e25f2a0d87
the decapsulator dispatch changes in 2001. Problems found and fixed by Christine Jones of BBN. Specifically: Check for a packet's protocol to be ENCAP_PROTO, not AF_INET. Remove one-back cache for last vif, because vif_encapcheck is called for each vif, rather than being expected to find the appropriate vif. The cache usage caused packets to be input on the wrong vif and hence usually dropped. In vif_encapcheck, verify the local source as well. While mrouted endeavors not to create multiple tunnels with a peer, a packet arriving with the wrong local address is still wrong and should not be accepted. (This is a correctness nit, not a security issue.) Order checks to fail quickly for packets being checked to see if they match a vif other than the one they belong on (essentially, check peer source address in outer header first). Claim 69 bits of match (32 each from outer src/dst and 5 from checking that inner dst is within 224/5). This should result in the vif having a higher priority for multicast packets compared to a parallel gif(4) tunnel, and that both seems appropriate if both are configured and seems to match the semantics expected by the decapsulator dispatch machinery. (These changes were made in 2.99.15 and about a dozen nodes are running them with many vifs. ip_mroute.c has not changed significantly since then (February 2005) and the changes applied cleanly to current and compile cleanly.)
3589 lines
87 KiB
C
3589 lines
87 KiB
C
/* $NetBSD: ip_mroute.c,v 1.95 2005/08/03 18:20:11 gdt Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Stephen Deering of Stanford University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1989 Stephen Deering
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Stephen Deering of Stanford University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
|
|
*/
|
|
|
|
/*
|
|
* IP multicast forwarding procedures
|
|
*
|
|
* Written by David Waitzman, BBN Labs, August 1988.
|
|
* Modified by Steve Deering, Stanford, February 1989.
|
|
* Modified by Mark J. Steiglitz, Stanford, May, 1991
|
|
* Modified by Van Jacobson, LBL, January 1993
|
|
* Modified by Ajit Thyagarajan, PARC, August 1993
|
|
* Modified by Bill Fenner, PARC, April 1994
|
|
* Modified by Charles M. Hannum, NetBSD, May 1995.
|
|
* Modified by Ahmed Helmy, SGI, June 1996
|
|
* Modified by George Edmond Eddy (Rusty), ISI, February 1998
|
|
* Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
|
|
* Modified by Hitoshi Asaeda, WIDE, August 2000
|
|
* Modified by Pavlin Radoslavov, ICSI, October 2002
|
|
*
|
|
* MROUTING Revision: 1.2
|
|
* and PIM-SMv2 and PIM-DM support, advanced API support,
|
|
* bandwidth metering and signaling
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.95 2005/08/03 18:20:11 gdt Exp $");
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_ipsec.h"
|
|
#include "opt_pim.h"
|
|
|
|
#ifdef PIM
|
|
#define _PIM_VT 1
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/time.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/syslog.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/route.h>
|
|
#include <net/raw_cb.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/udp.h>
|
|
#include <netinet/igmp.h>
|
|
#include <netinet/igmp_var.h>
|
|
#include <netinet/ip_mroute.h>
|
|
#ifdef PIM
|
|
#include <netinet/pim.h>
|
|
#include <netinet/pim_var.h>
|
|
#endif
|
|
#include <netinet/ip_encap.h>
|
|
|
|
#ifdef IPSEC
|
|
#include <netinet6/ipsec.h>
|
|
#include <netkey/key.h>
|
|
#endif
|
|
|
|
#ifdef FAST_IPSEC
|
|
#include <netipsec/ipsec.h>
|
|
#include <netipsec/key.h>
|
|
#endif
|
|
|
|
#include <machine/stdarg.h>
|
|
|
|
#define IP_MULTICASTOPTS 0
|
|
#define M_PULLUP(m, len) \
|
|
do { \
|
|
if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
|
|
(m) = m_pullup((m), (len)); \
|
|
} while (/*CONSTCOND*/ 0)
|
|
|
|
/*
|
|
* Globals. All but ip_mrouter and ip_mrtproto could be static,
|
|
* except for netstat or debugging purposes.
|
|
*/
|
|
struct socket *ip_mrouter = NULL;
|
|
int ip_mrtproto = IGMP_DVMRP; /* for netstat only */
|
|
|
|
#define NO_RTE_FOUND 0x1
|
|
#define RTE_FOUND 0x2
|
|
|
|
#define MFCHASH(a, g) \
|
|
((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
|
|
((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
|
|
LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
|
|
u_long mfchash;
|
|
|
|
u_char nexpire[MFCTBLSIZ];
|
|
struct vif viftable[MAXVIFS];
|
|
struct mrtstat mrtstat;
|
|
u_int mrtdebug = 0; /* debug level */
|
|
#define DEBUG_MFC 0x02
|
|
#define DEBUG_FORWARD 0x04
|
|
#define DEBUG_EXPIRE 0x08
|
|
#define DEBUG_XMIT 0x10
|
|
#define DEBUG_PIM 0x20
|
|
|
|
#define VIFI_INVALID ((vifi_t) -1)
|
|
|
|
u_int tbfdebug = 0; /* tbf debug level */
|
|
#ifdef RSVP_ISI
|
|
u_int rsvpdebug = 0; /* rsvp debug level */
|
|
extern struct socket *ip_rsvpd;
|
|
extern int rsvp_on;
|
|
#endif /* RSVP_ISI */
|
|
|
|
/* vif attachment using sys/netinet/ip_encap.c */
|
|
static void vif_input(struct mbuf *, ...);
|
|
static int vif_encapcheck(struct mbuf *, int, int, void *);
|
|
|
|
static const struct protosw vif_protosw =
|
|
{ SOCK_RAW, &inetdomain, IPPROTO_IPV4, PR_ATOMIC|PR_ADDR,
|
|
vif_input, rip_output, 0, rip_ctloutput,
|
|
rip_usrreq,
|
|
0, 0, 0, 0,
|
|
};
|
|
|
|
#define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
|
|
#define UPCALL_EXPIRE 6 /* number of timeouts */
|
|
|
|
/*
|
|
* Define the token bucket filter structures
|
|
*/
|
|
|
|
#define TBF_REPROCESS (hz / 100) /* 100x / second */
|
|
|
|
static int get_sg_cnt(struct sioc_sg_req *);
|
|
static int get_vif_cnt(struct sioc_vif_req *);
|
|
static int ip_mrouter_init(struct socket *, struct mbuf *);
|
|
static int get_version(struct mbuf *);
|
|
static int set_assert(struct mbuf *);
|
|
static int get_assert(struct mbuf *);
|
|
static int add_vif(struct mbuf *);
|
|
static int del_vif(struct mbuf *);
|
|
static void update_mfc_params(struct mfc *, struct mfcctl2 *);
|
|
static void init_mfc_params(struct mfc *, struct mfcctl2 *);
|
|
static void expire_mfc(struct mfc *);
|
|
static int add_mfc(struct mbuf *);
|
|
#ifdef UPCALL_TIMING
|
|
static void collate(struct timeval *);
|
|
#endif
|
|
static int del_mfc(struct mbuf *);
|
|
static int set_api_config(struct mbuf *); /* chose API capabilities */
|
|
static int get_api_support(struct mbuf *);
|
|
static int get_api_config(struct mbuf *);
|
|
static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
|
|
static void expire_upcalls(void *);
|
|
#ifdef RSVP_ISI
|
|
static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
|
|
#else
|
|
static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *);
|
|
#endif
|
|
static void phyint_send(struct ip *, struct vif *, struct mbuf *);
|
|
static void encap_send(struct ip *, struct vif *, struct mbuf *);
|
|
static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t);
|
|
static void tbf_queue(struct vif *, struct mbuf *);
|
|
static void tbf_process_q(struct vif *);
|
|
static void tbf_reprocess_q(void *);
|
|
static int tbf_dq_sel(struct vif *, struct ip *);
|
|
static void tbf_send_packet(struct vif *, struct mbuf *);
|
|
static void tbf_update_tokens(struct vif *);
|
|
static int priority(struct vif *, struct ip *);
|
|
|
|
/*
|
|
* Bandwidth monitoring
|
|
*/
|
|
static void free_bw_list(struct bw_meter *);
|
|
static int add_bw_upcall(struct mbuf *);
|
|
static int del_bw_upcall(struct mbuf *);
|
|
static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *);
|
|
static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
|
|
static void bw_upcalls_send(void);
|
|
static void schedule_bw_meter(struct bw_meter *, struct timeval *);
|
|
static void unschedule_bw_meter(struct bw_meter *);
|
|
static void bw_meter_process(void);
|
|
static void expire_bw_upcalls_send(void *);
|
|
static void expire_bw_meter_process(void *);
|
|
|
|
#ifdef PIM
|
|
static int pim_register_send(struct ip *, struct vif *,
|
|
struct mbuf *, struct mfc *);
|
|
static int pim_register_send_rp(struct ip *, struct vif *,
|
|
struct mbuf *, struct mfc *);
|
|
static int pim_register_send_upcall(struct ip *, struct vif *,
|
|
struct mbuf *, struct mfc *);
|
|
static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
|
|
#endif
|
|
|
|
/*
|
|
* 'Interfaces' associated with decapsulator (so we can tell
|
|
* packets that went through it from ones that get reflected
|
|
* by a broken gateway). These interfaces are never linked into
|
|
* the system ifnet list & no routes point to them. I.e., packets
|
|
* can't be sent this way. They only exist as a placeholder for
|
|
* multicast source verification.
|
|
*/
|
|
#if 0
|
|
struct ifnet multicast_decap_if[MAXVIFS];
|
|
#endif
|
|
|
|
#define ENCAP_TTL 64
|
|
#define ENCAP_PROTO IPPROTO_IPIP /* 4 */
|
|
|
|
/* prototype IP hdr for encapsulated packets */
|
|
struct ip multicast_encap_iphdr = {
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
sizeof(struct ip) >> 2, IPVERSION,
|
|
#else
|
|
IPVERSION, sizeof(struct ip) >> 2,
|
|
#endif
|
|
0, /* tos */
|
|
sizeof(struct ip), /* total length */
|
|
0, /* id */
|
|
0, /* frag offset */
|
|
ENCAP_TTL, ENCAP_PROTO,
|
|
0, /* checksum */
|
|
};
|
|
|
|
/*
|
|
* Bandwidth meter variables and constants
|
|
*/
|
|
|
|
/*
|
|
* Pending timeouts are stored in a hash table, the key being the
|
|
* expiration time. Periodically, the entries are analysed and processed.
|
|
*/
|
|
#define BW_METER_BUCKETS 1024
|
|
static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
|
|
struct callout bw_meter_ch;
|
|
#define BW_METER_PERIOD (hz) /* periodical handling of bw meters */
|
|
|
|
/*
|
|
* Pending upcalls are stored in a vector which is flushed when
|
|
* full, or periodically
|
|
*/
|
|
static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX];
|
|
static u_int bw_upcalls_n; /* # of pending upcalls */
|
|
struct callout bw_upcalls_ch;
|
|
#define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */
|
|
|
|
#ifdef PIM
|
|
struct pimstat pimstat;
|
|
|
|
/*
|
|
* Note: the PIM Register encapsulation adds the following in front of a
|
|
* data packet:
|
|
*
|
|
* struct pim_encap_hdr {
|
|
* struct ip ip;
|
|
* struct pim_encap_pimhdr pim;
|
|
* }
|
|
*
|
|
*/
|
|
|
|
struct pim_encap_pimhdr {
|
|
struct pim pim;
|
|
uint32_t flags;
|
|
};
|
|
|
|
static struct ip pim_encap_iphdr = {
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
sizeof(struct ip) >> 2,
|
|
IPVERSION,
|
|
#else
|
|
IPVERSION,
|
|
sizeof(struct ip) >> 2,
|
|
#endif
|
|
0, /* tos */
|
|
sizeof(struct ip), /* total length */
|
|
0, /* id */
|
|
0, /* frag offset */
|
|
ENCAP_TTL,
|
|
IPPROTO_PIM,
|
|
0, /* checksum */
|
|
};
|
|
|
|
static struct pim_encap_pimhdr pim_encap_pimhdr = {
|
|
{
|
|
PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
|
|
0, /* reserved */
|
|
0, /* checksum */
|
|
},
|
|
0 /* flags */
|
|
};
|
|
|
|
static struct ifnet multicast_register_if;
|
|
static vifi_t reg_vif_num = VIFI_INVALID;
|
|
#endif /* PIM */
|
|
|
|
|
|
/*
|
|
* Private variables.
|
|
*/
|
|
static vifi_t numvifs = 0;
|
|
|
|
static struct callout expire_upcalls_ch;
|
|
|
|
/*
|
|
* whether or not special PIM assert processing is enabled.
|
|
*/
|
|
static int pim_assert;
|
|
/*
|
|
* Rate limit for assert notification messages, in usec
|
|
*/
|
|
#define ASSERT_MSG_TIME 3000000
|
|
|
|
/*
|
|
* Kernel multicast routing API capabilities and setup.
|
|
* If more API capabilities are added to the kernel, they should be
|
|
* recorded in `mrt_api_support'.
|
|
*/
|
|
static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
|
|
MRT_MFC_FLAGS_BORDER_VIF |
|
|
MRT_MFC_RP |
|
|
MRT_MFC_BW_UPCALL);
|
|
static u_int32_t mrt_api_config = 0;
|
|
|
|
/*
|
|
* Find a route for a given origin IP address and Multicast group address
|
|
* Type of service parameter to be added in the future!!!
|
|
* Statistics are updated by the caller if needed
|
|
* (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
|
|
*/
|
|
static struct mfc *
|
|
mfc_find(struct in_addr *o, struct in_addr *g)
|
|
{
|
|
struct mfc *rt;
|
|
|
|
LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
|
|
if (in_hosteq(rt->mfc_origin, *o) &&
|
|
in_hosteq(rt->mfc_mcastgrp, *g) &&
|
|
(rt->mfc_stall == NULL))
|
|
break;
|
|
}
|
|
|
|
return (rt);
|
|
}
|
|
|
|
/*
|
|
* Macros to compute elapsed time efficiently
|
|
* Borrowed from Van Jacobson's scheduling code
|
|
*/
|
|
#define TV_DELTA(a, b, delta) do { \
|
|
int xxs; \
|
|
delta = (a).tv_usec - (b).tv_usec; \
|
|
xxs = (a).tv_sec - (b).tv_sec; \
|
|
switch (xxs) { \
|
|
case 2: \
|
|
delta += 1000000; \
|
|
/* fall through */ \
|
|
case 1: \
|
|
delta += 1000000; \
|
|
/* fall through */ \
|
|
case 0: \
|
|
break; \
|
|
default: \
|
|
delta += (1000000 * xxs); \
|
|
break; \
|
|
} \
|
|
} while (/*CONSTCOND*/ 0)
|
|
|
|
#ifdef UPCALL_TIMING
|
|
u_int32_t upcall_data[51];
|
|
#endif /* UPCALL_TIMING */
|
|
|
|
/*
|
|
* Handle MRT setsockopt commands to modify the multicast routing tables.
