NetBSD/sys/arch/sun3/sun3x/machdep.c

943 lines
23 KiB
C

/* $NetBSD: machdep.c,v 1.35 1998/07/04 23:12:39 jonathan Exp $ */
/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1982, 1986, 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah Hdr: machdep.c 1.74 92/12/20
* from: @(#)machdep.c 8.10 (Berkeley) 4/20/94
*/
#include "opt_ddb.h"
#include "opt_uvm.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/map.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/reboot.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/clist.h>
#include <sys/callout.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/msgbuf.h>
#include <sys/ioctl.h>
#include <sys/tty.h>
#include <sys/mount.h>
#include <sys/user.h>
#include <sys/exec.h>
#include <sys/core.h>
#include <sys/kcore.h>
#include <sys/vnode.h>
#include <sys/syscallargs.h>
#ifdef SYSVMSG
#include <sys/msg.h>
#endif
#ifdef SYSVSEM
#include <sys/sem.h>
#endif
#ifdef SYSVSHM
#include <sys/shm.h>
#endif
#ifdef KGDB
#include <sys/kgdb.h>
#endif
#include <vm/vm.h>
#include <vm/vm_map.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#if defined(UVM)
#include <uvm/uvm.h> /* XXX: not _extern ... need vm_map_create */
#endif
#include <sys/sysctl.h>
#include <dev/cons.h>
#include <machine/cpu.h>
#include <machine/dvma.h>
#include <machine/idprom.h>
#include <machine/kcore.h>
#include <machine/reg.h>
#include <machine/psl.h>
#include <machine/pte.h>
#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#include <sun3/sun3/machdep.h>
/* Defined in locore.s */
extern char kernel_text[];
/* Defined by the linker */
extern char etext[];
#if defined(UVM)
/* XXX - Gratuitous name changes... */
#define kmem_alloc uvm_km_alloc
vm_map_t exec_map = NULL;
vm_map_t mb_map = NULL;
vm_map_t phys_map = NULL;
#else
vm_map_t buffer_map;
#endif
int physmem;
int fputype;
caddr_t msgbufaddr;
/* Virtual page frame for /dev/mem (see mem.c) */
vm_offset_t vmmap;
/*
* safepri is a safe priority for sleep to set for a spin-wait
* during autoconfiguration or after a panic.
*/
int safepri = PSL_LOWIPL;
/*
* Declare these as initialized data so we can patch them.
*/
int nswbuf = 0;
#ifdef NBUF
int nbuf = NBUF;
#else
int nbuf = 0;
#endif
#ifdef BUFPAGES
int bufpages = BUFPAGES;
#else
int bufpages = 0;
#endif
u_char cpu_machine_id = 0;
char *cpu_string = NULL;
int cpu_has_vme = 0;
int has_iocache = 0;
static void identifycpu __P((void));
static void initcpu __P((void));
/*
* Console initialization: called early on from main,
* before vm init or cpu_startup. This system is able
* to use the console for output immediately (via PROM)
* but can not use it for input until after this point.
*/
void
consinit()
{
/*
* Switch from the PROM console (output only)
* to our own console driver.
*/
cninit();
#ifdef DDB
db_machine_init();
{
extern int end[];
extern char *esym;
/* symsize, symstart, symend */
ddb_init(end[0], end + 1, (int*)esym);
}
#endif DDB
/*
* Now that the console can do input as well as
* output, consider stopping for a debugger.
*/
if (boothowto & RB_KDB) {
#ifdef KGDB
/* XXX - Ask on console for kgdb_dev? */
/* Note: this will just return if kgdb_dev==NODEV */
kgdb_connect(1);
#else /* KGDB */
/* Either DDB or no debugger (just PROM). */
Debugger();
#endif /* KGDB */
}
}
/*
* allocsys() - Private routine used by cpu_startup() below.
*
* Allocate space for system data structures. We are given
* a starting virtual address and we return a final virtual
* address; along the way we set each data structure pointer.
*
* We call allocsys() with 0 to find out how much space we want,
* allocate that much and fill it with zeroes, and then call
* allocsys() again with the correct base virtual address.
