NetBSD/sys/netinet/udp_usrreq.c
itojun 91498ffec5 implement IPV6_V6ONLY socket option from draft-ietf-ipngwg-rfc2553bis-03.txt.
IPV6_BINDV6ONLY (netbsd only) is deprecated, but still work just like before.
2001-10-15 09:51:15 +00:00

1478 lines
36 KiB
C

/* $NetBSD: udp_usrreq.c,v 1.85 2001/10/15 09:51:15 itojun Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95
*/
#include "opt_inet.h"
#include "opt_ipsec.h"
#include "opt_inet_csum.h"
#include "opt_ipkdb.h"
#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/errno.h>
#include <sys/stat.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/domain.h>
#include <uvm/uvm_extern.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/ip_var.h>
#include <netinet/ip_icmp.h>
#include <netinet/udp.h>
#include <netinet/udp_var.h>
#ifdef INET6
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#include <netinet6/ip6_var.h>
#include <netinet6/in6_pcb.h>
#include <netinet6/udp6_var.h>
#endif
#ifdef PULLDOWN_TEST
#ifndef INET6
/* always need ip6.h for IP6_EXTHDR_GET */
#include <netinet/ip6.h>
#endif
#endif
#include "faith.h"
#if defined(NFAITH) && NFAITH > 0
#include <net/if_faith.h>
#endif
#include <machine/stdarg.h>
#ifdef IPSEC
#include <netinet6/ipsec.h>
#include <netkey/key.h>
#endif /*IPSEC*/
#ifdef IPKDB
#include <ipkdb/ipkdb.h>
#endif
/*
* UDP protocol implementation.
* Per RFC 768, August, 1980.
*/
#ifndef COMPAT_42
int udpcksum = 1;
#else
int udpcksum = 0; /* XXX */
#endif
#ifdef INET
static void udp4_sendup __P((struct mbuf *, int, struct sockaddr *,
struct socket *));
static int udp4_realinput __P((struct sockaddr_in *, struct sockaddr_in *,
struct mbuf *, int));
#endif
#ifdef INET6
static void udp6_sendup __P((struct mbuf *, int, struct sockaddr *,
struct socket *));
static int in6_mcmatch __P((struct in6pcb *, struct in6_addr *,
struct ifnet *));
static int udp6_realinput __P((int, struct sockaddr_in6 *,
struct sockaddr_in6 *, struct mbuf *, int));
#endif
#ifdef INET
static void udp_notify __P((struct inpcb *, int));
#endif
#ifndef UDBHASHSIZE
#define UDBHASHSIZE 128
#endif
int udbhashsize = UDBHASHSIZE;
#ifdef UDP_CSUM_COUNTERS
#include <sys/device.h>
struct evcnt udp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "udp", "hwcsum bad");
struct evcnt udp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "udp", "hwcsum ok");
struct evcnt udp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "udp", "hwcsum data");
struct evcnt udp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "udp", "swcsum");
#define UDP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
#else
#define UDP_CSUM_COUNTER_INCR(ev) /* nothing */
#endif /* UDP_CSUM_COUNTERS */
void
udp_init()
{
#ifdef INET
in_pcbinit(&udbtable, udbhashsize, udbhashsize);
#endif
#ifdef UDP_CSUM_COUNTERS
evcnt_attach_static(&udp_hwcsum_bad);
evcnt_attach_static(&udp_hwcsum_ok);
evcnt_attach_static(&udp_hwcsum_data);
evcnt_attach_static(&udp_swcsum);
#endif /* UDP_CSUM_COUNTERS */
}
#ifndef UDP6
#ifdef INET
void
#if __STDC__
udp_input(struct mbuf *m, ...)
#else
udp_input(m, va_alist)
struct mbuf *m;
va_dcl
#endif
{
va_list ap;
struct sockaddr_in src, dst;
struct ip *ip;
struct udphdr *uh;
int iphlen, proto;
int len;
int n;
va_start(ap, m);
iphlen = va_arg(ap, int);
proto = va_arg(ap, int);
va_end(ap);
udpstat.udps_ipackets++;
#ifndef PULLDOWN_TEST
/*
* Strip IP options, if any; should skip this,
* make available to user, and use on returned packets,
* but we don't yet have a way to check the checksum
* with options still present.
*/
if (iphlen > sizeof (struct ip)) {
ip_stripoptions(m, (struct mbuf *)0);
iphlen = sizeof(struct ip);
}
#else
/*
* we may enable the above code if we save and pass IPv4 options
* to the userland.
*/
#endif
/*
* Get IP and UDP header together in first mbuf.
*/
ip = mtod(m, struct ip *);
#ifndef PULLDOWN_TEST
if (m->m_len < iphlen + sizeof(struct udphdr)) {
if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == 0) {
udpstat.udps_hdrops++;
return;
}
ip = mtod(m, struct ip *);
}
uh = (struct udphdr *)((caddr_t)ip + iphlen);
#else
IP6_EXTHDR_GET(uh, struct udphdr *, m, iphlen, sizeof(struct udphdr));
if (uh == NULL) {
udpstat.udps_hdrops++;
return;
}
#endif
/* destination port of 0 is illegal, based on RFC768. */
if (uh->uh_dport == 0)
goto bad;
/*
* Make mbuf data length reflect UDP length.