|
|
*/
|
|
int
|
|
ip_mrouter_set(struct socket *so, int optname, struct mbuf **m)
|
|
{
|
|
int error;
|
|
|
|
if (optname != MRT_INIT && so != ip_mrouter)
|
|
error = ENOPROTOOPT;
|
|
else
|
|
switch (optname) {
|
|
case MRT_INIT:
|
|
error = ip_mrouter_init(so, *m);
|
|
break;
|
|
case MRT_DONE:
|
|
error = ip_mrouter_done();
|
|
break;
|
|
case MRT_ADD_VIF:
|
|
error = add_vif(*m);
|
|
break;
|
|
case MRT_DEL_VIF:
|
|
error = del_vif(*m);
|
|
break;
|
|
case MRT_ADD_MFC:
|
|
error = add_mfc(*m);
|
|
break;
|
|
case MRT_DEL_MFC:
|
|
error = del_mfc(*m);
|
|
break;
|
|
case MRT_ASSERT:
|
|
error = set_assert(*m);
|
|
break;
|
|
case MRT_API_CONFIG:
|
|
error = set_api_config(*m);
|
|
break;
|
|
case MRT_ADD_BW_UPCALL:
|
|
error = add_bw_upcall(*m);
|
|
break;
|
|
case MRT_DEL_BW_UPCALL:
|
|
error = del_bw_upcall(*m);
|
|
break;
|
|
default:
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
|
|
if (*m)
|
|
m_free(*m);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Handle MRT getsockopt commands
|
|
*/
|
|
int
|
|
ip_mrouter_get(struct socket *so, int optname, struct mbuf **m)
|
|
{
|
|
int error;
|
|
|
|
if (so != ip_mrouter)
|
|
error = ENOPROTOOPT;
|
|
else {
|
|
*m = m_get(M_WAIT, MT_SOOPTS);
|
|
MCLAIM(*m, so->so_mowner);
|
|
|
|
switch (optname) {
|
|
case MRT_VERSION:
|
|
error = get_version(*m);
|
|
break;
|
|
case MRT_ASSERT:
|
|
error = get_assert(*m);
|
|
break;
|
|
case MRT_API_SUPPORT:
|
|
error = get_api_support(*m);
|
|
break;
|
|
case MRT_API_CONFIG:
|
|
error = get_api_config(*m);
|
|
break;
|
|
default:
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
|
|
if (error)
|
|
m_free(*m);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Handle ioctl commands to obtain information from the cache
|
|
*/
|
|
int
|
|
mrt_ioctl(struct socket *so, u_long cmd, caddr_t data)
|
|
{
|
|
int error;
|
|
|
|
if (so != ip_mrouter)
|
|
error = EINVAL;
|
|
else
|
|
switch (cmd) {
|
|
case SIOCGETVIFCNT:
|
|
error = get_vif_cnt((struct sioc_vif_req *)data);
|
|
break;
|
|
case SIOCGETSGCNT:
|
|
error = get_sg_cnt((struct sioc_sg_req *)data);
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* returns the packet, byte, rpf-failure count for the source group provided
|
|
*/
|
|
static int
|
|
get_sg_cnt(struct sioc_sg_req *req)
|
|
{
|
|
int s;
|
|
struct mfc *rt;
|
|
|
|
s = splsoftnet();
|
|
rt = mfc_find(&req->src, &req->grp);
|
|
if (rt == NULL) {
|
|
splx(s);
|
|
req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
|
|
return (EADDRNOTAVAIL);
|
|
}
|
|
req->pktcnt = rt->mfc_pkt_cnt;
|
|
req->bytecnt = rt->mfc_byte_cnt;
|
|
req->wrong_if = rt->mfc_wrong_if;
|
|
splx(s);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* returns the input and output packet and byte counts on the vif provided
|
|
*/
|
|
static int
|
|
get_vif_cnt(struct sioc_vif_req *req)
|
|
{
|
|
vifi_t vifi = req->vifi;
|
|
|
|
if (vifi >= numvifs)
|
|
return (EINVAL);
|
|
|
|
req->icount = viftable[vifi].v_pkt_in;
|
|
req->ocount = viftable[vifi].v_pkt_out;
|
|
req->ibytes = viftable[vifi].v_bytes_in;
|
|
req->obytes = viftable[vifi].v_bytes_out;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Enable multicast routing
|
|
*/
|
|
static int
|
|
ip_mrouter_init(struct socket *so, struct mbuf *m)
|
|
{
|
|
int *v;
|
|
|
|
if (mrtdebug)
|
|
log(LOG_DEBUG,
|
|
"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
|
|
so->so_type, so->so_proto->pr_protocol);
|
|
|
|
if (so->so_type != SOCK_RAW ||
|
|
so->so_proto->pr_protocol != IPPROTO_IGMP)
|
|
return (EOPNOTSUPP);
|
|
|
|
if (m == NULL || m->m_len < sizeof(int))
|
|
return (EINVAL);
|
|
|
|
v = mtod(m, int *);
|
|
if (*v != 1)
|
|
return (EINVAL);
|
|
|
|
if (ip_mrouter != NULL)
|
|
return (EADDRINUSE);
|
|
|
|
ip_mrouter = so;
|
|
|
|
mfchashtbl =
|
|
hashinit(MFCTBLSIZ, HASH_LIST, M_MRTABLE, M_WAITOK, &mfchash);
|
|
bzero((caddr_t)nexpire, sizeof(nexpire));
|
|
|
|
pim_assert = 0;
|
|
|
|
callout_init(&expire_upcalls_ch);
|
|
callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
|
|
expire_upcalls, NULL);
|
|
|
|
callout_init(&bw_upcalls_ch);
|
|
callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
|
|
expire_bw_upcalls_send, NULL);
|
|
|
|
callout_init(&bw_meter_ch);
|
|
callout_reset(&bw_meter_ch, BW_METER_PERIOD,
|
|
expire_bw_meter_process, NULL);
|
|
|
|
if (mrtdebug)
|
|
log(LOG_DEBUG, "ip_mrouter_init\n");
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Disable multicast routing
|
|
*/
|
|
int
|
|
ip_mrouter_done(void)
|
|
{
|
|
vifi_t vifi;
|
|
struct vif *vifp;
|
|
int i;
|
|
int s;
|
|
|
|
s = splsoftnet();
|
|
|
|
/* Clear out all the vifs currently in use. */
|
|
for (vifi = 0; vifi < numvifs; vifi++) {
|
|
vifp = &viftable[vifi];
|
|
if (!in_nullhost(vifp->v_lcl_addr))
|
|
reset_vif(vifp);
|
|
}
|
|
|
|
numvifs = 0;
|
|
pim_assert = 0;
|
|
mrt_api_config = 0;
|
|
|
|
callout_stop(&expire_upcalls_ch);
|
|
callout_stop(&bw_upcalls_ch);
|
|
callout_stop(&bw_meter_ch);
|
|
|
|
/*
|
|
* Free all multicast forwarding cache entries.
|
|
*/
|
|
for (i = 0; i < MFCTBLSIZ; i++) {
|
|
struct mfc *rt, *nrt;
|
|
|
|
for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
|
|
nrt = LIST_NEXT(rt, mfc_hash);
|
|
|
|
expire_mfc(rt);
|
|
}
|
|
}
|
|
|
|
bzero((caddr_t)nexpire, sizeof(nexpire));
|
|
free(mfchashtbl, M_MRTABLE);
|
|
mfchashtbl = NULL;
|
|
|
|
bw_upcalls_n = 0;
|
|
bzero(bw_meter_timers, sizeof(bw_meter_timers));
|
|
|
|
/* Reset de-encapsulation cache. */
|
|
|
|
ip_mrouter = NULL;
|
|
|
|
splx(s);
|
|
|
|
if (mrtdebug)
|
|
log(LOG_DEBUG, "ip_mrouter_done\n");
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
ip_mrouter_detach(struct ifnet *ifp)
|
|
{
|
|
int vifi, i;
|
|
struct vif *vifp;
|
|
struct mfc *rt;
|
|
struct rtdetq *rte;
|
|
|
|
/* XXX not sure about side effect to userland routing daemon */
|
|
for (vifi = 0; vifi < numvifs; vifi++) {
|
|
vifp = &viftable[vifi];
|
|
if (vifp->v_ifp == ifp)
|
|
reset_vif(vifp);
|
|
}
|
|
for (i = 0; i < MFCTBLSIZ; i++) {
|
|
if (nexpire[i] == 0)
|
|
continue;
|
|
LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
|
|
for (rte = rt->mfc_stall; rte; rte = rte->next) {
|
|
if (rte->ifp == ifp)
|
|
rte->ifp = NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
get_version(struct mbuf *m)
|
|
{
|
|
int *v = mtod(m, int *);
|
|
|
|
*v = 0x0305; /* XXX !!!! */
|
|
m->m_len = sizeof(int);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set PIM assert processing global
|
|
*/
|
|
static int
|
|
set_assert(struct mbuf *m)
|
|
{
|
|
int *i;
|
|
|
|
if (m == NULL || m->m_len < sizeof(int))
|
|
return (EINVAL);
|
|
|
|
i = mtod(m, int *);
|
|
pim_assert = !!*i;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Get PIM assert processing global
|
|
*/
|
|
static int
|
|
get_assert(struct mbuf *m)
|
|
{
|
|
int *i = mtod(m, int *);
|
|
|
|
*i = pim_assert;
|
|
m->m_len = sizeof(int);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Configure API capabilities
|
|
*/
|
|
static int
|
|
set_api_config(struct mbuf *m)
|
|
{
|
|
int i;
|
|
u_int32_t *apival;
|
|
|
|
if (m == NULL || m->m_len < sizeof(u_int32_t))
|
|
return (EINVAL);
|
|
|
|
apival = mtod(m, u_int32_t *);
|
|
|
|
/*
|
|
* We can set the API capabilities only if it is the first operation
|
|
* after MRT_INIT. I.e.:
|
|
* - there are no vifs installed
|
|
* - pim_assert is not enabled
|
|
* - the MFC table is empty
|
|
*/
|
|
if (numvifs > 0) {
|
|
*apival = 0;
|
|
return (EPERM);
|
|
}
|
|
if (pim_assert) {
|
|
*apival = 0;
|
|
return (EPERM);
|
|
}
|
|
for (i = 0; i < MFCTBLSIZ; i++) {
|
|
if (LIST_FIRST(&mfchashtbl[i]) != NULL) {
|
|
*apival = 0;
|
|
return (EPERM);
|
|
}
|
|
}
|
|
|
|
mrt_api_config = *apival & mrt_api_support;
|
|
*apival = mrt_api_config;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Get API capabilities
|
|
*/
|
|
static int
|
|
get_api_support(struct mbuf *m)
|
|
{
|
|
u_int32_t *apival;
|
|
|
|
if (m == NULL || m->m_len < sizeof(u_int32_t))
|
|
return (EINVAL);
|
|
|
|
apival = mtod(m, u_int32_t *);
|
|
|
|
*apival = mrt_api_support;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Get API configured capabilities
|
|
*/
|
|
static int
|
|
get_api_config(struct mbuf *m)
|
|
{
|
|
u_int32_t *apival;
|
|
|
|
if (m == NULL || m->m_len < sizeof(u_int32_t))
|
|
return (EINVAL);
|
|
|
|
apival = mtod(m, u_int32_t *);
|
|
|
|
*apival = mrt_api_config;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static struct sockaddr_in sin = { sizeof(sin), AF_INET };
|
|
|
|
/*
|
|
* Add a vif to the vif table
|
|
*/
|
|
static int
|
|
add_vif(struct mbuf *m)
|
|
{
|
|
struct vifctl *vifcp;
|
|
struct vif *vifp;
|
|
struct ifaddr *ifa;
|
|
struct ifnet *ifp;
|
|
struct ifreq ifr;
|
|
int error, s;
|
|
|
|
if (m == NULL || m->m_len < sizeof(struct vifctl))
|
|
return (EINVAL);
|
|
|
|
vifcp = mtod(m, struct vifctl *);
|
|
if (vifcp->vifc_vifi >= MAXVIFS)
|
|
return (EINVAL);
|
|
if (in_nullhost(vifcp->vifc_lcl_addr))
|
|
return (EADDRNOTAVAIL);
|
|
|
|
vifp = &viftable[vifcp->vifc_vifi];
|
|
if (!in_nullhost(vifp->v_lcl_addr))
|
|
return (EADDRINUSE);
|
|
|
|
/* Find the interface with an address in AF_INET family. */
|
|
#ifdef PIM
|
|
if (vifcp->vifc_flags & VIFF_REGISTER) {
|
|
/*
|
|
* XXX: Because VIFF_REGISTER does not really need a valid
|
|
* local interface (e.g. it could be 127.0.0.2), we don't
|
|
* check its address.
|
|
*/
|
|
ifp = NULL;
|
|
} else
|
|
#endif
|
|
{
|
|
sin.sin_addr = vifcp->vifc_lcl_addr;
|
|
ifa = ifa_ifwithaddr(sintosa(&sin));
|
|
if (ifa == NULL)
|
|
return (EADDRNOTAVAIL);
|
|
ifp = ifa->ifa_ifp;
|
|
}
|
|
|
|
if (vifcp->vifc_flags & VIFF_TUNNEL) {
|
|
if (vifcp->vifc_flags & VIFF_SRCRT) {
|
|
log(LOG_ERR, "source routed tunnels not supported\n");
|
|
return (EOPNOTSUPP);
|
|
}
|
|
|
|
/* attach this vif to decapsulator dispatch table */
|
|
/*
|
|
* XXX Use addresses in registration so that matching
|
|
* can be done with radix tree in decapsulator. But,
|
|
* we need to check inner header for multicast, so
|
|
* this requires both radix tree lookup and then a
|
|
* function to check, and this is not supported yet.