*/
#define valloc(name, type, num) \
v = (caddr_t)(((name) = (type *)v) + (num))
static caddr_t allocsys __P((caddr_t));
static caddr_t
allocsys(v)
register caddr_t v;
{
#ifdef REAL_CLISTS
valloc(cfree, struct cblock, nclist);
#endif
valloc(callout, struct callout, ncallout);
#ifdef SYSVSHM
valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
#endif
#ifdef SYSVSEM
valloc(sema, struct semid_ds, seminfo.semmni);
valloc(sem, struct sem, seminfo.semmns);
/* This is pretty disgusting! */
valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
#endif
#ifdef SYSVMSG
valloc(msgpool, char, msginfo.msgmax);
valloc(msgmaps, struct msgmap, msginfo.msgseg);
valloc(msghdrs, struct msg, msginfo.msgtql);
valloc(msqids, struct msqid_ds, msginfo.msgmni);
#endif
/*
* Determine how many buffers to allocate. We allocate
* the BSD standard of use 10% of memory for the first 2 Meg,
* 5% of remaining. Insure a minimum of 16 buffers.
* Allocate 1/2 as many swap buffer headers as file i/o buffers.
*/
if (bufpages == 0) {
/* We always have more than 2MB of memory. */
bufpages = ((btoc(2 * 1024 * 1024) + physmem) /
(20 * CLSIZE));
}
if (nbuf == 0) {
nbuf = bufpages;
if (nbuf < 16)
nbuf = 16;
}
if (nswbuf == 0) {
nswbuf = (nbuf / 2) &~ 1; /* force even */
if (nswbuf > 256)
nswbuf = 256; /* sanity */
}
#if !defined(UVM)
valloc(swbuf, struct buf, nswbuf);
#endif
valloc(buf, struct buf, nbuf);
return v;
}
#undef valloc
/*
* cpu_startup: allocate memory for variable-sized tables,
* initialize cpu, and do autoconfiguration.
*
* This is called early in init_main.c:main(), after the
* kernel memory allocator is ready for use, but before
* the creation of processes 1,2, and mountroot, etc.
*/
void
cpu_startup()
{
caddr_t v;
int sz, i;
vm_size_t size;
int base, residual;
vm_offset_t minaddr, maxaddr;
/*
* Initialize message buffer (for kernel printf).
* This is put in physical page zero so it will
* always be in the same place after a reboot.
* Its mapping was prepared in pmap_bootstrap().
* Also, offset some to avoid PROM scribbles.
*/
v = (caddr_t) KERNBASE;
msgbufaddr = (caddr_t)(v + MSGBUFOFF);
initmsgbuf(msgbufaddr, MSGBUFSIZE);
/*
* Good {morning,afternoon,evening,night}.
*/
printf(version);
identifycpu();
initfpu(); /* also prints FPU type */
size = ptoa(physmem);
printf("real mem = %dK (0x%lx)\n", (size >> 10), size);
/*
* Find out how much space we need, allocate it,
* and then give everything true virtual addresses.
*/
sz = (int)allocsys((caddr_t)0);
if ((v = (caddr_t)kmem_alloc(kernel_map, round_page(sz))) == 0)
panic("startup: no room for tables");
if (allocsys(v) - v != sz)
panic("startup: table size inconsistency");
/*
* Now allocate buffers proper. They are different than the above
* in that they usually occupy more virtual memory than physical.
*/
size = MAXBSIZE * nbuf;
#if defined(UVM)
if (uvm_map(kernel_map, (vm_offset_t *) &buffers, round_page(size),
NULL, UVM_UNKNOWN_OFFSET,
UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
panic("startup: cannot allocate VM for buffers");
minaddr = (vm_offset_t)buffers;
#else
buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
&maxaddr, size, TRUE);
minaddr = (vm_offset_t)buffers;
if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
&minaddr, size, FALSE) != KERN_SUCCESS)
panic("startup: cannot allocate buffers");
#endif /* UVM */
if ((bufpages / nbuf) >= btoc(MAXBSIZE)) {
/* don't want to alloc more physical mem than needed */
bufpages = btoc(MAXBSIZE) * nbuf;
}
base = bufpages / nbuf;
residual = bufpages % nbuf;
for (i = 0; i < nbuf; i++) {
#if defined(UVM)
vm_size_t curbufsize;
vm_offset_t curbuf;
struct vm_page *pg;
/*
* Each buffer has MAXBSIZE bytes of VM space allocated. Of
* that MAXBSIZE space, we allocate and map (base+1) pages
* for the first "residual" buffers, and then we allocate
* "base" pages for the rest.
