NetBSD/sys/dev/raidframe/rf_dagffwr.c

1361 lines
46 KiB
C

/* $NetBSD: rf_dagffwr.c,v 1.31 2005/12/11 12:23:37 christos Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* rf_dagff.c
*
* code for creating fault-free DAGs
*
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_dagffwr.c,v 1.31 2005/12/11 12:23:37 christos Exp $");
#include <dev/raidframe/raidframevar.h>
#include "rf_raid.h"
#include "rf_dag.h"
#include "rf_dagutils.h"
#include "rf_dagfuncs.h"
#include "rf_debugMem.h"
#include "rf_dagffrd.h"
#include "rf_general.h"
#include "rf_dagffwr.h"
#include "rf_map.h"
/******************************************************************************
*
* General comments on DAG creation:
*
* All DAGs in this file use roll-away error recovery. Each DAG has a single
* commit node, usually called "Cmt." If an error occurs before the Cmt node
* is reached, the execution engine will halt forward execution and work
* backward through the graph, executing the undo functions. Assuming that
* each node in the graph prior to the Cmt node are undoable and atomic - or -
* does not make changes to permanent state, the graph will fail atomically.
* If an error occurs after the Cmt node executes, the engine will roll-forward
* through the graph, blindly executing nodes until it reaches the end.
* If a graph reaches the end, it is assumed to have completed successfully.
*
* A graph has only 1 Cmt node.
*
*/
/******************************************************************************
*
* The following wrappers map the standard DAG creation interface to the
* DAG creation routines. Additionally, these wrappers enable experimentation
* with new DAG structures by providing an extra level of indirection, allowing
* the DAG creation routines to be replaced at this single point.
*/
void
rf_CreateNonRedundantWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
RF_DagHeader_t *dag_h, void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t *allocList,
RF_IoType_t type)
{
rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
RF_IO_TYPE_WRITE);
}
void
rf_CreateRAID0WriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
RF_DagHeader_t *dag_h, void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t *allocList,
RF_IoType_t type)
{
rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
RF_IO_TYPE_WRITE);
}
void
rf_CreateSmallWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
RF_DagHeader_t *dag_h, void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t *allocList)
{
/* "normal" rollaway */
rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags,
allocList, &rf_xorFuncs, NULL);
}
void
rf_CreateLargeWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
RF_DagHeader_t *dag_h, void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t *allocList)
{
/* "normal" rollaway */
rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags,
allocList, 1, rf_RegularXorFunc, RF_TRUE);
}
/******************************************************************************
*
* DAG creation code begins here
*/
/******************************************************************************
*
* creates a DAG to perform a large-write operation:
*
* / Rod \ / Wnd \
* H -- block- Rod - Xor - Cmt - Wnd --- T
* \ Rod / \ Wnp /
* \[Wnq]/
*
* The XOR node also does the Q calculation in the P+Q architecture.
* All nodes are before the commit node (Cmt) are assumed to be atomic and
* undoable - or - they make no changes to permanent state.
*
* Rod = read old data
* Cmt = commit node
* Wnp = write new parity
* Wnd = write new data
* Wnq = write new "q"
* [] denotes optional segments in the graph
*
* Parameters: raidPtr - description of the physical array
* asmap - logical & physical addresses for this access
* bp - buffer ptr (holds write data)
* flags - general flags (e.g. disk locking)
* allocList - list of memory allocated in DAG creation
* nfaults - number of faults array can tolerate
* (equal to # redundancy units in stripe)
* redfuncs - list of redundancy generating functions
*
*****************************************************************************/
void
rf_CommonCreateLargeWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
RF_DagHeader_t *dag_h, void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t *allocList,
int nfaults, int (*redFunc) (RF_DagNode_t *),
int allowBufferRecycle)
{
RF_DagNode_t *wndNodes, *rodNodes, *xorNode, *wnpNode, *tmpNode;
RF_DagNode_t *wnqNode, *blockNode, *commitNode, *termNode;
int nWndNodes, nRodNodes, i, nodeNum, asmNum;
RF_AccessStripeMapHeader_t *new_asm_h[2];
RF_StripeNum_t parityStripeID;
char *sosBuffer, *eosBuffer;
RF_ReconUnitNum_t which_ru;
RF_RaidLayout_t *layoutPtr;
RF_PhysDiskAddr_t *pda;
layoutPtr = &(raidPtr->Layout);
parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
asmap->raidAddress,
&which_ru);
#if RF_DEBUG_DAG
if (rf_dagDebug) {
printf("[Creating large-write DAG]\n");
}
#endif
dag_h->creator = "LargeWriteDAG";
dag_h->numCommitNodes = 1;
dag_h->numCommits = 0;
dag_h->numSuccedents = 1;
/* alloc the nodes: Wnd, xor, commit, block, term, and Wnp */
nWndNodes = asmap->numStripeUnitsAccessed;
for (i = 0; i < nWndNodes; i++) {
tmpNode = rf_AllocDAGNode();
tmpNode->list_next = dag_h->nodes;
dag_h->nodes = tmpNode;
}
wndNodes = dag_h->nodes;
xorNode = rf_AllocDAGNode();
xorNode->list_next = dag_h->nodes;
dag_h->nodes = xorNode;
wnpNode = rf_AllocDAGNode();
wnpNode->list_next = dag_h->nodes;
dag_h->nodes = wnpNode;
blockNode = rf_AllocDAGNode();
blockNode->list_next = dag_h->nodes;
dag_h->nodes = blockNode;