|
|
*/
|
|
vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
|
|
vif_encapcheck, &vif_protosw, vifp);
|
|
if (!vifp->v_encap_cookie)
|
|
return (EINVAL);
|
|
|
|
/* Create a fake encapsulation interface. */
|
|
ifp = (struct ifnet *)malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK);
|
|
bzero(ifp, sizeof(*ifp));
|
|
snprintf(ifp->if_xname, sizeof(ifp->if_xname),
|
|
"mdecap%d", vifcp->vifc_vifi);
|
|
|
|
/* Prepare cached route entry. */
|
|
bzero(&vifp->v_route, sizeof(vifp->v_route));
|
|
#ifdef PIM
|
|
} else if (vifcp->vifc_flags & VIFF_REGISTER) {
|
|
ifp = &multicast_register_if;
|
|
if (mrtdebug)
|
|
log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
|
|
(void *)ifp);
|
|
if (reg_vif_num == VIFI_INVALID) {
|
|
bzero(ifp, sizeof(*ifp));
|
|
snprintf(ifp->if_xname, sizeof(ifp->if_xname),
|
|
"register_vif");
|
|
ifp->if_flags = IFF_LOOPBACK;
|
|
bzero(&vifp->v_route, sizeof(vifp->v_route));
|
|
reg_vif_num = vifcp->vifc_vifi;
|
|
}
|
|
#endif
|
|
} else {
|
|
/* Make sure the interface supports multicast. */
|
|
if ((ifp->if_flags & IFF_MULTICAST) == 0)
|
|
return (EOPNOTSUPP);
|
|
|
|
/* Enable promiscuous reception of all IP multicasts. */
|
|
satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
|
|
satosin(&ifr.ifr_addr)->sin_family = AF_INET;
|
|
satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
|
|
error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
s = splsoftnet();
|
|
|
|
/* Define parameters for the tbf structure. */
|
|
vifp->tbf_q = NULL;
|
|
vifp->tbf_t = &vifp->tbf_q;
|
|
microtime(&vifp->tbf_last_pkt_t);
|
|
vifp->tbf_n_tok = 0;
|
|
vifp->tbf_q_len = 0;
|
|
vifp->tbf_max_q_len = MAXQSIZE;
|
|
|
|
vifp->v_flags = vifcp->vifc_flags;
|
|
vifp->v_threshold = vifcp->vifc_threshold;
|
|
/* scaling up here allows division by 1024 in critical code */
|
|
vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
|
|
vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
|
|
vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
|
|
vifp->v_ifp = ifp;
|
|
/* Initialize per vif pkt counters. */
|
|
vifp->v_pkt_in = 0;
|
|
vifp->v_pkt_out = 0;
|
|
vifp->v_bytes_in = 0;
|
|
vifp->v_bytes_out = 0;
|
|
|
|
callout_init(&vifp->v_repq_ch);
|
|
|
|
#ifdef RSVP_ISI
|
|
vifp->v_rsvp_on = 0;
|
|
vifp->v_rsvpd = NULL;
|
|
#endif /* RSVP_ISI */
|
|
|
|
splx(s);
|
|
|
|
/* Adjust numvifs up if the vifi is higher than numvifs. */
|
|
if (numvifs <= vifcp->vifc_vifi)
|
|
numvifs = vifcp->vifc_vifi + 1;
|
|
|
|
if (mrtdebug)
|
|
log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
|
|
vifcp->vifc_vifi,
|
|
ntohl(vifcp->vifc_lcl_addr.s_addr),
|
|
(vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
|
|
ntohl(vifcp->vifc_rmt_addr.s_addr),
|
|
vifcp->vifc_threshold,
|
|
vifcp->vifc_rate_limit);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
reset_vif(struct vif *vifp)
|
|
{
|
|
struct mbuf *m, *n;
|
|
struct ifnet *ifp;
|
|
struct ifreq ifr;
|
|
|
|
callout_stop(&vifp->v_repq_ch);
|
|
|
|
/* detach this vif from decapsulator dispatch table */
|
|
encap_detach(vifp->v_encap_cookie);
|
|
vifp->v_encap_cookie = NULL;
|
|
|
|
/*
|
|
* Free packets queued at the interface
|
|
*/
|
|
for (m = vifp->tbf_q; m != NULL; m = n) {
|
|
n = m->m_nextpkt;
|
|
m_freem(m);
|
|
}
|
|
|
|
if (vifp->v_flags & VIFF_TUNNEL)
|
|
free(vifp->v_ifp, M_MRTABLE);
|
|
else if (vifp->v_flags & VIFF_REGISTER) {
|
|
#ifdef PIM
|
|
reg_vif_num = VIFI_INVALID;
|
|
#endif
|
|
} else {
|
|
satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
|
|
satosin(&ifr.ifr_addr)->sin_family = AF_INET;
|
|
satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
|
|
ifp = vifp->v_ifp;
|
|
(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
|
|
}
|
|
bzero((caddr_t)vifp, sizeof(*vifp));
|
|
}
|
|
|
|
/*
|
|
* Delete a vif from the vif table
|
|
*/
|
|
static int
|
|
del_vif(struct mbuf *m)
|
|
{
|
|
vifi_t *vifip;
|
|
struct vif *vifp;
|
|
vifi_t vifi;
|
|
int s;
|
|
|
|
if (m == NULL || m->m_len < sizeof(vifi_t))
|
|
return (EINVAL);
|
|
|
|
vifip = mtod(m, vifi_t *);
|
|
if (*vifip >= numvifs)
|
|
return (EINVAL);
|
|
|
|
vifp = &viftable[*vifip];
|
|
if (in_nullhost(vifp->v_lcl_addr))
|
|
return (EADDRNOTAVAIL);
|
|
|
|
s = splsoftnet();
|
|
|
|
reset_vif(vifp);
|
|
|
|
/* Adjust numvifs down */
|
|
for (vifi = numvifs; vifi > 0; vifi--)
|
|
if (!in_nullhost(viftable[vifi - 1].v_lcl_addr))
|
|
break;
|
|
numvifs = vifi;
|
|
|
|
splx(s);
|
|
|
|
if (mrtdebug)
|
|
log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* update an mfc entry without resetting counters and S,G addresses.
|
|
*/
|
|
static void
|
|
update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
|
|
{
|
|
int i;
|
|
|
|
rt->mfc_parent = mfccp->mfcc_parent;
|
|
for (i = 0; i < numvifs; i++) {
|
|
rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
|
|
rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
|
|
MRT_MFC_FLAGS_ALL;
|
|
}
|
|
/* set the RP address */
|
|
if (mrt_api_config & MRT_MFC_RP)
|
|
rt->mfc_rp = mfccp->mfcc_rp;
|
|
else
|
|
rt->mfc_rp = zeroin_addr;
|
|
}
|
|
|
|
/*
|
|
* fully initialize an mfc entry from the parameter.
|
|
*/
|
|
static void
|
|
init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
|
|
{
|
|
rt->mfc_origin = mfccp->mfcc_origin;
|
|
rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
|
|
|
|
update_mfc_params(rt, mfccp);
|
|
|
|
/* initialize pkt counters per src-grp */
|
|
rt->mfc_pkt_cnt = 0;
|
|
rt->mfc_byte_cnt = 0;
|
|
rt->mfc_wrong_if = 0;
|
|
timerclear(&rt->mfc_last_assert);
|
|
}
|
|
|
|
static void
|
|
expire_mfc(struct mfc *rt)
|
|
{
|
|
struct rtdetq *rte, *nrte;
|
|
|
|
free_bw_list(rt->mfc_bw_meter);
|
|
|
|
for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
|
|
nrte = rte->next;
|
|
m_freem(rte->m);
|
|
free(rte, M_MRTABLE);
|
|
}
|
|
|
|
LIST_REMOVE(rt, mfc_hash);
|
|
free(rt, M_MRTABLE);
|
|
}
|
|
|
|
/*
|
|
* Add an mfc entry
|
|
*/
|
|
static int
|
|
add_mfc(struct mbuf *m)
|
|
{
|
|
struct mfcctl2 mfcctl2;
|
|
struct mfcctl2 *mfccp;
|
|
struct mfc *rt;
|
|
u_int32_t hash = 0;
|
|
struct rtdetq *rte, *nrte;
|
|
u_short nstl;
|
|
int s;
|
|
int mfcctl_size = sizeof(struct mfcctl);
|
|
|
|
if (mrt_api_config & MRT_API_FLAGS_ALL)
|
|
mfcctl_size = sizeof(struct mfcctl2);
|
|
|
|
if (m == NULL || m->m_len < mfcctl_size)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* select data size depending on API version.
|
|
*/
|
|
if (mrt_api_config & MRT_API_FLAGS_ALL) {
|
|
struct mfcctl2 *mp2 = mtod(m, struct mfcctl2 *);
|
|
bcopy(mp2, (caddr_t)&mfcctl2, sizeof(*mp2));
|
|
} else {
|
|
struct mfcctl *mp = mtod(m, struct mfcctl *);
|
|
bcopy(mp, (caddr_t)&mfcctl2, sizeof(*mp));
|
|
bzero((caddr_t)&mfcctl2 + sizeof(struct mfcctl),
|
|
sizeof(mfcctl2) - sizeof(struct mfcctl));
|
|
}
|
|
mfccp = &mfcctl2;
|
|
|
|
s = splsoftnet();
|
|
rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
|
|
|
|
/* If an entry already exists, just update the fields */
|
|
if (rt) {
|
|
if (mrtdebug & DEBUG_MFC)
|
|
log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n",
|
|
ntohl(mfccp->mfcc_origin.s_addr),
|
|
ntohl(mfccp->mfcc_mcastgrp.s_addr),
|
|
mfccp->mfcc_parent);
|
|
|
|
update_mfc_params(rt, mfccp);
|
|
|
|
splx(s);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Find the entry for which the upcall was made and update
|
|
*/
|
|
nstl = 0;
|
|
hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
|
|
LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
|
|
if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
|
|
in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
|
|
rt->mfc_stall != NULL) {
|
|
if (nstl++)
|
|
log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
|
|
"multiple kernel entries",
|
|
ntohl(mfccp->mfcc_origin.s_addr),
|
|
ntohl(mfccp->mfcc_mcastgrp.s_addr),
|
|
mfccp->mfcc_parent, rt->mfc_stall);
|
|
|
|
if (mrtdebug & DEBUG_MFC)
|
|
log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n",
|
|
ntohl(mfccp->mfcc_origin.s_addr),
|
|
ntohl(mfccp->mfcc_mcastgrp.s_addr),
|
|
mfccp->mfcc_parent, rt->mfc_stall);
|
|
|
|
rte = rt->mfc_stall;
|
|
init_mfc_params(rt, mfccp);
|
|
rt->mfc_stall = NULL;
|
|
|
|
rt->mfc_expire = 0; /* Don't clean this guy up */
|
|
nexpire[hash]--;
|
|
|
|
/* free packets Qed at the end of this entry */
|
|
for (; rte != NULL; rte = nrte) {
|
|
nrte = rte->next;
|
|
if (rte->ifp) {
|
|
#ifdef RSVP_ISI
|
|
ip_mdq(rte->m, rte->ifp, rt, -1);
|
|
#else
|
|
ip_mdq(rte->m, rte->ifp, rt);
|
|
#endif /* RSVP_ISI */
|
|
}
|
|
m_freem(rte->m);
|
|
#ifdef UPCALL_TIMING
|
|
collate(&rte->t);
|
|
#endif /* UPCALL_TIMING */
|
|
free(rte, M_MRTABLE);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* It is possible that an entry is being inserted without an upcall
|
|
*/
|
|
if (nstl == 0) {
|
|
/*
|
|
* No mfc; make a new one
|
|
*/
|
|
if (mrtdebug & DEBUG_MFC)
|
|
log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n",
|
|
ntohl(mfccp->mfcc_origin.s_addr),
|
|
ntohl(mfccp->mfcc_mcastgrp.s_addr),
|
|
mfccp->mfcc_parent);
|
|
|
|
LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
|
|
if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
|
|
in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
|
|
init_mfc_params(rt, mfccp);
|
|
if (rt->mfc_expire)
|
|
nexpire[hash]--;
|
|
rt->mfc_expire = 0;
|
|
break; /* XXX */
|
|
}
|
|
}
|
|
if (rt == NULL) { /* no upcall, so make a new entry */
|
|
rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
|
|
M_NOWAIT);
|
|
if (rt == NULL) {
|
|
splx(s);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
init_mfc_params(rt, mfccp);
|
|
rt->mfc_expire = 0;
|
|
rt->mfc_stall = NULL;
|
|
rt->mfc_bw_meter = NULL;
|
|
|
|
/* insert new entry at head of hash chain */
|
|
LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
|
|
}
|
|
}
|
|
|
|
splx(s);
|
|
return (0);
|
|
}
|
|
|
|
#ifdef UPCALL_TIMING
|
|
/*
|
|
* collect delay statistics on the upcalls
|
|
*/
|
|
static void
|
|
collate(struct timeval *t)
|
|
{
|
|
u_int32_t d;
|
|
struct timeval tp;
|
|
u_int32_t delta;
|
|
|
|
microtime(&tp);
|
|
|
|
if (timercmp(t, &tp, <)) {
|
|
TV_DELTA(tp, *t, delta);
|
|
|
|
d = delta >> 10;
|
|
if (d > 50)
|
|
d = 50;
|
|
|
|
++upcall_data[d];
|
|
}
|
|
}
|
|
#endif /* UPCALL_TIMING */
|
|
|
|
/*
|
|
* Delete an mfc entry
|
|
*/
|
|
static int
|
|
del_mfc(struct mbuf *m)
|
|
{
|
|
struct mfcctl2 mfcctl2;
|
|
struct mfcctl2 *mfccp;
|
|
struct mfc *rt;
|
|
int s;
|
|
int mfcctl_size = sizeof(struct mfcctl);
|
|
struct mfcctl *mp = mtod(m, struct mfcctl *);
|
|
|
|
/*
|
|
* XXX: for deleting MFC entries the information in entries
|
|
* of size "struct mfcctl" is sufficient.
|
|
*/
|
|
|
|
if (m == NULL || m->m_len < mfcctl_size)
|
|
return (EINVAL);
|
|
|
|
bcopy(mp, (caddr_t)&mfcctl2, sizeof(*mp));
|
|
bzero((caddr_t)&mfcctl2 + sizeof(struct mfcctl),
|
|
sizeof(mfcctl2) - sizeof(struct mfcctl));
|
|
|
|
mfccp = &mfcctl2;
|
|
|
|
if (mrtdebug & DEBUG_MFC)
|
|
log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
|
|
ntohl(mfccp->mfcc_origin.s_addr),
|
|
ntohl(mfccp->mfcc_mcastgrp.s_addr));
|
|
|
|
s = splsoftnet();
|
|
|
|
rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
|
|
if (rt == NULL) {
|
|
splx(s);
|
|
return (EADDRNOTAVAIL);
|
|
}
|
|
|
|
/*
|
|
* free the bw_meter entries
|
|
*/
|
|
free_bw_list(rt->mfc_bw_meter);
|
|
rt->mfc_bw_meter = NULL;
|
|
|
|
LIST_REMOVE(rt, mfc_hash);
|
|
free(rt, M_MRTABLE);
|
|
|
|
splx(s);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
|
|
{
|
|
if (s) {
|
|
if (sbappendaddr(&s->so_rcv, sintosa(src), mm,
|
|
(struct mbuf *)NULL) != 0) {
|
|
sorwakeup(s);
|
|
return (0);
|
|
}
|
|
}
|
|
m_freem(mm);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* IP multicast forwarding function. This function assumes that the packet
|
|
* pointed to by "ip" has arrived on (or is about to be sent to) the interface
|
|
* pointed to by "ifp", and the packet is to be relayed to other networks
|
|
* that have members of the packet's destination IP multicast group.
