2951 lines
73 KiB
C
2951 lines
73 KiB
C
/* $NetBSD: pmap.c,v 1.47 2002/07/03 20:41:20 matt Exp $ */
|
|
/*-
|
|
* Copyright (c) 2001 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (C) 1995, 1996 Wolfgang Solfrank.
|
|
* Copyright (C) 1995, 1996 TooLs GmbH.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by TooLs GmbH.
|
|
* 4. The name of TooLs GmbH may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/user.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/systm.h>
|
|
|
|
#if __NetBSD_Version__ < 105010000
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_kern.h>
|
|
#define splvm() splimp()
|
|
#endif
|
|
|
|
#include <uvm/uvm.h>
|
|
|
|
#include <machine/pcb.h>
|
|
#include <machine/powerpc.h>
|
|
#include <powerpc/spr.h>
|
|
#if __NetBSD_Version__ > 105010000
|
|
#include <powerpc/mpc6xx/bat.h>
|
|
#else
|
|
#include <powerpc/bat.h>
|
|
#endif
|
|
|
|
/*#define PMAPCHECK*/
|
|
|
|
#if defined(DEBUG) || defined(PMAPCHECK)
|
|
#define STATIC
|
|
#else
|
|
#define STATIC static
|
|
#endif
|
|
|
|
struct pteg {
|
|
pte_t pt[8];
|
|
};
|
|
typedef struct pteg pteg_t;
|
|
|
|
volatile pteg_t *pmap_pteg_table;
|
|
unsigned int pmap_pteg_cnt;
|
|
unsigned int pmap_pteg_mask;
|
|
paddr_t pmap_memlimit = -NBPG; /* there is no limit */
|
|
|
|
struct pmap kernel_pmap_;
|
|
unsigned int pmap_pages_stolen;
|
|
u_long pmap_pte_valid;
|
|
u_long pmap_pte_overflow;
|
|
u_long pmap_pte_replacements;
|
|
u_long pmap_pvo_entries;
|
|
u_long pmap_pvo_enter_calls;
|
|
u_long pmap_pvo_remove_calls;
|
|
#if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
|
|
u_long pmap_pvo_enter_depth;
|
|
u_long pmap_pvo_remove_depth;
|
|
#endif
|
|
u_int64_t pmap_pte_spills = 0;
|
|
struct pvo_entry *pmap_pvo_syncicache;
|
|
struct pvo_entry *pmap_pvo_zeropage;
|
|
struct pvo_entry *pmap_pvo_copypage_src;
|
|
struct pvo_entry *pmap_pvo_copypage_dst;
|
|
|
|
vaddr_t pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
|
|
unsigned int pmap_rkva_count = 4;
|
|
|
|
int physmem;
|
|
#ifndef MSGBUFADDR
|
|
extern paddr_t msgbuf_paddr;
|
|
#endif
|
|
|
|
static struct mem_region *mem, *avail;
|
|
static u_int mem_cnt, avail_cnt;
|
|
|
|
#ifdef __HAVE_PMAP_PHYSSEG
|
|
/*
|
|
* This is a cache of referenced/modified bits.
|
|
* Bits herein are shifted by ATTRSHFT.
|
|
*/
|
|
#define ATTR_SHFT 4
|
|
struct pmap_physseg pmap_physseg;
|
|
#endif
|
|
|
|
/*
|
|
* The following structure is exactly 32 bytes long (one cacheline).
|
|
*/
|
|
struct pvo_entry {
|
|
LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
|
|
LIST_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
|
|
struct pte pvo_pte; /* Prebuilt PTE */
|
|
pmap_t pvo_pmap; /* ptr to owning pmap */
|
|
vaddr_t pvo_vaddr; /* VA of entry */
|
|
#define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
|
|
#define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
|
|
#define PVO_WIRED 0x0010 /* PVO entry is wired */
|
|
#define PVO_MANAGED 0x0020 /* PVO e. for managed page */
|
|
#define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
|
|
};
|
|
#define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
|
|
#define PVO_ISEXECUTABLE(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
|
|
#define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
|
|
#define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
|
|
#define PVO_PTEGIDX_CLR(pvo) \
|
|
((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
|
|
#define PVO_PTEGIDX_SET(pvo,i) \
|
|
((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
|
|
|
|
struct pvo_head *pmap_pvo_table; /* pvo entries by ptegroup index */
|
|
struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
|
|
struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
|
|
|
|
struct pool pmap_pool; /* pool for pmap structures */
|
|
struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
|
|
struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
|
|
|
|
/*
|
|
* We keep a cache of unmanaged pages to be used for pvo entries for
|
|
* unmanaged pages.
|
|
*/
|
|
struct pvo_page {
|
|
SIMPLEQ_ENTRY(pvo_page) pvop_link;
|
|
};
|
|
SIMPLEQ_HEAD(pvop_head, pvo_page);
|
|
struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
|
|
struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
|
|
u_long pmap_upvop_free;
|
|
u_long pmap_upvop_maxfree;
|
|
u_long pmap_mpvop_free;
|
|
u_long pmap_mpvop_maxfree;
|
|
|
|
STATIC void *pmap_pool_ualloc(struct pool *, int);
|
|
STATIC void *pmap_pool_malloc(struct pool *, int);
|
|
|
|
STATIC void pmap_pool_ufree(struct pool *, void *);
|
|
STATIC void pmap_pool_mfree(struct pool *, void *);
|
|
|
|
static struct pool_allocator pmap_pool_mallocator = {
|
|
pmap_pool_malloc, pmap_pool_mfree, 0,
|
|
};
|
|
|
|
static struct pool_allocator pmap_pool_uallocator = {
|
|
pmap_pool_ualloc, pmap_pool_ufree, 0,
|
|
};
|
|
|
|
#if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
|
|
void pmap_pte_print(volatile pte_t *pt);
|
|
#endif
|
|
|
|
#ifdef DDB
|
|
void pmap_pteg_check(void);
|
|
void pmap_pteg_dist(void);
|
|
void pmap_print_pte(pmap_t, vaddr_t);
|
|
void pmap_print_mmuregs(void);
|
|
#endif
|
|
|
|
#if defined(DEBUG) || defined(PMAPCHECK)
|
|
#ifdef PMAPCHECK
|
|
int pmapcheck = 1;
|
|
#else
|
|
int pmapcheck = 0;
|
|
#endif
|
|
void pmap_pvo_verify(void);
|
|
STATIC void pmap_pvo_check(const struct pvo_entry *);
|
|
#define PMAP_PVO_CHECK(pvo) \
|
|
do { \
|
|
if (pmapcheck) \
|
|
pmap_pvo_check(pvo); \
|
|
} while (0)
|
|
#else
|
|
#define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
|
|
#endif
|
|
STATIC int pmap_pte_insert(int, pte_t *);
|
|
STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
|
|
vaddr_t, paddr_t, u_int, int);
|
|
STATIC void pmap_pvo_remove(struct pvo_entry *, int);
|
|
STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
|
|
STATIC volatile pte_t *pmap_pvo_to_pte(const struct pvo_entry *, int);
|
|
|
|
STATIC struct pvo_entry *pmap_rkva_alloc(int);
|
|
STATIC void pmap_pa_map(struct pvo_entry *, paddr_t, pte_t *, int *);
|
|
STATIC void pmap_pa_unmap(struct pvo_entry *, pte_t *, int *);
|
|
STATIC void tlbia(void);
|
|
|
|
STATIC void pmap_syncicache(paddr_t, psize_t);
|
|
STATIC void pmap_release (pmap_t);
|
|
STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
|
|
|
|
#define VSID_NBPW (sizeof(uint32_t) * 8)
|
|
static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
|
|
|
|
static int pmap_initialized;
|
|
|
|
#if defined(DEBUG)
|
|
#define PMAPDEBUG_BOOT 0x0001
|
|
#define PMAPDEBUG_PTE 0x0002
|
|
#define PMAPDEBUG_PAMAP 0x0004
|
|
#define PMAPDEBUG_SYNCICACHE 0x0008
|
|
#define PMAPDEBUG_PVOENTER 0x0010
|
|
#define PMAPDEBUG_PVOREMOVE 0x0020
|
|
#define PMAPDEBUG_ACTIVATE 0x0100
|
|
#define PMAPDEBUG_CREATE 0x0200
|
|
#define PMAPDEBUG_ENTER 0x1000
|
|
#define PMAPDEBUG_KENTER 0x2000
|
|
#define PMAPDEBUG_KREMOVE 0x4000
|
|
#define PMAPDEBUG_REMOVE 0x8000
|
|
unsigned int pmapdebug = 0;
|
|
# define DPRINTF(x) printf x
|
|
# define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
|
|
#else
|
|
# define DPRINTF(x)
|
|
# define DPRINTFN(n, x)
|
|
#endif
|
|
|
|
#define TLBIE(va) __asm __volatile("tlbie %0" :: "r"(va))
|
|
#define TLBSYNC() __asm __volatile("tlbsync")
|
|
#define SYNC() __asm __volatile("sync")
|
|
#define EIEIO() __asm __volatile("eieio")
|
|
#define MFMSR() mfmsr()
|
|
#define MTMSR(psl) __asm __volatile("mtmsr %0" :: "r"(psl))
|
|
#define MFPVR() mfpvr()
|
|
#define MFSRIN(va) mfsrin(va)
|
|
#define MFTB() mftb()
|
|
|
|
static __inline u_int32_t
|
|
mfmsr(void)
|
|
{
|
|
u_int psl;
|
|
__asm __volatile("mfmsr %0" : "=r"(psl) : );
|
|
return psl;
|
|
}
|
|
|
|
static __inline u_int
|
|
mftb(void)
|
|
{
|
|
u_int tb;
|
|
__asm __volatile("mftb %0" : "=r"(tb) : );
|
|
return tb;
|
|
}
|
|
|
|
static __inline u_int
|
|
mfpvr(void)
|
|
{
|
|
u_int pvr;
|
|
__asm __volatile("mfspr %0,%1" : "=r"(pvr) : "n"(SPR_PVR));
|
|
return pvr;
|
|
}
|
|
|
|
static __inline sr_t
|
|
mfsrin(vaddr_t va)
|
|
{
|
|
sr_t sr;
|
|
__asm __volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
|
|
return sr;
|
|
}
|
|
|
|
static __inline u_int32_t
|
|
pmap_interrupts_off(void)
|
|
{
|
|
u_int32_t msr = MFMSR();
|
|
if (msr & PSL_EE)
|
|
MTMSR(msr & ~PSL_EE);
|
|
return msr;
|
|
}
|
|
|
|
static void
|
|
pmap_interrupts_restore(u_int32_t msr)
|
|
{
|
|
if (msr & PSL_EE)
|
|
MTMSR(msr);
|
|
}
|
|
|
|
/*
|
|
* These small routines may have to be replaced,
|
|
* if/when we support processors other that the 604.
|
|
*/
|
|
|
|
void
|
|
tlbia(void)
|
|
{
|
|
caddr_t i;
|
|
|
|
SYNC();
|
|
/*
|
|
* Why not use "tlbia"? Because not all processors implement it.
|
|
*
|
|
* This needs to be a per-cpu callback to do the appropriate thing
|
|
* for the CPU. XXX
|
|
*/
|
|
for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
|
|
TLBIE(i);
|
|
EIEIO();
|
|
}
|
|
TLBSYNC();
|
|
SYNC();
|
|
}
|
|
|
|
static __inline int
|
|
va_to_sr(sr_t *sr, vaddr_t va)
|
|
{
|
|
return sr[(uintptr_t)va >> ADDR_SR_SHFT];
|
|
}
|
|
|
|
static __inline int
|
|
va_to_pteg(sr_t sr, vaddr_t addr)
|
|
{
|
|
int hash;
|
|
|
|
hash = (sr & SR_VSID) ^ (((u_int)addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
|
|
return hash & pmap_pteg_mask;
|
|
}
|
|
|
|
#if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
|
|
/*
|
|
* Given a PTE in the page table, calculate the VADDR that hashes to it.
|
|
* The only bit of magic is that the top 4 bits of the address doesn't
|
|
* technically exist in the PTE. But we know we reserved 4 bits of the
|
|
* VSID for it so that's how we get it.