*/
curbuf = (vm_offset_t) buffers + (i * MAXBSIZE);
curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
while (curbufsize) {
pg = uvm_pagealloc(NULL, 0, NULL);
if (pg == NULL)
panic("cpu_startup: not enough memory for "
"buffer cache");
#if defined(PMAP_NEW)
pmap_kenter_pgs(curbuf, &pg, 1);
#else
pmap_enter(kernel_map->pmap, curbuf,
VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
#endif
curbuf += PAGE_SIZE;
curbufsize -= PAGE_SIZE;
}
#else /* ! UVM */
vm_size_t curbufsize;
vm_offset_t curbuf;
/*
* First <residual> buffers get (base+1) physical pages
* allocated for them. The rest get (base) physical pages.
*
* The rest of each buffer occupies virtual space,
* but has no physical memory allocated for it.
*/
curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
curbufsize = CLBYTES * (i < residual ? base+1 : base);
vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
vm_map_simplify(buffer_map, curbuf);
#endif /* UVM */
}
/*
* Allocate a submap for exec arguments. This map effectively
* limits the number of processes exec'ing at any time.
*/
#if defined(UVM)
exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
16*NCARGS, TRUE, FALSE, NULL);
#else
exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
16*NCARGS, TRUE);
#endif
/*
* We don't use a submap for physio, and use a separate map
* for DVMA allocations. Our vmapbuf just maps pages into
* the kernel map (any kernel mapping is OK) and then the
* device drivers clone the kernel mappings into DVMA space.
*/
/*
* Finally, allocate mbuf cluster submap.
*/
#if defined(UVM)
mb_map = uvm_km_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
VM_MBUF_SIZE, FALSE, FALSE, NULL);
#else
mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
VM_MBUF_SIZE, FALSE);
#endif
/*
* Initialize callouts
*/
callfree = callout;
for (i = 1; i < ncallout; i++)
callout[i-1].c_next = &callout[i];
callout[i-1].c_next = NULL;
#if defined(UVM)
size = ptoa(uvmexp.free);
#else
size = ptoa(cnt.v_free_count);
#endif
printf("avail mem = %dK (0x%lx)\n", (size >> 10), size);
printf("using %d buffers containing %d bytes of memory\n",
nbuf, bufpages * CLBYTES);
/*
* Tell the VM system that writing to kernel text isn't allowed.
* If we don't, we might end up COW'ing the text segment!
*/
#if defined(UVM)
if (uvm_map_protect(kernel_map, (vm_offset_t) kernel_text,
m68k_trunc_page((vm_offset_t) etext),
UVM_PROT_READ|UVM_PROT_EXEC, TRUE) != KERN_SUCCESS)
panic("can't protect kernel text");
#else
if (vm_map_protect(kernel_map, (vm_offset_t) kernel_text,
m68k_trunc_page((vm_offset_t) etext),
VM_PROT_READ|VM_PROT_EXECUTE, TRUE) != KERN_SUCCESS)
panic("can't protect kernel text");
#endif
/*
* Allocate a virtual page (for use by /dev/mem)
* This page is handed to pmap_enter() therefore
* it has to be in the normal kernel VA range.
*/
#if defined(UVM)
vmmap = uvm_km_valloc_wait(kernel_map, NBPG);
#else
vmmap = kmem_alloc_wait(kernel_map, NBPG);
#endif
/*
* Create the DVMA maps.
*/
dvma_init();
/*
* Set up CPU-specific registers, cache, etc.
*/
initcpu();
/*
* Set up buffers, so they can be used to read disk labels.
*/
bufinit();
/*
* Configure the system.