|
|
*
|
|
* The packet is returned unscathed to the caller, unless it is
|
|
* erroneous, in which case a non-zero return value tells the caller to
|
|
* discard it.
|
|
*/
|
|
|
|
#define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */
|
|
#define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
|
|
|
|
int
|
|
#ifdef RSVP_ISI
|
|
ip_mforward(struct mbuf *m, struct ifnet *ifp, struct ip_moptions *imo)
|
|
#else
|
|
ip_mforward(struct mbuf *m, struct ifnet *ifp)
|
|
#endif /* RSVP_ISI */
|
|
{
|
|
struct ip *ip = mtod(m, struct ip *);
|
|
struct mfc *rt;
|
|
static int srctun = 0;
|
|
struct mbuf *mm;
|
|
int s;
|
|
vifi_t vifi;
|
|
|
|
if (mrtdebug & DEBUG_FORWARD)
|
|
log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
|
|
ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
|
|
|
|
if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
|
|
((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
|
|
/*
|
|
* Packet arrived via a physical interface or
|
|
* an encapsulated tunnel or a register_vif.
|
|
*/
|
|
} else {
|
|
/*
|
|
* Packet arrived through a source-route tunnel.
|
|
* Source-route tunnels are no longer supported.
|
|
*/
|
|
if ((srctun++ % 1000) == 0)
|
|
log(LOG_ERR,
|
|
"ip_mforward: received source-routed packet from %x\n",
|
|
ntohl(ip->ip_src.s_addr));
|
|
|
|
return (1);
|
|
}
|
|
|
|
#ifdef RSVP_ISI
|
|
if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
|
|
if (ip->ip_ttl < 255)
|
|
ip->ip_ttl++; /* compensate for -1 in *_send routines */
|
|
if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
|
|
struct vif *vifp = viftable + vifi;
|
|
printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n",
|
|
ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
|
|
(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
|
|
vifp->v_ifp->if_xname);
|
|
}
|
|
return (ip_mdq(m, ifp, (struct mfc *)NULL, vifi));
|
|
}
|
|
if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
|
|
printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
|
|
ntohl(ip->ip_src), ntohl(ip->ip_dst));
|
|
}
|
|
#endif /* RSVP_ISI */
|
|
|
|
/*
|
|
* Don't forward a packet with time-to-live of zero or one,
|
|
* or a packet destined to a local-only group.
|
|
*/
|
|
if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr))
|
|
return (0);
|
|
|
|
/*
|
|
* Determine forwarding vifs from the forwarding cache table
|
|
*/
|
|
s = splsoftnet();
|
|
++mrtstat.mrts_mfc_lookups;
|
|
rt = mfc_find(&ip->ip_src, &ip->ip_dst);
|
|
|
|
/* Entry exists, so forward if necessary */
|
|
if (rt != NULL) {
|
|
splx(s);
|
|
#ifdef RSVP_ISI
|
|
return (ip_mdq(m, ifp, rt, -1));
|
|
#else
|
|
return (ip_mdq(m, ifp, rt));
|
|
#endif /* RSVP_ISI */
|
|
} else {
|
|
/*
|
|
* If we don't have a route for packet's origin,
|
|
* Make a copy of the packet & send message to routing daemon
|
|
*/
|
|
|
|
struct mbuf *mb0;
|
|
struct rtdetq *rte;
|
|
u_int32_t hash;
|
|
int hlen = ip->ip_hl << 2;
|
|
#ifdef UPCALL_TIMING
|
|
struct timeval tp;
|
|
|
|
microtime(&tp);
|
|
#endif /* UPCALL_TIMING */
|
|
|
|
++mrtstat.mrts_mfc_misses;
|
|
|
|
mrtstat.mrts_no_route++;
|
|
if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
|
|
log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
|
|
ntohl(ip->ip_src.s_addr),
|
|
ntohl(ip->ip_dst.s_addr));
|
|
|
|
/*
|
|
* Allocate mbufs early so that we don't do extra work if we are
|
|
* just going to fail anyway. Make sure to pullup the header so
|
|
* that other people can't step on it.
|
|
*/
|
|
rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE,
|
|
M_NOWAIT);
|
|
if (rte == NULL) {
|
|
splx(s);
|
|
return (ENOBUFS);
|
|
}
|
|
mb0 = m_copy(m, 0, M_COPYALL);
|
|
M_PULLUP(mb0, hlen);
|
|
if (mb0 == NULL) {
|
|
free(rte, M_MRTABLE);
|
|
splx(s);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
/* is there an upcall waiting for this flow? */
|
|
hash = MFCHASH(ip->ip_src, ip->ip_dst);
|
|
LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
|
|
if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
|
|
in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
|
|
rt->mfc_stall != NULL)
|
|
break;
|
|
}
|
|
|
|
if (rt == NULL) {
|
|
int i;
|
|
struct igmpmsg *im;
|
|
|
|
/*
|
|
* Locate the vifi for the incoming interface for
|
|
* this packet.
|
|
* If none found, drop packet.
|
|
*/
|
|
for (vifi = 0; vifi < numvifs &&
|
|
viftable[vifi].v_ifp != ifp; vifi++)
|
|
;
|
|
if (vifi >= numvifs) /* vif not found, drop packet */
|
|
goto non_fatal;
|
|
|
|
/* no upcall, so make a new entry */
|
|
rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
|
|
M_NOWAIT);
|
|
if (rt == NULL)
|
|
goto fail;
|
|
|
|
/*
|
|
* Make a copy of the header to send to the user level
|
|
* process
|
|
*/
|
|
mm = m_copy(m, 0, hlen);
|
|
M_PULLUP(mm, hlen);
|
|
if (mm == NULL)
|
|
goto fail1;
|
|
|
|
/*
|
|
* Send message to routing daemon to install
|
|
* a route into the kernel table
|
|
*/
|
|
|
|
im = mtod(mm, struct igmpmsg *);
|
|
im->im_msgtype = IGMPMSG_NOCACHE;
|
|
im->im_mbz = 0;
|
|
im->im_vif = vifi;
|
|
|
|
mrtstat.mrts_upcalls++;
|
|
|
|
sin.sin_addr = ip->ip_src;
|
|
if (socket_send(ip_mrouter, mm, &sin) < 0) {
|
|
log(LOG_WARNING,
|
|
"ip_mforward: ip_mrouter socket queue full\n");
|
|
++mrtstat.mrts_upq_sockfull;
|
|
fail1:
|
|
free(rt, M_MRTABLE);
|
|
fail:
|
|
free(rte, M_MRTABLE);
|
|
m_freem(mb0);
|
|
splx(s);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
/* insert new entry at head of hash chain */
|
|
rt->mfc_origin = ip->ip_src;
|
|
rt->mfc_mcastgrp = ip->ip_dst;
|
|
rt->mfc_pkt_cnt = 0;
|
|
rt->mfc_byte_cnt = 0;
|
|
rt->mfc_wrong_if = 0;
|
|
rt->mfc_expire = UPCALL_EXPIRE;
|
|
nexpire[hash]++;
|
|
for (i = 0; i < numvifs; i++) {
|
|
rt->mfc_ttls[i] = 0;
|
|
rt->mfc_flags[i] = 0;
|
|
}
|
|
rt->mfc_parent = -1;
|
|
|
|
/* clear the RP address */
|
|
rt->mfc_rp = zeroin_addr;
|
|
|
|
rt->mfc_bw_meter = NULL;
|
|
|
|
/* link into table */
|
|
LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
|
|
/* Add this entry to the end of the queue */
|
|
rt->mfc_stall = rte;
|
|
} else {
|
|
/* determine if q has overflowed */
|
|
struct rtdetq **p;
|
|
int npkts = 0;
|
|
|
|
/*
|
|
* XXX ouch! we need to append to the list, but we
|
|
* only have a pointer to the front, so we have to
|
|
* scan the entire list every time.
|
|
*/
|
|
for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
|
|
if (++npkts > MAX_UPQ) {
|
|
mrtstat.mrts_upq_ovflw++;
|
|
non_fatal:
|
|
free(rte, M_MRTABLE);
|
|
m_freem(mb0);
|
|
splx(s);
|
|
return (0);
|
|
}
|
|
|
|
/* Add this entry to the end of the queue */
|
|
*p = rte;
|
|
}
|
|
|
|
rte->next = NULL;
|
|
rte->m = mb0;
|
|
rte->ifp = ifp;
|
|
#ifdef UPCALL_TIMING
|
|
rte->t = tp;
|
|
#endif /* UPCALL_TIMING */
|
|
|
|
splx(s);
|
|
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
expire_upcalls(void *v)
|
|
{
|
|
int i;
|
|
int s;
|
|
|
|
s = splsoftnet();
|
|
|
|
for (i = 0; i < MFCTBLSIZ; i++) {
|
|
struct mfc *rt, *nrt;
|
|
|
|
if (nexpire[i] == 0)
|
|
continue;
|
|
|
|
for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
|
|
nrt = LIST_NEXT(rt, mfc_hash);
|
|
|
|
if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
|
|
continue;
|
|
nexpire[i]--;
|
|
|
|
/*
|
|
* free the bw_meter entries
|
|
*/
|
|
while (rt->mfc_bw_meter != NULL) {
|
|
struct bw_meter *x = rt->mfc_bw_meter;
|
|
|
|
rt->mfc_bw_meter = x->bm_mfc_next;
|
|
free(x, M_BWMETER);
|
|
}
|
|
|
|
++mrtstat.mrts_cache_cleanups;
|
|
if (mrtdebug & DEBUG_EXPIRE)
|
|
log(LOG_DEBUG,
|
|
"expire_upcalls: expiring (%x %x)\n",
|
|
ntohl(rt->mfc_origin.s_addr),
|
|
ntohl(rt->mfc_mcastgrp.s_addr));
|
|
|
|
expire_mfc(rt);
|
|
}
|
|
}
|
|
|
|
splx(s);
|
|
callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
|
|
expire_upcalls, NULL);
|
|
}
|
|
|
|
/*
|
|
* Packet forwarding routine once entry in the cache is made
|
|
*/
|
|
static int
|
|
#ifdef RSVP_ISI
|
|
ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
|
|
#else
|
|
ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt)
|
|
#endif /* RSVP_ISI */
|
|
{
|
|
struct ip *ip = mtod(m, struct ip *);
|
|
vifi_t vifi;
|
|
struct vif *vifp;
|
|
int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2);
|
|
|
|
/*
|
|
* Macro to send packet on vif. Since RSVP packets don't get counted on
|
|
* input, they shouldn't get counted on output, so statistics keeping is
|
|
* separate.
|
|
*/
|
|
#define MC_SEND(ip, vifp, m) do { \
|
|
if ((vifp)->v_flags & VIFF_TUNNEL) \
|
|
encap_send((ip), (vifp), (m)); \
|
|
else \
|
|
phyint_send((ip), (vifp), (m)); \
|
|
} while (/*CONSTCOND*/ 0)
|
|
|
|
#ifdef RSVP_ISI
|
|
/*
|
|
* If xmt_vif is not -1, send on only the requested vif.
|
|
*
|
|
* (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
|
|
*/
|
|
if (xmt_vif < numvifs) {
|
|
#ifdef PIM
|
|
if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
|
|
pim_register_send(ip, viftable + xmt_vif, m, rt);
|
|
else
|
|
#endif
|
|
MC_SEND(ip, viftable + xmt_vif, m);
|
|
return (1);
|
|
}
|
|
#endif /* RSVP_ISI */
|
|
|
|
/*
|
|
* Don't forward if it didn't arrive from the parent vif for its origin.
|
|
*/
|
|
vifi = rt->mfc_parent;
|
|
if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
|
|
/* came in the wrong interface */
|
|
if (mrtdebug & DEBUG_FORWARD)
|
|
log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
|
|
ifp, vifi,
|
|
vifi >= numvifs ? 0 : viftable[vifi].v_ifp);
|
|
++mrtstat.mrts_wrong_if;
|
|
++rt->mfc_wrong_if;
|
|
/*
|
|
* If we are doing PIM assert processing, send a message
|
|
* to the routing daemon.
|
|
*
|
|
* XXX: A PIM-SM router needs the WRONGVIF detection so it
|
|
* can complete the SPT switch, regardless of the type
|
|
* of the iif (broadcast media, GRE tunnel, etc).
|
|
*/
|
|
if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
|
|
struct timeval now;
|
|
u_int32_t delta;
|
|
|
|
#ifdef PIM
|
|
if (ifp == &multicast_register_if)
|
|
pimstat.pims_rcv_registers_wrongiif++;
|
|
#endif
|
|
|
|
/* Get vifi for the incoming packet */
|
|
for (vifi = 0;
|
|
vifi < numvifs && viftable[vifi].v_ifp != ifp;
|
|
vifi++)
|
|
;
|
|
if (vifi >= numvifs) {
|
|
/* The iif is not found: ignore the packet. */
|
|
return (0);
|
|
}
|
|
|
|
if (rt->mfc_flags[vifi] &
|
|
MRT_MFC_FLAGS_DISABLE_WRONGVIF) {
|
|
/* WRONGVIF disabled: ignore the packet */
|
|
return (0);
|
|
}
|
|
|
|
microtime(&now);
|
|
|
|
TV_DELTA(rt->mfc_last_assert, now, delta);
|
|
|
|
if (delta > ASSERT_MSG_TIME) {
|
|
struct igmpmsg *im;
|
|
int hlen = ip->ip_hl << 2;
|
|
struct mbuf *mm = m_copy(m, 0, hlen);
|
|
|
|
M_PULLUP(mm, hlen);
|
|
if (mm == NULL)
|
|
return (ENOBUFS);
|
|
|
|
rt->mfc_last_assert = now;
|
|
|
|
im = mtod(mm, struct igmpmsg *);
|
|
im->im_msgtype = IGMPMSG_WRONGVIF;
|
|
im->im_mbz = 0;
|
|
im->im_vif = vifi;
|
|
|
|
mrtstat.mrts_upcalls++;
|
|
|
|
sin.sin_addr = im->im_src;
|
|
if (socket_send(ip_mrouter, mm, &sin) < 0) {
|
|
log(LOG_WARNING,
|
|
"ip_mforward: ip_mrouter socket queue full\n");
|
|
++mrtstat.mrts_upq_sockfull;
|
|
return (ENOBUFS);
|
|
}
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/* If I sourced this packet, it counts as output, else it was input. */
|
|
if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
|
|
viftable[vifi].v_pkt_out++;
|
|
viftable[vifi].v_bytes_out += plen;
|
|
} else {
|
|
viftable[vifi].v_pkt_in++;
|
|
viftable[vifi].v_bytes_in += plen;
|
|
}
|
|
rt->mfc_pkt_cnt++;
|
|
rt->mfc_byte_cnt += plen;
|
|
|
|
/*
|
|
* For each vif, decide if a copy of the packet should be forwarded.