|
|
*/
|
|
static vaddr_t
|
|
pmap_pte_to_va(volatile const pte_t *pt)
|
|
{
|
|
vaddr_t va;
|
|
uintptr_t ptaddr = (uintptr_t) pt;
|
|
|
|
if (pt->pte_hi & PTE_HID)
|
|
ptaddr ^= (pmap_pteg_mask << 6);
|
|
|
|
/* PPC Bits 10-19 */
|
|
va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr >> 6)) & 0x3ff;
|
|
va <<= ADDR_PIDX_SHFT;
|
|
|
|
/* PPC Bits 4-9 */
|
|
va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
|
|
|
|
/* PPC Bits 0-3 */
|
|
va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
|
|
|
|
return va;
|
|
}
|
|
#endif
|
|
|
|
static __inline struct pvo_head *
|
|
pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
|
|
{
|
|
#ifdef __HAVE_VM_PAGE_MD
|
|
struct vm_page *pg;
|
|
|
|
pg = PHYS_TO_VM_PAGE(pa);
|
|
if (pg_p != NULL)
|
|
*pg_p = pg;
|
|
if (pg == NULL)
|
|
return &pmap_pvo_unmanaged;
|
|
return &pg->mdpage.mdpg_pvoh;
|
|
#endif
|
|
#ifdef __HAVE_PMAP_PHYSSEG
|
|
int bank, pg;
|
|
|
|
bank = vm_physseg_find(atop(pa), &pg);
|
|
if (pg_p != NULL)
|
|
*pg_p = pg;
|
|
if (bank == -1)
|
|
return &pmap_pvo_unmanaged;
|
|
return &vm_physmem[bank].pmseg.pvoh[pg];
|
|
#endif
|
|
}
|
|
|
|
static __inline struct pvo_head *
|
|
vm_page_to_pvoh(struct vm_page *pg)
|
|
{
|
|
#ifdef __HAVE_VM_PAGE_MD
|
|
return &pg->mdpage.mdpg_pvoh;
|
|
#endif
|
|
#ifdef __HAVE_PMAP_PHYSSEG
|
|
return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
|
|
#endif
|
|
}
|
|
|
|
|
|
#ifdef __HAVE_PMAP_PHYSSEG
|
|
static __inline char *
|
|
pa_to_attr(paddr_t pa)
|
|
{
|
|
int bank, pg;
|
|
|
|
bank = vm_physseg_find(atop(pa), &pg);
|
|
if (bank == -1)
|
|
return NULL;
|
|
return &vm_physmem[bank].pmseg.attrs[pg];
|
|
}
|
|
#endif
|
|
|
|
static __inline void
|
|
pmap_attr_clear(struct vm_page *pg, int ptebit)
|
|
{
|
|
#ifdef __HAVE_PMAP_PHYSSEG
|
|
*pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
|
|
#endif
|
|
#ifdef __HAVE_VM_PAGE_MD
|
|
pg->mdpage.mdpg_attrs &= ~ptebit;
|
|
#endif
|
|
}
|
|
|
|
static __inline int
|
|
pmap_attr_fetch(struct vm_page *pg)
|
|
{
|
|
#ifdef __HAVE_PMAP_PHYSSEG
|
|
return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
|
|
#endif
|
|
#ifdef __HAVE_VM_PAGE_MD
|
|
return pg->mdpage.mdpg_attrs;
|
|
#endif
|
|
}
|
|
|
|
static __inline void
|
|
pmap_attr_save(struct vm_page *pg, int ptebit)
|
|
{
|
|
#ifdef __HAVE_PMAP_PHYSSEG
|
|
*pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
|
|
#endif
|
|
#ifdef __HAVE_VM_PAGE_MD
|
|
pg->mdpage.mdpg_attrs |= ptebit;
|
|
#endif
|
|
}
|
|
|
|
static __inline int
|
|
pmap_pte_compare(const volatile pte_t *pt, const pte_t *pvo_pt)
|
|
{
|
|
if (pt->pte_hi == pvo_pt->pte_hi
|
|
#if 0
|
|
&& ((pt->pte_lo ^ pvo_pt->pte_lo) &
|
|
~(PTE_REF|PTE_CHG)) == 0
|
|
#endif
|
|
)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static __inline int
|
|
pmap_pte_match(volatile pte_t *pt, sr_t sr, vaddr_t va, int which)
|
|
{
|
|
return (pt->pte_hi & ~PTE_VALID)
|
|
== ( ((sr & SR_VSID) << PTE_VSID_SHFT)
|
|
| ((va >> ADDR_API_SHFT) & PTE_API)
|
|
| which);
|
|
}
|
|
|
|
static __inline void
|
|
pmap_pte_create(pte_t *pt, sr_t sr, vaddr_t va, u_int pte_lo)
|
|
{
|
|
/*
|
|
* Construct the PTE. Default to IMB initially. Valid bit
|
|
* only gets set when the real pte is set in memory.
|
|
*
|
|
* Note: Don't set the valid bit for correct operation of tlb update.
|
|
*/
|
|
pt->pte_hi = ((sr & SR_VSID) << PTE_VSID_SHFT)
|
|
| (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
|
|
pt->pte_lo = pte_lo;
|
|
}
|
|
|
|
static __inline void
|
|
pmap_pte_synch(volatile pte_t *pt, pte_t *pvo_pt)
|
|
{
|
|
pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
|
|
}
|
|
|
|
static __inline void
|
|
pmap_pte_clear(volatile pte_t *pt, vaddr_t va, int ptebit)
|
|
{
|
|
/*
|
|
* As shown in Section 7.6.3.2.3
|
|
*/
|
|
pt->pte_lo &= ~ptebit;
|
|
TLBIE(va);
|
|
EIEIO();
|
|
TLBSYNC();
|
|
SYNC();
|
|
}
|
|
|
|
static __inline void
|
|
pmap_pte_set(volatile pte_t *pt, pte_t *pvo_pt)
|
|
{
|
|
#if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
|
|
if (pvo_pt->pte_hi & PTE_VALID)
|
|
panic("pte_set: setting an already valid pte %p", pvo_pt);
|
|
#endif
|
|
pvo_pt->pte_hi |= PTE_VALID;
|
|
/*
|
|
* Update the PTE as defined in section 7.6.3.1
|
|
* Note that the REF/CHG bits are from pvo_pt and thus should
|
|
* have been saved so this routine can restore them (if desired).
|
|
*/
|
|
pt->pte_lo = pvo_pt->pte_lo;
|
|
EIEIO();
|
|
pt->pte_hi = pvo_pt->pte_hi;
|
|
SYNC();
|
|
pmap_pte_valid++;
|
|
}
|
|
|
|
static __inline void
|
|
pmap_pte_unset(volatile pte_t *pt, pte_t *pvo_pt, vaddr_t va)
|
|
{
|
|
#if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
|
|
if ((pvo_pt->pte_hi & PTE_VALID) == 0)
|
|
panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
|
|
if ((pt->pte_hi & PTE_VALID) == 0)
|
|
panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
|
|
#endif
|
|
|
|
pvo_pt->pte_hi &= ~PTE_VALID;
|
|
/*
|
|
* Force the ref & chg bits back into the PTEs.
|
|
*/
|
|
SYNC();
|
|
/*
|
|
* Invalidate the pte ... (Section 7.6.3.3)
|
|
*/
|
|
pt->pte_hi &= ~PTE_VALID;
|
|
SYNC();
|
|
TLBIE(va);
|
|
EIEIO();
|
|
TLBSYNC();
|
|
SYNC();
|
|
/*
|
|
* Save the ref & chg bits ...
|
|
*/
|
|
pmap_pte_synch(pt, pvo_pt);
|
|
pmap_pte_valid--;
|
|
}
|
|
|
|
static __inline void
|
|
pmap_pte_change(volatile pte_t *pt, pte_t *pvo_pt, vaddr_t va)
|
|
{
|
|
/*
|
|
* Invalidate the PTE
|
|
*/
|
|
pmap_pte_unset(pt, pvo_pt, va);
|
|
pmap_pte_set(pt, pvo_pt);
|
|
}
|
|
|
|
/*
|
|
* Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
|
|
* (either primary or secondary location).
|
|
*
|
|
* Note: both the destination and source PTEs must not have PTE_VALID set.
|
|
*/
|
|
STATIC int
|
|
pmap_pte_insert(int ptegidx, pte_t *pvo_pt)
|
|
{
|
|
volatile pte_t *pt;
|
|
int i;
|
|
|
|
#if defined(DEBUG)
|
|
DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
|
|
ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
|
|
#endif
|
|
/*
|
|
* First try primary hash.
|
|
*/
|
|
for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
|
|
if ((pt->pte_hi & PTE_VALID) == 0) {
|
|
pvo_pt->pte_hi &= ~PTE_HID;
|
|
pmap_pte_set(pt, pvo_pt);
|
|
return i;
|
|
}
|
|
}
|
|
/*
|
|
* Now try secondary hash.
|
|
*/
|
|
ptegidx ^= pmap_pteg_mask;
|
|
for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
|
|
if ((pt->pte_hi & PTE_VALID) == 0) {
|
|
pvo_pt->pte_hi |= PTE_HID;
|
|
pmap_pte_set(pt, pvo_pt);
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Spill handler.
|
|
*
|
|
* Tries to spill a page table entry from the overflow area.
|
|
* This runs in either real mode (if dealing with a exception spill)
|
|
* or virtual mode when dealing with manually spilling one of the
|
|
* kernel's pte entries. In either case, interrupts are already
|
|
* disabled.
|
|
*/
|
|
int
|
|
pmap_pte_spill(vaddr_t addr)
|
|
{
|
|
struct pvo_entry *source_pvo, *victim_pvo;
|
|
struct pvo_entry *pvo;
|
|
int ptegidx, i, j;
|
|
sr_t sr;
|
|
volatile pteg_t *pteg;
|
|
volatile pte_t *pt;
|
|
|
|
pmap_pte_spills++;
|
|
|
|
sr = MFSRIN(addr);
|
|
ptegidx = va_to_pteg(sr, addr);
|
|
|
|
/*
|
|
* Have to substitute some entry. Use the primary hash for this.
|
|
*
|
|
* Use low bits of timebase as random generator
|
|
*/
|
|
pteg = &pmap_pteg_table[ptegidx];
|
|
i = MFTB() & 7;
|
|
pt = &pteg->pt[i];
|
|
|
|
source_pvo = NULL;
|
|
victim_pvo = NULL;
|
|
LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
|
|
/*
|
|
* We need to find pvo entry for this address...
|
|
*/
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
if (source_pvo == NULL &&
|
|
pmap_pte_match(&pvo->pvo_pte, sr, addr, pvo->pvo_pte.pte_hi & PTE_HID)) {
|
|
/*
|
|
* Now found an entry to be spilled into the pteg.
|
|
* The PTE is now be valid, so we know it's active;
|
|
*/
|
|
j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
|
|
if (j >= 0) {
|
|
PVO_PTEGIDX_SET(pvo, j);
|
|
pmap_pte_overflow--;
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
return 1;
|
|
}
|
|
source_pvo = pvo;
|
|
if (victim_pvo != NULL)
|
|
break;
|
|
}
|
|
/*
|
|
* We also need the pvo entry of the victim we are replacing
|
|
* so save the R & C bits of the PTE.
|
|
*/
|
|
if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
|
|
pmap_pte_compare(pt, &pvo->pvo_pte)) {
|
|
victim_pvo = pvo;
|
|
if (source_pvo != NULL)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (source_pvo == NULL)
|
|
return 0;
|
|
|
|
if (victim_pvo == NULL) {
|
|
if ((pt->pte_hi & PTE_HID) == 0)
|
|
panic("pmap_pte_spill: victim p-pte (%p) has "
|
|
"no pvo entry!", pt);
|
|
/*
|
|
* If this is a secondary PTE, we need to search
|
|
* its primary pvo bucket for the matching PVO.
|
|
*/
|
|
LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
|
|
pvo_olink) {
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
/*
|
|
* We also need the pvo entry of the victim we are
|
|
* replacing so save the R & C bits of the PTE.
|
|
*/
|
|
if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
|
|
victim_pvo = pvo;
|
|
break;
|
|
}
|
|
}
|
|
if (victim_pvo == NULL)
|
|
panic("pmap_pte_spill: victim s-pte (%p) has "
|
|
"no pvo entry!", pt);
|
|
}
|
|
|
|
/*
|
|
* We are invalidating the TLB entry for the EA for the
|
|
* we are replacing even though its valid; If we don't
|
|
* we lose any ref/chg bit changes contained in the TLB
|
|
* entry.
