = 0; /* no valid mappings */
map->dm_nsegs = 0;
*dmamp = map;
return (0);
}
/*
* Common function for DMA map destruction. May be called by bus-specific
* DMA map destruction functions.
*/
void
_bus_dmamap_destroy(t, map)
bus_dma_tag_t t;
bus_dmamap_t map;
{
free(map, M_DMAMAP);
}
/*
* Common function for loading a DMA map with a linear buffer. May
* be called by bus-specific DMA map load functions.
*/
int
_bus_dmamap_load(t, map, buf, buflen, p, flags)
bus_dma_tag_t t;
bus_dmamap_t map;
void *buf;
bus_size_t buflen;
struct proc *p;
int flags;
{
paddr_t lastaddr;
int seg, error;
/*
* Make sure that on error condition we return "no valid mappings".
*/
map->dm_mapsize = 0;
map->dm_nsegs = 0;
if (buflen > map->_dm_size)
return (EINVAL);
seg = 0;
error = _bus_dmamap_load_buffer(t, map, buf, buflen, p, flags,
&lastaddr, &seg, 1);
if (error == 0) {
map->dm_mapsize = buflen;
map->dm_nsegs = seg + 1;
}
return (error);
}
/*
* Like _bus_dmamap_load(), but for mbufs.
*/
int
_bus_dmamap_load_mbuf(t, map, m0, flags)
bus_dma_tag_t t;
bus_dmamap_t map;
struct mbuf *m0;
int flags;
{
paddr_t lastaddr;
int seg, error, first;
struct mbuf *m;
/*
* Make sure that on error condition we return "no valid mappings."
*/
map->dm_mapsize = 0;
map->dm_nsegs = 0;
#ifdef DIAGNOSTIC
if ((m0->m_flags & M_PKTHDR) == 0)
panic("_bus_dmamap_load_mbuf: no packet header");
#endif
if (m0->m_pkthdr.len > map->_dm_size)
return (EINVAL);
first = 1;
seg = 0;
error = 0;
for (m = m0; m != NULL && error == 0; m = m->m_next) {
error = _bus_dmamap_load_buffer(t, map, m->m_data, m->m_len,
NULL, flags, &lastaddr, &seg, first);
first = 0;
}
if (error == 0) {
map->dm_mapsize = m0->m_pkthdr.len;
map->dm_nsegs = seg + 1;
}
return (error);
}
/*
* Like _bus_dmamap_load(), but for uios.
*/
int
_bus_dmamap_load_uio(t, map, uio, flags)
bus_dma_tag_t t;
bus_dmamap_t map;
struct uio *uio;
int flags;
{
paddr_t lastaddr;
int seg, i, error, first;
bus_size_t minlen, resid;
struct proc *p = NULL;
struct iovec *iov;
caddr_t addr;
/*
* Make sure that on error condition we return "no valid mappings."
*/
map->dm_mapsize = 0;
map->dm_nsegs = 0;
resid = uio->uio_resid;
iov = uio->uio_iov;
if (uio->uio_segflg == UIO_USERSPACE) {
p = uio->uio_procp;
#ifdef DIAGNOSTIC
if (p == NULL)
panic("_bus_dmamap_load_uio: USERSPACE but no proc");
#endif
}
first = 1;
seg = 0;
error = 0;
for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
/*
* Now at the first iovec to load. Load each iovec
* until we have exhausted the residual count.
*/
minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
addr = (caddr_t)iov[i].iov_base;
error = _bus_dmamap_load_buffer(t, map, addr, minlen,
p, flags, &lastaddr, &seg, first);
first = 0;
resid -= minlen;
}
if (error == 0) {
map->dm_mapsize = uio->uio_resid;
map->dm_nsegs = seg + 1;
}
return (error);
}
/*
* Like _bus_dmamap_load(), but for raw memory allocated with
* bus_dmamem_alloc().
*/
int
_bus_dmamap_load_raw(t, map, segs, nsegs, size, flags)
bus_dma_tag_t t;
bus_dmamap_t map;
bus_dma_segment_t *segs;
int nsegs;
bus_size_t size;
int flags;
{
panic("_bus_dmamap_load_raw: not implemented");
}
/*
* Common function for unloading a DMA map. May be called by
* bus-specific DMA map unload functions.
*/
void
_bus_dmamap_unload(t, map)
bus_dma_tag_t t;
bus_dmamap_t map;
{
/*
* No resources to free; just mark the mappings as
* invalid.
