NetBSD/sys/dev/ic/elink3.c

1403 lines
35 KiB
C

/* $NetBSD: elink3.c,v 1.22 1997/03/30 22:47:10 jonathan Exp $ */
/*
* Copyright (c) 1996, 1997 Jonathan Stone <jonathan@NetBSD.org>
* Copyright (c) 1994 Herb Peyerl <hpeyerl@beer.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Herb Peyerl.
* 4. The name of Herb Peyerl may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/syslog.h>
#include <sys/select.h>
#include <sys/device.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_inarp.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <machine/cpu.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/ic/elink3var.h>
#include <dev/ic/elink3reg.h>
#define ETHER_MIN_LEN 64
#define ETHER_MAX_LEN 1518
#define ETHER_ADDR_LEN 6
struct cfdriver ep_cd = {
NULL, "ep", DV_IFNET
};
void ep_internalconfig __P((struct ep_softc *sc));
void ep_vortex_probemedia __P((struct ep_softc *sc));
void ep_default_probemedia __P((struct ep_softc *sc));
static void eptxstat __P((struct ep_softc *));
static int epstatus __P((struct ep_softc *));
void epinit __P((struct ep_softc *));
int epioctl __P((struct ifnet *, u_long, caddr_t));
void epstart __P((struct ifnet *));
void epwatchdog __P((struct ifnet *));
void epreset __P((struct ep_softc *));
static void epshutdown __P((void *));
void epread __P((struct ep_softc *));
struct mbuf *epget __P((struct ep_softc *, int));
void epmbuffill __P((void *));
void epmbufempty __P((struct ep_softc *));
void epsetfilter __P((struct ep_softc *));
void epsetlink __P((struct ep_softc *));
static int epbusyeeprom __P((struct ep_softc *));
static inline void ep_complete_cmd __P((struct ep_softc *sc,
u_int cmd, u_int arg));
/*
* Issue a (reset) command, and be sure it has completed.
* Used for commands that reset part or all of the board.
* On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
* but older hardware doesn't implement it and we must delay.
* It's easiest to just delay always.
*/
static inline void
ep_complete_cmd(sc, cmd, arg)
struct ep_softc *sc;
u_int cmd, arg;
{
register bus_space_tag_t iot = sc->sc_iot;
register bus_space_handle_t ioh = sc->sc_ioh;
bus_space_write_2(iot, ioh, cmd, arg);
#ifdef notyet
/* if this adapter family has S_COMMAND_IN_PROGRESS, use it */
while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
;
else
#else
DELAY(100000); /* need at least 1 ms, but be generous. */
#endif
}
/*
* Back-end attach and configure.
*/
void
epconfig(sc, chipset)
struct ep_softc *sc;
u_short chipset;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int16_t i;
u_int8_t myla[6];
printf("%s: ", sc->sc_dev.dv_xname);
/* print RAM size */
ep_internalconfig(sc);
GO_WINDOW(0);
sc->ep_chipset = chipset;
/*
* Read the station address from the eeprom
*/
for (i = 0; i < 3; i++) {
u_int16_t x;
if (epbusyeeprom(sc))
return;
bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,
READ_EEPROM | i);
if (epbusyeeprom(sc))
return;
x = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA);
myla[(i << 1)] = x >> 8;
myla[(i << 1) + 1] = x;
}
printf("MAC address %s\n", ether_sprintf(myla));
/*
* Vortex-based (3c59x, eisa)? and Boomerang (3c900)cards allow
* FDDI-sized (4500) byte packets. Commands only take an 11-bit
* parameter, and 11 bits isn't enough to hold a full-size pkt length.
* Commands to these cards implicitly upshift a packet size
* or threshold by 2 bits.
* To detect cards with large-packet support, we probe by setting
* the transmit threshold register, then change windows and
* read back the threshold register directly, and see if the
* threshold value was shifted or not.