|
|
*/
|
|
source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
|
|
|
|
pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
|
|
pmap_pte_set(pt, &source_pvo->pvo_pte);
|
|
|
|
PVO_PTEGIDX_CLR(victim_pvo);
|
|
PVO_PTEGIDX_SET(source_pvo, i);
|
|
pmap_pte_replacements++;
|
|
|
|
PMAP_PVO_CHECK(victim_pvo);
|
|
PMAP_PVO_CHECK(source_pvo);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Restrict given range to physical memory
|
|
*/
|
|
void
|
|
pmap_real_memory(paddr_t *start, psize_t *size)
|
|
{
|
|
struct mem_region *mp;
|
|
|
|
for (mp = mem; mp->size; mp++) {
|
|
if (*start + *size > mp->start
|
|
&& *start < mp->start + mp->size) {
|
|
if (*start < mp->start) {
|
|
*size -= mp->start - *start;
|
|
*start = mp->start;
|
|
}
|
|
if (*start + *size > mp->start + mp->size)
|
|
*size = mp->start + mp->size - *start;
|
|
return;
|
|
}
|
|
}
|
|
*size = 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize anything else for pmap handling.
|
|
* Called during vm_init().
|
|
*/
|
|
void
|
|
pmap_init(void)
|
|
{
|
|
int s;
|
|
#ifdef __HAVE_PMAP_PHYSSEG
|
|
struct pvo_head *pvoh;
|
|
int bank;
|
|
long sz;
|
|
char *attr;
|
|
|
|
s = splvm();
|
|
pvoh = pmap_physseg.pvoh;
|
|
attr = pmap_physseg.attrs;
|
|
for (bank = 0; bank < vm_nphysseg; bank++) {
|
|
sz = vm_physmem[bank].end - vm_physmem[bank].start;
|
|
vm_physmem[bank].pmseg.pvoh = pvoh;
|
|
vm_physmem[bank].pmseg.attrs = attr;
|
|
for (; sz > 0; sz--, pvoh++, attr++) {
|
|
LIST_INIT(pvoh);
|
|
*attr = 0;
|
|
}
|
|
}
|
|
splx(s);
|
|
#endif
|
|
|
|
s = splvm();
|
|
pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
|
|
sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
|
|
&pmap_pool_mallocator);
|
|
|
|
pool_setlowat(&pmap_mpvo_pool, 1008);
|
|
|
|
pmap_initialized = 1;
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* How much virtual space does the kernel get?
|
|
*/
|
|
void
|
|
pmap_virtual_space(vaddr_t *start, vaddr_t *end)
|
|
{
|
|
/*
|
|
* For now, reserve one segment (minus some overhead) for kernel
|
|
* virtual memory
|
|
*/
|
|
*start = VM_MIN_KERNEL_ADDRESS + pmap_rkva_count * NBPG;
|
|
*end = VM_MAX_KERNEL_ADDRESS;
|
|
}
|
|
|
|
/*
|
|
* Allocate, initialize, and return a new physical map.
|
|
*/
|
|
pmap_t
|
|
pmap_create(void)
|
|
{
|
|
pmap_t pm;
|
|
|
|
pm = pool_get(&pmap_pool, PR_WAITOK);
|
|
memset((caddr_t)pm, 0, sizeof *pm);
|
|
pmap_pinit(pm);
|
|
|
|
DPRINTFN(CREATE,("pmap_create: pm %p:\n"
|
|
"\t%06x %06x %06x %06x %06x %06x %06x %06x\n"
|
|
"\t%06x %06x %06x %06x %06x %06x %06x %06x\n", pm,
|
|
pm->pm_sr[0], pm->pm_sr[1], pm->pm_sr[2], pm->pm_sr[3],
|
|
pm->pm_sr[4], pm->pm_sr[5], pm->pm_sr[6], pm->pm_sr[7],
|
|
pm->pm_sr[8], pm->pm_sr[9], pm->pm_sr[10], pm->pm_sr[11],
|
|
pm->pm_sr[12], pm->pm_sr[13], pm->pm_sr[14], pm->pm_sr[15]));
|
|
return pm;
|
|
}
|
|
|
|
/*
|
|
* Initialize a preallocated and zeroed pmap structure.
|
|
*/
|
|
unsigned short pmap_context = 0;
|
|
void
|
|
pmap_pinit(pmap_t pm)
|
|
{
|
|
int i, mask;
|
|
unsigned int entropy = MFTB();
|
|
|
|
/*
|
|
* Allocate some segment registers for this pmap.
|
|
*/
|
|
pm->pm_refs = 1;
|
|
for (i = 0; i < NPMAPS ; i += VSID_NBPW) {
|
|
static unsigned int pmap_vsidcontext;
|
|
unsigned int hash, n;
|
|
|
|
/* Create a new value by multiplying by a prime adding in
|
|
* entropy from the timebase register. This is to make the
|
|
* VSID more random so that the PT Hash function collides
|
|
* less often. (note that the prime causes gcc to do shifts
|
|
* instead of a multiply)
|
|
*/
|
|
pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
|
|
hash = pmap_vsidcontext & (NPMAPS - 1);
|
|
if (hash == 0) /* 0 is special, avoid it */
|
|
continue;
|
|
n = hash >> 5;
|
|
mask = 1 << (hash & (VSID_NBPW-1));
|
|
hash = (pmap_vsidcontext & 0xfffff);
|
|
if (pmap_vsid_bitmap[n] & mask) { /* collision? */
|
|
/* anything free in this bucket? */
|
|
if (pmap_vsid_bitmap[n] == 0xffffffff) {
|
|
entropy = (pmap_vsidcontext >> 20);
|
|
continue;
|
|
}
|
|
i = ffs(~pmap_vsid_bitmap[n]) - 1;
|
|
mask = 1 << i;
|
|
hash &= 0xfffff & ~(VSID_NBPW-1);
|
|
hash |= i;
|
|
}
|
|
pmap_vsid_bitmap[n] |= mask;
|
|
for (i = 0; i < 16; i++)
|
|
pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY;
|
|
return;
|
|
}
|
|
panic("pmap_pinit: out of segments");
|
|
}
|
|
|
|
/*
|
|
* Add a reference to the given pmap.
|
|
*/
|
|
void
|
|
pmap_reference(pmap_t pm)
|
|
{
|
|
pm->pm_refs++;
|
|
}
|
|
|
|
/*
|
|
* Retire the given pmap from service.
|
|
* Should only be called if the map contains no valid mappings.
|
|
*/
|
|
void
|
|
pmap_destroy(pmap_t pm)
|
|
{
|
|
if (--pm->pm_refs == 0) {
|
|
pmap_release(pm);
|
|
pool_put(&pmap_pool, pm);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Release any resources held by the given physical map.
|
|
* Called when a pmap initialized by pmap_pinit is being released.
|
|
*/
|
|
void
|
|
pmap_release(pmap_t pm)
|
|
{
|
|
int idx, mask;
|
|
|
|
if (pm->pm_sr[0] == 0)
|
|
panic("pmap_release");
|
|
idx = VSID_TO_HASH(pm->pm_sr[0]) & (NPMAPS-1);
|
|
mask = 1 << (idx % VSID_NBPW);
|
|
idx /= VSID_NBPW;
|
|
pmap_vsid_bitmap[idx] &= ~mask;
|
|
}
|
|
|
|
/*
|
|
* Copy the range specified by src_addr/len
|
|
* from the source map to the range dst_addr/len
|
|
* in the destination map.
|
|
*
|
|
* This routine is only advisory and need not do anything.
|
|
*/
|
|
void
|
|
pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
|
|
vsize_t len, vaddr_t src_addr)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Require that all active physical maps contain no
|
|
* incorrect entries NOW.
|
|
*/
|
|
void
|
|
pmap_update(struct pmap *pmap)
|
|
{
|
|
#ifdef MULTIPROCESSOR
|
|
TLBSYNC();
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Garbage collects the physical map system for
|
|
* pages which are no longer used.
|
|
* Success need not be guaranteed -- that is, there
|
|
* may well be pages which are not referenced, but
|
|
* others may be collected.
|
|
* Called by the pageout daemon when pages are scarce.
|
|
*/
|
|
void
|
|
pmap_collect(pmap_t pm)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Fill the given physical page with zeroes.
|
|
*/
|
|
void
|
|
pmap_zero_page(paddr_t pa)
|
|
{
|
|
caddr_t va;
|
|
|
|
if (pa < SEGMENT_LENGTH) {
|
|
va = (caddr_t) pa;
|
|
} else if (pmap_initialized) {
|
|
if (__predict_false(pmap_pvo_zeropage == NULL))
|
|
pmap_pvo_zeropage = pmap_rkva_alloc(VM_PROT_READ|VM_PROT_WRITE);
|
|
pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
|
|
va = (caddr_t) PVO_VADDR(pmap_pvo_zeropage);
|
|
} else {
|
|
panic("pmap_zero_page: can't zero pa %#lx", pa);
|
|
}
|
|
#if 1
|
|
memset(va, 0, NBPG);
|
|
#else
|
|
{
|
|
int i;
|
|
|
|
for (i = NBPG/CACHELINESIZE; i > 0; i--) {
|
|
__asm __volatile ("dcbz 0,%0" :: "r"(va));
|
|
va += CACHELINESIZE;
|
|
}
|
|
}
|
|
#endif
|
|
if (pa >= SEGMENT_LENGTH)
|
|
pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
|
|
}
|
|
|
|
/*
|
|
* Copy the given physical source page to its destination.
|
|
*/
|
|
void
|
|
pmap_copy_page(paddr_t src, paddr_t dst)
|
|
{
|
|
if (src < SEGMENT_LENGTH && dst < SEGMENT_LENGTH) {
|
|
memcpy((void *) dst, (void *) src, NBPG);
|
|
return;
|
|
}
|
|
if (pmap_initialized) {
|
|
if (__predict_false(pmap_pvo_copypage_src == NULL))
|
|
pmap_pvo_copypage_src = pmap_rkva_alloc(VM_PROT_READ);
|
|
if (__predict_false(pmap_pvo_copypage_dst == NULL))
|
|
pmap_pvo_copypage_dst = pmap_rkva_alloc(VM_PROT_READ|VM_PROT_WRITE);
|
|
|
|
pmap_pa_map(pmap_pvo_copypage_src, src, NULL, NULL);
|
|
pmap_pa_map(pmap_pvo_copypage_dst, dst, NULL, NULL);
|
|
|
|
memcpy((caddr_t)PVO_VADDR(pmap_pvo_copypage_dst),
|
|
(caddr_t)PVO_VADDR(pmap_pvo_copypage_src),
|
|
NBPG);
|
|
|
|
pmap_pa_unmap(pmap_pvo_copypage_src, NULL, NULL);
|
|
pmap_pa_unmap(pmap_pvo_copypage_dst, NULL, NULL);
|
|
return;
|
|
}
|
|
panic("pmap_copy_page: failed to copy contents of pa %#lx to pa %#lx", src, dst);
|
|
}
|
|
|
|
static __inline int
|
|
pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
|
|
{
|
|
int pteidx;
|
|
/*
|
|
* We can find the actual pte entry without searching by
|
|
* grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
|
|
* and by noticing the HID bit.
|
|
*/
|
|
pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
|
|
if (pvo->pvo_pte.pte_hi & PTE_HID)
|
|
pteidx ^= pmap_pteg_mask * 8;
|
|
return pteidx;
|
|
}
|
|
|
|
volatile pte_t *
|
|
pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
|
|
{
|
|
volatile pte_t *pt;
|
|
|
|
#if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
|
|
if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
|
|
return NULL;
|
|
#endif
|
|
|
|
/*
|
|
* If we haven't been supplied the ptegidx, calculate it.
