NetBSD/sys/compat/linux/arch/amd64/linux_machdep.c

633 lines
17 KiB
C

/* $NetBSD: linux_machdep.c,v 1.11 2005/11/05 00:47:26 manu Exp $ */
/*-
* Copyright (c) 2005 Emmanuel Dreyfus, all rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Emmanuel Dreyfus
* 4. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE THE AUTHOR AND CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: linux_machdep.c,v 1.11 2005/11/05 00:47:26 manu Exp $");
#include <sys/param.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/signal.h>
#include <sys/exec.h>
#include <sys/proc.h>
#include <sys/ptrace.h> /* for process_read_fpregs() */
#include <sys/user.h>
#include <sys/wait.h>
#include <sys/ucontext.h>
#include <machine/reg.h>
#include <machine/pcb.h>
#include <machine/fpu.h>
#include <machine/mcontext.h>
#include <machine/specialreg.h>
#include <machine/vmparam.h>
#include <compat/linux/common/linux_signal.h>
#include <compat/linux/common/linux_errno.h>
#include <compat/linux/common/linux_exec.h>
#include <compat/linux/common/linux_ioctl.h>
#include <compat/linux/common/linux_prctl.h>
#include <compat/linux/common/linux_machdep.h>
#include <compat/linux/linux_syscall.h>
#include <compat/linux/linux_syscallargs.h>
static void linux_buildcontext(struct lwp *, void *, void *);
void
linux_setregs(l, epp, stack)
struct lwp *l;
struct exec_package *epp;
u_long stack;
{
struct pcb *pcb = &l->l_addr->u_pcb;
struct trapframe *tf;
/* If we were using the FPU, forget about it. */
if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
fpusave_lwp(l, 0);
l->l_md.md_flags &= ~MDP_USEDFPU;
pcb->pcb_flags = 0;
pcb->pcb_savefpu.fp_fxsave.fx_fcw = __NetBSD_NPXCW__;
pcb->pcb_savefpu.fp_fxsave.fx_mxcsr = __INITIAL_MXCSR__;
pcb->pcb_savefpu.fp_fxsave.fx_mxcsr_mask = __INITIAL_MXCSR_MASK__;
pcb->pcb_fs = 0;
pcb->pcb_gs = 0;
l->l_proc->p_flag &= ~P_32;
tf = l->l_md.md_regs;
tf->tf_rax = 0;
tf->tf_rbx = 0;
tf->tf_rcx = epp->ep_entry;
tf->tf_rdx = 0;
tf->tf_rsi = 0;
tf->tf_rdi = 0;
tf->tf_rbp = 0;
tf->tf_rsp = stack;
tf->tf_r8 = 0;
tf->tf_r9 = 0;
tf->tf_r10 = 0;
tf->tf_r11 = 0;
tf->tf_r12 = 0;
tf->tf_r13 = 0;
tf->tf_r14 = 0;
tf->tf_r15 = 0;
tf->tf_rip = epp->ep_entry;
tf->tf_rflags = PSL_USERSET;
tf->tf_cs = GSEL(GUCODE_SEL, SEL_UPL);
tf->tf_ss = GSEL(GUDATA_SEL, SEL_UPL);
tf->tf_ds = 0;
tf->tf_es = 0;
tf->tf_fs = 0;
tf->tf_gs = 0;
return;
}
void
linux_sendsig(ksi, mask)
const ksiginfo_t *ksi;
const sigset_t *mask;
{
struct lwp *l = curlwp;
struct proc *p = l->l_proc;
struct sigacts *ps = p->p_sigacts;
int onstack;
int sig = ksi->ksi_signo;
struct linux_rt_sigframe *sfp, sigframe;
struct linux__fpstate *fpsp, fpstate;
struct fpreg fpregs;
struct trapframe *tf = l->l_md.md_regs;
sig_t catcher = SIGACTION(p, sig).sa_handler;
linux_sigset_t lmask;
char *sp;
int error;
/* Do we need to jump onto the signal stack? */
onstack =
(p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
(SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
/* Allocate space for the signal handler context. */
if (onstack)
sp = ((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
p->p_sigctx.ps_sigstk.ss_size);
else
sp = (caddr_t)tf->tf_rsp - 128;