commitNode = rf_AllocDAGNode();
commitNode->list_next = dag_h->nodes;
dag_h->nodes = commitNode;
termNode = rf_AllocDAGNode();
termNode->list_next = dag_h->nodes;
dag_h->nodes = termNode;
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
if (nfaults == 2) {
wnqNode = rf_AllocDAGNode();
} else {
#endif
wnqNode = NULL;
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
}
#endif
rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h,
new_asm_h, &nRodNodes, &sosBuffer,
&eosBuffer, allocList);
if (nRodNodes > 0) {
for (i = 0; i < nRodNodes; i++) {
tmpNode = rf_AllocDAGNode();
tmpNode->list_next = dag_h->nodes;
dag_h->nodes = tmpNode;
}
rodNodes = dag_h->nodes;
} else {
rodNodes = NULL;
}
/* begin node initialization */
if (nRodNodes > 0) {
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
rf_NullNodeUndoFunc, NULL, nRodNodes, 0, 0, 0,
dag_h, "Nil", allocList);
} else {
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
rf_NullNodeUndoFunc, NULL, 1, 0, 0, 0,
dag_h, "Nil", allocList);
}
rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
rf_NullNodeUndoFunc, NULL, nWndNodes + nfaults, 1, 0, 0,
dag_h, "Cmt", allocList);
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
rf_TerminateUndoFunc, NULL, 0, nWndNodes + nfaults, 0, 0,
dag_h, "Trm", allocList);
/* initialize the Rod nodes */
tmpNode = rodNodes;
for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
if (new_asm_h[asmNum]) {
pda = new_asm_h[asmNum]->stripeMap->physInfo;
while (pda) {
rf_InitNode(tmpNode, rf_wait,
RF_FALSE, rf_DiskReadFunc,
rf_DiskReadUndoFunc,
rf_GenericWakeupFunc,
1, 1, 4, 0, dag_h,
"Rod", allocList);
tmpNode->params[0].p = pda;
tmpNode->params[1].p = pda->bufPtr;
tmpNode->params[2].v = parityStripeID;
tmpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
which_ru);
nodeNum++;
pda = pda->next;
tmpNode = tmpNode->list_next;
}
}
}
RF_ASSERT(nodeNum == nRodNodes);
/* initialize the wnd nodes */
pda = asmap->physInfo;
tmpNode = wndNodes;
for (i = 0; i < nWndNodes; i++) {
rf_InitNode(tmpNode, rf_wait, RF_FALSE,
rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
rf_GenericWakeupFunc, 1, 1, 4, 0,
dag_h, "Wnd", allocList);
RF_ASSERT(pda != NULL);
tmpNode->params[0].p = pda;
tmpNode->params[1].p = pda->bufPtr;
tmpNode->params[2].v = parityStripeID;
tmpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
pda = pda->next;
tmpNode = tmpNode->list_next;
}
/* initialize the redundancy node */
if (nRodNodes > 0) {
rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc,
rf_NullNodeUndoFunc, NULL, 1,
nRodNodes, 2 * (nWndNodes + nRodNodes) + 1,
nfaults, dag_h, "Xr ", allocList);
} else {
rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc,
rf_NullNodeUndoFunc, NULL, 1,
1, 2 * (nWndNodes + nRodNodes) + 1,
nfaults, dag_h, "Xr ", allocList);
}
xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
tmpNode = wndNodes;
for (i = 0; i < nWndNodes; i++) {
/* pda */
xorNode->params[2 * i + 0] = tmpNode->params[0];
/* buf ptr */
xorNode->params[2 * i + 1] = tmpNode->params[1];
tmpNode = tmpNode->list_next;
}
tmpNode = rodNodes;
for (i = 0; i < nRodNodes; i++) {
/* pda */
xorNode->params[2 * (nWndNodes + i) + 0] = tmpNode->params[0];
/* buf ptr */
xorNode->params[2 * (nWndNodes + i) + 1] = tmpNode->params[1];
tmpNode = tmpNode->list_next;
}
/* xor node needs to get at RAID information */
xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;
/*
* Look for an Rod node that reads a complete SU. If none,
* alloc a buffer to receive the parity info. Note that we
* can't use a new data buffer because it will not have gotten
* written when the xor occurs. */
if (allowBufferRecycle) {
tmpNode = rodNodes;
for (i = 0; i < nRodNodes; i++) {
if (((RF_PhysDiskAddr_t *) tmpNode->params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
break;
tmpNode = tmpNode->list_next;
}
}
if ((!allowBufferRecycle) || (i == nRodNodes)) {
xorNode->results[0] = rf_AllocBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit));
} else {
/* this works because the only way we get here is if
allowBufferRecycle is true and we went through the
above for loop, and exited via the break before
i==nRodNodes was true. That means tmpNode will
still point to a valid node -- the one we want for
here! */
xorNode->results[0] = tmpNode->params[1].p;
}
/* initialize the Wnp node */
rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc,
rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
dag_h, "Wnp", allocList);
wnpNode->params[0].p = asmap->parityInfo;
wnpNode->params[1].p = xorNode->results[0];
wnpNode->params[2].v = parityStripeID;
wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
/* parityInfo must describe entire parity unit */
RF_ASSERT(asmap->parityInfo->next == NULL);
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
if (nfaults == 2) {
/*
* We never try to recycle a buffer for the Q calcuation
* in addition to the parity. This would cause two buffers
* to get smashed during the P and Q calculation, guaranteeing
* one would be wrong.
*/
RF_MallocAndAdd(xorNode->results[1],
rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
(void *), allocList);
rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc,
rf_DiskWriteUndoFunc, rf_GenericWakeupFunc,
1, 1, 4, 0, dag_h, "Wnq", allocList);
wnqNode->params[0].p = asmap->qInfo;
wnqNode->params[1].p = xorNode->results[1];
wnqNode->params[2].v = parityStripeID;
wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
/* parityInfo must describe entire parity unit */
RF_ASSERT(asmap->parityInfo->next == NULL);
}
#endif
/*
* Connect nodes to form graph.