*/
map->dm_mapsize = 0;
map->dm_nsegs = 0;
}
/*
* Common function for DMA map synchronization. May be called
* by bus-specific DMA map synchronization functions.
*/
void
_bus_dmamap_sync(t, map, offset, len, ops)
bus_dma_tag_t t;
bus_dmamap_t map;
bus_addr_t offset;
bus_size_t len;
int ops;
{
/* Nothing to do here. */
}
/*
* Common function for DMA-safe memory allocation. May be called
* by bus-specific DMA memory allocation functions.
*/
int
_bus_dmamem_alloc(t, size, alignment, boundary, segs, nsegs, rsegs, flags)
bus_dma_tag_t t;
bus_size_t size, alignment, boundary;
bus_dma_segment_t *segs;
int nsegs;
int *rsegs;
int flags;
{
extern paddr_t avail_end;
return (_bus_dmamem_alloc_range(t, size, alignment, boundary,
segs, nsegs, rsegs, flags, 0, trunc_page(avail_end)));
}
/*
* Common function for freeing DMA-safe memory. May be called by
* bus-specific DMA memory free functions.
*/
void
_bus_dmamem_free(t, segs, nsegs)
bus_dma_tag_t t;
bus_dma_segment_t *segs;
int nsegs;
{
struct vm_page *m;
bus_addr_t addr;
struct pglist mlist;
int curseg;
/*
* Build a list of pages to free back to the VM system.
*/
TAILQ_INIT(&mlist);
for (curseg = 0; curseg < nsegs; curseg++) {
for (addr = segs[curseg].ds_addr;
addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
addr += PAGE_SIZE) {
m = PHYS_TO_VM_PAGE(addr);
TAILQ_INSERT_TAIL(&mlist, m, pageq);
}
}
uvm_pglistfree(&mlist);
}
/*
* Common function for mapping DMA-safe memory. May be called by
* bus-specific DMA memory map functions.
*/
int
_bus_dmamem_map(t, segs, nsegs, size, kvap, flags)
bus_dma_tag_t t;
bus_dma_segment_t *segs;
int nsegs;
size_t size;
caddr_t *kvap;
int flags;
{
vaddr_t va;
bus_addr_t addr;
int curseg;
size = round_page(size);
va = uvm_km_valloc(kernel_map, size);
if (va == 0)
return (ENOMEM);
*kvap = (caddr_t)va;
for (curseg = 0; curseg < nsegs; curseg++) {
for (addr = segs[curseg].ds_addr;
addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
addr += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
if (size == 0)
panic("_bus_dmamem_map: size botch");
pmap_enter(pmap_kernel(), va, addr,
VM_PROT_READ | VM_PROT_WRITE,
PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
}
}
pmap_update(pmap_kernel());
return (0);
}
/*
* Common function for unmapping DMA-safe memory. May be called by
* bus-specific DMA memory unmapping functions.
*/
void
_bus_dmamem_unmap(t, kva, size)
bus_dma_tag_t t;
caddr_t kva;
size_t size;
{
#ifdef DIAGNOSTIC
if ((u_long)kva & PGOFSET)
panic("_bus_dmamem_unmap");
#endif
size = round_page(size);
uvm_km_free(kernel_map, (vaddr_t)kva, size);
}
/*
* Common functin for mmap(2)'ing DMA-safe memory. May be called by
* bus-specific DMA mmap(2)'ing functions.
*/
paddr_t
_bus_dmamem_mmap(t, segs, nsegs, off, prot, flags)
bus_dma_tag_t t;
bus_dma_segment_t *segs;
int nsegs;
off_t off;
int prot, flags;
{
int i;
for (i = 0; i < nsegs; i++) {
#ifdef DIAGNOSTIC
if (off & PGOFSET)
panic("_bus_dmamem_mmap: offset unaligned");
if (segs[i].ds_addr & PGOFSET)
panic("_bus_dmamem_mmap: segment unaligned");
if (segs[i].ds_len & PGOFSET)
panic("_bus_dmamem_mmap: segment size not multiple"
" of page size");
#endif
if (off >= segs[i].ds_len) {
off -= segs[i].ds_len;
continue;
}
return (i386_btop((caddr_t)segs[i].ds_addr + off));
}
/* Page not found. */
return (-1);
}
/**********************************************************************
* DMA utility functions
**********************************************************************/
/*
* Utility function to load a linear buffer. lastaddrp holds state
* between invocations (for multiple-buffer loads). segp contains
* the starting segment on entrace, and the ending segment on exit.