|
|
*/
|
|
if (pteidx == -1) {
|
|
int ptegidx;
|
|
sr_t sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
|
|
ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
|
|
pteidx = pmap_pvo_pte_index(pvo, ptegidx);
|
|
}
|
|
|
|
pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
|
|
|
|
#if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
|
|
return pt;
|
|
#else
|
|
if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
|
|
panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
|
|
"pvo but no valid pte index", pvo);
|
|
}
|
|
if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
|
|
panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
|
|
"pvo but no valid pte", pvo);
|
|
}
|
|
|
|
if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
|
|
if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
|
|
#if defined(DEBUG) || defined(PMAPCHECK)
|
|
pmap_pte_print(pt);
|
|
#endif
|
|
panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
|
|
"pmap_pteg_table %p but invalid in pvo",
|
|
pvo, pt);
|
|
}
|
|
if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
|
|
#if defined(DEBUG) || defined(PMAPCHECK)
|
|
pmap_pte_print(pt);
|
|
#endif
|
|
panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
|
|
"not match pte %p in pmap_pteg_table",
|
|
pvo, pt);
|
|
}
|
|
return pt;
|
|
}
|
|
|
|
if (pvo->pvo_pte.pte_hi & PTE_VALID) {
|
|
#if defined(DEBUG) || defined(PMAPCHECK)
|
|
pmap_pte_print(pt);
|
|
#endif
|
|
panic("pmap_pvo_to_pte: pvo %p: has invalid pte %p in "
|
|
"pmap_pteg_table but valid in pvo", pvo, pt);
|
|
}
|
|
return NULL;
|
|
#endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
|
|
}
|
|
|
|
struct pvo_entry *
|
|
pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
int ptegidx;
|
|
sr_t sr;
|
|
|
|
va &= ~ADDR_POFF;
|
|
sr = va_to_sr(pm->pm_sr, va);
|
|
ptegidx = va_to_pteg(sr, va);
|
|
|
|
LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
|
|
#if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
|
|
if ((uintptr_t) pvo >= SEGMENT_LENGTH)
|
|
panic("pmap_pvo_find_va: invalid pvo %p on "
|
|
"list %#x (%p)", pvo, ptegidx,
|
|
&pmap_pvo_table[ptegidx]);
|
|
#endif
|
|
if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
|
|
if (pteidx_p)
|
|
*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
|
|
return pvo;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void
|
|
pmap_pa_map(struct pvo_entry *pvo, paddr_t pa, pte_t *saved_pt, int *depth_p)
|
|
{
|
|
u_int32_t msr;
|
|
int s;
|
|
|
|
s = splvm();
|
|
msr = pmap_interrupts_off();
|
|
/*
|
|
* If this pvo already has a valid PTE, we need to save it
|
|
* so it can restored later. We then just reload the new
|
|
* PTE over the old slot.
|
|
*/
|
|
if (saved_pt != NULL) {
|
|
volatile pte_t *pt;
|
|
pt = pmap_pvo_to_pte(pvo, -1);
|
|
if (pt != NULL) {
|
|
#if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
|
|
if (depth_p != NULL && *depth_p == 0)
|
|
panic("pmap_pa_map: pvo %p: valid pt %p"
|
|
" on 0 depth", pvo, pt);
|
|
#endif
|
|
pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
|
|
PVO_PTEGIDX_CLR(pvo);
|
|
pmap_pte_overflow++;
|
|
}
|
|
*saved_pt = pvo->pvo_pte;
|
|
DPRINTFN(PAMAP,
|
|
("pmap_pa_map: saved pte %#x/%#x va %#lx\n",
|
|
pvo->pvo_pte.pte_hi, pvo->pvo_pte.pte_lo,
|
|
pvo->pvo_vaddr));
|
|
pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
|
|
#if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
|
|
} else if ((pvo->pvo_pte.pte_hi & PTE_VALID) ||
|
|
(depth_p != NULL && (*depth_p) > 0)) {
|
|
panic("pmap_pa_map: unprotected recursive use of pvo %p", pvo);
|
|
#endif
|
|
}
|
|
pvo->pvo_pte.pte_lo |= pa;
|
|
if (!pmap_pte_spill(pvo->pvo_vaddr))
|
|
panic("pmap_pa_map: could not spill pvo %p", pvo);
|
|
#if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
|
|
if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
|
|
panic("pmap_pa_map: pvo %p: pte not valid after spill", pvo);
|
|
if (PVO_PTEGIDX_ISSET(pvo) == 0)
|
|
panic("pmap_pa_map: pvo %p: no pte index spill", pvo);
|
|
#endif
|
|
if (depth_p != NULL)
|
|
(*depth_p)++;
|
|
pmap_interrupts_restore(msr);
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
pmap_pa_unmap(struct pvo_entry *pvo, pte_t *saved_pt, int *depth_p)
|
|
{
|
|
volatile pte_t *pt;
|
|
u_int32_t msr;
|
|
int s;
|
|
|
|
s = splvm();
|
|
msr = pmap_interrupts_off();
|
|
pt = pmap_pvo_to_pte(pvo, -1);
|
|
if (pt != NULL) {
|
|
pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
|
|
PVO_PTEGIDX_CLR(pvo);
|
|
pmap_pte_overflow++;
|
|
}
|
|
pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
|
|
|
|
/*
|
|
* If there is a saved PTE and its valid, restore it
|
|
* and return.
|
|
*/
|
|
if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
|
|
#if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
|
|
if (pvo->pvo_pte.pte_hi != saved_pt->pte_hi)
|
|
panic("pmap_pa_unmap: pvo %p pte_hi %#x "
|
|
"!= saved pte_hi %#x", pvo, pvo->pvo_pte.pte_hi,
|
|
saved_pt->pte_hi);
|
|
#endif
|
|
if (depth_p != NULL && --(*depth_p) == 0)
|
|
panic("pmap_pa_unmap: restoring but depth == 0");
|
|
pvo->pvo_pte = *saved_pt;
|
|
DPRINTFN(PAMAP,
|
|
("pmap_pa_unmap: restored pte %#x/%#x va %#lx\n",
|
|
pvo->pvo_pte.pte_hi, pvo->pvo_pte.pte_lo, pvo->pvo_vaddr));
|
|
if (!pmap_pte_spill(pvo->pvo_vaddr))
|
|
panic("pmap_pa_unmap: could not spill pvo %p", pvo);
|
|
#if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
|
|
if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
|
|
panic("pmap_pa_unmap: pvo %p: pte not valid after "
|
|
"spill", pvo);
|
|
} else {
|
|
if (depth_p != NULL && --(*depth_p) != 0)
|
|
panic("pmap_pa_unmap: reseting but depth (%u) > 0",
|
|
*depth_p);
|
|
#endif
|
|
}
|
|
|
|
pmap_interrupts_restore(msr);
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
pmap_syncicache(paddr_t pa, psize_t len)
|
|
{
|
|
static int depth;
|
|
static u_int calls;
|
|
DPRINTFN(SYNCICACHE, ("pmap_syncicache[%d]: pa %#lx\n", depth, pa));
|
|
if (pa + len <= SEGMENT_LENGTH) {
|
|
__syncicache((void *)pa, len);
|
|
return;
|
|
}
|
|
if (pmap_initialized) {
|
|
pte_t saved_pte;
|
|
psize_t offset = pa & ADDR_POFF;
|
|
if (__predict_false(pmap_pvo_syncicache == NULL))
|
|
pmap_pvo_syncicache = pmap_rkva_alloc(VM_PROT_READ|VM_PROT_WRITE);
|
|
calls++;
|
|
pmap_pa_map(pmap_pvo_syncicache, pa, &saved_pte, &depth);
|
|
__syncicache((void *)(PVO_VADDR(pmap_pvo_syncicache)|offset),
|
|
len);
|
|
pmap_pa_unmap(pmap_pvo_syncicache, &saved_pte, &depth);
|
|
return;
|
|
}
|
|
panic("pmap_syncicache: can't sync the icache @ pa %#lx", pa);
|
|
}
|
|
|
|
/*
|
|
* Return a unmapped pvo for a kernel virtual address.
|
|
* Used by pmap function that operate of physical pages.
|
|
*/
|
|
struct pvo_entry *
|
|
pmap_rkva_alloc(int prot)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
volatile pte_t *pt;
|
|
vaddr_t kva;
|
|
int pteidx;
|
|
|
|
if (pmap_rkva_count == 0)
|
|
panic("pmap_kva_alloc: no more reserved KVAs!");
|
|
|
|
kva = pmap_rkva_start + (NBPG * --pmap_rkva_count);
|
|
pmap_kenter_pa(kva, 0, prot);
|
|
pvo = pmap_pvo_find_va(pmap_kernel(), kva, &pteidx);
|
|
if (pvo == NULL)
|
|
panic("pmap_kva_alloc: pmap_pvo_find_va failed!");
|
|
pt = pmap_pvo_to_pte(pvo, pteidx);
|
|
if (pt == NULL)
|
|
panic("pmap_kva_alloc: pmap_pvo_to_pte failed!");
|
|
pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
|
|
PVO_PTEGIDX_CLR(pvo);
|
|
pmap_pte_overflow++;
|
|
return pvo;
|
|
}
|
|
|
|
#if defined(DEBUG) || defined(PMAPCHECK)
|
|
void
|
|
pmap_pvo_check(const struct pvo_entry *pvo)
|
|
{
|
|
struct pvo_head *pvo_head;
|
|
struct pvo_entry *pvo0;
|
|
volatile pte_t *pt;
|
|
int failed = 0;
|
|
|
|
if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
|
|
panic("pmap_pvo_check: pvo %p: invalid address", pvo);
|
|
|
|
if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
|
|
printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
|
|
pvo, pvo->pvo_pmap);
|
|
failed = 1;
|
|
}
|
|
|
|
if ((uintptr_t)pvo->pvo_olink.le_next >= SEGMENT_LENGTH ||
|
|
(((uintptr_t)pvo->pvo_olink.le_next) & 0x1f) != 0) {
|
|
printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
|
|
pvo, pvo->pvo_olink.le_next);
|
|
failed = 1;
|
|
}
|
|
|
|
if ((uintptr_t)pvo->pvo_vlink.le_next >= SEGMENT_LENGTH ||
|
|
(((uintptr_t)pvo->pvo_vlink.le_next) & 0x1f) != 0) {
|
|
printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
|
|
pvo, pvo->pvo_vlink.le_next);
|
|
failed = 1;
|
|
}
|
|
|
|
if (pvo->pvo_vaddr & PVO_MANAGED) {
|
|
pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
|
|
} else {
|
|
if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
|
|
printf("pmap_pvo_check: pvo %p: non kernel address "
|
|
"on kernel unmanaged list\n", pvo);
|
|
failed = 1;
|
|
}
|
|
pvo_head = &pmap_pvo_kunmanaged;
|
|
}
|
|
LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
|
|
if (pvo0 == pvo)
|
|
break;
|
|
}
|
|
if (pvo0 == NULL) {
|
|
printf("pmap_pvo_check: pvo %p: not present "
|
|
"on its vlist head %p\n", pvo, pvo_head);
|
|
failed = 1;
|
|
}
|
|
if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
|
|
printf("pmap_pvo_check: pvo %p: not present "
|
|
"on its olist head\n", pvo);
|
|
failed = 1;
|
|
}
|
|
pt = pmap_pvo_to_pte(pvo, -1);
|
|
if (pt == NULL) {
|
|
if (pvo->pvo_pte.pte_hi & PTE_VALID) {
|
|
printf("pmap_pvo_check: pvo %p: pte_hi VALID but no PTE\n", pvo);
|
|
failed = 1;
|
|
}
|
|
} else {
|
|
if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table ||
|
|
(uintptr_t) pt >= (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
|
|
printf("pmap_pvo_check: pvo %p: pte %p not in pteg table\n", pvo, pt);
|
|
failed = 1;
|
|
}
|
|
if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
|
|
printf("pmap_pvo_check: pvo %p: pte_hi VALID but no PTE\n", pvo);
|
|
failed = 1;
|
|
}
|
|
if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
|
|
printf("pmap_pvo_check: pvo %p: pte_hi differ: %#x/%#x\n", pvo,
|
|
pvo->pvo_pte.pte_hi, pt->pte_hi);
|
|
failed = 1;
|
|
}
|
|
if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
|
|
(PTE_PP|PTE_W|PTE_I|PTE_G|PTE_RPGN)) != 0) {
|
|
printf("pmap_pvo_check: pvo %p: pte_lo differ: %#x/%#x\n",
|
|
pvo,
|
|
pvo->pvo_pte.pte_lo & (PTE_PP|PTE_W|PTE_I|PTE_G|PTE_RPGN),
|
|
pt->pte_lo & (PTE_PP|PTE_W|PTE_I|PTE_G|PTE_RPGN));
|
|
failed = 1;
|
|
}
|
|
if (pmap_pte_to_va(pt) != PVO_VADDR(pvo)) {
|
|
printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
|
|
" doesn't not match PVO's VA %#lx\n",
|
|
pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
|
|
failed = 1;
|
|
}
|
|
if (failed)
|
|
pmap_pte_print(pt);
|
|
}
|
|
if (failed)
|
|
panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
|
|
pvo->pvo_pmap);
|
|
}
|
|
#endif /* DEBUG || PMAPCHECK */
|
|
|
|
/*
|
|
* This returns whether this is the first mapping of a page.