*/
/* connect dag header to block node */
RF_ASSERT(blockNode->numAntecedents == 0);
dag_h->succedents[0] = blockNode;
if (nRodNodes > 0) {
/* connect the block node to the Rod nodes */
RF_ASSERT(blockNode->numSuccedents == nRodNodes);
RF_ASSERT(xorNode->numAntecedents == nRodNodes);
tmpNode = rodNodes;
for (i = 0; i < nRodNodes; i++) {
RF_ASSERT(tmpNode->numAntecedents == 1);
blockNode->succedents[i] = tmpNode;
tmpNode->antecedents[0] = blockNode;
tmpNode->antType[0] = rf_control;
/* connect the Rod nodes to the Xor node */
RF_ASSERT(tmpNode->numSuccedents == 1);
tmpNode->succedents[0] = xorNode;
xorNode->antecedents[i] = tmpNode;
xorNode->antType[i] = rf_trueData;
tmpNode = tmpNode->list_next;
}
} else {
/* connect the block node to the Xor node */
RF_ASSERT(blockNode->numSuccedents == 1);
RF_ASSERT(xorNode->numAntecedents == 1);
blockNode->succedents[0] = xorNode;
xorNode->antecedents[0] = blockNode;
xorNode->antType[0] = rf_control;
}
/* connect the xor node to the commit node */
RF_ASSERT(xorNode->numSuccedents == 1);
RF_ASSERT(commitNode->numAntecedents == 1);
xorNode->succedents[0] = commitNode;
commitNode->antecedents[0] = xorNode;
commitNode->antType[0] = rf_control;
/* connect the commit node to the write nodes */
RF_ASSERT(commitNode->numSuccedents == nWndNodes + nfaults);
tmpNode = wndNodes;
for (i = 0; i < nWndNodes; i++) {
RF_ASSERT(wndNodes->numAntecedents == 1);
commitNode->succedents[i] = tmpNode;
tmpNode->antecedents[0] = commitNode;
tmpNode->antType[0] = rf_control;
tmpNode = tmpNode->list_next;
}
RF_ASSERT(wnpNode->numAntecedents == 1);
commitNode->succedents[nWndNodes] = wnpNode;
wnpNode->antecedents[0] = commitNode;
wnpNode->antType[0] = rf_trueData;
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
if (nfaults == 2) {
RF_ASSERT(wnqNode->numAntecedents == 1);
commitNode->succedents[nWndNodes + 1] = wnqNode;
wnqNode->antecedents[0] = commitNode;
wnqNode->antType[0] = rf_trueData;
}
#endif
/* connect the write nodes to the term node */
RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults);
RF_ASSERT(termNode->numSuccedents == 0);
tmpNode = wndNodes;
for (i = 0; i < nWndNodes; i++) {
RF_ASSERT(wndNodes->numSuccedents == 1);
tmpNode->succedents[0] = termNode;
termNode->antecedents[i] = tmpNode;
termNode->antType[i] = rf_control;
tmpNode = tmpNode->list_next;
}
RF_ASSERT(wnpNode->numSuccedents == 1);
wnpNode->succedents[0] = termNode;
termNode->antecedents[nWndNodes] = wnpNode;
termNode->antType[nWndNodes] = rf_control;
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
if (nfaults == 2) {
RF_ASSERT(wnqNode->numSuccedents == 1);
wnqNode->succedents[0] = termNode;
termNode->antecedents[nWndNodes + 1] = wnqNode;
termNode->antType[nWndNodes + 1] = rf_control;
}
#endif
}
/******************************************************************************
*
* creates a DAG to perform a small-write operation (either raid 5 or pq),
* which is as follows:
*
* Hdr -> Nil -> Rop -> Xor -> Cmt ----> Wnp [Unp] --> Trm
* \- Rod X / \----> Wnd [Und]-/
* [\- Rod X / \---> Wnd [Und]-/]
* [\- Roq -> Q / \--> Wnq [Unq]-/]
*
* Rop = read old parity
* Rod = read old data
* Roq = read old "q"
* Cmt = commit node
* Und = unlock data disk
* Unp = unlock parity disk
* Unq = unlock q disk
* Wnp = write new parity
* Wnd = write new data
* Wnq = write new "q"
* [ ] denotes optional segments in the graph
*
* Parameters: raidPtr - description of the physical array
* asmap - logical & physical addresses for this access
* bp - buffer ptr (holds write data)
* flags - general flags (e.g. disk locking)
* allocList - list of memory allocated in DAG creation
* pfuncs - list of parity generating functions
* qfuncs - list of q generating functions
*
* A null qfuncs indicates single fault tolerant
*****************************************************************************/
void
rf_CommonCreateSmallWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
RF_DagHeader_t *dag_h, void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t *allocList,
const RF_RedFuncs_t *pfuncs,
const RF_RedFuncs_t *qfuncs)
{
RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode;
RF_DagNode_t *tmpNode, *tmpreadDataNode, *tmpreadParityNode;
RF_DagNode_t *xorNodes, *qNodes, *blockNode, *commitNode;
RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes;
RF_DagNode_t *tmpxorNode, *tmpqNode, *tmpwriteDataNode, *tmpreadQNode;
RF_DagNode_t *tmpwriteParityNode;
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
RF_DagNode_t *tmpwriteQNode;
#endif
int i, j, nNodes, totalNumNodes;
RF_ReconUnitNum_t which_ru;
int (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
int (*qfunc) (RF_DagNode_t *);
int numDataNodes, numParityNodes;
RF_StripeNum_t parityStripeID;
RF_PhysDiskAddr_t *pda;
const char *name, *qname;
long nfaults;
nfaults = qfuncs ? 2 : 1;
parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
asmap->raidAddress, &which_ru);
pda = asmap->physInfo;
numDataNodes = asmap->numStripeUnitsAccessed;
numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
#if RF_DEBUG_DAG
if (rf_dagDebug) {
printf("[Creating small-write DAG]\n");
}
#endif
RF_ASSERT(numDataNodes > 0);
dag_h->creator = "SmallWriteDAG";
dag_h->numCommitNodes = 1;
dag_h->numCommits = 0;
dag_h->numSuccedents = 1;
/*
* DAG creation occurs in four steps:
* 1. count the number of nodes in the DAG
* 2. create the nodes
* 3. initialize the nodes
* 4. connect the nodes
*/
/*
* Step 1. compute number of nodes in the graph
*/
/* number of nodes: a read and write for each data unit a
* redundancy computation node for each parity node (nfaults *
* nparity) a read and write for each parity unit a block and