*/
configure();
}
/*
* Set registers on exec.
*/
void
setregs(p, pack, stack)
struct proc *p;
struct exec_package *pack;
u_long stack;
{
struct trapframe *tf = (struct trapframe *)p->p_md.md_regs;
tf->tf_sr = PSL_USERSET;
tf->tf_pc = pack->ep_entry & ~1;
tf->tf_regs[D0] = 0;
tf->tf_regs[D1] = 0;
tf->tf_regs[D2] = 0;
tf->tf_regs[D3] = 0;
tf->tf_regs[D4] = 0;
tf->tf_regs[D5] = 0;
tf->tf_regs[D6] = 0;
tf->tf_regs[D7] = 0;
tf->tf_regs[A0] = 0;
tf->tf_regs[A1] = 0;
tf->tf_regs[A2] = (int)PS_STRINGS;
tf->tf_regs[A3] = 0;
tf->tf_regs[A4] = 0;
tf->tf_regs[A5] = 0;
tf->tf_regs[A6] = 0;
tf->tf_regs[SP] = stack;
/* restore a null state frame */
p->p_addr->u_pcb.pcb_fpregs.fpf_null = 0;
if (fputype)
m68881_restore(&p->p_addr->u_pcb.pcb_fpregs);
p->p_md.md_flags = 0;
}
/*
* Info for CTL_HW
*/
char machine[16] = MACHINE; /* from <machine/param.h> */
char cpu_model[120];
/*
* XXX - Should empirically estimate the divisor...
* Note that the value of delay_divisor is roughly
* 2048 / cpuclock (where cpuclock is in MHz).
*/
int delay_divisor = 62; /* assume the fastest (33 MHz) */
void
identifycpu()
{
u_char machtype;
machtype = identity_prom.idp_machtype;
if ((machtype & IDM_ARCH_MASK) != IDM_ARCH_SUN3X) {
printf("Bad IDPROM arch!\n");
sunmon_abort();
}
cpu_machine_id = machtype;
switch (cpu_machine_id) {
case SUN3X_MACH_80:
cpu_string = "80"; /* Hydra */
delay_divisor = 102; /* 20 MHz */
cpu_has_vme = FALSE;
break;
case SUN3X_MACH_470:
cpu_string = "470"; /* Pegasus */
delay_divisor = 62; /* 33 MHz */
cpu_has_vme = TRUE;
break;
default:
printf("unknown sun3x model\n");
sunmon_abort();
}
/* Other stuff? (VAC, mc6888x version, etc.) */
sprintf(cpu_model, "Sun-3X (3/%s)", cpu_string);
printf("Model: %s\n", cpu_model);
}
/*
* machine dependent system variables.
*/
int
cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
int *name;
u_int namelen;
void *oldp;
size_t *oldlenp;
void *newp;
size_t newlen;
struct proc *p;
{
int error;
dev_t consdev;
/* all sysctl names at this level are terminal */
if (namelen != 1)
return (ENOTDIR); /* overloaded */
switch (name[0]) {
case CPU_CONSDEV:
if (cn_tab != NULL)
consdev = cn_tab->cn_dev;
else
consdev = NODEV;
error = sysctl_rdstruct(oldp, oldlenp, newp,
&consdev, sizeof consdev);
break;
#if 0 /* XXX - Not yet... */
case CPU_ROOT_DEVICE:
error = sysctl_rdstring(oldp, oldlenp, newp, root_device);
break;
case CPU_BOOTED_KERNEL:
error = sysctl_rdstring(oldp, oldlenp, newp, booted_kernel);
break;
#endif
default:
error = EOPNOTSUPP;
}
return (error);
}
/* See: sig_machdep.c */
/*
* Do a sync in preparation for a reboot.
* XXX - This could probably be common code.
* XXX - And now, most of it is in vfs_shutdown()
* XXX - Put waittime checks in there too?
*/
int waittime = -1; /* XXX - Who else looks at this? -gwr */
static void
reboot_sync __P((void))
{
/* Check waittime here to localize its use to this function. */
if (waittime >= 0)
return;
waittime = 0;
vfs_shutdown();
}
/*
* Common part of the BSD and SunOS reboot system calls.