|
|
*/
|
|
int
|
|
pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
|
|
vaddr_t va, paddr_t pa, u_int pte_lo, int flags)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
u_int32_t msr;
|
|
sr_t sr;
|
|
int ptegidx;
|
|
int i;
|
|
int poolflags = PR_NOWAIT;
|
|
|
|
#if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
|
|
if (pmap_pvo_remove_depth > 0)
|
|
panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
|
|
if (++pmap_pvo_enter_depth > 1)
|
|
panic("pmap_pvo_enter: called recursively!");
|
|
#endif
|
|
|
|
pmap_pvo_enter_calls++;
|
|
/*
|
|
* Compute the PTE Group index.
|
|
*/
|
|
va &= ~ADDR_POFF;
|
|
sr = va_to_sr(pm->pm_sr, va);
|
|
ptegidx = va_to_pteg(sr, va);
|
|
|
|
msr = pmap_interrupts_off();
|
|
/*
|
|
* Remove any existing mapping for this page. Reuse the
|
|
* pvo entry if there a mapping.
|
|
*/
|
|
LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
|
|
if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
|
|
#ifdef DEBUG
|
|
if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
|
|
((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
|
|
~(PTE_REF|PTE_CHG)) == 0 &&
|
|
va < VM_MIN_KERNEL_ADDRESS) {
|
|
printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
|
|
pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
|
|
printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
|
|
pvo->pvo_pte.pte_hi,
|
|
pm->pm_sr[va >> ADDR_SR_SHFT]);
|
|
pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
|
|
#ifdef DDBX
|
|
Debugger();
|
|
#endif
|
|
}
|
|
#endif
|
|
pmap_pvo_remove(pvo, -1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we aren't overwriting an mapping, try to allocate
|
|
*/
|
|
pmap_interrupts_restore(msr);
|
|
pvo = pool_get(pl, poolflags);
|
|
msr = pmap_interrupts_off();
|
|
if (pvo == NULL) {
|
|
#if 0
|
|
pvo = pmap_pvo_reclaim(pm);
|
|
if (pvo == NULL) {
|
|
#endif
|
|
if ((flags & PMAP_CANFAIL) == 0)
|
|
panic("pmap_pvo_enter: failed");
|
|
#if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
|
|
pmap_pvo_enter_depth--;
|
|
#endif
|
|
pmap_interrupts_restore(msr);
|
|
return ENOMEM;
|
|
#if 0
|
|
}
|
|
#endif
|
|
}
|
|
pmap_pvo_entries++;
|
|
pvo->pvo_vaddr = va;
|
|
pvo->pvo_pmap = pm;
|
|
LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
|
|
pvo->pvo_vaddr &= ~ADDR_POFF;
|
|
if (flags & VM_PROT_EXECUTE)
|
|
pvo->pvo_vaddr |= PVO_EXECUTABLE;
|
|
if (flags & PMAP_WIRED)
|
|
pvo->pvo_vaddr |= PVO_WIRED;
|
|
if (pvo_head != &pmap_pvo_kunmanaged)
|
|
pvo->pvo_vaddr |= PVO_MANAGED;
|
|
pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
|
|
|
|
LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
|
|
if (pvo->pvo_pte.pte_lo & PVO_WIRED)
|
|
pvo->pvo_pmap->pm_stats.wired_count++;
|
|
pvo->pvo_pmap->pm_stats.resident_count++;
|
|
#if defined(DEBUG)
|
|
if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
|
|
DPRINTFN(PVOENTER,
|
|
("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
|
|
pvo, pm, va, pa));
|
|
#endif
|
|
/*
|
|
* We hope this succeeds but it isn't required.
|
|
*/
|
|
i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
|
|
if (i >= 0) {
|
|
PVO_PTEGIDX_SET(pvo, i);
|
|
} else {
|
|
pmap_pte_overflow++;
|
|
#if 0
|
|
if ((flags & (VM_PROT_READ|VM_PROT_WRITE)) != VM_PROT_NONE)
|
|
pmap_pte_evict(pvo, ptegidx, MFTB() & 7);
|
|
#endif
|
|
}
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
#if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
|
|
pmap_pvo_enter_depth--;
|
|
#endif
|
|
pmap_interrupts_restore(msr);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
|
|
{
|
|
volatile pte_t *pt;
|
|
|
|
#if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
|
|
if (++pmap_pvo_remove_depth > 1)
|
|
panic("pmap_pvo_remove: called recursively!");
|
|
#endif
|
|
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
/*
|
|
* If there is an active pte entry, we need to deactivate it
|
|
* (and save the ref & chg bits).
|
|
*/
|
|
pt = pmap_pvo_to_pte(pvo, pteidx);
|
|
if (pt != NULL) {
|
|
pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
|
|
PVO_PTEGIDX_CLR(pvo);
|
|
} else {
|
|
pmap_pte_overflow--;
|
|
}
|
|
|
|
/*
|
|
* Update our statistics
|
|
*/
|
|
pvo->pvo_pmap->pm_stats.resident_count--;
|
|
if (pvo->pvo_pte.pte_lo & PVO_WIRED)
|
|
pvo->pvo_pmap->pm_stats.wired_count--;
|
|
|
|
/*
|
|
* Save the REF/CHG bits into their cache if the page is managed.
|
|
*/
|
|
if (pvo->pvo_vaddr & PVO_MANAGED) {
|
|
struct vm_page *pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
|
|
if (pg != NULL) {
|
|
pmap_attr_save(pg, pvo->pvo_pte.pte_lo & (PTE_REF|PTE_CHG));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove this PVO from the PV list
|
|
*/
|
|
LIST_REMOVE(pvo, pvo_vlink);
|
|
|
|
/*
|
|
* Remove this from the Overflow list and return it to the pool...
|
|
* ... if we aren't going to reuse it.
|
|
*/
|
|
LIST_REMOVE(pvo, pvo_olink);
|
|
pool_put(pvo->pvo_vaddr & PVO_MANAGED
|
|
? &pmap_mpvo_pool
|
|
: &pmap_upvo_pool,
|
|
pvo);
|
|
pmap_pvo_entries--;
|
|
pmap_pvo_remove_calls++;
|
|
#if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
|
|
pmap_pvo_remove_depth--;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Insert physical page at pa into the given pmap at virtual address va.
|
|
*/
|
|
int
|
|
pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
|
|
{
|
|
struct mem_region *mp;
|
|
struct pvo_head *pvo_head;
|
|
struct vm_page *pg;
|
|
struct pool *pl;
|
|
u_int32_t pte_lo;
|
|
int s;
|
|
int error;
|
|
u_int pvo_flags;
|
|
u_int was_exec = 0;
|
|
|
|
if (__predict_false(!pmap_initialized)) {
|
|
pvo_head = &pmap_pvo_kunmanaged;
|
|
pl = &pmap_upvo_pool;
|
|
pvo_flags = 0;
|
|
pg = NULL;
|
|
was_exec = PTE_EXEC;
|
|
} else {
|
|
pvo_head = pa_to_pvoh(pa, &pg);
|
|
pl = &pmap_mpvo_pool;
|
|
pvo_flags = PVO_MANAGED;
|
|
}
|
|
|
|
DPRINTFN(ENTER,
|
|
("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
|
|
pm, va, pa, prot, flags));
|
|
|
|
/*
|
|
* If this is a managed page, and it's the first reference to the
|
|
* page clear the execness of the page. Otherwise fetch the execness.
|
|
*/
|
|
if (pg != NULL) {
|
|
if (LIST_EMPTY(pvo_head)) {
|
|
pmap_attr_clear(pg, PTE_EXEC);
|
|
DPRINTFN(ENTER, (" first"));
|
|
} else {
|
|
was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
|
|
}
|
|
}
|
|
|
|
DPRINTFN(ENTER, (" was_exec=%d", was_exec));
|
|
|
|
/*
|
|
* Assume the page is cache inhibited and access is guarded unless
|
|
* it's in our available memory array.
|
|
*/
|
|
pte_lo = PTE_I | PTE_G;
|
|
if ((flags & PMAP_NC) == 0) {
|
|
for (mp = mem; mp->size; mp++) {
|
|
if (pa >= mp->start && pa < mp->start + mp->size) {
|
|
pte_lo &= ~(PTE_I | PTE_G);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (prot & VM_PROT_WRITE)
|
|
pte_lo |= PTE_BW;
|
|
else
|
|
pte_lo |= PTE_BR;
|
|
|
|
#if 0
|
|
if (pm == pmap_kernel()) {
|
|
if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == VM_PROT_READ)
|
|
printf("pmap_pvo_enter: Kernel RO va %#lx pa %#lx\n",
|
|
va, pa);
|
|
if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == VM_PROT_NONE)
|
|
printf("pmap_pvo_enter: Kernel N/A va %#lx pa %#lx\n",
|
|
va, pa);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* We need to know if this page can be executable
|
|
*/
|
|
flags |= (prot & VM_PROT_EXECUTE);
|
|
|
|
/*
|
|
* Record mapping for later back-translation and pte spilling.
|
|
* This will overwrite any existing mapping.
|
|
*/
|
|
s = splvm();
|
|
error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
|
|
splx(s);
|
|
|
|
/*
|
|
* Flush the real page from the instruction cache if this page is
|
|
* mapped executable and cacheable and was not previously mapped
|
|
* (or was not mapped executable).
|
|
*/
|
|
if (error == 0 &&
|
|
(flags & VM_PROT_EXECUTE) &&
|
|
(pte_lo & PTE_I) == 0 &&
|
|
was_exec == 0) {
|
|
DPRINTFN(ENTER, (" syncicache"));
|
|
pmap_syncicache(pa, NBPG);
|
|
if (pg != NULL)
|
|
pmap_attr_save(pg, PTE_EXEC);
|
|
}
|
|
|
|
DPRINTFN(ENTER, (" error=%d\n", error));
|
|
|
|
return error;
|
|
}
|
|
|
|
void
|
|
pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
|
|
{
|
|
struct mem_region *mp;
|
|
u_int32_t pte_lo;
|
|
u_int32_t msr;
|
|
int error;
|
|
int s;
|
|
|
|
if (va < VM_MIN_KERNEL_ADDRESS)
|
|
panic("pmap_kenter_pa: attempt to enter "
|
|
"non-kernel address %#lx!", va);
|
|
|
|
DPRINTFN(KENTER,
|
|
("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
|
|
|
|
pte_lo = PTE_I | PTE_G;
|
|
for (mp = mem; mp->size; mp++) {
|
|
if (pa >= mp->start && pa < mp->start + mp->size) {
|
|
pte_lo &= ~(PTE_I | PTE_G);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (prot & VM_PROT_WRITE)
|
|
pte_lo |= PTE_BW;
|
|
else
|
|
pte_lo |= PTE_BR;
|
|
|
|
s = splvm();
|
|
msr = pmap_interrupts_off();
|
|
error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool, &pmap_pvo_kunmanaged,
|
|
va, pa, pte_lo, prot|PMAP_WIRED);
|
|
pmap_interrupts_restore(msr);
|
|
splx(s);
|
|
|
|
if (error != 0)
|
|
panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d", va, pa, error);
|
|
|
|
/*
|
|
* Flush the real memory from the instruction cache.
|
|
*/
|
|
if ((prot & VM_PROT_EXECUTE) && (pte_lo & (PTE_I|PTE_G)) == 0) {
|
|
pmap_syncicache(pa, NBPG);
|
|
}
|
|
}
|
|
|
|
void
|
|
pmap_kremove(vaddr_t va, vsize_t len)
|
|
{
|
|
if (va < VM_MIN_KERNEL_ADDRESS)
|
|
panic("pmap_kremove: attempt to remove "
|
|
"non-kernel address %#lx!", va);
|
|
|
|
DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
|
|
pmap_remove(pmap_kernel(), va, va + len);
|
|
}
|
|
|
|
/*
|
|
* Remove the given range of mapping entries.