* commit node (2) a terminate node if atomic RMW an unlock
* node for each data unit, redundancy unit */
totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes)
+ (nfaults * 2 * numParityNodes) + 3;
/*
* Step 2. create the nodes
*/
blockNode = rf_AllocDAGNode();
blockNode->list_next = dag_h->nodes;
dag_h->nodes = blockNode;
commitNode = rf_AllocDAGNode();
commitNode->list_next = dag_h->nodes;
dag_h->nodes = commitNode;
for (i = 0; i < numDataNodes; i++) {
tmpNode = rf_AllocDAGNode();
tmpNode->list_next = dag_h->nodes;
dag_h->nodes = tmpNode;
}
readDataNodes = dag_h->nodes;
for (i = 0; i < numParityNodes; i++) {
tmpNode = rf_AllocDAGNode();
tmpNode->list_next = dag_h->nodes;
dag_h->nodes = tmpNode;
}
readParityNodes = dag_h->nodes;
for (i = 0; i < numDataNodes; i++) {
tmpNode = rf_AllocDAGNode();
tmpNode->list_next = dag_h->nodes;
dag_h->nodes = tmpNode;
}
writeDataNodes = dag_h->nodes;
for (i = 0; i < numParityNodes; i++) {
tmpNode = rf_AllocDAGNode();
tmpNode->list_next = dag_h->nodes;
dag_h->nodes = tmpNode;
}
writeParityNodes = dag_h->nodes;
for (i = 0; i < numParityNodes; i++) {
tmpNode = rf_AllocDAGNode();
tmpNode->list_next = dag_h->nodes;
dag_h->nodes = tmpNode;
}
xorNodes = dag_h->nodes;
termNode = rf_AllocDAGNode();
termNode->list_next = dag_h->nodes;
dag_h->nodes = termNode;
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
if (nfaults == 2) {
for (i = 0; i < numParityNodes; i++) {
tmpNode = rf_AllocDAGNode();
tmpNode->list_next = dag_h->nodes;
dag_h->nodes = tmpNode;
}
readQNodes = dag_h->nodes;
for (i = 0; i < numParityNodes; i++) {
tmpNode = rf_AllocDAGNode();
tmpNode->list_next = dag_h->nodes;
dag_h->nodes = tmpNode;
}
writeQNodes = dag_h->nodes;
for (i = 0; i < numParityNodes; i++) {
tmpNode = rf_AllocDAGNode();
tmpNode->list_next = dag_h->nodes;
dag_h->nodes = tmpNode;
}
qNodes = dag_h->nodes;
} else {
#endif
readQNodes = writeQNodes = qNodes = NULL;
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
}
#endif
/*
* Step 3. initialize the nodes
*/
/* initialize block node (Nil) */
nNodes = numDataNodes + (nfaults * numParityNodes);
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0,
dag_h, "Nil", allocList);
/* initialize commit node (Cmt) */
rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
rf_NullNodeUndoFunc, NULL, nNodes,
(nfaults * numParityNodes), 0, 0, dag_h, "Cmt", allocList);
/* initialize terminate node (Trm) */
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
rf_TerminateUndoFunc, NULL, 0, nNodes, 0, 0,
dag_h, "Trm", allocList);
/* initialize nodes which read old data (Rod) */
tmpreadDataNode = readDataNodes;
for (i = 0; i < numDataNodes; i++) {
rf_InitNode(tmpreadDataNode, rf_wait, RF_FALSE,
rf_DiskReadFunc, rf_DiskReadUndoFunc,
rf_GenericWakeupFunc, (nfaults * numParityNodes),
1, 4, 0, dag_h, "Rod", allocList);
RF_ASSERT(pda != NULL);
/* physical disk addr desc */
tmpreadDataNode->params[0].p = pda;
/* buffer to hold old data */
tmpreadDataNode->params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
tmpreadDataNode->params[2].v = parityStripeID;
tmpreadDataNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
which_ru);
pda = pda->next;
for (j = 0; j < tmpreadDataNode->numSuccedents; j++) {
tmpreadDataNode->propList[j] = NULL;
}
tmpreadDataNode = tmpreadDataNode->list_next;
}
/* initialize nodes which read old parity (Rop) */
pda = asmap->parityInfo;
i = 0;
tmpreadParityNode = readParityNodes;
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(pda != NULL);
rf_InitNode(tmpreadParityNode, rf_wait, RF_FALSE,
rf_DiskReadFunc, rf_DiskReadUndoFunc,
rf_GenericWakeupFunc, numParityNodes, 1, 4, 0,
dag_h, "Rop", allocList);
tmpreadParityNode->params[0].p = pda;
/* buffer to hold old parity */
tmpreadParityNode->params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
tmpreadParityNode->params[2].v = parityStripeID;
tmpreadParityNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
which_ru);
pda = pda->next;
for (j = 0; j < tmpreadParityNode->numSuccedents; j++) {
tmpreadParityNode->propList[0] = NULL;
}
tmpreadParityNode = tmpreadParityNode->list_next;
}
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
/* initialize nodes which read old Q (Roq) */
if (nfaults == 2) {
pda = asmap->qInfo;
tmpreadQNode = readQNodes;
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(pda != NULL);
rf_InitNode(tmpreadQNode, rf_wait, RF_FALSE,
rf_DiskReadFunc, rf_DiskReadUndoFunc,
rf_GenericWakeupFunc, numParityNodes,
1, 4, 0, dag_h, "Roq", allocList);
tmpreadQNode->params[0].p = pda;
/* buffer to hold old Q */
tmpreadQNode->params[1].p = rf_AllocBuffer(raidPtr, dag_h,
pda->numSector << raidPtr->logBytesPerSector);
tmpreadQNode->params[2].v = parityStripeID;
tmpreadQNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
which_ru);
pda = pda->next;
for (j = 0; j < tmpreadQNode->numSuccedents; j++) {
tmpreadQNode->propList[0] = NULL;
}
tmpreadQNode = tmpreadQNode->list_next;
}
}
#endif
/* initialize nodes which write new data (Wnd) */
pda = asmap->physInfo;
tmpwriteDataNode = writeDataNodes;
for (i = 0; i < numDataNodes; i++) {
RF_ASSERT(pda != NULL);
rf_InitNode(tmpwriteDataNode, rf_wait, RF_FALSE,
rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
"Wnd", allocList);
/* physical disk addr desc */
tmpwriteDataNode->params[0].p = pda;
/* buffer holding new data to be written */
tmpwriteDataNode->params[1].p = pda->bufPtr;
tmpwriteDataNode->params[2].v = parityStripeID;
tmpwriteDataNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
which_ru);
pda = pda->next;
tmpwriteDataNode = tmpwriteDataNode->list_next;
}
/*
* Initialize nodes which compute new parity and Q.