* If not enough data to reflect UDP length, drop.
*/
len = ntohs((u_int16_t)uh->uh_ulen);
if (ip->ip_len != iphlen + len) {
if (ip->ip_len < iphlen + len || len < sizeof(struct udphdr)) {
udpstat.udps_badlen++;
goto bad;
}
m_adj(m, iphlen + len - ip->ip_len);
}
/*
* Checksum extended UDP header and data.
*/
if (uh->uh_sum) {
switch (m->m_pkthdr.csum_flags &
((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_UDPv4) |
M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
case M_CSUM_UDPv4|M_CSUM_TCP_UDP_BAD:
UDP_CSUM_COUNTER_INCR(&udp_hwcsum_bad);
goto badcsum;
case M_CSUM_UDPv4|M_CSUM_DATA:
UDP_CSUM_COUNTER_INCR(&udp_hwcsum_data);
if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
goto badcsum;
break;
case M_CSUM_UDPv4:
/* Checksum was okay. */
UDP_CSUM_COUNTER_INCR(&udp_hwcsum_ok);
break;
default:
/* Need to compute it ourselves. */
UDP_CSUM_COUNTER_INCR(&udp_swcsum);
if (in4_cksum(m, IPPROTO_UDP, iphlen, len) != 0)
goto badcsum;
break;
}
}
/* construct source and dst sockaddrs. */
bzero(&src, sizeof(src));
src.sin_family = AF_INET;
src.sin_len = sizeof(struct sockaddr_in);
bcopy(&ip->ip_src, &src.sin_addr, sizeof(src.sin_addr));
src.sin_port = uh->uh_sport;
bzero(&dst, sizeof(dst));
dst.sin_family = AF_INET;
dst.sin_len = sizeof(struct sockaddr_in);
bcopy(&ip->ip_dst, &dst.sin_addr, sizeof(dst.sin_addr));
dst.sin_port = uh->uh_dport;
n = udp4_realinput(&src, &dst, m, iphlen);
#ifdef INET6
if (IN_MULTICAST(ip->ip_dst.s_addr) || n == 0) {
struct sockaddr_in6 src6, dst6;
bzero(&src6, sizeof(src6));
src6.sin6_family = AF_INET6;
src6.sin6_len = sizeof(struct sockaddr_in6);
src6.sin6_addr.s6_addr[10] = src6.sin6_addr.s6_addr[11] = 0xff;
bcopy(&ip->ip_src, &src6.sin6_addr.s6_addr[12],
sizeof(ip->ip_src));
src6.sin6_port = uh->uh_sport;
bzero(&dst6, sizeof(dst6));
dst6.sin6_family = AF_INET6;
dst6.sin6_len = sizeof(struct sockaddr_in6);
dst6.sin6_addr.s6_addr[10] = dst6.sin6_addr.s6_addr[11] = 0xff;
bcopy(&ip->ip_dst, &dst6.sin6_addr.s6_addr[12],
sizeof(ip->ip_dst));
dst6.sin6_port = uh->uh_dport;
n += udp6_realinput(AF_INET, &src6, &dst6, m, iphlen);
}
#endif
if (n == 0) {
if (m->m_flags & (M_BCAST | M_MCAST)) {
udpstat.udps_noportbcast++;
goto bad;
}
udpstat.udps_noport++;
#ifdef IPKDB
if (checkipkdb(&ip->ip_src, uh->uh_sport, uh->uh_dport,
m, iphlen + sizeof(struct udphdr),
m->m_pkthdr.len - iphlen - sizeof(struct udphdr))) {
/*
* It was a debugger connect packet,
* just drop it now
*/
goto bad;
}
#endif
icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
m = NULL;
}
bad:
if (m)
m_freem(m);
return;
badcsum:
m_freem(m);
udpstat.udps_badsum++;
}
#endif
#ifdef INET6
int
udp6_input(mp, offp, proto)
struct mbuf **mp;
int *offp, proto;
{
struct mbuf *m = *mp;
int off = *offp;
struct sockaddr_in6 src, dst;
struct ip6_hdr *ip6;
struct udphdr *uh;
u_int32_t plen, ulen;
#ifndef PULLDOWN_TEST
IP6_EXTHDR_CHECK(m, off, sizeof(struct udphdr), IPPROTO_DONE);
#endif
ip6 = mtod(m, struct ip6_hdr *);
#if defined(NFAITH) && 0 < NFAITH
if (faithprefix(&ip6->ip6_dst)) {
/* send icmp6 host unreach? */
m_freem(m);
return IPPROTO_DONE;
}
#endif
udp6stat.udp6s_ipackets++;
/* check for jumbogram is done in ip6_input. we can trust pkthdr.len */
plen = m->m_pkthdr.len - off;
#ifndef PULLDOWN_TEST
uh = (struct udphdr *)((caddr_t)ip6 + off);
#else
IP6_EXTHDR_GET(uh, struct udphdr *, m, off, sizeof(struct udphdr));
if (uh == NULL) {
ip6stat.ip6s_tooshort++;
return IPPROTO_DONE;
}
#endif
ulen = ntohs((u_short)uh->uh_ulen);
/*
* RFC2675 section 4: jumbograms will have 0 in the UDP header field,
* iff payload length > 0xffff.