*/
bus_space_write_2(iot, ioh, EP_COMMAND,
SET_TX_AVAIL_THRESH | EP_LARGEWIN_PROBE );
GO_WINDOW(5);
i = bus_space_read_2(iot, ioh, EP_W5_TX_AVAIL_THRESH);
GO_WINDOW(1);
switch (i) {
case EP_LARGEWIN_PROBE:
case (EP_LARGEWIN_PROBE & EP_LARGEWIN_MASK):
sc->ep_pktlenshift = 0;
break;
case (EP_LARGEWIN_PROBE << 2):
sc->ep_pktlenshift = 2;
/* XXX do 3c579, 3c515 support Vortex-style RESET_OPTIONS? */
break;
default:
printf("%s: wrote %d to TX_AVAIL_THRESH, read back %d. "
"Interface disabled\n",
sc->sc_dev.dv_xname, EP_THRESH_DISABLE, (int) i);
return;
}
/*
* Ensure Tx-available interrupts are enabled for
* start the interface.
* XXX should be in epinit().
*/
bus_space_write_2(iot, ioh, EP_COMMAND,
SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
#ifdef notyet
/*
* If we've got an indirect (ISA, PCMCIA?) board, the chipset
* is unknown. If the board has large-packet support, it's a
* Vortex/Boomerang, otherwise it's a 3c509.
* XXX use eeprom capability word instead?
*/
if (sc->sc_chipset == EP_CHIPSET_UNKNOWN && sc->ep_pktlenshift) {
sc->sc_chipset = EP_CHIPSET_VORTEX;
}
#endif /* notyet */
/*
* Ascertain which media types are present.
*/
switch (sc->ep_chipset) {
/* on a direct bus, the attach routine can tell, but check anyway. */
case EP_CHIPSET_VORTEX:
case EP_CHIPSET_BOOMERANG2:
ep_vortex_probemedia(sc);
break;
/* on ISA we can't yet tell 3c509 from 3c515. Assume the former. */
case EP_CHIPSET_3C509:
default:
ep_default_probemedia(sc);
break;
}
GO_WINDOW(1); /* Window 1 is operating window */
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_start = epstart;
ifp->if_ioctl = epioctl;
ifp->if_watchdog = epwatchdog;
ifp->if_flags =
IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
if_attach(ifp);
ether_ifattach(ifp, myla);
#if NBPFILTER > 0
bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
sizeof(struct ether_header));
#endif
sc->tx_start_thresh = 20; /* probably a good starting point. */
/* Establish callback to reset card when we reboot. */
shutdownhook_establish(epshutdown, sc);
ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
}
/*
* Show interface-model-independent info from window 3
* internal-configuration register.
*/
void
ep_internalconfig(sc)
struct ep_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int config0;
u_int config1;
int ram_size, ram_width, ram_speed, rom_size, ram_split;
/*
* NVRAM buffer Rx:Tx config names for busmastering cards
* (Demon, Vortex, and later).
*/
const char *onboard_ram_config[] = {
"5:3", "3:1", "1:1", "(undefined)" };
GO_WINDOW(3);
config0 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG);
config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG+2);
GO_WINDOW(0);
ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
rom_size = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
printf("%dKB %s-wide FIFO, %s Rx:Tx split, ",
8 << ram_size,
(ram_width) ? "word" : "byte",
onboard_ram_config[ram_split]);
}
/*
* Find media present on 3c509-generation hardware that doesn't have
* a "reset_options" register in window 3.
* Use the config_cntrl register in window 0.
* XXX ifmedia?
*/
void
ep_default_probemedia(sc)
struct ep_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int conn;
GO_WINDOW(0);
conn = bus_space_read_2(iot, ioh, EP_W0_CONFIG_CTRL);
if (conn & IS_AUI)
sc->ep_connectors |= AUI;
if (conn & IS_BNC)
sc->ep_connectors |= BNC;
if (conn & IS_UTP)
sc->ep_connectors |= UTP;
}
/*
* Find media present on large-packet-capable elink3 devices (Demon,
* Vortex, Boomerang), using media and card-version info in window 3.
*
* XXX How much of this works with 3c515, pcmcia 10/100? With 3c509, 3c589?
* XXX Be noisy about what's present, as NetBSD provides no way to
* change media. You need to run the vendor config utility under DOS.
* XXX ifmedia?