*/
/*
* We use the simple XOR func in the double-XOR case, and when
* we're accessing only a portion of one stripe unit. The
* distinction between the two is that the regular XOR func
* assumes that the targbuf is a full SU in size, and examines
* the pda associated with the buffer to decide where within
* the buffer to XOR the data, whereas the simple XOR func
* just XORs the data into the start of the buffer. */
if ((numParityNodes == 2) || ((numDataNodes == 1)
&& (asmap->totalSectorsAccessed <
raidPtr->Layout.sectorsPerStripeUnit))) {
func = pfuncs->simple;
undoFunc = rf_NullNodeUndoFunc;
name = pfuncs->SimpleName;
if (qfuncs) {
qfunc = qfuncs->simple;
qname = qfuncs->SimpleName;
} else {
qfunc = NULL;
qname = NULL;
}
} else {
func = pfuncs->regular;
undoFunc = rf_NullNodeUndoFunc;
name = pfuncs->RegularName;
if (qfuncs) {
qfunc = qfuncs->regular;
qname = qfuncs->RegularName;
} else {
qfunc = NULL;
qname = NULL;
}
}
/*
* Initialize the xor nodes: params are {pda,buf}
* from {Rod,Wnd,Rop} nodes, and raidPtr
*/
if (numParityNodes == 2) {
/* double-xor case */
tmpxorNode = xorNodes;
tmpreadDataNode = readDataNodes;
tmpreadParityNode = readParityNodes;
tmpwriteDataNode = writeDataNodes;
tmpqNode = qNodes;
tmpreadQNode = readQNodes;
for (i = 0; i < numParityNodes; i++) {
/* note: no wakeup func for xor */
rf_InitNode(tmpxorNode, rf_wait, RF_FALSE, func,
undoFunc, NULL, 1,
(numDataNodes + numParityNodes),
7, 1, dag_h, name, allocList);
tmpxorNode->flags |= RF_DAGNODE_FLAG_YIELD;
tmpxorNode->params[0] = tmpreadDataNode->params[0];
tmpxorNode->params[1] = tmpreadDataNode->params[1];
tmpxorNode->params[2] = tmpreadParityNode->params[0];
tmpxorNode->params[3] = tmpreadParityNode->params[1];
tmpxorNode->params[4] = tmpwriteDataNode->params[0];
tmpxorNode->params[5] = tmpwriteDataNode->params[1];
tmpxorNode->params[6].p = raidPtr;
/* use old parity buf as target buf */
tmpxorNode->results[0] = tmpreadParityNode->params[1].p;
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
if (nfaults == 2) {
/* note: no wakeup func for qor */
rf_InitNode(tmpqNode, rf_wait, RF_FALSE,
qfunc, undoFunc, NULL, 1,
(numDataNodes + numParityNodes),
7, 1, dag_h, qname, allocList);
tmpqNode->params[0] = tmpreadDataNode->params[0];
tmpqNode->params[1] = tmpreadDataNode->params[1];
tmpqNode->params[2] = tmpreadQNode->.params[0];
tmpqNode->params[3] = tmpreadQNode->params[1];
tmpqNode->params[4] = tmpwriteDataNode->params[0];
tmpqNode->params[5] = tmpwriteDataNode->params[1];
tmpqNode->params[6].p = raidPtr;
/* use old Q buf as target buf */
tmpqNode->results[0] = tmpreadQNode->params[1].p;
tmpqNode = tmpqNode->list_next;
tmpreadQNodes = tmpreadQNodes->list_next;
}
#endif
tmpxorNode = tmpxorNode->list_next;
tmpreadDataNode = tmpreadDataNode->list_next;
tmpreadParityNode = tmpreadParityNode->list_next;
tmpwriteDataNode = tmpwriteDataNode->list_next;
}
} else {
/* there is only one xor node in this case */
rf_InitNode(xorNodes, rf_wait, RF_FALSE, func,
undoFunc, NULL, 1, (numDataNodes + numParityNodes),
(2 * (numDataNodes + numDataNodes + 1) + 1), 1,
dag_h, name, allocList);
xorNodes->flags |= RF_DAGNODE_FLAG_YIELD;
tmpreadDataNode = readDataNodes;
for (i = 0; i < numDataNodes; i++) { /* used to be"numDataNodes + 1" until we factored
out the "+1" into the "deal with Rop separately below */
/* set up params related to Rod nodes */
xorNodes->params[2 * i + 0] = tmpreadDataNode->params[0]; /* pda */
xorNodes->params[2 * i + 1] = tmpreadDataNode->params[1]; /* buffer ptr */
tmpreadDataNode = tmpreadDataNode->list_next;
}
/* deal with Rop separately */
xorNodes->params[2 * numDataNodes + 0] = readParityNodes->params[0]; /* pda */
xorNodes->params[2 * numDataNodes + 1] = readParityNodes->params[1]; /* buffer ptr */
tmpwriteDataNode = writeDataNodes;
for (i = 0; i < numDataNodes; i++) {
/* set up params related to Wnd and Wnp nodes */
xorNodes->params[2 * (numDataNodes + 1 + i) + 0] = /* pda */
tmpwriteDataNode->params[0];
xorNodes->params[2 * (numDataNodes + 1 + i) + 1] = /* buffer ptr */
tmpwriteDataNode->params[1];
tmpwriteDataNode = tmpwriteDataNode->list_next;
}
/* xor node needs to get at RAID information */
xorNodes->params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
xorNodes->results[0] = readParityNodes->params[1].p;
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
if (nfaults == 2) {
rf_InitNode(qNodes, rf_wait, RF_FALSE, qfunc,
undoFunc, NULL, 1,
(numDataNodes + numParityNodes),
(2 * (numDataNodes + numDataNodes + 1) + 1), 1,
dag_h, qname, allocList);
tmpreadDataNode = readDataNodes;
for (i = 0; i < numDataNodes; i++) {
/* set up params related to Rod */
qNodes->params[2 * i + 0] = tmpreadDataNode->params[0]; /* pda */
qNodes->params[2 * i + 1] = tmpreadDataNode->params[1]; /* buffer ptr */
tmpreadDataNode = tmpreadDataNode->list_next;
}
/* and read old q */
qNodes->params[2 * numDataNodes + 0] = /* pda */
readQNodes->params[0];