*/
if (ulen == 0 && plen > 0xffff)
ulen = plen;
if (plen != ulen) {
udp6stat.udp6s_badlen++;
goto bad;
}
/* destination port of 0 is illegal, based on RFC768. */
if (uh->uh_dport == 0)
goto bad;
/* Be proactive about malicious use of IPv4 mapped address */
if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
/* XXX stat */
goto bad;
}
/*
* Checksum extended UDP header and data.
*/
if (uh->uh_sum == 0)
udp6stat.udp6s_nosum++;
else if (in6_cksum(m, IPPROTO_UDP, off, ulen) != 0) {
udp6stat.udp6s_badsum++;
goto bad;
}
/*
* Construct source and dst sockaddrs.
* Note that ifindex (s6_addr16[1]) is already filled.
*/
bzero(&src, sizeof(src));
src.sin6_family = AF_INET6;
src.sin6_len = sizeof(struct sockaddr_in6);
/* KAME hack: recover scopeid */
(void)in6_recoverscope(&src, &ip6->ip6_src, m->m_pkthdr.rcvif);
src.sin6_port = uh->uh_sport;
bzero(&dst, sizeof(dst));
dst.sin6_family = AF_INET6;
dst.sin6_len = sizeof(struct sockaddr_in6);
/* KAME hack: recover scopeid */
(void)in6_recoverscope(&dst, &ip6->ip6_dst, m->m_pkthdr.rcvif);
dst.sin6_port = uh->uh_dport;
if (udp6_realinput(AF_INET6, &src, &dst, m, off) == 0) {
if (m->m_flags & M_MCAST) {
udp6stat.udp6s_noportmcast++;
goto bad;
}
udp6stat.udp6s_noport++;
icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_NOPORT, 0);
m = NULL;
}
bad:
if (m)
m_freem(m);
return IPPROTO_DONE;
}
#endif
#ifdef INET
static void
udp4_sendup(m, off, src, so)
struct mbuf *m;
int off; /* offset of data portion */
struct sockaddr *src;
struct socket *so;
{
struct mbuf *opts = NULL;
struct mbuf *n;
struct inpcb *inp = NULL;
#ifdef INET6
struct in6pcb *in6p = NULL;
#endif
if (!so)
return;
switch (so->so_proto->pr_domain->dom_family) {
case AF_INET:
inp = sotoinpcb(so);
break;
#ifdef INET6
case AF_INET6:
in6p = sotoin6pcb(so);
break;
#endif
default:
return;
}
#ifdef IPSEC
/* check AH/ESP integrity. */
if (so != NULL && ipsec4_in_reject_so(m, so)) {
ipsecstat.in_polvio++;
return;
}
#endif /*IPSEC*/
if ((n = m_copy(m, 0, M_COPYALL)) != NULL) {
if (inp && (inp->inp_flags & INP_CONTROLOPTS
|| so->so_options & SO_TIMESTAMP)) {
struct ip *ip = mtod(n, struct ip *);
ip_savecontrol(inp, &opts, ip, n);
}
m_adj(n, off);
if (sbappendaddr(&so->so_rcv, src, n,
opts) == 0) {
m_freem(n);
if (opts)
m_freem(opts);
udpstat.udps_fullsock++;
} else
sorwakeup(so);
}
}
#endif
#ifdef INET6
static void
udp6_sendup(m, off, src, so)
struct mbuf *m;
int off; /* offset of data portion */
struct sockaddr *src;
struct socket *so;
{
struct mbuf *opts = NULL;
struct mbuf *n;
struct in6pcb *in6p = NULL;
if (!so)
return;
if (so->so_proto->pr_domain->dom_family != AF_INET6)
return;
in6p = sotoin6pcb(so);
#ifdef IPSEC
/* check AH/ESP integrity. */
if (so != NULL && ipsec6_in_reject_so(m, so)) {
ipsec6stat.in_polvio++;
return;
}
#endif /*IPSEC*/
if ((n = m_copy(m, 0, M_COPYALL)) != NULL) {
if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS
|| in6p->in6p_socket->so_options & SO_TIMESTAMP)) {
struct ip6_hdr *ip6 = mtod(n, struct ip6_hdr *);
ip6_savecontrol(in6p, &opts, ip6, n);
}
m_adj(n, off);
if (sbappendaddr(&so->so_rcv, src, n, opts) == 0) {
m_freem(n);
if (opts)
m_freem(opts);
udp6stat.udp6s_fullsock++;
} else
sorwakeup(so);
}
}
#endif
#ifdef INET
static int
udp4_realinput(src, dst, m, off)
struct sockaddr_in *src;
struct sockaddr_in *dst;
struct mbuf *m;
int off; /* offset of udphdr */
{
u_int16_t *sport, *dport;
int rcvcnt;
struct in_addr *src4, *dst4;
struct inpcb *inp;
rcvcnt = 0;
off += sizeof(struct udphdr); /* now, offset of payload */
if (src->sin_family != AF_INET || dst->sin_family != AF_INET)
goto bad;
src4 = &src->sin_addr;
sport = &src->sin_port;
dst4 = &dst->sin_addr;
dport = &dst->sin_port;
if (IN_MULTICAST(dst4->s_addr) ||
in_broadcast(*dst4, m->m_pkthdr.rcvif)) {
struct inpcb *last;
/*
* Deliver a multicast or broadcast datagram to *all* sockets
* for which the local and remote addresses and ports match
* those of the incoming datagram. This allows more than
* one process to receive multi/broadcasts on the same port.