|
|
*/
|
|
void
|
|
pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
u_int32_t msr;
|
|
int pteidx;
|
|
int s;
|
|
|
|
for (; va < endva; va += PAGE_SIZE) {
|
|
s = splvm();
|
|
msr = pmap_interrupts_off();
|
|
pvo = pmap_pvo_find_va(pm, va, &pteidx);
|
|
if (pvo != NULL) {
|
|
pmap_pvo_remove(pvo, pteidx);
|
|
}
|
|
pmap_interrupts_restore(msr);
|
|
splx(s);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get the physical page address for the given pmap/virtual address.
|
|
*/
|
|
boolean_t
|
|
pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
u_int32_t msr;
|
|
int s;
|
|
|
|
s = splvm();
|
|
msr = pmap_interrupts_off();
|
|
pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
|
|
if (pvo != NULL) {
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
|
|
}
|
|
pmap_interrupts_restore(msr);
|
|
splx(s);
|
|
return pvo != NULL;
|
|
}
|
|
|
|
/*
|
|
* Lower the protection on the specified range of this pmap.
|
|
*
|
|
* There are only two cases: either the protection is going to 0,
|
|
* or it is going to read-only.
|
|
*/
|
|
void
|
|
pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
volatile pte_t *pt;
|
|
u_int32_t msr;
|
|
int s;
|
|
int pteidx;
|
|
|
|
#if 0
|
|
/*
|
|
* Since this routine only downgrades protection, if the
|
|
* maximal protection is desired, there isn't any change
|
|
* to be made.
|
|
*/
|
|
if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == (VM_PROT_READ|VM_PROT_WRITE))
|
|
return;
|
|
#endif
|
|
/*
|
|
* If there is no protection, this is equivalent to
|
|
* remove the pmap from the pmap.
|
|
*/
|
|
if ((prot & VM_PROT_READ) == 0) {
|
|
pmap_remove(pm, va, endva);
|
|
return;
|
|
}
|
|
|
|
s = splvm();
|
|
msr = pmap_interrupts_off();
|
|
|
|
for (; va < endva; va += NBPG) {
|
|
pvo = pmap_pvo_find_va(pm, va, &pteidx);
|
|
if (pvo == NULL)
|
|
continue;
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
|
|
/*
|
|
* Revoke executable if asked to do so.
|
|
*/
|
|
if ((prot & VM_PROT_EXECUTE) == 0)
|
|
pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
|
|
|
|
#if 0
|
|
/*
|
|
* If the page is already read-only, no change
|
|
* needs to be made.
|
|
*/
|
|
if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
|
|
continue;
|
|
#endif
|
|
/*
|
|
* Grab the PTE pointer before we diddle with
|
|
* the cached PTE copy.
|
|
*/
|
|
pt = pmap_pvo_to_pte(pvo, pteidx);
|
|
/*
|
|
* Change the protection of the page.
|
|
*/
|
|
pvo->pvo_pte.pte_lo &= ~PTE_PP;
|
|
pvo->pvo_pte.pte_lo |= PTE_BR;
|
|
|
|
/*
|
|
* If the PVO is in the page table, update
|
|
* that pte at well.
|
|
*/
|
|
if (pt != NULL)
|
|
pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
|
|
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
}
|
|
|
|
pmap_interrupts_restore(msr);
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
pmap_unwire(pmap_t pm, vaddr_t va)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
u_int32_t msr;
|
|
int s;
|
|
|
|
s = splvm();
|
|
msr = pmap_interrupts_off();
|
|
|
|
pvo = pmap_pvo_find_va(pm, va, NULL);
|
|
if (pvo != NULL) {
|
|
if (pvo->pvo_vaddr & PVO_WIRED) {
|
|
pvo->pvo_vaddr &= ~PVO_WIRED;
|
|
pm->pm_stats.wired_count--;
|
|
}
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
}
|
|
|
|
pmap_interrupts_restore(msr);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Lower the protection on the specified physical page.
|
|
*
|
|
* There are only two cases: either the protection is going to 0,
|
|
* or it is going to read-only.
|
|
*/
|
|
void
|
|
pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
|
|
{
|
|
struct pvo_head *pvo_head;
|
|
struct pvo_entry *pvo, *next_pvo;
|
|
volatile pte_t *pt;
|
|
u_int32_t msr;
|
|
int s;
|
|
|
|
/*
|
|
* Since this routine only downgrades protection, if the
|
|
* maximal protection is desired, there isn't any change
|
|
* to be made.
|
|
*/
|
|
if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == (VM_PROT_READ|VM_PROT_WRITE))
|
|
return;
|
|
|
|
s = splvm();
|
|
msr = pmap_interrupts_off();
|
|
|
|
pvo_head = vm_page_to_pvoh(pg);
|
|
for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
|
|
next_pvo = LIST_NEXT(pvo, pvo_vlink);
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
|
|
/*
|
|
* Downgrading to no mapping at all, we just remove the entry.
|
|
*/
|
|
if ((prot & VM_PROT_READ) == 0) {
|
|
pmap_pvo_remove(pvo, -1);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If EXEC permission is being revoked, just clear the
|
|
* flag in the PVO.
|
|
*/
|
|
if ((prot & VM_PROT_EXECUTE) == 0)
|
|
pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
|
|
|
|
/*
|
|
* If this entry is already RO, don't diddle with the
|
|
* page table.
|
|
*/
|
|
if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
|
|
PMAP_PVO_CHECK(pvo);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Grab the PTE before the we diddle the bits so
|
|
* pvo_to_pte can verify the pte contents are as
|
|
* expected.
|
|
*/
|
|
pt = pmap_pvo_to_pte(pvo, -1);
|
|
pvo->pvo_pte.pte_lo &= ~PTE_PP;
|
|
pvo->pvo_pte.pte_lo |= PTE_BR;
|
|
if (pt != NULL)
|
|
pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
}
|
|
|
|
pmap_interrupts_restore(msr);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Activate the address space for the specified process. If the process
|
|
* is the current process, load the new MMU context.
|
|
*/
|
|
void
|
|
pmap_activate(struct proc *p)
|
|
{
|
|
struct pcb *pcb = &p->p_addr->u_pcb;
|
|
pmap_t pmap = p->p_vmspace->vm_map.pmap;
|
|
|
|
DPRINTFN(ACTIVATE,
|
|
("pmap_activate: proc %p (curproc %p)\n", p, curproc));
|
|
|
|
/*
|
|
* XXX Normally performed in cpu_fork().
|
|
*/
|
|
if (pcb->pcb_pm != pmap) {
|
|
pcb->pcb_pm = pmap;
|
|
pcb->pcb_pmreal = pmap;
|
|
}
|
|
|
|
/*
|
|
* In theory, the SR registers need only be valid on return
|
|
* to user space wait to do them there.
|
|
*/
|
|
if (p == curproc) {
|
|
/* Store pointer to new current pmap. */
|
|
curpm = pmap;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Deactivate the specified process's address space.
|
|
*/
|
|
void
|
|
pmap_deactivate(struct proc *p)
|
|
{
|
|
}
|
|
|
|
boolean_t
|
|
pmap_query_bit(struct vm_page *pg, int ptebit)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
volatile pte_t *pt;
|
|
u_int32_t msr;
|
|
int s;
|
|
|
|
if (pmap_attr_fetch(pg) & ptebit)
|
|
return TRUE;
|
|
s = splvm();
|
|
msr = pmap_interrupts_off();
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
/*
|
|
* See if we saved the bit off. If so cache, it and return
|
|
* success.
|
|
*/
|
|
if (pvo->pvo_pte.pte_lo & ptebit) {
|
|
pmap_attr_save(pg, ptebit);
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
pmap_interrupts_restore(msr);
|
|
splx(s);
|
|
return TRUE;
|
|
}
|
|
}
|
|
/*
|
|
* No luck, now go thru the hard part of looking at the ptes
|
|
* themselves. Sync so any pending REF/CHG bits are flushed
|
|
* to the PTEs.
|
|
*/
|
|
SYNC();
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
/*
|
|
* See if this pvo have a valid PTE. If so, fetch the
|
|
* REF/CHG bits from the valid PTE. If the appropriate
|
|
* ptebit is set, cache, it and return success.
|
|
*/
|
|
pt = pmap_pvo_to_pte(pvo, -1);
|
|
if (pt != NULL) {
|
|
pmap_pte_synch(pt, &pvo->pvo_pte);
|
|
if (pvo->pvo_pte.pte_lo & ptebit) {
|
|
pmap_attr_save(pg, ptebit);
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
pmap_interrupts_restore(msr);
|
|
splx(s);
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
pmap_interrupts_restore(msr);
|
|
splx(s);
|
|
return FALSE;
|
|
}
|
|
|
|
boolean_t
|
|
pmap_clear_bit(struct vm_page *pg, int ptebit)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
volatile pte_t *pt;
|
|
u_int32_t msr;
|
|
int rv = 0;
|
|
int s;
|
|
|
|
s = splvm();
|
|
msr = pmap_interrupts_off();
|
|
/*
|
|
* Clear the cached value.
|
|
*/
|
|
rv |= pmap_attr_fetch(pg);
|
|
pmap_attr_clear(pg, ptebit);
|
|
|
|
/*
|
|
* Sync so any pending REF/CHG bits are flushed to the PTEs (so we
|
|
* can reset the right ones). Note that since the pvo entries and
|
|
* list heads are accessed via BAT0 and are never placed in the
|
|
* page table, we don't have to worry about further accesses setting
|
|
* the REF/CHG bits.
|
|
*/
|
|
SYNC();
|
|
|
|
/*
|
|
* For each pvo entry, clear pvo's ptebit. If this pvo have a
|
|
* valid PTE. If so, clear the ptebit from the valid PTE.