qNodes->params[2 * numDataNodes + 1] = /* buffer ptr */
readQNodes->params[1];
tmpwriteDataNode = writeDataNodes;
for (i = 0; i < numDataNodes; i++) {
/* set up params related to Wnd nodes */
qNodes->params[2 * (numDataNodes + 1 + i) + 0] = /* pda */
tmpwriteDataNode->params[0];
qNodes->params[2 * (numDataNodes + 1 + i) + 1] = /* buffer ptr */
tmpwriteDataNode->params[1];
tmpwriteDataNode = tmpwriteDataNode->list_next;
}
/* xor node needs to get at RAID information */
qNodes->params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
qNodes->results[0] = readQNodes->params[1].p;
}
#endif
}
/* initialize nodes which write new parity (Wnp) */
pda = asmap->parityInfo;
tmpwriteParityNode = writeParityNodes;
tmpxorNode = xorNodes;
for (i = 0; i < numParityNodes; i++) {
rf_InitNode(tmpwriteParityNode, rf_wait, RF_FALSE,
rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
"Wnp", allocList);
RF_ASSERT(pda != NULL);
tmpwriteParityNode->params[0].p = pda; /* param 1 (bufPtr)
* filled in by xor node */
tmpwriteParityNode->params[1].p = tmpxorNode->results[0]; /* buffer pointer for
* parity write
* operation */
tmpwriteParityNode->params[2].v = parityStripeID;
tmpwriteParityNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
which_ru);
pda = pda->next;
tmpwriteParityNode = tmpwriteParityNode->list_next;
tmpxorNode = tmpxorNode->list_next;
}
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
/* initialize nodes which write new Q (Wnq) */
if (nfaults == 2) {
pda = asmap->qInfo;
tmpwriteQNode = writeQNodes;
tmpqNode = qNodes;
for (i = 0; i < numParityNodes; i++) {
rf_InitNode(tmpwriteQNode, rf_wait, RF_FALSE,
rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
"Wnq", allocList);
RF_ASSERT(pda != NULL);
tmpwriteQNode->params[0].p = pda; /* param 1 (bufPtr)
* filled in by xor node */
tmpwriteQNode->params[1].p = tmpqNode->results[0]; /* buffer pointer for
* parity write
* operation */
tmpwriteQNode->params[2].v = parityStripeID;
tmpwriteQNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
which_ru);
pda = pda->next;
tmpwriteQNode = tmpwriteQNode->list_next;
tmpqNode = tmpqNode->list_next;
}
}
#endif
/*
* Step 4. connect the nodes.
*/
/* connect header to block node */
dag_h->succedents[0] = blockNode;
/* connect block node to read old data nodes */
RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults)));
tmpreadDataNode = readDataNodes;
for (i = 0; i < numDataNodes; i++) {
blockNode->succedents[i] = tmpreadDataNode;
RF_ASSERT(tmpreadDataNode->numAntecedents == 1);
tmpreadDataNode->antecedents[0] = blockNode;
tmpreadDataNode->antType[0] = rf_control;
tmpreadDataNode = tmpreadDataNode->list_next;
}
/* connect block node to read old parity nodes */
tmpreadParityNode = readParityNodes;
for (i = 0; i < numParityNodes; i++) {
blockNode->succedents[numDataNodes + i] = tmpreadParityNode;
RF_ASSERT(tmpreadParityNode->numAntecedents == 1);
tmpreadParityNode->antecedents[0] = blockNode;
tmpreadParityNode->antType[0] = rf_control;
tmpreadParityNode = tmpreadParityNode->list_next;
}
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
/* connect block node to read old Q nodes */
if (nfaults == 2) {
tmpreadQNode = readQNodes;
for (i = 0; i < numParityNodes; i++) {
blockNode->succedents[numDataNodes + numParityNodes + i] = tmpreadQNode;
RF_ASSERT(tmpreadQNode->numAntecedents == 1);
tmpreadQNode->antecedents[0] = blockNode;
tmpreadQNode->antType[0] = rf_control;
tmpreadQNode = tmpreadQNode->list_next;
}
}
#endif
/* connect read old data nodes to xor nodes */
tmpreadDataNode = readDataNodes;
for (i = 0; i < numDataNodes; i++) {
RF_ASSERT(tmpreadDataNode->numSuccedents == (nfaults * numParityNodes));
tmpxorNode = xorNodes;
for (j = 0; j < numParityNodes; j++) {
RF_ASSERT(tmpxorNode->numAntecedents == numDataNodes + numParityNodes);
tmpreadDataNode->succedents[j] = tmpxorNode;
tmpxorNode->antecedents[i] = tmpreadDataNode;
tmpxorNode->antType[i] = rf_trueData;
tmpxorNode = tmpxorNode->list_next;
}
tmpreadDataNode = tmpreadDataNode->list_next;
}
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
/* connect read old data nodes to q nodes */
if (nfaults == 2) {
tmpreadDataNode = readDataNodes;
for (i = 0; i < numDataNodes; i++) {
tmpqNode = qNodes;
for (j = 0; j < numParityNodes; j++) {
RF_ASSERT(tmpqNode->numAntecedents == numDataNodes + numParityNodes);
tmpreadDataNode->succedents[numParityNodes + j] = tmpqNode;
tmpqNode->antecedents[i] = tmpreadDataNode;
tmpqNode->antType[i] = rf_trueData;
tmpqNode = tmpqNode->list_next;
}
tmpreadDataNode = tmpreadDataNode->list_next;
}
}
#endif
/* connect read old parity nodes to xor nodes */
tmpreadParityNode = readParityNodes;
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(tmpreadParityNode->numSuccedents == numParityNodes);
tmpxorNode = xorNodes;
for (j = 0; j < numParityNodes; j++) {
tmpreadParityNode->succedents[j] = tmpxorNode;
tmpxorNode->antecedents[numDataNodes + i] = tmpreadParityNode;