*/
void
ep_vortex_probemedia(sc)
struct ep_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int config0;
u_int config1;
int reset_options;
int conn;
int defmedia, autoselect;
/* Names for media in the media bitmask field. */
const char *medium_name;
const char *media_names[8] ={
"10baseT",
"10base AUI",
"undefined",
"10base2",
"100baseTX",
"100baseFX",
"MII",
"100baseT4"};
GO_WINDOW(3);
config0 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG);
config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG+2);
reset_options = (int)bus_space_read_1(iot, ioh, EP_W3_RESET_OPTIONS);
GO_WINDOW(0);
defmedia = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
autoselect = (config1 & CONFIG_AUTOSELECT) >> CONFIG_AUTOSELECT_SHIFT;
medium_name = (defmedia > 8) ? "(unknown/impossible media)"
: media_names[defmedia];
conn = 0;
if (reset_options & IS_PCI_AUI)
conn |= AUI;
if (reset_options & IS_PCI_BNC)
conn |= BNC;
if (reset_options & IS_PCI_UTP)
conn |= UTP;
if (reset_options & IS_PCI_100BASE_TX)
conn |= TX;
if (reset_options & IS_PCI_100BASE_T4)
conn |= T4;
if (reset_options & IS_PCI_100BASE_FX)
conn |= FX;
if (reset_options & IS_PCI_100BASE_MII)
conn |= MII;
sc->ep_connectors = conn;
printf("%s: default medium %s, autoselect %s\n",
sc->sc_dev.dv_xname,
medium_name, (autoselect)? "on" : "off" );
}
/*
* Bring device up.
*
* The order in here seems important. Otherwise we may not receive
* interrupts. ?!
*/
void
epinit(sc)
register struct ep_softc *sc;
{
register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int i;
while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
;
if (sc->bustype != EP_BUS_PCI) {
GO_WINDOW(0);
bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, 0);
bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
}
if (sc->bustype == EP_BUS_PCMCIA) {
#ifdef EP_COAX_DEFAULT
bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,3<<14);
#else
bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,0<<14);
#endif
bus_space_write_2(iot, ioh, EP_W0_RESOURCE_CFG, 0x3f00);
}
GO_WINDOW(2);
for (i = 0; i < 6; i++) /* Reload the ether_addr. */
bus_space_write_1(iot, ioh, EP_W2_ADDR_0 + i,
LLADDR(ifp->if_sadl)[i]);
/*
* Reset the station-address receive filter.
* A bug workaround for busmastering (Vortex, Demon) cards.
*/
for (i = 0; i < 6; i++)
bus_space_write_1(iot, ioh, EP_W2_RECVMASK_0 + i, 0);
ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
GO_WINDOW(1); /* Window 1 is operating window */
for (i = 0; i < 31; i++)
bus_space_read_1(iot, ioh, EP_W1_TX_STATUS);
/* Enable interrupts. */
bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK | S_CARD_FAILURE |
S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK | S_CARD_FAILURE |
S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
/*
* Attempt to get rid of any stray interrupts that occured during
* configuration. On the i386 this isn't possible because one may
* already be queued. However, a single stray interrupt is
* unimportant.
*/
bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | 0xff);
epsetfilter(sc);
epsetlink(sc);
bus_space_write_2(iot, ioh, EP_COMMAND, RX_ENABLE);
bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
epmbuffill(sc);
/* Interface is now `running', with no output active. */
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/* Attempt to start output, if any. */
epstart(ifp);
}
/*
* Set multicast receive filter.
* elink3 hardware has no selective multicast filter in hardware.
* Enable reception of all multicasts and filter in software.
*/
void
epsetfilter(sc)
register struct ep_softc *sc;
{
register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
GO_WINDOW(1); /* Window 1 is operating window */
bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_COMMAND, SET_RX_FILTER |
FIL_INDIVIDUAL | FIL_BRDCST |
((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0 ) |
((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0 ));
}
/*
* Select media based on link{0,1,2} switches.
* Assumes 10Mbit interface, totatlly broken for 10/100 adaptors.
*/
void
epsetlink(sc)
register struct ep_softc *sc;
{
register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
/*
* you can `ifconfig (link0|-link0) ep0' to get the following
* behaviour:
* -link0 disable AUI/UTP. enable BNC.
* link0 disable BNC. enable AUI.