* (This really ought to be done for unicast datagrams as
* well, but that would cause problems with existing
* applications that open both address-specific sockets and
* a wildcard socket listening to the same port -- they would
* end up receiving duplicates of every unicast datagram.
* Those applications open the multiple sockets to overcome an
* inadequacy of the UDP socket interface, but for backwards
* compatibility we avoid the problem here rather than
* fixing the interface. Maybe 4.5BSD will remedy this?)
*/
/*
* KAME note: usually we drop udpiphdr from mbuf here.
* we need udpiphdr for IPsec processing so we do that later.
*/
/*
* Locate pcb(s) for datagram.
*/
for (inp = udbtable.inpt_queue.cqh_first;
inp != (struct inpcb *)&udbtable.inpt_queue;
inp = inp->inp_queue.cqe_next) {
if (inp->inp_lport != *dport)
continue;
if (!in_nullhost(inp->inp_laddr)) {
if (!in_hosteq(inp->inp_laddr, *dst4))
continue;
}
if (!in_nullhost(inp->inp_faddr)) {
if (!in_hosteq(inp->inp_faddr, *src4) ||
inp->inp_fport != *sport)
continue;
}
last = inp;
udp4_sendup(m, off, (struct sockaddr *)src,
inp->inp_socket);
rcvcnt++;
/*
* Don't look for additional matches if this one does
* not have either the SO_REUSEPORT or SO_REUSEADDR
* socket options set. This heuristic avoids searching
* through all pcbs in the common case of a non-shared
* port. It assumes that an application will never
* clear these options after setting them.
*/
if ((inp->inp_socket->so_options &
(SO_REUSEPORT|SO_REUSEADDR)) == 0)
break;
}
} else {
/*
* Locate pcb for datagram.
*/
inp = in_pcblookup_connect(&udbtable, *src4, *sport, *dst4, *dport);
if (inp == 0) {
++udpstat.udps_pcbhashmiss;
inp = in_pcblookup_bind(&udbtable, *dst4, *dport);
if (inp == 0)
return rcvcnt;
}
udp4_sendup(m, off, (struct sockaddr *)src, inp->inp_socket);
rcvcnt++;
}
bad:
return rcvcnt;
}
#endif
#ifdef INET6
static int
in6_mcmatch(in6p, ia6, ifp)
struct in6pcb *in6p;
struct in6_addr *ia6;
struct ifnet *ifp;
{
struct ip6_moptions *im6o = in6p->in6p_moptions;
struct in6_multi_mship *imm;
if (im6o == NULL)
return 0;
for (imm = im6o->im6o_memberships.lh_first; imm != NULL;
imm = imm->i6mm_chain.le_next) {
if ((ifp == NULL ||
imm->i6mm_maddr->in6m_ifp == ifp) &&
IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
ia6))
return 1;
}
return 0;
}
static int
udp6_realinput(af, src, dst, m, off)
int af; /* af on packet */
struct sockaddr_in6 *src;
struct sockaddr_in6 *dst;
struct mbuf *m;
int off; /* offset of udphdr */
{
u_int16_t sport, dport;
int rcvcnt;
struct in6_addr src6, dst6;
const struct in_addr *dst4;
struct in6pcb *in6p;
rcvcnt = 0;
off += sizeof(struct udphdr); /* now, offset of payload */
if (af != AF_INET && af != AF_INET6)
goto bad;
if (src->sin6_family != AF_INET6 || dst->sin6_family != AF_INET6)
goto bad;
in6_embedscope(&src6, src, NULL, NULL);
sport = src->sin6_port;
in6_embedscope(&dst6, dst, NULL, NULL);
dport = dst->sin6_port;
dst4 = (struct in_addr *)&dst->sin6_addr.s6_addr32[12];
if (IN6_IS_ADDR_MULTICAST(&dst6) ||
(af == AF_INET && IN_MULTICAST(dst4->s_addr))) {
struct in6pcb *last;
/*
* Deliver a multicast or broadcast datagram to *all* sockets
* for which the local and remote addresses and ports match
* those of the incoming datagram. This allows more than
* one process to receive multi/broadcasts on the same port.
* (This really ought to be done for unicast datagrams as
* well, but that would cause problems with existing
* applications that open both address-specific sockets and
* a wildcard socket listening to the same port -- they would
* end up receiving duplicates of every unicast datagram.