tmpxorNode->antType[numDataNodes + i] = rf_trueData;
tmpxorNode = tmpxorNode->list_next;
}
tmpreadParityNode = tmpreadParityNode->list_next;
}
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
/* connect read old q nodes to q nodes */
if (nfaults == 2) {
tmpreadParityNode = readParityNodes;
tmpreadQNode = readQNodes;
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(tmpreadParityNode->numSuccedents == numParityNodes);
tmpqNode = qNodes;
for (j = 0; j < numParityNodes; j++) {
tmpreadQNode->succedents[j] = tmpqNode;
tmpqNode->antecedents[numDataNodes + i] = tmpreadQNodes;
tmpqNode->antType[numDataNodes + i] = rf_trueData;
tmpqNode = tmpqNode->list_next;
}
tmpreadParityNode = tmpreadParityNode->list_next;
tmpreadQNode = tmpreadQNode->list_next;
}
}
#endif
/* connect xor nodes to commit node */
RF_ASSERT(commitNode->numAntecedents == (nfaults * numParityNodes));
tmpxorNode = xorNodes;
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(tmpxorNode->numSuccedents == 1);
tmpxorNode->succedents[0] = commitNode;
commitNode->antecedents[i] = tmpxorNode;
commitNode->antType[i] = rf_control;
tmpxorNode = tmpxorNode->list_next;
}
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
/* connect q nodes to commit node */
if (nfaults == 2) {
tmpqNode = qNodes;
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(tmpqNode->numSuccedents == 1);
tmpqNode->succedents[0] = commitNode;
commitNode->antecedents[i + numParityNodes] = tmpqNode;
commitNode->antType[i + numParityNodes] = rf_control;
tmpqNode = tmpqNode->list_next;
}
}
#endif
/* connect commit node to write nodes */
RF_ASSERT(commitNode->numSuccedents == (numDataNodes + (nfaults * numParityNodes)));
tmpwriteDataNode = writeDataNodes;
for (i = 0; i < numDataNodes; i++) {
RF_ASSERT(tmpwriteDataNode->numAntecedents == 1);
commitNode->succedents[i] = tmpwriteDataNode;
tmpwriteDataNode->antecedents[0] = commitNode;
tmpwriteDataNode->antType[0] = rf_trueData;
tmpwriteDataNode = tmpwriteDataNode->list_next;
}
tmpwriteParityNode = writeParityNodes;
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(tmpwriteParityNode->numAntecedents == 1);
commitNode->succedents[i + numDataNodes] = tmpwriteParityNode;
tmpwriteParityNode->antecedents[0] = commitNode;
tmpwriteParityNode->antType[0] = rf_trueData;
tmpwriteParityNode = tmpwriteParityNode->list_next;
}
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
if (nfaults == 2) {
tmpwriteQNode = writeQNodes;
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(tmpwriteQNode->numAntecedents == 1);
commitNode->succedents[i + numDataNodes + numParityNodes] = tmpwriteQNode;
tmpwriteQNode->antecedents[0] = commitNode;
tmpwriteQNode->antType[0] = rf_trueData;
tmpwriteQNode = tmpwriteQNode->list_next;
}
}
#endif
RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
RF_ASSERT(termNode->numSuccedents == 0);
tmpwriteDataNode = writeDataNodes;
for (i = 0; i < numDataNodes; i++) {
/* connect write new data nodes to term node */
RF_ASSERT(tmpwriteDataNode->numSuccedents == 1);
RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
tmpwriteDataNode->succedents[0] = termNode;
termNode->antecedents[i] = tmpwriteDataNode;
termNode->antType[i] = rf_control;
tmpwriteDataNode = tmpwriteDataNode->list_next;
}
tmpwriteParityNode = writeParityNodes;
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(tmpwriteParityNode->numSuccedents == 1);
tmpwriteParityNode->succedents[0] = termNode;
termNode->antecedents[numDataNodes + i] = tmpwriteParityNode;
termNode->antType[numDataNodes + i] = rf_control;
tmpwriteParityNode = tmpwriteParityNode->list_next;
}
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
if (nfaults == 2) {
tmpwriteQNode = writeQNodes;
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(tmpwriteQNode->numSuccedents == 1);
tmpwriteQNode->succedents[0] = termNode;
termNode->antecedents[numDataNodes + numParityNodes + i] = tmpwriteQNode;
termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
tmpwriteQNode = tmpwriteQNode->list_next;
}
}
#endif
}
/******************************************************************************
* create a write graph (fault-free or degraded) for RAID level 1
*
* Hdr -> Commit -> Wpd -> Nil -> Trm
* -> Wsd ->
*
* The "Wpd" node writes data to the primary copy in the mirror pair
* The "Wsd" node writes data to the secondary copy in the mirror pair
*
* Parameters: raidPtr - description of the physical array
* asmap - logical & physical addresses for this access
* bp - buffer ptr (holds write data)
* flags - general flags (e.g. disk locking)
* allocList - list of memory allocated in DAG creation
*****************************************************************************/
void
rf_CreateRaidOneWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
RF_DagHeader_t *dag_h, void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t *allocList)
{
RF_DagNode_t *unblockNode, *termNode, *commitNode;