* link1 if the card has a UTP connector, and link0 is
* set too, then you get the UTP port.
*/
GO_WINDOW(4);
bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, DISABLE_UTP);
if (!(ifp->if_flags & IFF_LINK0) && (sc->ep_connectors & BNC)) {
if (sc->bustype == EP_BUS_PCMCIA) {
GO_WINDOW(0);
bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,3<<14);
GO_WINDOW(1);
}
bus_space_write_2(iot, ioh, EP_COMMAND, START_TRANSCEIVER);
delay(1000);
}
if (ifp->if_flags & IFF_LINK0) {
bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
delay(1000);
if ((ifp->if_flags & IFF_LINK1) && (sc->ep_connectors & UTP)) {
if (sc->bustype == EP_BUS_PCMCIA) {
GO_WINDOW(0);
bus_space_write_2(iot, ioh,
EP_W0_ADDRESS_CFG,0<<14);
GO_WINDOW(4);
}
bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, ENABLE_UTP);
}
}
GO_WINDOW(1);
}
/*
* Start outputting on the interface.
* Always called as splnet().
*/
void
epstart(ifp)
struct ifnet *ifp;
{
register struct ep_softc *sc = ifp->if_softc;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct mbuf *m, *m0;
int sh, len, pad;
/* Don't transmit if interface is busy or not running */
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
return;
startagain:
/* Sneak a peek at the next packet */
m0 = ifp->if_snd.ifq_head;
if (m0 == 0)
return;
/* We need to use m->m_pkthdr.len, so require the header */
if ((m0->m_flags & M_PKTHDR) == 0)
panic("epstart: no header mbuf");
len = m0->m_pkthdr.len;
pad = (4 - len) & 3;
/*
* The 3c509 automatically pads short packets to minimum ethernet
* length, but we drop packets that are too large. Perhaps we should
* truncate them instead?
*/
if (len + pad > ETHER_MAX_LEN) {
/* packet is obviously too large: toss it */
++ifp->if_oerrors;
IF_DEQUEUE(&ifp->if_snd, m0);
m_freem(m0);
goto readcheck;
}
if (bus_space_read_2(iot, ioh, EP_W1_FREE_TX) < len + pad + 4) {
bus_space_write_2(iot, ioh, EP_COMMAND,
SET_TX_AVAIL_THRESH |
((len + pad + 4) >> sc->ep_pktlenshift));
/* not enough room in FIFO */
ifp->if_flags |= IFF_OACTIVE;
return;
} else {
bus_space_write_2(iot, ioh, EP_COMMAND,
SET_TX_AVAIL_THRESH | EP_THRESH_DISABLE );
}
IF_DEQUEUE(&ifp->if_snd, m0);
if (m0 == 0) /* not really needed */
return;
bus_space_write_2(iot, ioh, EP_COMMAND, SET_TX_START_THRESH |
((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/) );
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m0);
#endif
/*
* Do the output at splhigh() so that an interrupt from another device
* won't cause a FIFO underrun.