* Those applications open the multiple sockets to overcome an
* inadequacy of the UDP socket interface, but for backwards
* compatibility we avoid the problem here rather than
* fixing the interface. Maybe 4.5BSD will remedy this?)
*/
/*
* KAME note: usually we drop udpiphdr from mbuf here.
* we need udpiphdr for IPsec processing so we do that later.
*/
/*
* Locate pcb(s) for datagram.
*/
for (in6p = udb6.in6p_next; in6p != &udb6;
in6p = in6p->in6p_next) {
if (in6p->in6p_lport != dport)
continue;
if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_laddr, &dst6) &&
!in6_mcmatch(in6p, &dst6, m->m_pkthdr.rcvif))
continue;
}
else {
if (IN6_IS_ADDR_V4MAPPED(&dst6) &&
(in6p->in6p_flags & IN6P_IPV6_V6ONLY))
continue;
}
if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_faddr,
&src6) || in6p->in6p_fport != sport)
continue;
}
else {
if (IN6_IS_ADDR_V4MAPPED(&src6) &&
(in6p->in6p_flags & IN6P_IPV6_V6ONLY))
continue;
}
last = in6p;
udp6_sendup(m, off, (struct sockaddr *)src,
in6p->in6p_socket);
rcvcnt++;
/*
* Don't look for additional matches if this one does
* not have either the SO_REUSEPORT or SO_REUSEADDR
* socket options set. This heuristic avoids searching
* through all pcbs in the common case of a non-shared
* port. It assumes that an application will never
* clear these options after setting them.
*/
if ((in6p->in6p_socket->so_options &
(SO_REUSEPORT|SO_REUSEADDR)) == 0)
break;
}
} else {
/*
* Locate pcb for datagram.
*/
in6p = in6_pcblookup_connect(&udb6, &src6, sport,
&dst6, dport, 0);
if (in6p == 0) {
++udpstat.udps_pcbhashmiss;
in6p = in6_pcblookup_bind(&udb6, &dst6, dport, 0);
if (in6p == 0)
return rcvcnt;
}
udp6_sendup(m, off, (struct sockaddr *)src, in6p->in6p_socket);
rcvcnt++;
}
bad:
return rcvcnt;
}
#endif
#else /*UDP6*/
void
#if __STDC__
udp_input(struct mbuf *m, ...)
#else
udp_input(m, va_alist)
struct mbuf *m;
va_dcl
#endif
{
int proto;
struct ip *ip;
struct udphdr *uh;
struct inpcb *inp;
struct mbuf *opts = 0;
int len;
struct ip save_ip;
int iphlen;
va_list ap;
struct sockaddr_in udpsrc;
struct sockaddr *sa;
va_start(ap, m);
iphlen = va_arg(ap, int);
proto = va_arg(ap, int);
va_end(ap);
udpstat.udps_ipackets++;
/*
* Strip IP options, if any; should skip this,
* make available to user, and use on returned packets,
* but we don't yet have a way to check the checksum
* with options still present.
*/
if (iphlen > sizeof (struct ip)) {
ip_stripoptions(m, (struct mbuf *)0);
iphlen = sizeof(struct ip);
}
/*
* Get IP and UDP header together in first mbuf.
*/
ip = mtod(m, struct ip *);
if (m->m_len < iphlen + sizeof(struct udphdr)) {
if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == 0) {
udpstat.udps_hdrops++;
return;
}
ip = mtod(m, struct ip *);
}
uh = (struct udphdr *)((caddr_t)ip + iphlen);
/* destination port of 0 is illegal, based on RFC768. */
if (uh->uh_dport == 0)
goto bad;
/*
* Make mbuf data length reflect UDP length.
* If not enough data to reflect UDP length, drop.
*/
len = ntohs((u_int16_t)uh->uh_ulen);
if (ip->ip_len != iphlen + len) {
if (ip->ip_len < iphlen + len || len < sizeof(struct udphdr)) {
udpstat.udps_badlen++;
goto bad;
}
m_adj(m, iphlen + len - ip->ip_len);
}
/*
* Save a copy of the IP header in case we want restore it
* for sending an ICMP error message in response.
*/
save_ip = *ip;
/*
* Checksum extended UDP header and data.
*/
if (uh->uh_sum) {
switch (m->m_pkthdr.csum_flags &
((m->m_pkthdr.rcvif->if_csum_flags & M_CSUM_UDPv4) |
M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
case M_CSUM_UDPv4|M_CSUM_TCP_UDP_BAD:
UDP_CSUM_COUNTER_INCR(&udp_hwcsum_bad);
goto badcsum;
case M_CSUM_UDPv4|M_CSUM_DATA:
UDP_CSUM_COUNTER_INCR(&udp_hwcsum_data);
if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
goto badcsum;
break;
case M_CSUM_UDPv4:
/* Checksum was okay. */
UDP_CSUM_COUNTER_INCR(&udp_hwcsum_ok);
break;
default:
/* Need to compute it ourselves. */
UDP_CSUM_COUNTER_INCR(&udp_swcsum);
bzero(((struct ipovly *)ip)->ih_x1,
sizeof ((struct ipovly *)ip)->ih_x1);
((struct ipovly *)ip)->ih_len = uh->uh_ulen;
if (in_cksum(m, len + sizeof (struct ip)) != 0)
goto badcsum;
break;
}
}
/*
* Construct sockaddr format source address.