* first indicates if this is the first invocation of this function.
*/
int
_bus_dmamap_load_buffer(t, map, buf, buflen, p, flags, lastaddrp, segp, first)
bus_dma_tag_t t;
bus_dmamap_t map;
void *buf;
bus_size_t buflen;
struct proc *p;
int flags;
paddr_t *lastaddrp;
int *segp;
int first;
{
bus_size_t sgsize;
bus_addr_t curaddr, lastaddr, baddr, bmask;
vaddr_t vaddr = (vaddr_t)buf;
int seg;
pmap_t pmap;
if (p != NULL)
pmap = p->p_vmspace->vm_map.pmap;
else
pmap = pmap_kernel();
lastaddr = *lastaddrp;
bmask = ~(map->_dm_boundary - 1);
for (seg = *segp; buflen > 0 ; ) {
/*
* Get the physical address for this segment.
*/
(void) pmap_extract(pmap, vaddr, &curaddr);
/*
* If we're beyond the bounce threshold, notify
* the caller.
*/
if (map->_dm_bounce_thresh != 0 &&
curaddr >= map->_dm_bounce_thresh)
return (EINVAL);
/*
* Compute the segment size, and adjust counts.
*/
sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
if (buflen < sgsize)
sgsize = buflen;
/*
* Make sure we don't cross any boundaries.
*/
if (map->_dm_boundary > 0) {
baddr = (curaddr + map->_dm_boundary) & bmask;
if (sgsize > (baddr - curaddr))
sgsize = (baddr - curaddr);
}
/*
* Insert chunk into a segment, coalescing with
* previous segment if possible.
*/
if (first) {
map->dm_segs[seg].ds_addr = curaddr;
map->dm_segs[seg].ds_len = sgsize;
first = 0;
} else {
if (curaddr == lastaddr &&
(map->dm_segs[seg].ds_len + sgsize) <=
map->_dm_maxsegsz &&
(map->_dm_boundary == 0 ||
(map->dm_segs[seg].ds_addr & bmask) ==
(curaddr & bmask)))
map->dm_segs[seg].ds_len += sgsize;
else {
if (++seg >= map->_dm_segcnt)
break;
map->dm_segs[seg].ds_addr = curaddr;
map->dm_segs[seg].ds_len = sgsize;
}
}
lastaddr = curaddr + sgsize;
vaddr += sgsize;
buflen -= sgsize;
}
*segp = seg;
*lastaddrp = lastaddr;
/*
* Did we fit?
*/
if (buflen != 0)
return (EFBIG); /* XXX better return value here? */
return (0);
}
/*
* Allocate physical memory from the given physical address range.
* Called by DMA-safe memory allocation methods.
*/
int
_bus_dmamem_alloc_range(t, size, alignment, boundary, segs, nsegs, rsegs,
flags, low, high)
bus_dma_tag_t t;
bus_size_t size, alignment, boundary;
bus_dma_segment_t *segs;
int nsegs;
int *rsegs;
int flags;
paddr_t low;
paddr_t high;
{
paddr_t curaddr, lastaddr;
struct vm_page *m;
struct pglist mlist;
int curseg, error;
/* Always round the size. */
size = round_page(size);
/*
* Allocate pages from the VM system.
*/
TAILQ_INIT(&mlist);
error = uvm_pglistalloc(size, low, high, alignment, boundary,
&mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
if (error)
return (error);
/*
* Compute the location, size, and number of segments actually
* returned by the VM code.
*/
m = mlist.tqh_first;
curseg = 0;
lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
segs[curseg].ds_len = PAGE_SIZE;
m = m->pageq.tqe_next;
for (; m != NULL; m = m->pageq.tqe_next) {
curaddr = VM_PAGE_TO_PHYS(m);
#ifdef DIAGNOSTIC
if (curaddr < low || curaddr >= high) {
printf("vm_page_alloc_memory returned non-sensical"
" address 0x%lx\n", curaddr);
panic("_bus_dmamem_alloc_range");
}
#endif
if (curaddr == (lastaddr + PAGE_SIZE))
segs[curseg].ds_len += PAGE_SIZE;
else {
curseg++;
segs[curseg].ds_addr = curaddr;
segs[curseg].ds_len = PAGE_SIZE;
}
lastaddr = curaddr;
}
*rsegs = curseg + 1;
return (0);
}