*/
sh = splhigh();
bus_space_write_2(iot, ioh, EP_W1_TX_PIO_WR_1, len);
bus_space_write_2(iot, ioh, EP_W1_TX_PIO_WR_1,
0xffff); /* Second dword meaningless */
if (EP_IS_BUS_32(sc->bustype)) {
for (m = m0; m; ) {
if (m->m_len > 3) {
/* align our reads from core */
if (mtod(m, u_long) & 3) {
u_long count =
4 - (mtod(m, u_long) & 3);
bus_space_write_multi_1(iot, ioh,
EP_W1_TX_PIO_WR_1,
mtod(m, u_int8_t *), count);
m->m_data =
(void *)(mtod(m, u_long) + count);
m->m_len -= count;
}
bus_space_write_multi_4(iot, ioh,
EP_W1_TX_PIO_WR_1,
mtod(m, u_int32_t *), m->m_len >> 2);
m->m_data = (void *)(mtod(m, u_long) +
(u_long)(m->m_len & ~3));
m->m_len -= m->m_len & ~3;
}
if (m->m_len) {
bus_space_write_multi_1(iot, ioh,
EP_W1_TX_PIO_WR_1,
mtod(m, u_int8_t *), m->m_len);
}
MFREE(m, m0);
m = m0;
}
} else {
for (m = m0; m; ) {
if (m->m_len > 1) {
if (mtod(m, u_long) & 1) {
bus_space_write_1(iot, ioh,
EP_W1_TX_PIO_WR_1,
*(mtod(m, u_int8_t *)));
m->m_data =
(void *)(mtod(m, u_long) + 1);
m->m_len -= 1;
}
bus_space_write_multi_2(iot, ioh,
EP_W1_TX_PIO_WR_1, mtod(m, u_int16_t *),
m->m_len >> 1);
}
if (m->m_len & 1) {
bus_space_write_1(iot, ioh, EP_W1_TX_PIO_WR_1,
*(mtod(m, u_int8_t *) + m->m_len - 1));
}
MFREE(m, m0);
m = m0;
}
}
while (pad--)
bus_space_write_1(iot, ioh, EP_W1_TX_PIO_WR_1, 0);
splx(sh);
++ifp->if_opackets;
readcheck:
if ((bus_space_read_2(iot, ioh, EP_W1_RX_STATUS) & ERR_INCOMPLETE) == 0) {
/* We received a complete packet. */
u_int16_t status = bus_space_read_2(iot, ioh, EP_STATUS);
if ((status & S_INTR_LATCH) == 0) {
/*
* No interrupt, read the packet and continue
* Is this supposed to happen? Is my motherboard
* completely busted?
*/
epread(sc);
}
else
/* Got an interrupt, return so that it gets serviced. */
return;
}
else {
/* Check if we are stuck and reset [see XXX comment] */
if (epstatus(sc)) {
if (ifp->if_flags & IFF_DEBUG)
printf("%s: adapter reset\n",
sc->sc_dev.dv_xname);
epreset(sc);
}
}
goto startagain;
}
/*
* XXX: The 3c509 card can get in a mode where both the fifo status bit
* FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
* We detect this situation and we reset the adapter.
* It happens at times when there is a lot of broadcast traffic
* on the cable (once in a blue moon).
*/
static int
epstatus(sc)
register struct ep_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int16_t fifost;
/*
* Check the FIFO status and act accordingly
*/
GO_WINDOW(4);
fifost = bus_space_read_2(iot, ioh, EP_W4_FIFO_DIAG);
GO_WINDOW(1);
if (fifost & FIFOS_RX_UNDERRUN) {
if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
epreset(sc);
return 0;
}
if (fifost & FIFOS_RX_STATUS_OVERRUN) {
if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
return 1;
}
if (fifost & FIFOS_RX_OVERRUN) {
if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
return 1;
}
if (fifost & FIFOS_TX_OVERRUN) {
if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
epreset(sc);
return 0;
}
return 0;
}
static void
eptxstat(sc)
register struct ep_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int i;
/*
* We need to read+write TX_STATUS until we get a 0 status
* in order to turn off the interrupt flag.
*/
while ((i = bus_space_read_1(iot, ioh, EP_W1_TX_STATUS)) & TXS_COMPLETE) {
bus_space_write_1(iot, ioh, EP_W1_TX_STATUS, 0x0);
if (i & TXS_JABBER) {
++sc->sc_ethercom.ec_if.if_oerrors;
if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
printf("%s: jabber (%x)\n",
sc->sc_dev.dv_xname, i);
epreset(sc);
} else if (i & TXS_UNDERRUN) {
++sc->sc_ethercom.ec_if.if_oerrors;
if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
printf("%s: fifo underrun (%x) @%d\n",
sc->sc_dev.dv_xname, i,
sc->tx_start_thresh);
if (sc->tx_succ_ok < 100)
sc->tx_start_thresh = min(ETHER_MAX_LEN,
sc->tx_start_thresh + 20);
sc->tx_succ_ok = 0;
epreset(sc);
} else if (i & TXS_MAX_COLLISION) {
++sc->sc_ethercom.ec_if.if_collisions;
bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
} else
sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
}
}
int
epintr(arg)
void *arg;
{
register struct ep_softc *sc = arg;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
u_int16_t status;
int ret = 0;
for (;;) {
bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
status = bus_space_read_2(iot, ioh, EP_STATUS);
if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
S_RX_COMPLETE | S_CARD_FAILURE)) == 0)
break;
ret = 1;
/*
* Acknowledge any interrupts. It's important that we do this
* first, since there would otherwise be a race condition.