|
|
* Forward if:
|
|
* - the ttl exceeds the vif's threshold
|
|
* - there are group members downstream on interface
|
|
*/
|
|
for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
|
|
if ((rt->mfc_ttls[vifi] > 0) &&
|
|
(ip->ip_ttl > rt->mfc_ttls[vifi])) {
|
|
vifp->v_pkt_out++;
|
|
vifp->v_bytes_out += plen;
|
|
#ifdef PIM
|
|
if (vifp->v_flags & VIFF_REGISTER)
|
|
pim_register_send(ip, vifp, m, rt);
|
|
else
|
|
#endif
|
|
MC_SEND(ip, vifp, m);
|
|
}
|
|
|
|
/*
|
|
* Perform upcall-related bw measuring.
|
|
*/
|
|
if (rt->mfc_bw_meter != NULL) {
|
|
struct bw_meter *x;
|
|
struct timeval now;
|
|
|
|
microtime(&now);
|
|
for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
|
|
bw_meter_receive_packet(x, plen, &now);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifdef RSVP_ISI
|
|
/*
|
|
* check if a vif number is legal/ok. This is used by ip_output.
|
|
*/
|
|
int
|
|
legal_vif_num(int vif)
|
|
{
|
|
if (vif >= 0 && vif < numvifs)
|
|
return (1);
|
|
else
|
|
return (0);
|
|
}
|
|
#endif /* RSVP_ISI */
|
|
|
|
static void
|
|
phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
|
|
{
|
|
struct mbuf *mb_copy;
|
|
int hlen = ip->ip_hl << 2;
|
|
|
|
/*
|
|
* Make a new reference to the packet; make sure that
|
|
* the IP header is actually copied, not just referenced,
|
|
* so that ip_output() only scribbles on the copy.
|
|
*/
|
|
mb_copy = m_copy(m, 0, M_COPYALL);
|
|
M_PULLUP(mb_copy, hlen);
|
|
if (mb_copy == NULL)
|
|
return;
|
|
|
|
if (vifp->v_rate_limit <= 0)
|
|
tbf_send_packet(vifp, mb_copy);
|
|
else
|
|
tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *),
|
|
ntohs(ip->ip_len));
|
|
}
|
|
|
|
static void
|
|
encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
|
|
{
|
|
struct mbuf *mb_copy;
|
|
struct ip *ip_copy;
|
|
int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr);
|
|
|
|
/* Take care of delayed checksums */
|
|
if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
|
|
in_delayed_cksum(m);
|
|
m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
|
|
}
|
|
|
|
/*
|
|
* copy the old packet & pullup it's IP header into the
|
|
* new mbuf so we can modify it. Try to fill the new
|
|
* mbuf since if we don't the ethernet driver will.
|
|
*/
|
|
MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
|
|
if (mb_copy == NULL)
|
|
return;
|
|
mb_copy->m_data += max_linkhdr;
|
|
mb_copy->m_pkthdr.len = len;
|
|
mb_copy->m_len = sizeof(multicast_encap_iphdr);
|
|
|
|
if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
|
|
m_freem(mb_copy);
|
|
return;
|
|
}
|
|
i = MHLEN - max_linkhdr;
|
|
if (i > len)
|
|
i = len;
|
|
mb_copy = m_pullup(mb_copy, i);
|
|
if (mb_copy == NULL)
|
|
return;
|
|
|
|
/*
|
|
* fill in the encapsulating IP header.
|
|
*/
|
|
ip_copy = mtod(mb_copy, struct ip *);
|
|
*ip_copy = multicast_encap_iphdr;
|
|
ip_copy->ip_id = ip_newid();
|
|
ip_copy->ip_len = htons(len);
|
|
ip_copy->ip_src = vifp->v_lcl_addr;
|
|
ip_copy->ip_dst = vifp->v_rmt_addr;
|
|
|
|
/*
|
|
* turn the encapsulated IP header back into a valid one.
|
|
*/
|
|
ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
|
|
--ip->ip_ttl;
|
|
ip->ip_sum = 0;
|
|
mb_copy->m_data += sizeof(multicast_encap_iphdr);
|
|
ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
|
|
mb_copy->m_data -= sizeof(multicast_encap_iphdr);
|
|
|
|
if (vifp->v_rate_limit <= 0)
|
|
tbf_send_packet(vifp, mb_copy);
|
|
else
|
|
tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len));
|
|
}
|
|
|
|
/*
|
|
* De-encapsulate a packet and feed it back through ip input.
|
|
*/
|
|
static void
|
|
vif_input(struct mbuf *m, ...)
|
|
{
|
|
int off, proto;
|
|
va_list ap;
|
|
struct vif *vifp;
|
|
int s;
|
|
struct ifqueue *ifq;
|
|
|
|
va_start(ap, m);
|
|
off = va_arg(ap, int);
|
|
proto = va_arg(ap, int);
|
|
va_end(ap);
|
|
|
|
vifp = (struct vif *)encap_getarg(m);
|
|
if (!vifp || proto != ENCAP_PROTO) {
|
|
m_freem(m);
|
|
mrtstat.mrts_bad_tunnel++;
|
|
return;
|
|
}
|
|
|
|
m_adj(m, off);
|
|
m->m_pkthdr.rcvif = vifp->v_ifp;
|
|
ifq = &ipintrq;
|
|
s = splnet();
|
|
if (IF_QFULL(ifq)) {
|
|
IF_DROP(ifq);
|
|
m_freem(m);
|
|
} else {
|
|
IF_ENQUEUE(ifq, m);
|
|
/*
|
|
* normally we would need a "schednetisr(NETISR_IP)"
|
|
* here but we were called by ip_input and it is going
|
|
* to loop back & try to dequeue the packet we just
|
|
* queued as soon as we return so we avoid the
|
|
* unnecessary software interrrupt.
|
|
*/
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Check if the packet should be received on the vif denoted by arg.
|
|
* (The encap selection code will call this once per vif since each is
|
|
* registered separately.)
|
|
*/
|
|
static int
|
|
vif_encapcheck(struct mbuf *m, int off, int proto, void *arg)
|
|
{
|
|
struct vif *vifp;
|
|
struct ip ip;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (!arg || proto != IPPROTO_IPV4)
|
|
panic("unexpected arg in vif_encapcheck");
|
|
#endif
|
|
|
|
/*
|
|
* Accept the packet only if the inner heaader is multicast
|
|
* and the outer header matches a tunnel-mode vif. Order
|
|
* checks in the hope that common non-matching packets will be
|
|
* rejected quickly. Assume that unicast IPv4 traffic in a
|
|
* parallel tunnel (e.g. gif(4)) is unlikely.
|
|
*/
|
|
|
|
/* Obtain the outer IP header and the vif pointer. */
|
|
m_copydata((struct mbuf *)m, 0, sizeof(ip), (caddr_t)&ip);
|
|
vifp = (struct vif *)arg;
|
|
|
|
/*
|
|
* The outer source must match the vif's remote peer address.
|
|
* For a multicast router with several tunnels, this is the
|
|
* only check that will fail on packets in other tunnels,
|
|
* assuming the local address is the same.
|
|
*/
|
|
if (!in_hosteq(vifp->v_rmt_addr, ip.ip_src))
|
|
return 0;
|
|
|
|
/* The outer destination must match the vif's local address. */
|
|
if (!in_hosteq(vifp->v_lcl_addr, ip.ip_dst))
|
|
return 0;
|
|
|
|
/* The vif must be of tunnel type. */
|
|
if ((vifp->v_flags & VIFF_TUNNEL) == 0)
|
|
return 0;
|
|
|
|
/* Check that the inner destination is multicast. */
|
|
m_copydata((struct mbuf *)m, off, sizeof(ip), (caddr_t)&ip);
|
|
if (!IN_MULTICAST(ip.ip_dst.s_addr))
|
|
return 0;
|
|
|
|
/*
|
|
* We have checked that both the outer src and dst addresses
|
|
* match the vif, and that the inner destination is multicast
|
|
* (224/5). By claiming more than 64, we intend to
|
|
* preferentially take packets that also match a parallel
|
|
* gif(4).
|
|
*/
|
|
return 32 + 32 + 5;
|
|
}
|
|
|
|
/*
|
|
* Token bucket filter module
|
|
*/
|
|
static void
|
|
tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len)
|
|
{
|
|
|
|
if (len > MAX_BKT_SIZE) {
|
|
/* drop if packet is too large */
|
|
mrtstat.mrts_pkt2large++;
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
tbf_update_tokens(vifp);
|
|
|
|
/*
|
|
* If there are enough tokens, and the queue is empty, send this packet
|
|
* out immediately. Otherwise, try to insert it on this vif's queue.
|
|
*/
|
|
if (vifp->tbf_q_len == 0) {
|
|
if (len <= vifp->tbf_n_tok) {
|
|
vifp->tbf_n_tok -= len;
|
|
tbf_send_packet(vifp, m);
|
|
} else {
|
|
/* queue packet and timeout till later */
|
|
tbf_queue(vifp, m);
|
|
callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
|
|
tbf_reprocess_q, vifp);
|
|
}
|
|
} else {
|
|
if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
|
|
!tbf_dq_sel(vifp, ip)) {
|
|
/* queue full, and couldn't make room */
|
|
mrtstat.mrts_q_overflow++;
|
|
m_freem(m);
|
|
} else {
|
|
/* queue length low enough, or made room */
|
|
tbf_queue(vifp, m);
|
|
tbf_process_q(vifp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* adds a packet to the queue at the interface
|
|
*/
|
|
static void
|
|
tbf_queue(struct vif *vifp, struct mbuf *m)
|
|
{
|
|
int s = splsoftnet();
|
|
|
|
/* insert at tail */
|
|
*vifp->tbf_t = m;
|
|
vifp->tbf_t = &m->m_nextpkt;
|
|
vifp->tbf_q_len++;
|
|
|
|
splx(s);
|
|
}
|
|
|
|
|
|
/*
|
|
* processes the queue at the interface
|
|
*/
|
|
static void
|
|
tbf_process_q(struct vif *vifp)
|
|
{
|
|
struct mbuf *m;
|
|
int len;
|
|
int s = splsoftnet();
|
|
|
|
/*
|
|
* Loop through the queue at the interface and send as many packets
|
|
* as possible.
|
|
*/
|
|
for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) {
|
|
len = ntohs(mtod(m, struct ip *)->ip_len);
|
|
|
|
/* determine if the packet can be sent */
|
|
if (len <= vifp->tbf_n_tok) {
|
|
/* if so,
|
|
* reduce no of tokens, dequeue the packet,
|
|
* send the packet.
|
|
*/
|
|
if ((vifp->tbf_q = m->m_nextpkt) == NULL)
|
|
vifp->tbf_t = &vifp->tbf_q;
|
|
--vifp->tbf_q_len;
|
|
|
|
m->m_nextpkt = NULL;
|
|
vifp->tbf_n_tok -= len;
|
|
tbf_send_packet(vifp, m);
|
|
} else
|
|
break;
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
tbf_reprocess_q(void *arg)
|
|
{
|
|
struct vif *vifp = arg;
|
|
|
|
if (ip_mrouter == NULL)
|
|
return;
|
|
|
|
tbf_update_tokens(vifp);
|
|
tbf_process_q(vifp);
|
|
|
|
if (vifp->tbf_q_len != 0)
|
|
callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
|
|
tbf_reprocess_q, vifp);
|
|
}
|
|
|
|
/* function that will selectively discard a member of the queue
|
|
* based on the precedence value and the priority
|
|
*/
|
|
static int
|
|
tbf_dq_sel(struct vif *vifp, struct ip *ip)
|
|
{
|
|
u_int p;
|
|
struct mbuf **mp, *m;
|
|
int s = splsoftnet();
|
|
|
|
p = priority(vifp, ip);
|
|
|
|
for (mp = &vifp->tbf_q, m = *mp;
|
|
m != NULL;
|
|
mp = &m->m_nextpkt, m = *mp) {
|
|
if (p > priority(vifp, mtod(m, struct ip *))) {
|
|
if ((*mp = m->m_nextpkt) == NULL)
|
|
vifp->tbf_t = mp;
|
|
--vifp->tbf_q_len;
|
|
|
|
m_freem(m);
|
|
mrtstat.mrts_drop_sel++;
|
|
splx(s);
|
|
return (1);
|
|
}
|
|
}
|
|
splx(s);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
tbf_send_packet(struct vif *vifp, struct mbuf *m)
|
|
{
|
|
int error;
|
|
int s = splsoftnet();
|
|
|
|
if (vifp->v_flags & VIFF_TUNNEL) {
|
|
/* If tunnel options */
|
|
ip_output(m, (struct mbuf *)NULL, &vifp->v_route,
|
|
IP_FORWARDING, (struct ip_moptions *)NULL,
|
|
(struct socket *)NULL);
|
|
} else {
|
|
/* if physical interface option, extract the options and then send */
|
|
struct ip_moptions imo;
|
|
|
|
imo.imo_multicast_ifp = vifp->v_ifp;
|
|
imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
|
|
imo.imo_multicast_loop = 1;
|
|
#ifdef RSVP_ISI
|
|
imo.imo_multicast_vif = -1;
|
|
#endif
|
|
|
|
error = ip_output(m, (struct mbuf *)NULL, (struct route *)NULL,
|
|
IP_FORWARDING|IP_MULTICASTOPTS, &imo,
|
|
(struct socket *)NULL);
|
|
|
|
if (mrtdebug & DEBUG_XMIT)
|
|
log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
|
|
(long)(vifp - viftable), error);
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/* determine the current time and then
|
|
* the elapsed time (between the last time and time now)
|
|
* in milliseconds & update the no. of tokens in the bucket
|
|
*/
|
|
static void
|
|
tbf_update_tokens(struct vif *vifp)
|
|
{
|
|
struct timeval tp;
|
|
u_int32_t tm;
|
|
int s = splsoftnet();
|
|
|
|
microtime(&tp);
|
|
|
|
TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
|
|
|
|
/*
|
|
* This formula is actually
|
|
* "time in seconds" * "bytes/second".
|
|
*
|
|
* (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
|
|
*
|
|
* The (1000/1024) was introduced in add_vif to optimize
|
|
* this divide into a shift.