*/
udpsrc.sin_family = AF_INET;
udpsrc.sin_len = sizeof(struct sockaddr_in);
udpsrc.sin_addr = ip->ip_src;
udpsrc.sin_port = uh->uh_sport;
bzero((caddr_t)udpsrc.sin_zero, sizeof(udpsrc.sin_zero));
if (IN_MULTICAST(ip->ip_dst.s_addr) ||
in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
struct inpcb *last;
/*
* Deliver a multicast or broadcast datagram to *all* sockets
* for which the local and remote addresses and ports match
* those of the incoming datagram. This allows more than
* one process to receive multi/broadcasts on the same port.
* (This really ought to be done for unicast datagrams as
* well, but that would cause problems with existing
* applications that open both address-specific sockets and
* a wildcard socket listening to the same port -- they would
* end up receiving duplicates of every unicast datagram.
* Those applications open the multiple sockets to overcome an
* inadequacy of the UDP socket interface, but for backwards
* compatibility we avoid the problem here rather than
* fixing the interface. Maybe 4.5BSD will remedy this?)
*/
iphlen += sizeof(struct udphdr);
/*
* KAME note: usually we drop udpiphdr from mbuf here.
* we need udpiphdr for IPsec processing so we do that later.
*/
/*
* Locate pcb(s) for datagram.
* (Algorithm copied from raw_intr().)
*/
last = NULL;
for (inp = udbtable.inpt_queue.cqh_first;
inp != (struct inpcb *)&udbtable.inpt_queue;
inp = inp->inp_queue.cqe_next) {
if (inp->inp_lport != uh->uh_dport)
continue;
if (!in_nullhost(inp->inp_laddr)) {
if (!in_hosteq(inp->inp_laddr, ip->ip_dst))
continue;
}
if (!in_nullhost(inp->inp_faddr)) {
if (!in_hosteq(inp->inp_faddr, ip->ip_src) ||
inp->inp_fport != uh->uh_sport)
continue;
}
if (last != NULL) {
struct mbuf *n;
#ifdef IPSEC
/* check AH/ESP integrity. */
if (last != NULL && ipsec4_in_reject(m, last)) {
ipsecstat.in_polvio++;
/* do not inject data to pcb */
} else
#endif /*IPSEC*/
if ((n = m_copy(m, 0, M_COPYALL)) != NULL) {
if (last->inp_flags & INP_CONTROLOPTS
|| last->inp_socket->so_options &
SO_TIMESTAMP) {
ip_savecontrol(last, &opts,
ip, n);
}
m_adj(n, iphlen);
sa = (struct sockaddr *)&udpsrc;
if (sbappendaddr(
&last->inp_socket->so_rcv,
sa, n, opts) == 0) {
m_freem(n);
if (opts)
m_freem(opts);
udpstat.udps_fullsock++;
} else
sorwakeup(last->inp_socket);
opts = 0;
}
}
last = inp;
/*
* Don't look for additional matches if this one does
* not have either the SO_REUSEPORT or SO_REUSEADDR
* socket options set. This heuristic avoids searching
* through all pcbs in the common case of a non-shared
* port. It * assumes that an application will never
* clear these options after setting them.
*/
if ((last->inp_socket->so_options &
(SO_REUSEPORT|SO_REUSEADDR)) == 0)
break;
}
if (last == NULL) {
/*
* No matching pcb found; discard datagram.
* (No need to send an ICMP Port Unreachable
* for a broadcast or multicast datgram.)
*/
udpstat.udps_noportbcast++;
goto bad;
}
#ifdef IPSEC
/* check AH/ESP integrity. */
if (last != NULL && ipsec4_in_reject(m, last)) {
ipsecstat.in_polvio++;
goto bad;
}
#endif /*IPSEC*/
if (last->inp_flags & INP_CONTROLOPTS ||
last->inp_socket->so_options & SO_TIMESTAMP)
ip_savecontrol(last, &opts, ip, m);
m->m_len -= iphlen;
m->m_pkthdr.len -= iphlen;
m->m_data += iphlen;
sa = (struct sockaddr *)&udpsrc;
if (sbappendaddr(&last->inp_socket->so_rcv, sa, m, opts) == 0) {
udpstat.udps_fullsock++;
goto bad;
}
sorwakeup(last->inp_socket);
return;
}
/*
* Locate pcb for datagram.