* Due to the i386 interrupt queueing, we may get spurious
* interrupts occasionally.
*/
bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | status);
if (status & S_RX_COMPLETE)
epread(sc);
if (status & S_TX_AVAIL) {
sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
epstart(&sc->sc_ethercom.ec_if);
}
if (status & S_CARD_FAILURE) {
printf("%s: adapter failure (%x)\n",
sc->sc_dev.dv_xname, status);
epreset(sc);
return (1);
}
if (status & S_TX_COMPLETE) {
eptxstat(sc);
epstart(ifp);
}
}
/* no more interrupts */
return (ret);
}
void
epread(sc)
register struct ep_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mbuf *m;
struct ether_header *eh;
int len;
len = bus_space_read_2(iot, ioh, EP_W1_RX_STATUS);
again:
if (ifp->if_flags & IFF_DEBUG) {
int err = len & ERR_MASK;
char *s = NULL;
if (len & ERR_INCOMPLETE)
s = "incomplete packet";
else if (err == ERR_OVERRUN)
s = "packet overrun";
else if (err == ERR_RUNT)
s = "runt packet";
else if (err == ERR_ALIGNMENT)
s = "bad alignment";
else if (err == ERR_CRC)
s = "bad crc";
else if (err == ERR_OVERSIZE)
s = "oversized packet";
else if (err == ERR_DRIBBLE)
s = "dribble bits";
if (s)
printf("%s: %s\n", sc->sc_dev.dv_xname, s);
}
if (len & ERR_INCOMPLETE)
return;
if (len & ERR_RX) {
++ifp->if_ierrors;
goto abort;
}
len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
/* Pull packet off interface. */
m = epget(sc, len);
if (m == 0) {
ifp->if_ierrors++;
goto abort;
}
++ifp->if_ipackets;
/* We assume the header fit entirely in one mbuf. */
eh = mtod(m, struct ether_header *);
#if NBPFILTER > 0
/*
* Check if there's a BPF listener on this interface.
* If so, hand off the raw packet to BPF.
*/
if (ifp->if_bpf) {
bpf_mtap(ifp->if_bpf, m);
/*
* Note that the interface cannot be in promiscuous mode if
* there are no BPF listeners. And if we are in promiscuous
* mode, we have to check if this packet is really ours.
*/
if ((ifp->if_flags & IFF_PROMISC) &&
(eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
bcmp(eh->ether_dhost, LLADDR(sc->sc_ethercom.ec_if.if_sadl),
sizeof(eh->ether_dhost)) != 0) {
m_freem(m);
return;
}
}
#endif
/* We assume the header fit entirely in one mbuf. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
/*
* In periods of high traffic we can actually receive enough
* packets so that the fifo overrun bit will be set at this point,
* even though we just read a packet. In this case we
* are not going to receive any more interrupts. We check for
* this condition and read again until the fifo is not full.
* We could simplify this test by not using epstatus(), but
* rechecking the RX_STATUS register directly. This test could
* result in unnecessary looping in cases where there is a new
* packet but the fifo is not full, but it will not fix the
* stuck behavior.
*
* Even with this improvement, we still get packet overrun errors
* which are hurting performance. Maybe when I get some more time
* I'll modify epread() so that it can handle RX_EARLY interrupts.