|
|
*/
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
pt = pmap_pvo_to_pte(pvo, -1);
|
|
if (pt != NULL) {
|
|
pmap_pte_synch(pt, &pvo->pvo_pte);
|
|
if (pvo->pvo_pte.pte_lo & ptebit)
|
|
pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
|
|
}
|
|
rv |= pvo->pvo_pte.pte_lo;
|
|
pvo->pvo_pte.pte_lo &= ~ptebit;
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
}
|
|
pmap_interrupts_restore(msr);
|
|
splx(s);
|
|
return (rv & ptebit) != 0;
|
|
}
|
|
|
|
void
|
|
pmap_procwr(struct proc *p, vaddr_t va, size_t len)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
size_t offset = va & ADDR_POFF;
|
|
int s;
|
|
|
|
s = splvm();
|
|
while (len > 0) {
|
|
size_t seglen = NBPG - offset;
|
|
if (seglen > len)
|
|
seglen = len;
|
|
pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
|
|
if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
|
|
pmap_syncicache(
|
|
(pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
|
|
PMAP_PVO_CHECK(pvo);
|
|
}
|
|
va += seglen;
|
|
len -= seglen;
|
|
offset = 0;
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
#if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
|
|
void
|
|
pmap_pte_print(volatile pte_t *pt)
|
|
{
|
|
printf("PTE %p: ", pt);
|
|
/* High word: */
|
|
printf("0x%08x: [", pt->pte_hi);
|
|
printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
|
|
printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
|
|
printf("0x%06x 0x%02X",
|
|
(pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
|
|
pt->pte_hi & PTE_API);
|
|
printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
|
|
/* Low word: */
|
|
printf(" 0x%08x: [", pt->pte_lo);
|
|
printf("0x%05x... ", pt->pte_lo >> 12);
|
|
printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
|
|
printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
|
|
printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
|
|
printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
|
|
printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
|
|
printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
|
|
switch (pt->pte_lo & PTE_PP) {
|
|
case PTE_BR: printf("br]\n"); break;
|
|
case PTE_BW: printf("bw]\n"); break;
|
|
case PTE_SO: printf("so]\n"); break;
|
|
case PTE_SW: printf("sw]\n"); break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(DDB)
|
|
void
|
|
pmap_pteg_check(void)
|
|
{
|
|
volatile pte_t *pt;
|
|
int i;
|
|
int ptegidx;
|
|
u_int p_valid = 0;
|
|
u_int s_valid = 0;
|
|
u_int invalid = 0;
|
|
|
|
for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
|
|
for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
|
|
if (pt->pte_hi & PTE_VALID) {
|
|
if (pt->pte_hi & PTE_HID)
|
|
s_valid++;
|
|
else
|
|
p_valid++;
|
|
} else
|
|
invalid++;
|
|
}
|
|
}
|
|
printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
|
|
p_valid, p_valid, s_valid, s_valid,
|
|
invalid, invalid);
|
|
}
|
|
|
|
void
|
|
pmap_print_mmuregs(void)
|
|
{
|
|
int i;
|
|
u_int cpuvers;
|
|
vaddr_t addr;
|
|
sr_t soft_sr[16];
|
|
struct bat soft_ibat[4];
|
|
struct bat soft_dbat[4];
|
|
u_int32_t sdr1;
|
|
|
|
cpuvers = MFPVR() >> 16;
|
|
|
|
__asm __volatile ("mfsdr1 %0" : "=r"(sdr1));
|
|
for (i=0; i<16; i++) {
|
|
soft_sr[i] = MFSRIN(addr);
|
|
addr += (1 << ADDR_SR_SHFT);
|
|
}
|
|
|
|
/* read iBAT (601: uBAT) registers */
|
|
__asm __volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
|
|
__asm __volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
|
|
__asm __volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
|
|
__asm __volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
|
|
__asm __volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
|
|
__asm __volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
|
|
__asm __volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
|
|
__asm __volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
|
|
|
|
|
|
if (cpuvers != MPC601) {
|
|
/* read dBAT registers */
|
|
__asm __volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
|
|
__asm __volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
|
|
__asm __volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
|
|
__asm __volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
|
|
__asm __volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
|
|
__asm __volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
|
|
__asm __volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
|
|
__asm __volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
|
|
}
|
|
|
|
printf("SDR1:\t0x%x\n", sdr1);
|
|
printf("SR[]:\t");
|
|
addr = 0;
|
|
for (i=0; i<4; i++)
|
|
printf("0x%08x, ", soft_sr[i]);
|
|
printf("\n\t");
|
|
for ( ; i<8; i++)
|
|
printf("0x%08x, ", soft_sr[i]);
|
|
printf("\n\t");
|
|
for ( ; i<12; i++)
|
|
printf("0x%08x, ", soft_sr[i]);
|
|
printf("\n\t");
|
|
for ( ; i<16; i++)
|
|
printf("0x%08x, ", soft_sr[i]);
|
|
printf("\n");
|
|
|
|
printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
|
|
for (i=0; i<4; i++) {
|
|
printf("0x%08x 0x%08x, ",
|
|
soft_ibat[i].batu, soft_ibat[i].batl);
|
|
if (i == 1)
|
|
printf("\n\t");
|
|
}
|
|
if (cpuvers != MPC601) {
|
|
printf("\ndBAT[]:\t");
|
|
for (i=0; i<4; i++) {
|
|
printf("0x%08x 0x%08x, ",
|
|
soft_dbat[i].batu, soft_dbat[i].batl);
|
|
if (i == 1)
|
|
printf("\n\t");
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
void
|
|
pmap_print_pte(pmap_t pm, vaddr_t va)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
volatile pte_t *pt;
|
|
int pteidx;
|
|
|
|
pvo = pmap_pvo_find_va(pm, va, &pteidx);
|
|
if (pvo != NULL) {
|
|
pt = pmap_pvo_to_pte(pvo, pteidx);
|
|
if (pt != NULL) {
|
|
printf("VA %#lx -> %p -> %s %#x, %#x\n",
|
|
va, pt,
|
|
pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
|
|
pt->pte_hi, pt->pte_lo);
|
|
} else {
|
|
printf("No valid PTE found\n");
|
|
}
|
|
} else {
|
|
printf("Address not in pmap\n");
|
|
}
|
|
}
|
|
|
|
void
|
|
pmap_pteg_dist(void)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
int ptegidx;
|
|
int depth;
|
|
int max_depth = 0;
|
|
unsigned int depths[64];
|
|
|
|
memset(depths, 0, sizeof(depths));
|
|
for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
|
|
depth = 0;
|
|
LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
|
|
depth++;
|
|
}
|
|
if (depth > max_depth)
|
|
max_depth = depth;
|
|
if (depth > 63)
|
|
depth = 63;
|
|
depths[depth]++;
|
|
}
|
|
|
|
for (depth = 0; depth < 64; depth++) {
|
|
printf(" [%2d]: %8u", depth, depths[depth]);
|
|
if ((depth & 3) == 3)
|
|
printf("\n");
|
|
if (depth == max_depth)
|
|
break;
|
|
}
|
|
if ((depth & 3) != 3)
|
|
printf("\n");
|
|
printf("Max depth found was %d\n", max_depth);
|
|
}
|
|
#endif /* DEBUG */
|
|
|
|
#if defined(PMAPCHECK) || defined(DEBUG)
|
|
void
|
|
pmap_pvo_verify(void)
|
|
{
|
|
int ptegidx;
|
|
int s;
|
|
|
|
s = splvm();
|
|
for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
|
|
struct pvo_entry *pvo;
|
|
LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
|
|
if ((uintptr_t) pvo >= SEGMENT_LENGTH)
|
|
panic("pmap_pvo_verify: invalid pvo %p "
|
|
"on list %#x", pvo, ptegidx);
|
|
pmap_pvo_check(pvo);
|
|
}
|
|
}
|
|
splx(s);
|
|
}
|
|
#endif /* PMAPCHECK */
|
|
|
|
|
|
void *
|
|
pmap_pool_ualloc(struct pool *pp, int flags)
|
|
{
|
|
struct pvo_page *pvop;
|
|
|
|
pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
|
|
if (pvop != NULL) {
|
|
pmap_upvop_free--;
|
|
SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
|
|
return pvop;
|
|
}
|
|
if (uvm.page_init_done != TRUE) {
|
|
return (void *) uvm_pageboot_alloc(PAGE_SIZE);
|
|
}
|
|
return pmap_pool_malloc(pp, flags);
|
|
}
|
|
|
|
void *
|
|
pmap_pool_malloc(struct pool *pp, int flags)
|
|
{
|
|
struct pvo_page *pvop;
|
|
struct vm_page *pg;
|
|
|
|
pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
|
|
if (pvop != NULL) {
|
|
pmap_mpvop_free--;
|
|
SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
|
|
return pvop;
|
|
}
|
|
again:
|
|
pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
|
|
UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
|
|
if (__predict_false(pg == NULL)) {
|
|
if (flags & PR_WAITOK) {
|
|
uvm_wait("plpg");
|
|
goto again;
|
|
} else {
|
|
return (0);
|
|
}
|
|
}
|
|
return (void *) VM_PAGE_TO_PHYS(pg);
|
|
}
|
|
|
|
void
|
|
pmap_pool_ufree(struct pool *pp, void *va)
|
|
{
|
|
struct pvo_page *pvop;
|
|
#if 0
|
|
if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
|
|
pmap_pool_mfree(va, size, tag);
|
|
return;
|
|
}
|
|
#endif
|
|
pvop = va;
|
|
SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
|
|
pmap_upvop_free++;
|
|
if (pmap_upvop_free > pmap_upvop_maxfree)
|
|
pmap_upvop_maxfree = pmap_upvop_free;
|
|
}
|
|
|
|
void
|
|
pmap_pool_mfree(struct pool *pp, void *va)
|
|
{
|
|
struct pvo_page *pvop;
|
|
|
|
pvop = va;
|
|
SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
|
|
pmap_mpvop_free++;
|
|
if (pmap_mpvop_free > pmap_mpvop_maxfree)
|
|
pmap_mpvop_maxfree = pmap_mpvop_free;
|
|
#if 0
|
|
uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* This routine in bootstraping to steal to-be-managed memory (which will
|
|
* then be unmanaged). We use it to grab from the first 256MB for our
|
|
* pmap needs and above 256MB for other stuff.
|
|
*/
|
|
vaddr_t
|
|
pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
|
|
{
|
|
vsize_t size;
|
|
vaddr_t va;
|
|
paddr_t pa = 0;
|
|
int npgs, bank;
|
|
struct vm_physseg *ps;
|
|
|
|
if (uvm.page_init_done == TRUE)
|
|
panic("pmap_steal_memory: called _after_ bootstrap");
|
|
|
|
*vstartp = VM_MIN_KERNEL_ADDRESS + pmap_rkva_count * NBPG;
|
|
*vendp = VM_MAX_KERNEL_ADDRESS;
|
|
|
|
size = round_page(vsize);
|
|
npgs = atop(size);
|
|
|
|
/*
|
|
* PA 0 will never be among those given to UVM so we can use it
|
|
* to indicate we couldn't steal any memory.
|
|
*/
|
|
for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
|
|
if (ps->free_list == VM_FREELIST_FIRST256 &&
|
|
ps->avail_end - ps->avail_start >= npgs) {
|
|
pa = ptoa(ps->avail_start);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (pa == 0)
|
|
panic("pmap_steal_memory: no approriate memory to steal!");
|
|
|
|
ps->avail_start += npgs;
|
|
ps->start += npgs;
|
|
|
|
/*
|
|
* If we've used up all the pages in the segment, remove it and
|
|
* compact the list.
|
|
*/
|
|
if (ps->avail_start == ps->end) {
|
|
/*
|
|
* If this was the last one, then a very bad thing has occurred
|
|
*/
|
|
if (--vm_nphysseg == 0)
|
|
panic("pmap_steal_memory: out of memory!");
|
|
|
|
printf("pmap_steal_memory: consumed bank %d\n", bank);
|
|
for (; bank < vm_nphysseg; bank++, ps++) {
|
|
ps[0] = ps[1];
|
|
}
|
|
}
|
|
|
|
va = (vaddr_t) pa;
|
|
memset((caddr_t) va, 0, size);
|
|
pmap_pages_stolen += npgs;
|
|
#ifdef DEBUG
|
|
if (pmapdebug && npgs > 1) {
|
|
u_int cnt = 0;
|
|
for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
|
|
cnt += ps->avail_end - ps->avail_start;
|
|
printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
|
|
npgs, pmap_pages_stolen, cnt);
|
|
}
|
|
#endif
|
|
|
|
return va;
|
|
}
|
|
|
|
/*
|
|
* Find a chuck of memory with right size and alignment.
|
|
*/
|
|
void *
|
|
pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
|
|
{
|
|
struct mem_region *mp;
|
|
paddr_t s, e;
|
|
int i, j;
|
|
|
|
size = round_page(size);
|
|
|
|
DPRINTFN(BOOT,
|
|
("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
|
|
size, alignment, at_end));
|
|
|
|
if (alignment < NBPG || (alignment & (alignment-1)) != 0)
|
|
panic("pmap_boot_find_memory: invalid alignment %lx",
|
|
alignment);
|
|
|
|
if (at_end) {
|
|
if (alignment != NBPG)
|
|
panic("pmap_boot_find_memory: invalid ending "
|
|
"alignment %lx", alignment);
|
|
|
|
for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
|
|
s = mp->start + mp->size - size;
|
|
if (s >= mp->start && mp->size >= size) {
|
|
DPRINTFN(BOOT,(": %lx\n", s));
|
|
DPRINTFN(BOOT,
|
|
("pmap_boot_find_memory: b-avail[%d] start "
|
|
"0x%lx size 0x%lx\n", mp - avail,
|
|
mp->start, mp->size));
|
|
mp->size -= size;
|
|
DPRINTFN(BOOT,
|
|
("pmap_boot_find_memory: a-avail[%d] start "
|
|
"0x%lx size 0x%lx\n", mp - avail,
|
|
mp->start, mp->size));
|
|
return (void *) s;
|
|
}
|
|
}
|
|
panic("pmap_boot_find_memory: no available memory");
|
|
}
|
|
|
|
for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
|
|
s = (mp->start + alignment - 1) & ~(alignment-1);
|
|
e = s + size;
|
|
|
|
/*
|
|
* Is the calculated region entirely within the region?
|
|
*/
|
|
if (s < mp->start || e > mp->start + mp->size)
|
|
continue;
|
|
|
|
DPRINTFN(BOOT,(": %lx\n", s));
|
|
if (s == mp->start) {
|
|
/*
|
|
* If the block starts at the beginning of region,
|
|
* adjust the size & start. (the region may now be
|
|
* zero in length)
|
|
*/
|
|
DPRINTFN(BOOT,
|
|
("pmap_boot_find_memory: b-avail[%d] start "
|
|
"0x%lx size 0x%lx\n", i, mp->start, mp->size));
|
|
mp->start += size;
|
|
mp->size -= size;
|
|
DPRINTFN(BOOT,
|
|
("pmap_boot_find_memory: a-avail[%d] start "
|
|
"0x%lx size 0x%lx\n", i, mp->start, mp->size));
|
|
} else if (e == mp->start + mp->size) {
|
|
/*
|
|
* If the block starts at the beginning of region,
|
|
* adjust only the size.