|
|
*/
|
|
vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
|
|
vifp->tbf_last_pkt_t = tp;
|
|
|
|
if (vifp->tbf_n_tok > MAX_BKT_SIZE)
|
|
vifp->tbf_n_tok = MAX_BKT_SIZE;
|
|
|
|
splx(s);
|
|
}
|
|
|
|
static int
|
|
priority(struct vif *vifp, struct ip *ip)
|
|
{
|
|
int prio = 50; /* the lowest priority -- default case */
|
|
|
|
/* temporary hack; may add general packet classifier some day */
|
|
|
|
/*
|
|
* The UDP port space is divided up into four priority ranges:
|
|
* [0, 16384) : unclassified - lowest priority
|
|
* [16384, 32768) : audio - highest priority
|
|
* [32768, 49152) : whiteboard - medium priority
|
|
* [49152, 65536) : video - low priority
|
|
*/
|
|
if (ip->ip_p == IPPROTO_UDP) {
|
|
struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
|
|
|
|
switch (ntohs(udp->uh_dport) & 0xc000) {
|
|
case 0x4000:
|
|
prio = 70;
|
|
break;
|
|
case 0x8000:
|
|
prio = 60;
|
|
break;
|
|
case 0xc000:
|
|
prio = 55;
|
|
break;
|
|
}
|
|
|
|
if (tbfdebug > 1)
|
|
log(LOG_DEBUG, "port %x prio %d\n",
|
|
ntohs(udp->uh_dport), prio);
|
|
}
|
|
|
|
return (prio);
|
|
}
|
|
|
|
/*
|
|
* End of token bucket filter modifications
|
|
*/
|
|
#ifdef RSVP_ISI
|
|
int
|
|
ip_rsvp_vif_init(struct socket *so, struct mbuf *m)
|
|
{
|
|
int vifi, s;
|
|
|
|
if (rsvpdebug)
|
|
printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
|
|
so->so_type, so->so_proto->pr_protocol);
|
|
|
|
if (so->so_type != SOCK_RAW ||
|
|
so->so_proto->pr_protocol != IPPROTO_RSVP)
|
|
return (EOPNOTSUPP);
|
|
|
|
/* Check mbuf. */
|
|
if (m == NULL || m->m_len != sizeof(int)) {
|
|
return (EINVAL);
|
|
}
|
|
vifi = *(mtod(m, int *));
|
|
|
|
if (rsvpdebug)
|
|
printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",
|
|
vifi, rsvp_on);
|
|
|
|
s = splsoftnet();
|
|
|
|
/* Check vif. */
|
|
if (!legal_vif_num(vifi)) {
|
|
splx(s);
|
|
return (EADDRNOTAVAIL);
|
|
}
|
|
|
|
/* Check if socket is available. */
|
|
if (viftable[vifi].v_rsvpd != NULL) {
|
|
splx(s);
|
|
return (EADDRINUSE);
|
|
}
|
|
|
|
viftable[vifi].v_rsvpd = so;
|
|
/*
|
|
* This may seem silly, but we need to be sure we don't over-increment
|
|
* the RSVP counter, in case something slips up.
|
|
*/
|
|
if (!viftable[vifi].v_rsvp_on) {
|
|
viftable[vifi].v_rsvp_on = 1;
|
|
rsvp_on++;
|
|
}
|
|
|
|
splx(s);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ip_rsvp_vif_done(struct socket *so, struct mbuf *m)
|
|
{
|
|
int vifi, s;
|
|
|
|
if (rsvpdebug)
|
|
printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
|
|
so->so_type, so->so_proto->pr_protocol);
|
|
|
|
if (so->so_type != SOCK_RAW ||
|
|
so->so_proto->pr_protocol != IPPROTO_RSVP)
|
|
return (EOPNOTSUPP);
|
|
|
|
/* Check mbuf. */
|
|
if (m == NULL || m->m_len != sizeof(int)) {
|
|
return (EINVAL);
|
|
}
|
|
vifi = *(mtod(m, int *));
|
|
|
|
s = splsoftnet();
|
|
|
|
/* Check vif. */
|
|
if (!legal_vif_num(vifi)) {
|
|
splx(s);
|
|
return (EADDRNOTAVAIL);
|
|
}
|
|
|
|
if (rsvpdebug)
|
|
printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
|
|
viftable[vifi].v_rsvpd, so);
|
|
|
|
viftable[vifi].v_rsvpd = NULL;
|
|
/*
|
|
* This may seem silly, but we need to be sure we don't over-decrement
|
|
* the RSVP counter, in case something slips up.
|
|
*/
|
|
if (viftable[vifi].v_rsvp_on) {
|
|
viftable[vifi].v_rsvp_on = 0;
|
|
rsvp_on--;
|
|
}
|
|
|
|
splx(s);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
ip_rsvp_force_done(struct socket *so)
|
|
{
|
|
int vifi, s;
|
|
|
|
/* Don't bother if it is not the right type of socket. */
|
|
if (so->so_type != SOCK_RAW ||
|
|
so->so_proto->pr_protocol != IPPROTO_RSVP)
|
|
return;
|
|
|
|
s = splsoftnet();
|
|
|
|
/*
|
|
* The socket may be attached to more than one vif...this
|
|
* is perfectly legal.
|
|
*/
|
|
for (vifi = 0; vifi < numvifs; vifi++) {
|
|
if (viftable[vifi].v_rsvpd == so) {
|
|
viftable[vifi].v_rsvpd = NULL;
|
|
/*
|
|
* This may seem silly, but we need to be sure we don't
|
|
* over-decrement the RSVP counter, in case something
|
|
* slips up.
|
|
*/
|
|
if (viftable[vifi].v_rsvp_on) {
|
|
viftable[vifi].v_rsvp_on = 0;
|
|
rsvp_on--;
|
|
}
|
|
}
|
|
}
|
|
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
void
|
|
rsvp_input(struct mbuf *m, struct ifnet *ifp)
|
|
{
|
|
int vifi, s;
|
|
struct ip *ip = mtod(m, struct ip *);
|
|
static struct sockaddr_in rsvp_src = { sizeof(sin), AF_INET };
|
|
|
|
if (rsvpdebug)
|
|
printf("rsvp_input: rsvp_on %d\n", rsvp_on);
|
|
|
|
/*
|
|
* Can still get packets with rsvp_on = 0 if there is a local member
|
|
* of the group to which the RSVP packet is addressed. But in this
|
|
* case we want to throw the packet away.
|
|
*/
|
|
if (!rsvp_on) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the old-style non-vif-associated socket is set, then use
|
|
* it and ignore the new ones.
|
|
*/
|
|
if (ip_rsvpd != NULL) {
|
|
if (rsvpdebug)
|
|
printf("rsvp_input: "
|
|
"Sending packet up old-style socket\n");
|
|
rip_input(m); /*XXX*/
|
|
return;
|
|
}
|
|
|
|
s = splsoftnet();
|
|
|
|
if (rsvpdebug)
|
|
printf("rsvp_input: check vifs\n");
|
|
|
|
/* Find which vif the packet arrived on. */
|
|
for (vifi = 0; vifi < numvifs; vifi++) {
|
|
if (viftable[vifi].v_ifp == ifp)
|
|
break;
|
|
}
|
|
|
|
if (vifi == numvifs) {
|
|
/* Can't find vif packet arrived on. Drop packet. */
|
|
if (rsvpdebug)
|
|
printf("rsvp_input: "
|
|
"Can't find vif for packet...dropping it.\n");
|
|
m_freem(m);
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
if (rsvpdebug)
|
|
printf("rsvp_input: check socket\n");
|
|
|
|
if (viftable[vifi].v_rsvpd == NULL) {
|
|
/*
|
|
* drop packet, since there is no specific socket for this
|
|
* interface
|
|
*/
|
|
if (rsvpdebug)
|
|
printf("rsvp_input: No socket defined for vif %d\n",
|
|
vifi);
|
|
m_freem(m);
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
rsvp_src.sin_addr = ip->ip_src;
|
|
|
|
if (rsvpdebug && m)
|
|
printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
|
|
m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv));
|
|
|
|
if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
|
|
if (rsvpdebug)
|
|
printf("rsvp_input: Failed to append to socket\n");
|
|
else
|
|
if (rsvpdebug)
|
|
printf("rsvp_input: send packet up\n");
|
|
|
|
splx(s);
|
|
}
|
|
#endif /* RSVP_ISI */
|
|
|
|
/*
|
|
* Code for bandwidth monitors
|
|
*/
|
|
|
|
/*
|
|
* Define common interface for timeval-related methods
|
|
*/
|
|
#define BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp)
|
|
#define BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp))
|
|
#define BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp))
|
|
|
|
static uint32_t
|
|
compute_bw_meter_flags(struct bw_upcall *req)
|
|
{
|
|
uint32_t flags = 0;
|
|
|
|
if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
|
|
flags |= BW_METER_UNIT_PACKETS;
|
|
if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
|
|
flags |= BW_METER_UNIT_BYTES;
|
|
if (req->bu_flags & BW_UPCALL_GEQ)
|
|
flags |= BW_METER_GEQ;
|
|
if (req->bu_flags & BW_UPCALL_LEQ)
|
|
flags |= BW_METER_LEQ;
|
|
|
|
return flags;
|
|
}
|
|
|
|
/*
|
|
* Add a bw_meter entry
|
|
*/
|
|
static int
|
|
add_bw_upcall(struct mbuf *m)
|
|
{
|
|
int s;
|
|
struct mfc *mfc;
|
|
struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
|
|
BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
|
|
struct timeval now;
|
|
struct bw_meter *x;
|
|
uint32_t flags;
|
|
struct bw_upcall *req;
|
|
|
|
if (m == NULL || m->m_len < sizeof(struct bw_upcall))
|
|
return EINVAL;
|
|
|
|
req = mtod(m, struct bw_upcall *);
|
|
|
|
if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
|
|
return EOPNOTSUPP;
|
|
|
|
/* Test if the flags are valid */
|
|
if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
|
|
return EINVAL;
|
|
if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
|
|
return EINVAL;
|
|
if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
|
|
== (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
|
|
return EINVAL;
|
|
|
|
/* Test if the threshold time interval is valid */
|
|
if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
|
|
return EINVAL;
|
|
|
|
flags = compute_bw_meter_flags(req);
|
|
|
|
/*
|
|
* Find if we have already same bw_meter entry
|
|
*/
|
|
s = splsoftnet();
|
|
mfc = mfc_find(&req->bu_src, &req->bu_dst);
|
|
if (mfc == NULL) {
|
|
splx(s);
|
|
return EADDRNOTAVAIL;
|
|
}
|
|
for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
|
|
if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
|
|
&req->bu_threshold.b_time, ==)) &&
|
|
(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
|
|
(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
|
|
(x->bm_flags & BW_METER_USER_FLAGS) == flags) {
|
|
splx(s);
|
|
return 0; /* XXX Already installed */
|
|
}
|
|
}
|
|
|
|
/* Allocate the new bw_meter entry */
|
|
x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
|
|
if (x == NULL) {
|
|
splx(s);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
/* Set the new bw_meter entry */
|
|
x->bm_threshold.b_time = req->bu_threshold.b_time;
|
|
microtime(&now);
|
|
x->bm_start_time = now;
|
|
x->bm_threshold.b_packets = req->bu_threshold.b_packets;
|
|
x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
|
|
x->bm_measured.b_packets = 0;
|
|
x->bm_measured.b_bytes = 0;
|
|
x->bm_flags = flags;
|
|
x->bm_time_next = NULL;
|
|
x->bm_time_hash = BW_METER_BUCKETS;
|
|
|
|
/* Add the new bw_meter entry to the front of entries for this MFC */
|
|
x->bm_mfc = mfc;
|
|
x->bm_mfc_next = mfc->mfc_bw_meter;
|
|
mfc->mfc_bw_meter = x;
|
|
schedule_bw_meter(x, &now);
|
|
splx(s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
free_bw_list(struct bw_meter *list)
|
|
{
|
|
while (list != NULL) {
|
|
struct bw_meter *x = list;
|
|
|
|
list = list->bm_mfc_next;
|
|
unschedule_bw_meter(x);
|
|
free(x, M_BWMETER);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Delete one or multiple bw_meter entries
|
|
*/
|
|
static int
|
|
del_bw_upcall(struct mbuf *m)
|
|
{
|
|
int s;
|
|
struct mfc *mfc;
|
|
struct bw_meter *x;
|
|
struct bw_upcall *req;
|
|
|
|
if (m == NULL || m->m_len < sizeof(struct bw_upcall))
|
|
return EINVAL;
|
|
|
|
req = mtod(m, struct bw_upcall *);
|
|
|
|
if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
|
|
return EOPNOTSUPP;
|
|
|
|
s = splsoftnet();
|
|
/* Find the corresponding MFC entry */
|
|
mfc = mfc_find(&req->bu_src, &req->bu_dst);
|
|
if (mfc == NULL) {
|
|
splx(s);
|
|
return EADDRNOTAVAIL;
|
|
} else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
|
|
/*
|
|
* Delete all bw_meter entries for this mfc
|
|
*/
|
|
struct bw_meter *list;
|
|
|
|
list = mfc->mfc_bw_meter;
|
|
mfc->mfc_bw_meter = NULL;
|
|
free_bw_list(list);
|
|
splx(s);
|
|
return 0;
|
|
} else { /* Delete a single bw_meter entry */
|
|
struct bw_meter *prev;
|
|
uint32_t flags = 0;
|
|
|
|
flags = compute_bw_meter_flags(req);
|
|
|
|
/* Find the bw_meter entry to delete */
|
|
for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
|
|
prev = x, x = x->bm_mfc_next) {
|
|
if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
|
|
&req->bu_threshold.b_time, ==)) &&
|
|
(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
|
|
(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
|
|
(x->bm_flags & BW_METER_USER_FLAGS) == flags)
|
|
break;
|
|
}
|
|
if (x != NULL) { /* Delete entry from the list for this MFC */
|
|
if (prev != NULL)
|
|
prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/
|
|
else
|
|
x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
|
|
|
|
unschedule_bw_meter(x);
|
|
splx(s);
|
|
/* Free the bw_meter entry */
|
|
free(x, M_BWMETER);
|
|
return 0;
|
|
} else {
|
|
splx(s);
|
|
return EINVAL;
|
|
}
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Perform bandwidth measurement processing that may result in an upcall
|
|
*/
|
|
static void
|
|
bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
|
|
{
|
|
struct timeval delta;
|
|
|
|
delta = *nowp;
|
|
BW_TIMEVALDECR(&delta, &x->bm_start_time);
|
|
|
|
if (x->bm_flags & BW_METER_GEQ) {
|
|
/*
|
|
* Processing for ">=" type of bw_meter entry
|
|
*/
|
|
if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
|
|
/* Reset the bw_meter entry */
|
|
x->bm_start_time = *nowp;
|
|
x->bm_measured.b_packets = 0;
|
|
x->bm_measured.b_bytes = 0;
|
|
x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
|
|
}
|
|
|
|
/* Record that a packet is received */
|
|
x->bm_measured.b_packets++;
|
|
x->bm_measured.b_bytes += plen;
|
|
|
|
/*
|
|
* Test if we should deliver an upcall
|
|
*/
|
|
if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
|
|
if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
|
|
(x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
|
|
((x->bm_flags & BW_METER_UNIT_BYTES) &&
|
|
(x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
|
|
/* Prepare an upcall for delivery */
|
|
bw_meter_prepare_upcall(x, nowp);
|
|
x->bm_flags |= BW_METER_UPCALL_DELIVERED;
|
|
}
|
|
}
|
|
} else if (x->bm_flags & BW_METER_LEQ) {
|
|
/*
|
|
* Processing for "<=" type of bw_meter entry
|
|
*/
|
|
if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
|
|
/*
|
|
* We are behind time with the multicast forwarding table
|
|
* scanning for "<=" type of bw_meter entries, so test now
|
|
* if we should deliver an upcall.