*/
inp = in_pcblookup_connect(&udbtable, ip->ip_src, uh->uh_sport,
ip->ip_dst, uh->uh_dport);
if (inp == 0) {
++udpstat.udps_pcbhashmiss;
inp = in_pcblookup_bind(&udbtable, ip->ip_dst, uh->uh_dport);
if (inp == 0) {
if (m->m_flags & (M_BCAST | M_MCAST)) {
udpstat.udps_noportbcast++;
goto bad;
}
udpstat.udps_noport++;
*ip = save_ip;
#ifdef IPKDB
if (checkipkdb(&ip->ip_src,
uh->uh_sport,
uh->uh_dport,
m,
iphlen + sizeof(struct udphdr),
len - sizeof(struct udphdr)))
/* It was a debugger connect packet, just drop it now */
goto bad;
#endif
icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
return;
}
}
#ifdef IPSEC
if (inp != NULL && ipsec4_in_reject(m, inp)) {
ipsecstat.in_polvio++;
goto bad;
}
#endif /*IPSEC*/
/*
* Stuff source address and datagram in user buffer.
*/
if (inp->inp_flags & INP_CONTROLOPTS ||
inp->inp_socket->so_options & SO_TIMESTAMP)
ip_savecontrol(inp, &opts, ip, m);
iphlen += sizeof(struct udphdr);
m->m_len -= iphlen;
m->m_pkthdr.len -= iphlen;
m->m_data += iphlen;
sa = (struct sockaddr *)&udpsrc;
if (sbappendaddr(&inp->inp_socket->so_rcv, sa, m, opts) == 0) {
udpstat.udps_fullsock++;
goto bad;
}
sorwakeup(inp->inp_socket);
return;
bad:
m_freem(m);
if (opts)
m_freem(opts);
return;
badcsum:
udpstat.udps_badsum++;
m_freem(m);
}
#endif /*UDP6*/
#ifdef INET
/*
* Notify a udp user of an asynchronous error;
* just wake up so that he can collect error status.
*/
static void
udp_notify(inp, errno)
struct inpcb *inp;
int errno;
{
inp->inp_socket->so_error = errno;
sorwakeup(inp->inp_socket);
sowwakeup(inp->inp_socket);
}
void *
udp_ctlinput(cmd, sa, v)
int cmd;
struct sockaddr *sa;
void *v;
{
struct ip *ip = v;
struct udphdr *uh;
void (*notify) __P((struct inpcb *, int)) = udp_notify;
int errno;
if (sa->sa_family != AF_INET
|| sa->sa_len != sizeof(struct sockaddr_in))
return NULL;
if ((unsigned)cmd >= PRC_NCMDS)
return NULL;
errno = inetctlerrmap[cmd];
if (PRC_IS_REDIRECT(cmd))
notify = in_rtchange, ip = 0;
else if (cmd == PRC_HOSTDEAD)
ip = 0;
else if (errno == 0)
return NULL;
if (ip) {
uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
in_pcbnotify(&udbtable, satosin(sa)->sin_addr, uh->uh_dport,
ip->ip_src, uh->uh_sport, errno, notify);
/* XXX mapped address case */
} else
in_pcbnotifyall(&udbtable, satosin(sa)->sin_addr, errno,
notify);
return NULL;
}
int
#if __STDC__
udp_output(struct mbuf *m, ...)
#else
udp_output(m, va_alist)
struct mbuf *m;
va_dcl
#endif
{
struct inpcb *inp;
struct udpiphdr *ui;
int len = m->m_pkthdr.len;
int error = 0;
va_list ap;
va_start(ap, m);
inp = va_arg(ap, struct inpcb *);
va_end(ap);
/*
* Calculate data length and get a mbuf
* for UDP and IP headers.
*/
M_PREPEND(m, sizeof(struct udpiphdr), M_DONTWAIT);
if (m == 0) {
error = ENOBUFS;
goto release;
}
/*
* Compute the packet length of the IP header, and
* punt if the length looks bogus.
*/
if ((len + sizeof(struct udpiphdr)) > IP_MAXPACKET) {
error = EMSGSIZE;
goto release;
}
/*
* Fill in mbuf with extended UDP header
* and addresses and length put into network format.
*/
ui = mtod(m, struct udpiphdr *);
ui->ui_pr = IPPROTO_UDP;
ui->ui_src = inp->inp_laddr;
ui->ui_dst = inp->inp_faddr;
ui->ui_sport = inp->inp_lport;
ui->ui_dport = inp->inp_fport;
ui->ui_ulen = htons((u_int16_t)len + sizeof(struct udphdr));
/*
* Set up checksum and output datagram.
*/
if (udpcksum) {
/*
* XXX Cache pseudo-header checksum part for
* XXX "connected" UDP sockets.