|
|
*/
|
|
DPRINTFN(BOOT,
|
|
("pmap_boot_find_memory: b-avail[%d] start "
|
|
"0x%lx size 0x%lx\n", i, mp->start, mp->size));
|
|
mp->size -= size;
|
|
DPRINTFN(BOOT,
|
|
("pmap_boot_find_memory: a-avail[%d] start "
|
|
"0x%lx size 0x%lx\n", i, mp->start, mp->size));
|
|
} else {
|
|
/*
|
|
* Block is in the middle of the region, so we
|
|
* have to split it in two.
|
|
*/
|
|
for (j = avail_cnt; j > i + 1; j--) {
|
|
avail[j] = avail[j-1];
|
|
}
|
|
DPRINTFN(BOOT,
|
|
("pmap_boot_find_memory: b-avail[%d] start "
|
|
"0x%lx size 0x%lx\n", i, mp->start, mp->size));
|
|
mp[1].start = e;
|
|
mp[1].size = mp[0].start + mp[0].size - e;
|
|
mp[0].size = s - mp[0].start;
|
|
avail_cnt++;
|
|
for (; i < avail_cnt; i++) {
|
|
DPRINTFN(BOOT,
|
|
("pmap_boot_find_memory: a-avail[%d] "
|
|
"start 0x%lx size 0x%lx\n", i,
|
|
avail[i].start, avail[i].size));
|
|
}
|
|
}
|
|
return (void *) s;
|
|
}
|
|
panic("pmap_boot_find_memory: not enough memory for "
|
|
"%lx/%lx allocation?", size, alignment);
|
|
}
|
|
|
|
/*
|
|
* This is not part of the defined PMAP interface and is specific to the
|
|
* PowerPC architecture. This is called during initppc, before the system
|
|
* is really initialized.
|
|
*/
|
|
void
|
|
pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend,
|
|
const struct segtab *kernsegs)
|
|
{
|
|
struct mem_region *mp, tmp;
|
|
paddr_t s, e;
|
|
psize_t size;
|
|
int i, j;
|
|
|
|
/*
|
|
* Get memory.
|
|
*/
|
|
mem_regions(&mem, &avail);
|
|
#if defined(DEBUG)
|
|
if (pmapdebug & PMAPDEBUG_BOOT) {
|
|
printf("pmap_bootstrap: memory configuration:\n");
|
|
for (mp = mem; mp->size; mp++) {
|
|
printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
|
|
mp->start, mp->size);
|
|
}
|
|
for (mp = avail; mp->size; mp++) {
|
|
printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
|
|
mp->start, mp->size);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Find out how much physical memory we have and in how many chunks.
|
|
*/
|
|
for (mem_cnt = 0, mp = mem; mp->size; mp++) {
|
|
if (mp->start >= pmap_memlimit)
|
|
continue;
|
|
if (mp->start + mp->size > pmap_memlimit) {
|
|
size = pmap_memlimit - mp->start;
|
|
physmem += btoc(size);
|
|
} else {
|
|
physmem += btoc(mp->size);
|
|
}
|
|
mem_cnt++;
|
|
}
|
|
|
|
/*
|
|
* Count the number of available entries.
|
|
*/
|
|
for (avail_cnt = 0, mp = avail; mp->size; mp++)
|
|
avail_cnt++;
|
|
|
|
/*
|
|
* Page align all regions.
|
|
*/
|
|
kernelstart = trunc_page(kernelstart);
|
|
kernelend = round_page(kernelend);
|
|
for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
|
|
s = round_page(mp->start);
|
|
mp->size -= (s - mp->start);
|
|
mp->size = trunc_page(mp->size);
|
|
mp->start = s;
|
|
e = mp->start + mp->size;
|
|
|
|
DPRINTFN(BOOT,
|
|
("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
|
|
i, mp->start, mp->size));
|
|
|
|
/*
|
|
* Don't allow the end to run beyond our artificial limit
|
|
*/
|
|
if (e > pmap_memlimit)
|
|
e = pmap_memlimit;
|
|
|
|
/*
|
|
* Is this region empty or strange? skip it.
|
|
*/
|
|
if (e <= s) {
|
|
mp->start = 0;
|
|
mp->size = 0;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Does this overlap the beginning of kernel?
|
|
* Does extend past the end of the kernel?
|
|
*/
|
|
else if (s < kernelstart && e > kernelstart) {
|
|
if (e > kernelend) {
|
|
avail[avail_cnt].start = kernelend;
|
|
avail[avail_cnt].size = e - kernelend;
|
|
avail_cnt++;
|
|
}
|
|
mp->size = kernelstart - s;
|
|
}
|
|
/*
|
|
* Check whether this region overlaps the end of the kernel.
|
|
*/
|
|
else if (s < kernelend && e > kernelend) {
|
|
mp->start = kernelend;
|
|
mp->size = e - kernelend;
|
|
}
|
|
/*
|
|
* Look whether this regions is completely inside the kernel.
|
|
* Nuke it if it does.
|
|
*/
|
|
else if (s >= kernelstart && e <= kernelend) {
|
|
mp->start = 0;
|
|
mp->size = 0;
|
|
}
|
|
/*
|
|
* If the user imposed a memory limit, enforce it.
|
|
*/
|
|
else if (s >= pmap_memlimit) {
|
|
mp->start = -NBPG; /* let's know why */
|
|
mp->size = 0;
|
|
}
|
|
else {
|
|
mp->start = s;
|
|
mp->size = e - s;
|
|
}
|
|
DPRINTFN(BOOT,
|
|
("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
|
|
i, mp->start, mp->size));
|
|
}
|
|
|
|
/*
|
|
* Move (and uncount) all the null return to the end.
|
|
*/
|
|
for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
|
|
if (mp->size == 0) {
|
|
tmp = avail[i];
|
|
avail[i] = avail[--avail_cnt];
|
|
avail[avail_cnt] = avail[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* (Bubble)sort them into asecnding order.
|
|
*/
|
|
for (i = 0; i < avail_cnt; i++) {
|
|
for (j = i + 1; j < avail_cnt; j++) {
|
|
if (avail[i].start > avail[j].start) {
|
|
tmp = avail[i];
|
|
avail[i] = avail[j];
|
|
avail[j] = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make sure they don't overlap.
|
|
*/
|
|
for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
|
|
if (mp[0].start + mp[0].size > mp[1].start) {
|
|
mp[0].size = mp[1].start - mp[0].start;
|
|
}
|
|
DPRINTFN(BOOT,
|
|
("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
|
|
i, mp->start, mp->size));
|
|
}
|
|
DPRINTFN(BOOT,
|
|
("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
|
|
i, mp->start, mp->size));
|
|
|
|
#ifdef PTEGCOUNT
|
|
pmap_pteg_cnt = PTEGCOUNT;
|
|
#else /* PTEGCOUNT */
|
|
pmap_pteg_cnt = 0x1000;
|
|
|
|
while (pmap_pteg_cnt < physmem)
|
|
pmap_pteg_cnt <<= 1;
|
|
|
|
pmap_pteg_cnt >>= 1;
|
|
#endif /* PTEGCOUNT */
|
|
|
|
/*
|
|
* Find suitably aligned memory for PTEG hash table.
|
|
*/
|
|
size = pmap_pteg_cnt * sizeof(pteg_t);
|
|
pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
|
|
#if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
|
|
if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
|
|
panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
|
|
pmap_pteg_table, size);
|
|
#endif
|
|
|
|
memset((void *)pmap_pteg_table, 0, pmap_pteg_cnt * sizeof(pteg_t));
|
|
pmap_pteg_mask = pmap_pteg_cnt - 1;
|
|
|
|
/*
|
|
* We cannot do pmap_steal_memory here since UVM hasn't been loaded
|
|
* with pages. So we just steal them before giving them to UVM.
|
|
*/
|
|
size = sizeof(struct pvo_head) * pmap_pteg_cnt;
|
|
pmap_pvo_table = pmap_boot_find_memory(size, NBPG, 0);
|
|
#if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
|
|
if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
|
|
panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
|
|
pmap_pvo_table, size);
|
|
#endif
|
|
|
|
for (i = 0; i < pmap_pteg_cnt; i++)
|
|
LIST_INIT(&pmap_pvo_table[i]);
|
|
|
|
#ifndef MSGBUFADDR
|
|
/*
|
|
* Allocate msgbuf in high memory.
|
|
*/
|
|
msgbuf_paddr = (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, NBPG, 1);
|
|
#endif
|
|
|
|
|
|
#ifdef __HAVE_PMAP_PHYSSEG
|
|
{
|
|
u_int npgs = 0;
|
|
for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
|
|
npgs += btoc(mp->size);
|
|
size = (sizeof(struct pvo_head) + 1) * npgs;
|
|
pmap_physseg.pvoh = pmap_boot_find_memory(size, NBPG, 0);
|
|
pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
|
|
#if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
|
|
if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
|
|
panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
|
|
pmap_physseg.pvoh, size);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
|
|
paddr_t pfstart = atop(mp->start);
|
|
paddr_t pfend = atop(mp->start + mp->size);
|
|
if (mp->size == 0)
|
|
continue;
|
|
if (mp->start + mp->size <= SEGMENT_LENGTH) {
|
|
uvm_page_physload(pfstart, pfend, pfstart, pfend,
|
|
VM_FREELIST_FIRST256);
|
|
} else if (mp->start >= SEGMENT_LENGTH) {
|
|
uvm_page_physload(pfstart, pfend, pfstart, pfend,
|
|
VM_FREELIST_DEFAULT);
|
|
} else {
|
|
pfend = atop(SEGMENT_LENGTH);
|
|
uvm_page_physload(pfstart, pfend, pfstart, pfend,
|
|
VM_FREELIST_FIRST256);
|
|
pfstart = atop(SEGMENT_LENGTH);
|
|
pfend = atop(mp->start + mp->size);
|
|
uvm_page_physload(pfstart, pfend, pfstart, pfend,
|
|
VM_FREELIST_DEFAULT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make sure kernel vsid is allocated as well as VSID 0.
|
|
*/
|
|
pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
|
|
|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
|
|
pmap_vsid_bitmap[0] |= 1;
|
|
|
|
/*
|
|
* Initialize kernel pmap and hardware.
|
|
*/
|
|
for (i = 0; i < 16; i++) {
|
|
pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
|
|
__asm __volatile ("mtsrin %0,%1"
|
|
:: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
|
|
}
|
|
|
|
pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
|
|
__asm __volatile ("mtsr %0,%1"
|
|
:: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
|
|
#ifdef KERNEL2_SR
|
|
pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
|
|
__asm __volatile ("mtsr %0,%1"
|
|
:: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
|
|
#endif
|
|
if (kernsegs != NULL) {
|
|
for (i = 0; i < 16; i++) {
|
|
if (kernsegs->st_mask & (1 << i)) {
|
|
pmap_kernel()->pm_sr[i] = kernsegs->st_sr[i];
|
|
__asm __volatile ("mtsrin %0,%1"
|
|
:: "r"(pmap_kernel()->pm_sr[i]),
|
|
"r"(i << ADDR_SR_SHFT));
|
|
}
|
|
}
|
|
}
|
|
__asm __volatile ("sync; mtsdr1 %0; isync"
|
|
:: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
|
|
tlbia();
|
|
|
|
#ifdef DEBUG
|
|
if (pmapdebug & PMAPDEBUG_BOOT) {
|
|
u_int cnt;
|
|
int bank;
|
|
char pbuf[9];
|
|
for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
|
|
cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
|
|
printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
|
|
bank,
|
|
ptoa(vm_physmem[bank].avail_start),
|
|
ptoa(vm_physmem[bank].avail_end),
|
|
ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
|
|
}
|
|
format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
|
|
printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
|
|
pbuf, cnt);
|
|
Debugger();
|
|
}
|
|
#endif
|
|
|
|
pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
|
|
sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
|
|
&pmap_pool_uallocator);
|
|
|
|
pool_setlowat(&pmap_upvo_pool, 252);
|
|
|
|
pool_init(&pmap_pool, sizeof(struct pmap),
|
|
sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
|
|
}
|