RF_DagNode_t *wndNode, *wmirNode;
RF_DagNode_t *tmpNode, *tmpwndNode, *tmpwmirNode;
int nWndNodes, nWmirNodes, i;
RF_ReconUnitNum_t which_ru;
RF_PhysDiskAddr_t *pda, *pdaP;
RF_StripeNum_t parityStripeID;
parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
asmap->raidAddress, &which_ru);
#if RF_DEBUG_DAG
if (rf_dagDebug) {
printf("[Creating RAID level 1 write DAG]\n");
}
#endif
dag_h->creator = "RaidOneWriteDAG";
/* 2 implies access not SU aligned */
nWmirNodes = (asmap->parityInfo->next) ? 2 : 1;
nWndNodes = (asmap->physInfo->next) ? 2 : 1;
/* alloc the Wnd nodes and the Wmir node */
if (asmap->numDataFailed == 1)
nWndNodes--;
if (asmap->numParityFailed == 1)
nWmirNodes--;
/* total number of nodes = nWndNodes + nWmirNodes + (commit + unblock
* + terminator) */
for (i = 0; i < nWndNodes; i++) {
tmpNode = rf_AllocDAGNode();
tmpNode->list_next = dag_h->nodes;
dag_h->nodes = tmpNode;
}
wndNode = dag_h->nodes;
for (i = 0; i < nWmirNodes; i++) {
tmpNode = rf_AllocDAGNode();
tmpNode->list_next = dag_h->nodes;
dag_h->nodes = tmpNode;
}
wmirNode = dag_h->nodes;
commitNode = rf_AllocDAGNode();
commitNode->list_next = dag_h->nodes;
dag_h->nodes = commitNode;
unblockNode = rf_AllocDAGNode();
unblockNode->list_next = dag_h->nodes;
dag_h->nodes = unblockNode;
termNode = rf_AllocDAGNode();
termNode->list_next = dag_h->nodes;
dag_h->nodes = termNode;
/* this dag can commit immediately */
dag_h->numCommitNodes = 1;
dag_h->numCommits = 0;
dag_h->numSuccedents = 1;
/* initialize the commit, unblock, and term nodes */
rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
rf_NullNodeUndoFunc, NULL, (nWndNodes + nWmirNodes),
0, 0, 0, dag_h, "Cmt", allocList);
rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
rf_NullNodeUndoFunc, NULL, 1, (nWndNodes + nWmirNodes),
0, 0, dag_h, "Nil", allocList);
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
rf_TerminateUndoFunc, NULL, 0, 1, 0, 0,
dag_h, "Trm", allocList);
/* initialize the wnd nodes */
if (nWndNodes > 0) {
pda = asmap->physInfo;
tmpwndNode = wndNode;
for (i = 0; i < nWndNodes; i++) {
rf_InitNode(tmpwndNode, rf_wait, RF_FALSE,
rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
rf_GenericWakeupFunc, 1, 1, 4, 0,
dag_h, "Wpd", allocList);
RF_ASSERT(pda != NULL);
tmpwndNode->params[0].p = pda;
tmpwndNode->params[1].p = pda->bufPtr;
tmpwndNode->params[2].v = parityStripeID;
tmpwndNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
pda = pda->next;
tmpwndNode = tmpwndNode->list_next;
}
RF_ASSERT(pda == NULL);
}
/* initialize the mirror nodes */
if (nWmirNodes > 0) {
pda = asmap->physInfo;
pdaP = asmap->parityInfo;
tmpwmirNode = wmirNode;
for (i = 0; i < nWmirNodes; i++) {
rf_InitNode(tmpwmirNode, rf_wait, RF_FALSE,
rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
rf_GenericWakeupFunc, 1, 1, 4, 0,
dag_h, "Wsd", allocList);
RF_ASSERT(pda != NULL);
tmpwmirNode->params[0].p = pdaP;
tmpwmirNode->params[1].p = pda->bufPtr;
tmpwmirNode->params[2].v = parityStripeID;
tmpwmirNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
pda = pda->next;
pdaP = pdaP->next;
tmpwmirNode = tmpwmirNode->list_next;
}
RF_ASSERT(pda == NULL);
RF_ASSERT(pdaP == NULL);
}
/* link the header node to the commit node */
RF_ASSERT(dag_h->numSuccedents == 1);
RF_ASSERT(commitNode->numAntecedents == 0);
dag_h->succedents[0] = commitNode;
/* link the commit node to the write nodes */
RF_ASSERT(commitNode->numSuccedents == (nWndNodes + nWmirNodes));
tmpwndNode = wndNode;
for (i = 0; i < nWndNodes; i++) {
RF_ASSERT(tmpwndNode->numAntecedents == 1);
commitNode->succedents[i] = tmpwndNode;
tmpwndNode->antecedents[0] = commitNode;
tmpwndNode->antType[0] = rf_control;
tmpwndNode = tmpwndNode->list_next;
}
tmpwmirNode = wmirNode;
for (i = 0; i < nWmirNodes; i++) {
RF_ASSERT(tmpwmirNode->numAntecedents == 1);
commitNode->succedents[i + nWndNodes] = tmpwmirNode;
tmpwmirNode->antecedents[0] = commitNode;
tmpwmirNode->antType[0] = rf_control;
tmpwmirNode = tmpwmirNode->list_next;
}
/* link the write nodes to the unblock node */
RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes));
tmpwndNode = wndNode;
for (i = 0; i < nWndNodes; i++) {
RF_ASSERT(tmpwndNode->numSuccedents == 1);
tmpwndNode->succedents[0] = unblockNode;
unblockNode->antecedents[i] = tmpwndNode;
unblockNode->antType[i] = rf_control;
tmpwndNode = tmpwndNode->list_next;
}
tmpwmirNode = wmirNode;
for (i = 0; i < nWmirNodes; i++) {
RF_ASSERT(tmpwmirNode->numSuccedents == 1);
tmpwmirNode->succedents[0] = unblockNode;
unblockNode->antecedents[i + nWndNodes] = tmpwmirNode;
unblockNode->antType[i + nWndNodes] = rf_control;
tmpwmirNode = tmpwmirNode->list_next;
}
/* link the unblock node to the term node */
RF_ASSERT(unblockNode->numSuccedents == 1);
RF_ASSERT(termNode->numAntecedents == 1);
RF_ASSERT(termNode->numSuccedents == 0);
unblockNode->succedents[0] = termNode;
termNode->antecedents[0] = unblockNode;
termNode->antType[0] = rf_control;
}