*/
if (epstatus(sc)) {
len = bus_space_read_2(iot, ioh, EP_W1_RX_STATUS);
/* Check if we are stuck and reset [see XXX comment] */
if (len & ERR_INCOMPLETE) {
if (ifp->if_flags & IFF_DEBUG)
printf("%s: adapter reset\n",
sc->sc_dev.dv_xname);
epreset(sc);
return;
}
goto again;
}
return;
abort:
bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
;
}
struct mbuf *
epget(sc, totlen)
struct ep_softc *sc;
int totlen;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mbuf *top, **mp, *m;
int len, remaining;
int sh;
m = sc->mb[sc->next_mb];
sc->mb[sc->next_mb] = 0;
if (m == 0) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == 0)
return 0;
} else {
/* If the queue is no longer full, refill. */
if (sc->last_mb == sc->next_mb)
timeout(epmbuffill, sc, 1);
/* Convert one of our saved mbuf's. */
sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
m->m_data = m->m_pktdat;
m->m_flags = M_PKTHDR;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = totlen;
len = MHLEN;
top = 0;
mp = &top;
/*
* We read the packet at splhigh() so that an interrupt from another
* device doesn't cause the card's buffer to overflow while we're
* reading it. We may still lose packets at other times.
*/
sh = splhigh();
while (totlen > 0) {
if (top) {
m = sc->mb[sc->next_mb];
sc->mb[sc->next_mb] = 0;
if (m == 0) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == 0) {
splx(sh);
m_freem(top);
return 0;
}
} else {
sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
}
len = MLEN;
}
if (totlen >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if (m->m_flags & M_EXT)
len = MCLBYTES;
}
if (EP_IS_BUS_32(sc->bustype) ) {
u_long pad;
if (top == 0) {
/* align the struct ip header */
pad = ALIGN(sizeof(struct ether_header))
- sizeof(struct ether_header);
} else {
/* XXX do we really need this? */
pad = ALIGN(m->m_data) - (u_long) m->m_data;
}
m->m_data += pad;
len -= pad;
}
remaining = len = min(totlen, len);
if (EP_IS_BUS_32(sc->bustype)) {
u_long offset = mtod(m, u_long);
/*
* Read bytes up to the point where we are aligned.
* (We can align to 4 bytes, rather than ALIGNBYTES,
* here because we're later reading 4-byte chunks.)
*/
if ((remaining > 3) && (offset & 3)) {
int count = (4 - (offset & 3));
bus_space_read_multi_1(iot, ioh,
EP_W1_RX_PIO_RD_1,
(u_int8_t *) offset, count);
offset += count;
remaining -= count;
}
if (remaining > 3) {
bus_space_read_multi_4(iot, ioh,
EP_W1_RX_PIO_RD_1,
(u_int32_t *) offset, remaining >> 2);
offset += remaining & ~3;
remaining &= 3;
}
if (remaining) {
bus_space_read_multi_1(iot, ioh,
EP_W1_RX_PIO_RD_1,
(u_int8_t *) offset, remaining);
}
} else {
u_long offset = mtod(m, u_long);
if ((remaining > 1) && (offset & 1)) {
bus_space_read_multi_1(iot, ioh,
EP_W1_RX_PIO_RD_1,
(u_int8_t *) offset, 1);
remaining -= 1;
offset += 1;
}
if (remaining > 1) {
bus_space_read_multi_2(iot, ioh,
EP_W1_RX_PIO_RD_1,
(u_int16_t *) offset, remaining >> 1);
offset += remaining & ~1;
}
if (remaining & 1) {
bus_space_read_multi_1(iot, ioh,
EP_W1_RX_PIO_RD_1,
(u_int8_t *) offset, remaining & 1);
}
}
m->m_len = len;
totlen -= len;
*mp = m;
mp = &m->m_next;
}
bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
;
splx(sh);
return top;
}
int
epioctl(ifp, cmd, data)
register struct ifnet *ifp;
u_long cmd;
caddr_t data;
{
struct ep_softc *sc = ifp->if_softc;
struct ifaddr *ifa = (struct ifaddr *)data;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
epinit(sc);
arp_ifinit(&sc->sc_ethercom.ec_if, ifa);
break;
#endif
#ifdef NS
case AF_NS:
{
register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
if (ns_nullhost(*ina))
ina->x_host = *(union ns_host *)
LLADDR(ifp->if_sadl);
else
bcopy(ina->x_host.c_host,
LLADDR(ifp->if_sadl),
ifp->if_addrlen);
/* Set new address. */
epinit(sc);
break;
}
#endif
default:
epinit(sc);
break;
}
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
/*
* If interface is marked down and it is running, then
* stop it.
*/
epstop(sc);
ifp->if_flags &= ~IFF_RUNNING;
} else if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) == 0) {
/*
* If interface is marked up and it is stopped, then
* start it.