*/
__dead void
cpu_reboot(howto, user_boot_string)
int howto;
char *user_boot_string;
{
/* Note: this string MUST be static! */
static char bootstr[128];
char *p;
/* If system is cold, just halt. (early panic?) */
if (cold)
goto haltsys;
/* Un-blank the screen if appropriate. */
cnpollc(1);
if ((howto & RB_NOSYNC) == 0) {
reboot_sync();
/*
* If we've been adjusting the clock, the todr
* will be out of synch; adjust it now.
*
* XXX - However, if the kernel has been sitting in ddb,
* the time will be way off, so don't set the HW clock!
* XXX - Should do sanity check against HW clock. -gwr
*/
/* resettodr(); */
}
/* Disable interrupts. */
splhigh();
/* Write out a crash dump if asked. */
if (howto & RB_DUMP)
dumpsys();
/* run any shutdown hooks */
doshutdownhooks();
if (howto & RB_HALT) {
haltsys:
printf("Kernel halted.\n");
#if 0
/*
* This calls the PROM monitor "exit_to_mon" function
* which appears to have problems... SunOS uses the
* "abort" function when you halt (bug work-around?)
* so we might as well do the same.
*/
sunmon_halt(); /* provokes PROM monitor bug */
#else
sunmon_abort();
#endif
}
/*
* Automatic reboot.
*/
if (user_boot_string)
strncpy(bootstr, user_boot_string, sizeof(bootstr));
else {
/*
* Build our own boot string with an empty
* boot device/file and (maybe) some flags.
* The PROM will supply the device/file name.
*/
p = bootstr;
*p = '\0';
if (howto & (RB_KDB|RB_ASKNAME|RB_SINGLE)) {
/* Append the boot flags. */
*p++ = ' ';
*p++ = '-';
if (howto & RB_KDB)
*p++ = 'd';
if (howto & RB_ASKNAME)
*p++ = 'a';
if (howto & RB_SINGLE)
*p++ = 's';
*p = '\0';
}
}
printf("Kernel rebooting...\n");
sunmon_reboot(bootstr);
for (;;) ;
/*NOTREACHED*/
}
/*
* These variables are needed by /sbin/savecore
*/
u_long dumpmag = 0x8fca0101; /* magic number */
int dumpsize = 0; /* pages */
long dumplo = 0; /* blocks */
/*
* This is called by main to set dumplo, dumpsize.
* Dumps always skip the first CLBYTES of disk space
* in case there might be a disk label stored there.
* If there is extra space, put dump at the end to
* reduce the chance that swapping trashes it.
*/
void
cpu_dumpconf()
{
int nblks; /* size of dump area */
int maj;
int (*getsize)__P((dev_t));
/* Validate space in page zero for the kcore header. */
if (MSGBUFOFF < (sizeof(kcore_seg_t) + sizeof(cpu_kcore_hdr_t)))
panic("cpu_dumpconf: MSGBUFOFF too small");
if (dumpdev == NODEV)
return;
maj = major(dumpdev);
if (maj < 0 || maj >= nblkdev)
panic("dumpconf: bad dumpdev=0x%x", dumpdev);
getsize = bdevsw[maj].d_psize;
if (getsize == NULL)
return;
nblks = (*getsize)(dumpdev);
if (nblks <= ctod(1))
return;
/* Position dump image near end of space, page aligned. */
dumpsize = physmem; /* pages */
dumplo = nblks - ctod(dumpsize);
dumplo &= ~(ctod(1)-1);
/* If it does not fit, truncate it by moving dumplo. */
/* Note: Must force signed comparison. */
if (dumplo < ((long)ctod(1))) {
dumplo = ctod(1);
dumpsize = dtoc(nblks - dumplo);
}
}
/* Note: gdb looks for "dumppcb" in a kernel crash dump. */
struct pcb dumppcb;
/*
* Write a crash dump. The format while in swap is:
* kcore_seg_t cpu_hdr;
* cpu_kcore_hdr_t cpu_data;
* padding (NBPG-sizeof(kcore_seg_t))
* pagemap (2*NBPG)
* physical memory...