|
|
*/
|
|
if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
|
|
(x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
|
|
((x->bm_flags & BW_METER_UNIT_BYTES) &&
|
|
(x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
|
|
/* Prepare an upcall for delivery */
|
|
bw_meter_prepare_upcall(x, nowp);
|
|
}
|
|
/* Reschedule the bw_meter entry */
|
|
unschedule_bw_meter(x);
|
|
schedule_bw_meter(x, nowp);
|
|
}
|
|
|
|
/* Record that a packet is received */
|
|
x->bm_measured.b_packets++;
|
|
x->bm_measured.b_bytes += plen;
|
|
|
|
/*
|
|
* Test if we should restart the measuring interval
|
|
*/
|
|
if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
|
|
x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
|
|
(x->bm_flags & BW_METER_UNIT_BYTES &&
|
|
x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
|
|
/* Don't restart the measuring interval */
|
|
} else {
|
|
/* Do restart the measuring interval */
|
|
/*
|
|
* XXX: note that we don't unschedule and schedule, because this
|
|
* might be too much overhead per packet. Instead, when we process
|
|
* all entries for a given timer hash bin, we check whether it is
|
|
* really a timeout. If not, we reschedule at that time.
|
|
*/
|
|
x->bm_start_time = *nowp;
|
|
x->bm_measured.b_packets = 0;
|
|
x->bm_measured.b_bytes = 0;
|
|
x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Prepare a bandwidth-related upcall
|
|
*/
|
|
static void
|
|
bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
|
|
{
|
|
struct timeval delta;
|
|
struct bw_upcall *u;
|
|
|
|
/*
|
|
* Compute the measured time interval
|
|
*/
|
|
delta = *nowp;
|
|
BW_TIMEVALDECR(&delta, &x->bm_start_time);
|
|
|
|
/*
|
|
* If there are too many pending upcalls, deliver them now
|
|
*/
|
|
if (bw_upcalls_n >= BW_UPCALLS_MAX)
|
|
bw_upcalls_send();
|
|
|
|
/*
|
|
* Set the bw_upcall entry
|
|
*/
|
|
u = &bw_upcalls[bw_upcalls_n++];
|
|
u->bu_src = x->bm_mfc->mfc_origin;
|
|
u->bu_dst = x->bm_mfc->mfc_mcastgrp;
|
|
u->bu_threshold.b_time = x->bm_threshold.b_time;
|
|
u->bu_threshold.b_packets = x->bm_threshold.b_packets;
|
|
u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
|
|
u->bu_measured.b_time = delta;
|
|
u->bu_measured.b_packets = x->bm_measured.b_packets;
|
|
u->bu_measured.b_bytes = x->bm_measured.b_bytes;
|
|
u->bu_flags = 0;
|
|
if (x->bm_flags & BW_METER_UNIT_PACKETS)
|
|
u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
|
|
if (x->bm_flags & BW_METER_UNIT_BYTES)
|
|
u->bu_flags |= BW_UPCALL_UNIT_BYTES;
|
|
if (x->bm_flags & BW_METER_GEQ)
|
|
u->bu_flags |= BW_UPCALL_GEQ;
|
|
if (x->bm_flags & BW_METER_LEQ)
|
|
u->bu_flags |= BW_UPCALL_LEQ;
|
|
}
|
|
|
|
/*
|
|
* Send the pending bandwidth-related upcalls
|
|
*/
|
|
static void
|
|
bw_upcalls_send(void)
|
|
{
|
|
struct mbuf *m;
|
|
int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
|
|
struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
|
|
static struct igmpmsg igmpmsg = { 0, /* unused1 */
|
|
0, /* unused2 */
|
|
IGMPMSG_BW_UPCALL,/* im_msgtype */
|
|
0, /* im_mbz */
|
|
0, /* im_vif */
|
|
0, /* unused3 */
|
|
{ 0 }, /* im_src */
|
|
{ 0 } }; /* im_dst */
|
|
|
|
if (bw_upcalls_n == 0)
|
|
return; /* No pending upcalls */
|
|
|
|
bw_upcalls_n = 0;
|
|
|
|
/*
|
|
* Allocate a new mbuf, initialize it with the header and
|
|
* the payload for the pending calls.
|
|
*/
|
|
MGETHDR(m, M_DONTWAIT, MT_HEADER);
|
|
if (m == NULL) {
|
|
log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
|
|
return;
|
|
}
|
|
|
|
m->m_len = m->m_pkthdr.len = 0;
|
|
m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
|
|
m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
|
|
|
|
/*
|
|
* Send the upcalls
|
|
* XXX do we need to set the address in k_igmpsrc ?
|
|
*/
|
|
mrtstat.mrts_upcalls++;
|
|
if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
|
|
log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
|
|
++mrtstat.mrts_upq_sockfull;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute the timeout hash value for the bw_meter entries
|
|
*/
|
|
#define BW_METER_TIMEHASH(bw_meter, hash) \
|
|
do { \
|
|
struct timeval next_timeval = (bw_meter)->bm_start_time; \
|
|
\
|
|
BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
|
|
(hash) = next_timeval.tv_sec; \
|
|
if (next_timeval.tv_usec) \
|
|
(hash)++; /* XXX: make sure we don't timeout early */ \
|
|
(hash) %= BW_METER_BUCKETS; \
|
|
} while (/*CONSTCOND*/ 0)
|
|
|
|
/*
|
|
* Schedule a timer to process periodically bw_meter entry of type "<="
|
|
* by linking the entry in the proper hash bucket.
|
|
*/
|
|
static void
|
|
schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
|
|
{
|
|
int time_hash;
|
|
|
|
if (!(x->bm_flags & BW_METER_LEQ))
|
|
return; /* XXX: we schedule timers only for "<=" entries */
|
|
|
|
/*
|
|
* Reset the bw_meter entry
|
|
*/
|
|
x->bm_start_time = *nowp;
|
|
x->bm_measured.b_packets = 0;
|
|
x->bm_measured.b_bytes = 0;
|
|
x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
|
|
|
|
/*
|
|
* Compute the timeout hash value and insert the entry
|
|
*/
|
|
BW_METER_TIMEHASH(x, time_hash);
|
|
x->bm_time_next = bw_meter_timers[time_hash];
|
|
bw_meter_timers[time_hash] = x;
|
|
x->bm_time_hash = time_hash;
|
|
}
|
|
|
|
/*
|
|
* Unschedule the periodic timer that processes bw_meter entry of type "<="
|
|
* by removing the entry from the proper hash bucket.
|
|
*/
|
|
static void
|
|
unschedule_bw_meter(struct bw_meter *x)
|
|
{
|
|
int time_hash;
|
|
struct bw_meter *prev, *tmp;
|
|
|
|
if (!(x->bm_flags & BW_METER_LEQ))
|
|
return; /* XXX: we schedule timers only for "<=" entries */
|
|
|
|
/*
|
|
* Compute the timeout hash value and delete the entry
|
|
*/
|
|
time_hash = x->bm_time_hash;
|
|
if (time_hash >= BW_METER_BUCKETS)
|
|
return; /* Entry was not scheduled */
|
|
|
|
for (prev = NULL, tmp = bw_meter_timers[time_hash];
|
|
tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
|
|
if (tmp == x)
|
|
break;
|
|
|
|
if (tmp == NULL)
|
|
panic("unschedule_bw_meter: bw_meter entry not found");
|
|
|
|
if (prev != NULL)
|
|
prev->bm_time_next = x->bm_time_next;
|
|
else
|
|
bw_meter_timers[time_hash] = x->bm_time_next;
|
|
|
|
x->bm_time_next = NULL;
|
|
x->bm_time_hash = BW_METER_BUCKETS;
|
|
}
|
|
|
|
/*
|
|
* Process all "<=" type of bw_meter that should be processed now,
|
|
* and for each entry prepare an upcall if necessary. Each processed
|
|
* entry is rescheduled again for the (periodic) processing.
|
|
*
|
|
* This is run periodically (once per second normally). On each round,
|
|
* all the potentially matching entries are in the hash slot that we are
|
|
* looking at.
|
|
*/
|
|
static void
|
|
bw_meter_process(void)
|
|
{
|
|
int s;
|
|
static uint32_t last_tv_sec; /* last time we processed this */
|
|
|
|
uint32_t loops;
|
|
int i;
|
|
struct timeval now, process_endtime;
|
|
|
|
microtime(&now);
|
|
if (last_tv_sec == now.tv_sec)
|
|
return; /* nothing to do */
|
|
|
|
loops = now.tv_sec - last_tv_sec;
|
|
last_tv_sec = now.tv_sec;
|
|
if (loops > BW_METER_BUCKETS)
|
|
loops = BW_METER_BUCKETS;
|
|
|
|
s = splsoftnet();
|
|
/*
|
|
* Process all bins of bw_meter entries from the one after the last
|
|
* processed to the current one. On entry, i points to the last bucket
|
|
* visited, so we need to increment i at the beginning of the loop.
|
|
*/
|
|
for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
|
|
struct bw_meter *x, *tmp_list;
|
|
|
|
if (++i >= BW_METER_BUCKETS)
|
|
i = 0;
|
|
|
|
/* Disconnect the list of bw_meter entries from the bin */
|
|
tmp_list = bw_meter_timers[i];
|
|
bw_meter_timers[i] = NULL;
|
|
|
|
/* Process the list of bw_meter entries */
|
|
while (tmp_list != NULL) {
|
|
x = tmp_list;
|
|
tmp_list = tmp_list->bm_time_next;
|
|
|
|
/* Test if the time interval is over */
|
|
process_endtime = x->bm_start_time;
|
|
BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
|
|
if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
|
|
/* Not yet: reschedule, but don't reset */
|
|
int time_hash;
|
|
|
|
BW_METER_TIMEHASH(x, time_hash);
|
|
if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
|
|
/*
|
|
* XXX: somehow the bin processing is a bit ahead of time.
|
|
* Put the entry in the next bin.
|
|
*/
|
|
if (++time_hash >= BW_METER_BUCKETS)
|
|
time_hash = 0;
|
|
}
|
|
x->bm_time_next = bw_meter_timers[time_hash];
|
|
bw_meter_timers[time_hash] = x;
|
|
x->bm_time_hash = time_hash;
|
|
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Test if we should deliver an upcall
|
|
*/
|
|
if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
|
|
(x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
|
|
((x->bm_flags & BW_METER_UNIT_BYTES) &&
|
|
(x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
|
|
/* Prepare an upcall for delivery */
|
|
bw_meter_prepare_upcall(x, &now);
|
|
}
|
|
|
|
/*
|
|
* Reschedule for next processing
|
|
*/
|
|
schedule_bw_meter(x, &now);
|
|
}
|
|
}
|
|
|
|
/* Send all upcalls that are pending delivery */
|
|
bw_upcalls_send();
|
|
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* A periodic function for sending all upcalls that are pending delivery
|
|
*/
|
|
static void
|
|
expire_bw_upcalls_send(void *unused)
|
|
{
|
|
int s;
|
|
|
|
s = splsoftnet();
|
|
bw_upcalls_send();
|
|
splx(s);
|
|
|
|
callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
|
|
expire_bw_upcalls_send, NULL);
|
|
}
|
|
|
|
/*
|
|
* A periodic function for periodic scanning of the multicast forwarding
|
|
* table for processing all "<=" bw_meter entries.
|
|
*/
|
|
static void
|
|
expire_bw_meter_process(void *unused)
|
|
{
|
|
if (mrt_api_config & MRT_MFC_BW_UPCALL)
|
|
bw_meter_process();
|
|
|
|
callout_reset(&bw_meter_ch, BW_METER_PERIOD,
|
|
expire_bw_meter_process, NULL);
|
|
}
|
|
|
|
/*
|
|
* End of bandwidth monitoring code
|
|
*/
|
|
|
|
#ifdef PIM
|
|
/*
|
|
* Send the packet up to the user daemon, or eventually do kernel encapsulation
|
|
*/
|
|
static int
|
|
pim_register_send(struct ip *ip, struct vif *vifp,
|
|
struct mbuf *m, struct mfc *rt)
|
|
{
|
|
struct mbuf *mb_copy, *mm;
|
|
|
|
if (mrtdebug & DEBUG_PIM)
|
|
log(LOG_DEBUG, "pim_register_send: ");
|
|
|
|
mb_copy = pim_register_prepare(ip, m);
|
|
if (mb_copy == NULL)
|
|
return ENOBUFS;
|
|
|
|
/*
|
|
* Send all the fragments. Note that the mbuf for each fragment
|
|
* is freed by the sending machinery.
|
|
*/
|
|
for (mm = mb_copy; mm; mm = mb_copy) {
|
|
mb_copy = mm->m_nextpkt;
|
|
mm->m_nextpkt = NULL;
|
|
mm = m_pullup(mm, sizeof(struct ip));
|
|
if (mm != NULL) {
|
|
ip = mtod(mm, struct ip *);
|
|
if ((mrt_api_config & MRT_MFC_RP) &&
|
|
!in_nullhost(rt->mfc_rp)) {
|
|
pim_register_send_rp(ip, vifp, mm, rt);
|
|
} else {
|
|
pim_register_send_upcall(ip, vifp, mm, rt);
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return a copy of the data packet that is ready for PIM Register
|
|
* encapsulation.
|
|
* XXX: Note that in the returned copy the IP header is a valid one.