*/
ui->ui_sum = in_cksum_phdr(ui->ui_src.s_addr,
ui->ui_dst.s_addr, htons((u_int16_t)len +
sizeof(struct udphdr) + IPPROTO_UDP));
m->m_pkthdr.csum_flags = M_CSUM_UDPv4;
m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
} else
ui->ui_sum = 0;
((struct ip *)ui)->ip_len = sizeof (struct udpiphdr) + len;
((struct ip *)ui)->ip_ttl = inp->inp_ip.ip_ttl; /* XXX */
((struct ip *)ui)->ip_tos = inp->inp_ip.ip_tos; /* XXX */
udpstat.udps_opackets++;
#ifdef IPSEC
if (ipsec_setsocket(m, inp->inp_socket) != 0) {
error = ENOBUFS;
goto release;
}
#endif /*IPSEC*/
return (ip_output(m, inp->inp_options, &inp->inp_route,
inp->inp_socket->so_options & (SO_DONTROUTE | SO_BROADCAST),
inp->inp_moptions));
release:
m_freem(m);
return (error);
}
int udp_sendspace = 9216; /* really max datagram size */
int udp_recvspace = 40 * (1024 + sizeof(struct sockaddr_in));
/* 40 1K datagrams */
/*ARGSUSED*/
int
udp_usrreq(so, req, m, nam, control, p)
struct socket *so;
int req;
struct mbuf *m, *nam, *control;
struct proc *p;
{
struct inpcb *inp;
int s;
int error = 0;
if (req == PRU_CONTROL)
return (in_control(so, (long)m, (caddr_t)nam,
(struct ifnet *)control, p));
if (req == PRU_PURGEIF) {
in_pcbpurgeif0(&udbtable, (struct ifnet *)control);
in_purgeif((struct ifnet *)control);
in_pcbpurgeif(&udbtable, (struct ifnet *)control);
return (0);
}
s = splsoftnet();
inp = sotoinpcb(so);
#ifdef DIAGNOSTIC
if (req != PRU_SEND && req != PRU_SENDOOB && control)
panic("udp_usrreq: unexpected control mbuf");
#endif
if (inp == 0 && req != PRU_ATTACH) {
error = EINVAL;
goto release;
}
/*
* Note: need to block udp_input while changing
* the udp pcb queue and/or pcb addresses.
*/
switch (req) {
case PRU_ATTACH:
if (inp != 0) {
error = EISCONN;
break;
}
if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
error = soreserve(so, udp_sendspace, udp_recvspace);
if (error)
break;
}
error = in_pcballoc(so, &udbtable);
if (error)
break;
inp = sotoinpcb(so);
inp->inp_ip.ip_ttl = ip_defttl;
break;
case PRU_DETACH:
in_pcbdetach(inp);
break;
case PRU_BIND:
error = in_pcbbind(inp, nam, p);
break;
case PRU_LISTEN:
error = EOPNOTSUPP;
break;
case PRU_CONNECT:
error = in_pcbconnect(inp, nam);
if (error)
break;
soisconnected(so);
break;
case PRU_CONNECT2:
error = EOPNOTSUPP;
break;
case PRU_DISCONNECT:
/*soisdisconnected(so);*/
so->so_state &= ~SS_ISCONNECTED; /* XXX */
in_pcbdisconnect(inp);
inp->inp_laddr = zeroin_addr; /* XXX */
in_pcbstate(inp, INP_BOUND); /* XXX */
break;
case PRU_SHUTDOWN:
socantsendmore(so);
break;
case PRU_RCVD:
error = EOPNOTSUPP;
break;
case PRU_SEND:
if (control && control->m_len) {
m_freem(control);
m_freem(m);
error = EINVAL;
break;
}
{
struct in_addr laddr; /* XXX */
if (nam) {
laddr = inp->inp_laddr; /* XXX */
if ((so->so_state & SS_ISCONNECTED) != 0) {
error = EISCONN;
goto die;
}
error = in_pcbconnect(inp, nam);
if (error) {
die:
m_freem(m);
break;
}
} else {
if ((so->so_state & SS_ISCONNECTED) == 0) {
error = ENOTCONN;
goto die;
}
}
error = udp_output(m, inp);
if (nam) {
in_pcbdisconnect(inp);
inp->inp_laddr = laddr; /* XXX */
in_pcbstate(inp, INP_BOUND); /* XXX */
}
}
break;
case PRU_SENSE:
/*
* stat: don't bother with a blocksize.
*/
splx(s);
return (0);
case PRU_RCVOOB:
error = EOPNOTSUPP;
break;
case PRU_SENDOOB:
m_freem(control);
m_freem(m);
error = EOPNOTSUPP;
break;
case PRU_SOCKADDR:
in_setsockaddr(inp, nam);
break;
case PRU_PEERADDR:
in_setpeeraddr(inp, nam);
break;
default:
panic("udp_usrreq");
}
release:
splx(s);
return (error);
}
/*
* Sysctl for udp variables.
*/
int
udp_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
int *name;
u_int namelen;
void *oldp;
size_t *oldlenp;
void *newp;
size_t newlen;
{
/* All sysctl names at this level are terminal. */
if (namelen != 1)
return (ENOTDIR);
switch (name[0]) {
case UDPCTL_CHECKSUM:
return (sysctl_int(oldp, oldlenp, newp, newlen, &udpcksum));
case UDPCTL_SENDSPACE:
return (sysctl_int(oldp, oldlenp, newp, newlen,
&udp_sendspace));
case UDPCTL_RECVSPACE:
return (sysctl_int(oldp, oldlenp, newp, newlen,
&udp_recvspace));
default:
return (ENOPROTOOPT);
}
/* NOTREACHED */
}
#endif