*/
void
dumpsys()
{
struct bdevsw *dsw;
kcore_seg_t *kseg_p;
cpu_kcore_hdr_t *chdr_p;
struct sun3x_kcore_hdr *sh;
phys_ram_seg_t *crs_p;
char *vaddr;
vm_offset_t paddr;
int psize, todo, seg, segsz;
daddr_t blkno;
int error = 0;
msgbufenabled = 0;
if (dumpdev == NODEV)
return;
/*
* For dumps during autoconfiguration,
* if dump device has already configured...
*/
if (dumpsize == 0)
cpu_dumpconf();
if (dumplo <= 0) {
printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
minor(dumpdev));
return;
}
savectx(&dumppcb);
dsw = &bdevsw[major(dumpdev)];
psize = (*(dsw->d_psize))(dumpdev);
if (psize == -1) {
printf("dump area unavailable\n");
return;
}
printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
minor(dumpdev), dumplo);
/*
* We put the dump header is in physical page zero,
* so there is no extra work here to write it out.
* All we do is initialize the header.
*/
/* Set pointers to all three parts. */
kseg_p = (kcore_seg_t *)KERNBASE;
chdr_p = (cpu_kcore_hdr_t *) (kseg_p + 1);
sh = &chdr_p->un._sun3x;
/* Fill in kcore_seg_t part. */
CORE_SETMAGIC(*kseg_p, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
kseg_p->c_size = sizeof(*chdr_p);
/* Fill in cpu_kcore_hdr_t part. */
/* Can NOT use machine[] as the name! */
strncpy(chdr_p->name, "sun3x", sizeof(chdr_p->name));
chdr_p->page_size = NBPG;
chdr_p->kernbase = KERNBASE;
/* Fill in the sun3x_kcore_hdr part. */
pmap_kcore_hdr(sh);
/*
* Now dump physical memory. Note that physical memory
* might NOT be congiguous, so do it by segments.
*/
blkno = dumplo;
todo = dumpsize; /* pages */
vaddr = (char*)vmmap; /* Borrow /dev/mem VA */
for (seg = 0; seg < SUN3X_NPHYS_RAM_SEGS; seg++) {
crs_p = &sh->ram_segs[seg];
paddr = crs_p->start;
segsz = crs_p->size;
/*
* Our header lives in the first little bit of
* physical memory (not written separately), so
* we have to adjust the first ram segment size
* and start address to reflect the stolen RAM.
* (Nothing interesing in that RAM anyway 8^).
*/
if (seg == 0) {
int adj = sizeof(*kseg_p) + sizeof(*chdr_p);
crs_p->start += adj;
crs_p->size -= adj;
}
while (todo && (segsz > 0)) {
/* Print pages left after every 16. */
if ((todo & 0xf) == 0)
printf("\r%4d", todo);
/* Make a temporary mapping for the page. */
pmap_enter(pmap_kernel(), vmmap, paddr | PMAP_NC,
VM_PROT_READ, FALSE);
error = (*dsw->d_dump)(dumpdev, blkno, vaddr, NBPG);
pmap_remove(pmap_kernel(), vmmap, vmmap + NBPG);
if (error)
goto fail;
paddr += NBPG;
segsz -= NBPG;
blkno += btodb(NBPG);
todo--;
}
}
printf("\rdump succeeded\n");
return;
fail:
printf(" dump error=%d\n", error);
}
static void
initcpu()
{
/* XXX: Enable RAM parity/ECC checking? */
/* XXX: parityenable(); */
#ifdef HAVECACHE
cache_enable();
#endif
}
/* straptrap() in trap.c */
/* from hp300: badaddr() */
/* peek_byte(), peek_word() moved to bus_subr.c */
/* XXX: parityenable() ? */
/* regdump() moved to regdump.c */
/*
* cpu_exec_aout_makecmds():
* cpu-dependent a.out format hook for execve().
*
* Determine if the given exec package refers to something which we
* understand and, if so, set up the vmcmds for it.
*/
int
cpu_exec_aout_makecmds(p, epp)
struct proc *p;
struct exec_package *epp;
{
return ENOEXEC;
}