|
|
*/
|
|
static struct mbuf *
|
|
pim_register_prepare(struct ip *ip, struct mbuf *m)
|
|
{
|
|
struct mbuf *mb_copy = NULL;
|
|
int mtu;
|
|
|
|
/* Take care of delayed checksums */
|
|
if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
|
|
in_delayed_cksum(m);
|
|
m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
|
|
}
|
|
|
|
/*
|
|
* Copy the old packet & pullup its IP header into the
|
|
* new mbuf so we can modify it.
|
|
*/
|
|
mb_copy = m_copy(m, 0, M_COPYALL);
|
|
if (mb_copy == NULL)
|
|
return NULL;
|
|
mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
|
|
if (mb_copy == NULL)
|
|
return NULL;
|
|
|
|
/* take care of the TTL */
|
|
ip = mtod(mb_copy, struct ip *);
|
|
--ip->ip_ttl;
|
|
|
|
/* Compute the MTU after the PIM Register encapsulation */
|
|
mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
|
|
|
|
if (ntohs(ip->ip_len) <= mtu) {
|
|
/* Turn the IP header into a valid one */
|
|
ip->ip_sum = 0;
|
|
ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
|
|
} else {
|
|
/* Fragment the packet */
|
|
if (ip_fragment(mb_copy, NULL, mtu) != 0) {
|
|
/* XXX: mb_copy was freed by ip_fragment() */
|
|
return NULL;
|
|
}
|
|
}
|
|
return mb_copy;
|
|
}
|
|
|
|
/*
|
|
* Send an upcall with the data packet to the user-level process.
|
|
*/
|
|
static int
|
|
pim_register_send_upcall(struct ip *ip, struct vif *vifp,
|
|
struct mbuf *mb_copy, struct mfc *rt)
|
|
{
|
|
struct mbuf *mb_first;
|
|
int len = ntohs(ip->ip_len);
|
|
struct igmpmsg *im;
|
|
struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
|
|
|
|
/*
|
|
* Add a new mbuf with an upcall header
|
|
*/
|
|
MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
|
|
if (mb_first == NULL) {
|
|
m_freem(mb_copy);
|
|
return ENOBUFS;
|
|
}
|
|
mb_first->m_data += max_linkhdr;
|
|
mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
|
|
mb_first->m_len = sizeof(struct igmpmsg);
|
|
mb_first->m_next = mb_copy;
|
|
|
|
/* Send message to routing daemon */
|
|
im = mtod(mb_first, struct igmpmsg *);
|
|
im->im_msgtype = IGMPMSG_WHOLEPKT;
|
|
im->im_mbz = 0;
|
|
im->im_vif = vifp - viftable;
|
|
im->im_src = ip->ip_src;
|
|
im->im_dst = ip->ip_dst;
|
|
|
|
k_igmpsrc.sin_addr = ip->ip_src;
|
|
|
|
mrtstat.mrts_upcalls++;
|
|
|
|
if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
|
|
if (mrtdebug & DEBUG_PIM)
|
|
log(LOG_WARNING,
|
|
"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
|
|
++mrtstat.mrts_upq_sockfull;
|
|
return ENOBUFS;
|
|
}
|
|
|
|
/* Keep statistics */
|
|
pimstat.pims_snd_registers_msgs++;
|
|
pimstat.pims_snd_registers_bytes += len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Encapsulate the data packet in PIM Register message and send it to the RP.
|
|
*/
|
|
static int
|
|
pim_register_send_rp(struct ip *ip, struct vif *vifp,
|
|
struct mbuf *mb_copy, struct mfc *rt)
|
|
{
|
|
struct mbuf *mb_first;
|
|
struct ip *ip_outer;
|
|
struct pim_encap_pimhdr *pimhdr;
|
|
int len = ntohs(ip->ip_len);
|
|
vifi_t vifi = rt->mfc_parent;
|
|
|
|
if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
|
|
m_freem(mb_copy);
|
|
return EADDRNOTAVAIL; /* The iif vif is invalid */
|
|
}
|
|
|
|
/*
|
|
* Add a new mbuf with the encapsulating header
|
|
*/
|
|
MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
|
|
if (mb_first == NULL) {
|
|
m_freem(mb_copy);
|
|
return ENOBUFS;
|
|
}
|
|
mb_first->m_data += max_linkhdr;
|
|
mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
|
|
mb_first->m_next = mb_copy;
|
|
|
|
mb_first->m_pkthdr.len = len + mb_first->m_len;
|
|
|
|
/*
|
|
* Fill in the encapsulating IP and PIM header
|
|
*/
|
|
ip_outer = mtod(mb_first, struct ip *);
|
|
*ip_outer = pim_encap_iphdr;
|
|
ip_outer->ip_id = ip_newid();
|
|
ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
|
|
sizeof(pim_encap_pimhdr));
|
|
ip_outer->ip_src = viftable[vifi].v_lcl_addr;
|
|
ip_outer->ip_dst = rt->mfc_rp;
|
|
/*
|
|
* Copy the inner header TOS to the outer header, and take care of the
|
|
* IP_DF bit.
|
|
*/
|
|
ip_outer->ip_tos = ip->ip_tos;
|
|
if (ntohs(ip->ip_off) & IP_DF)
|
|
ip_outer->ip_off |= IP_DF;
|
|
pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
|
|
+ sizeof(pim_encap_iphdr));
|
|
*pimhdr = pim_encap_pimhdr;
|
|
/* If the iif crosses a border, set the Border-bit */
|
|
if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
|
|
pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
|
|
|
|
mb_first->m_data += sizeof(pim_encap_iphdr);
|
|
pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
|
|
mb_first->m_data -= sizeof(pim_encap_iphdr);
|
|
|
|
if (vifp->v_rate_limit == 0)
|
|
tbf_send_packet(vifp, mb_first);
|
|
else
|
|
tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len));
|
|
|
|
/* Keep statistics */
|
|
pimstat.pims_snd_registers_msgs++;
|
|
pimstat.pims_snd_registers_bytes += len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* PIM-SMv2 and PIM-DM messages processing.
|
|
* Receives and verifies the PIM control messages, and passes them
|
|
* up to the listening socket, using rip_input().
|
|
* The only message with special processing is the PIM_REGISTER message
|
|
* (used by PIM-SM): the PIM header is stripped off, and the inner packet
|
|
* is passed to if_simloop().
|
|
*/
|
|
void
|
|
pim_input(struct mbuf *m, ...)
|
|
{
|
|
struct ip *ip = mtod(m, struct ip *);
|
|
struct pim *pim;
|
|
int minlen;
|
|
int datalen;
|
|
int ip_tos;
|
|
int proto;
|
|
int iphlen;
|
|
va_list ap;
|
|
|
|
va_start(ap, m);
|
|
iphlen = va_arg(ap, int);
|
|
proto = va_arg(ap, int);
|
|
va_end(ap);
|
|
|
|
datalen = ntohs(ip->ip_len) - iphlen;
|
|
|
|
/* Keep statistics */
|
|
pimstat.pims_rcv_total_msgs++;
|
|
pimstat.pims_rcv_total_bytes += datalen;
|
|
|
|
/*
|
|
* Validate lengths
|
|
*/
|
|
if (datalen < PIM_MINLEN) {
|
|
pimstat.pims_rcv_tooshort++;
|
|
log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
|
|
datalen, (u_long)ip->ip_src.s_addr);
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the packet is at least as big as a REGISTER, go agead
|
|
* and grab the PIM REGISTER header size, to avoid another
|
|
* possible m_pullup() later.
|
|
*
|
|
* PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8
|
|
* PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
|
|
*/
|
|
minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
|
|
/*
|
|
* Get the IP and PIM headers in contiguous memory, and
|
|
* possibly the PIM REGISTER header.
|
|
*/
|
|
if ((m->m_flags & M_EXT || m->m_len < minlen) &&
|
|
(m = m_pullup(m, minlen)) == NULL) {
|
|
log(LOG_ERR, "pim_input: m_pullup failure\n");
|
|
return;
|
|
}
|
|
/* m_pullup() may have given us a new mbuf so reset ip. */
|
|
ip = mtod(m, struct ip *);
|
|
ip_tos = ip->ip_tos;
|
|
|
|
/* adjust mbuf to point to the PIM header */
|
|
m->m_data += iphlen;
|
|
m->m_len -= iphlen;
|
|
pim = mtod(m, struct pim *);
|
|
|
|
/*
|
|
* Validate checksum. If PIM REGISTER, exclude the data packet.
|
|
*
|
|
* XXX: some older PIMv2 implementations don't make this distinction,
|
|
* so for compatibility reason perform the checksum over part of the
|
|
* message, and if error, then over the whole message.
|
|
*/
|
|
if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
|
|
/* do nothing, checksum okay */
|
|
} else if (in_cksum(m, datalen)) {
|
|
pimstat.pims_rcv_badsum++;
|
|
if (mrtdebug & DEBUG_PIM)
|
|
log(LOG_DEBUG, "pim_input: invalid checksum");
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
/* PIM version check */
|
|
if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
|
|
pimstat.pims_rcv_badversion++;
|
|
log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
|
|
PIM_VT_V(pim->pim_vt), PIM_VERSION);
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
/* restore mbuf back to the outer IP */
|
|
m->m_data -= iphlen;
|
|
m->m_len += iphlen;
|
|
|
|
if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
|
|
/*
|
|
* Since this is a REGISTER, we'll make a copy of the register
|
|
* headers ip + pim + u_int32 + encap_ip, to be passed up to the
|
|
* routing daemon.
|
|
*/
|
|
int s;
|
|
struct sockaddr_in dst = { sizeof(dst), AF_INET };
|
|
struct mbuf *mcp;
|
|
struct ip *encap_ip;
|
|
u_int32_t *reghdr;
|
|
struct ifnet *vifp;
|
|
|
|
s = splsoftnet();
|
|
if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
|
|
splx(s);
|
|
if (mrtdebug & DEBUG_PIM)
|
|
log(LOG_DEBUG,
|
|
"pim_input: register vif not set: %d\n", reg_vif_num);
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
/* XXX need refcnt? */
|
|
vifp = viftable[reg_vif_num].v_ifp;
|
|
splx(s);
|
|
|
|
/*
|
|
* Validate length
|
|
*/
|
|
if (datalen < PIM_REG_MINLEN) {
|
|
pimstat.pims_rcv_tooshort++;
|
|
pimstat.pims_rcv_badregisters++;
|
|
log(LOG_ERR,
|
|
"pim_input: register packet size too small %d from %lx\n",
|
|
datalen, (u_long)ip->ip_src.s_addr);
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
reghdr = (u_int32_t *)(pim + 1);
|
|
encap_ip = (struct ip *)(reghdr + 1);
|
|
|
|
if (mrtdebug & DEBUG_PIM) {
|
|
log(LOG_DEBUG,
|
|
"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
|
|
(u_long)ntohl(encap_ip->ip_src.s_addr),
|
|
(u_long)ntohl(encap_ip->ip_dst.s_addr),
|
|
ntohs(encap_ip->ip_len));
|
|
}
|
|
|
|
/* verify the version number of the inner packet */
|
|
if (encap_ip->ip_v != IPVERSION) {
|
|
pimstat.pims_rcv_badregisters++;
|
|
if (mrtdebug & DEBUG_PIM) {
|
|
log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
|
|
"of the inner packet\n", encap_ip->ip_v);
|
|
}
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
/* verify the inner packet is destined to a mcast group */
|
|
if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) {
|
|
pimstat.pims_rcv_badregisters++;
|
|
if (mrtdebug & DEBUG_PIM)
|
|
log(LOG_DEBUG,
|
|
"pim_input: inner packet of register is not "
|
|
"multicast %lx\n",
|
|
(u_long)ntohl(encap_ip->ip_dst.s_addr));
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
/* If a NULL_REGISTER, pass it to the daemon */
|
|
if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
|
|
goto pim_input_to_daemon;
|
|
|
|
/*
|
|
* Copy the TOS from the outer IP header to the inner IP header.
|
|
*/
|
|
if (encap_ip->ip_tos != ip_tos) {
|
|
/* Outer TOS -> inner TOS */
|
|
encap_ip->ip_tos = ip_tos;
|
|
/* Recompute the inner header checksum. Sigh... */
|
|
|
|
/* adjust mbuf to point to the inner IP header */
|
|
m->m_data += (iphlen + PIM_MINLEN);
|
|
m->m_len -= (iphlen + PIM_MINLEN);
|
|
|
|
encap_ip->ip_sum = 0;
|
|
encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
|
|
|
|
/* restore mbuf to point back to the outer IP header */
|
|
m->m_data -= (iphlen + PIM_MINLEN);
|
|
m->m_len += (iphlen + PIM_MINLEN);
|
|
}
|
|
|
|
/*
|
|
* Decapsulate the inner IP packet and loopback to forward it
|
|
* as a normal multicast packet. Also, make a copy of the
|
|
* outer_iphdr + pimhdr + reghdr + encap_iphdr
|
|
* to pass to the daemon later, so it can take the appropriate
|
|
* actions (e.g., send back PIM_REGISTER_STOP).
|
|
* XXX: here m->m_data points to the outer IP header.
|
|
*/
|
|
mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
|
|
if (mcp == NULL) {
|
|
log(LOG_ERR,
|
|
"pim_input: pim register: could not copy register head\n");
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
/* Keep statistics */
|
|
/* XXX: registers_bytes include only the encap. mcast pkt */
|
|
pimstat.pims_rcv_registers_msgs++;
|
|
pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
|
|
|
|
/*
|
|
* forward the inner ip packet; point m_data at the inner ip.
|
|
*/
|
|
m_adj(m, iphlen + PIM_MINLEN);
|
|
|
|
if (mrtdebug & DEBUG_PIM) {
|
|
log(LOG_DEBUG,
|
|
"pim_input: forwarding decapsulated register: "
|
|
"src %lx, dst %lx, vif %d\n",
|
|
(u_long)ntohl(encap_ip->ip_src.s_addr),
|
|
(u_long)ntohl(encap_ip->ip_dst.s_addr),
|
|
reg_vif_num);
|
|
}
|
|
/* NB: vifp was collected above; can it change on us? */
|
|
looutput(vifp, m, (struct sockaddr *)&dst, (struct rtentry *)NULL);
|
|
|
|
/* prepare the register head to send to the mrouting daemon */
|
|
m = mcp;
|
|
}
|
|
|
|
pim_input_to_daemon:
|
|
/*
|
|
* Pass the PIM message up to the daemon; if it is a Register message,
|
|
* pass the 'head' only up to the daemon. This includes the
|
|
* outer IP header, PIM header, PIM-Register header and the
|
|
* inner IP header.
|
|
* XXX: the outer IP header pkt size of a Register is not adjust to
|
|
* reflect the fact that the inner multicast data is truncated.
|
|
*/
|
|
rip_input(m, iphlen, proto);
|
|
|
|
return;
|
|
}
|
|
#endif /* PIM */
|