*/
epinit(sc);
} else {
/*
* deal with flags changes:
* IFF_MULTICAST, IFF_PROMISC,
* IFF_LINK0, IFF_LINK1,
*/
epsetfilter(sc);
epsetlink(sc);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
error = (cmd == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_ethercom) :
ether_delmulti(ifr, &sc->sc_ethercom);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
epreset(sc);
error = 0;
}
break;
default:
error = EINVAL;
break;
}
splx(s);
return (error);
}
void
epreset(sc)
struct ep_softc *sc;
{
int s;
s = splnet();
epstop(sc);
epinit(sc);
splx(s);
}
void
epwatchdog(ifp)
struct ifnet *ifp;
{
struct ep_softc *sc = ifp->if_softc;
log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
++sc->sc_ethercom.ec_if.if_oerrors;
epreset(sc);
}
void
epstop(sc)
register struct ep_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISABLE);
bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
;
bus_space_write_2(iot, ioh, EP_COMMAND, TX_DISABLE);
bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK);
bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK);
bus_space_write_2(iot, ioh, EP_COMMAND, SET_RX_FILTER);
epmbufempty(sc);
}
/*
* Before reboots, reset card completely.
*/
static void
epshutdown(arg)
void *arg;
{
register struct ep_softc *sc = arg;
epstop(sc);
ep_complete_cmd(sc, EP_COMMAND, GLOBAL_RESET);
}
/*
* We get eeprom data from the id_port given an offset into the
* eeprom. Basically; after the ID_sequence is sent to all of
* the cards; they enter the ID_CMD state where they will accept
* command requests. 0x80-0xbf loads the eeprom data. We then
* read the port 16 times and with every read; the cards check
* for contention (ie: if one card writes a 0 bit and another
* writes a 1 bit then the host sees a 0. At the end of the cycle;
* each card compares the data on the bus; if there is a difference
* then that card goes into ID_WAIT state again). In the meantime;
* one bit of data is returned in the AX register which is conveniently
* returned to us by bus_space_read_1(). Hence; we read 16 times getting one
* bit of data with each read.
*
* NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
*/
u_int16_t
epreadeeprom(iot, ioh, offset)
bus_space_tag_t iot;
bus_space_handle_t ioh;
int offset;
{
u_int16_t data = 0;
int i;
bus_space_write_1(iot, ioh, 0, 0x80 + offset);
delay(1000);
for (i = 0; i < 16; i++)
data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
return (data);
}
static int
epbusyeeprom(sc)
struct ep_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int i = 100, j;
if (sc->bustype == EP_BUS_PCMCIA) {
delay(1000);
return 0;
}
while (i--) {
j = bus_space_read_2(iot, ioh, EP_W0_EEPROM_COMMAND);
if (j & EEPROM_BUSY)
delay(100);
else
break;
}
if (!i) {
printf("\n%s: eeprom failed to come ready\n",
sc->sc_dev.dv_xname);
return (1);
}
if (j & EEPROM_TST_MODE) {
printf("\n%s: erase pencil mark, or disable plug-n-play mode!\n",
sc->sc_dev.dv_xname);
return (1);
}
return (0);
}
void
epmbuffill(v)
void *v;
{
struct ep_softc *sc = v;
int s, i;
s = splnet();
i = sc->last_mb;
do {
if (sc->mb[i] == NULL)
MGET(sc->mb[i], M_DONTWAIT, MT_DATA);
if (sc->mb[i] == NULL)
break;
i = (i + 1) % MAX_MBS;
} while (i != sc->next_mb);
sc->last_mb = i;
/* If the queue was not filled, try again. */
if (sc->last_mb != sc->next_mb)
timeout(epmbuffill, sc, 1);
splx(s);
}
void
epmbufempty(sc)
struct ep_softc *sc;
{
int s, i;
s = splnet();
for (i = 0; i<MAX_MBS; i++) {
if (sc->mb[i]) {
m_freem(sc->mb[i]);
sc->mb[i] = NULL;
}
}
sc->last_mb = sc->next_mb = 0;
untimeout(epmbuffill, sc);
splx(s);
}