/*
* Save FPU state, if any
*/
if (l->l_md.md_flags & MDP_USEDFPU) {
sp = (char *)
(((long)sp - sizeof(struct linux__fpstate)) & ~0xfUL);
fpsp = (struct linux__fpstate *)sp;
(void)process_read_fpregs(l, &fpregs);
bzero(&fpstate, sizeof(fpstate));
fpstate.cwd = fpregs.fp_fcw;
fpstate.swd = fpregs.fp_fsw;
fpstate.twd = fpregs.fp_ftw;
fpstate.fop = fpregs.fp_fop;
fpstate.rip = fpregs.fp_rip;
fpstate.rdp = fpregs.fp_rdp;
fpstate.mxcsr = fpregs.fp_mxcsr;
fpstate.mxcsr_mask = fpregs.fp_mxcsr_mask;
memcpy(&fpstate.st_space, &fpregs.fp_st,
sizeof(fpstate.st_space));
memcpy(&fpstate.xmm_space, &fpregs.fp_xmm,
sizeof(fpstate.xmm_space));
if ((error = copyout(&fpstate, fpsp, sizeof(fpstate))) != 0) {
sigexit(l, SIGILL);
return;
}
} else {
fpsp = NULL;
}
/*
* Populate the rt_sigframe
*/
sp = (char *)
((((long)sp - sizeof(struct linux_rt_sigframe)) & ~0xfUL) - 8);
sfp = (struct linux_rt_sigframe *)sp;
bzero(&sigframe, sizeof(sigframe));
if (ps->sa_sigdesc[sig].sd_vers != 0)
sigframe.pretcode =
(char *)(u_long)ps->sa_sigdesc[sig].sd_tramp;
else
sigframe.pretcode = NULL;
/*
* The user context
*/
sigframe.uc.luc_flags = 0;
sigframe.uc.luc_link = NULL;
/* This is used regardless of SA_ONSTACK in Linux */
sigframe.uc.luc_stack.ss_sp = p->p_sigctx.ps_sigstk.ss_sp;
sigframe.uc.luc_stack.ss_size = p->p_sigctx.ps_sigstk.ss_size;
sigframe.uc.luc_stack.ss_flags = 0;
if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
sigframe.uc.luc_stack.ss_flags |= LINUX_SS_ONSTACK;
if (p->p_sigctx.ps_sigstk.ss_flags & SS_DISABLE)
sigframe.uc.luc_stack.ss_flags |= LINUX_SS_DISABLE;
sigframe.uc.luc_mcontext.r8 = tf->tf_r8;
sigframe.uc.luc_mcontext.r9 = tf->tf_r9;
sigframe.uc.luc_mcontext.r10 = tf->tf_r10;
sigframe.uc.luc_mcontext.r11 = tf->tf_r11;
sigframe.uc.luc_mcontext.r12 = tf->tf_r12;
sigframe.uc.luc_mcontext.r13 = tf->tf_r13;
sigframe.uc.luc_mcontext.r14 = tf->tf_r14;
sigframe.uc.luc_mcontext.r15 = tf->tf_r15;
sigframe.uc.luc_mcontext.rdi = tf->tf_rdi;
sigframe.uc.luc_mcontext.rsi = tf->tf_rsi;
sigframe.uc.luc_mcontext.rbp = tf->tf_rbp;
sigframe.uc.luc_mcontext.rbx = tf->tf_rbx;
sigframe.uc.luc_mcontext.rdx = tf->tf_rdx;
sigframe.uc.luc_mcontext.rcx = tf->tf_rcx;
sigframe.uc.luc_mcontext.rsp = tf->tf_rsp;
sigframe.uc.luc_mcontext.rip = tf->tf_rip;
sigframe.uc.luc_mcontext.eflags = tf->tf_rflags;
sigframe.uc.luc_mcontext.cs = tf->tf_cs;
sigframe.uc.luc_mcontext.gs = tf->tf_gs;
sigframe.uc.luc_mcontext.fs = tf->tf_fs;
sigframe.uc.luc_mcontext.err = tf->tf_err;
sigframe.uc.luc_mcontext.trapno = tf->tf_trapno;
native_to_linux_sigset(&lmask, mask);
sigframe.uc.luc_mcontext.oldmask = lmask.sig[0];
sigframe.uc.luc_mcontext.cr2 = (long)l->l_addr->u_pcb.pcb_onfault;
sigframe.uc.luc_mcontext.fpstate = fpsp;
native_to_linux_sigset(&sigframe.uc.luc_sigmask, mask);
/*
* the siginfo structure
*/
sigframe.info.lsi_signo = native_to_linux_signo[sig];
sigframe.info.lsi_errno = native_to_linux_errno[ksi->ksi_errno];
sigframe.info.lsi_code = ksi->ksi_code;
/* XXX This is a rought conversion, taken from i386 code */
switch (sigframe.info.lsi_signo) {
case LINUX_SIGILL:
case LINUX_SIGFPE:
case LINUX_SIGSEGV:
case LINUX_SIGBUS:
case LINUX_SIGTRAP:
sigframe.info._sifields._sigfault._addr = ksi->ksi_addr;
break;
case LINUX_SIGCHLD:
sigframe.info._sifields._sigchld._pid = ksi->ksi_pid;
sigframe.info._sifields._sigchld._uid = ksi->ksi_uid;
sigframe.info._sifields._sigchld._utime = ksi->ksi_utime;
sigframe.info._sifields._sigchld._stime = ksi->ksi_stime;
if (WCOREDUMP(ksi->ksi_status)) {
sigframe.info.lsi_code = LINUX_CLD_DUMPED;
sigframe.info._sifields._sigchld._status =
_WSTATUS(ksi->ksi_status);
} else if (_WSTATUS(ksi->ksi_status)) {
sigframe.info.lsi_code = LINUX_CLD_KILLED;
sigframe.info._sifields._sigchld._status =
_WSTATUS(ksi->ksi_status);
} else {
sigframe.info.lsi_code = LINUX_CLD_EXITED;
sigframe.info._sifields._sigchld._status =
((ksi->ksi_status & 0xff00U) >> 8);
}
break;
case LINUX_SIGIO:
sigframe.info._sifields._sigpoll._band = ksi->ksi_band;
sigframe.info._sifields._sigpoll._fd = ksi->ksi_fd;
break;
default:
sigframe.info._sifields._sigchld._pid = ksi->ksi_pid;
sigframe.info._sifields._sigchld._uid = ksi->ksi_uid;
if ((sigframe.info.lsi_signo == LINUX_SIGALRM) ||
(sigframe.info.lsi_signo >= LINUX_SIGRTMIN))
sigframe.info._sifields._timer._sigval.sival_ptr =
ksi->ksi_sigval.sival_ptr;
break;
}
if ((error = copyout(&sigframe, sp, sizeof(sigframe))) != 0) {
sigexit(l, SIGILL);
return;
}
linux_buildcontext(l, catcher, sp);
tf->tf_rdi = sigframe.info.lsi_signo;
tf->tf_rax = 0;
tf->tf_rsi = (long)&sfp->info;
tf->tf_rdx = (long)&sfp->uc;
/*
* Remember we use signal stack
*/
if (onstack)
p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
return;
}
int
linux_sys_modify_ldt(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
return 0;
}
int
linux_sys_iopl(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
return 0;
}
int
linux_sys_ioperm(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
return 0;
}
dev_t
linux_fakedev(dev, raw)
dev_t dev;
int raw;
{
return 0;
}
int
linux_machdepioctl(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
return 0;
}
int
linux_sys_rt_sigreturn(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct linux_ucontext *luctx;
struct trapframe *tf = l->l_md.md_regs;
struct linux_sigcontext *lsigctx;
struct linux__fpstate fpstate;
struct linux_rt_sigframe frame, *fp;
ucontext_t uctx;
mcontext_t *mctx;
struct fxsave64 *fxsave;
int error;
fp = (struct linux_rt_sigframe *)(tf->tf_rsp - 8);
if ((error = copyin(fp, &frame, sizeof(frame))) != 0) {
sigexit(l, SIGILL);
return error;
}
luctx = &frame.uc;
lsigctx = &luctx->luc_mcontext;
bzero(&uctx, sizeof(uctx));
mctx = (mcontext_t *)&uctx.uc_mcontext;
fxsave = (struct fxsave64 *)&mctx->__fpregs;
/*
* Set the flags. Linux always have CPU, stack and signal state,
* FPU is optional. uc_flags is not used to tell what we have.
*/
uctx.uc_flags = (_UC_SIGMASK|_UC_CPU|_UC_STACK|_UC_CLRSTACK);
if (lsigctx->fpstate != NULL)
uctx.uc_flags |= _UC_FPU;
uctx.uc_link = NULL;
/*
* Signal set
*/
linux_to_native_sigset(&uctx.uc_sigmask, &luctx->luc_sigmask);
/*
* CPU state
*/
mctx->__gregs[_REG_R8] = lsigctx->r8;
mctx->__gregs[_REG_R9] = lsigctx->r9;
mctx->__gregs[_REG_R10] = lsigctx->r10;
mctx->__gregs[_REG_R11] = lsigctx->r11;
mctx->__gregs[_REG_R12] = lsigctx->r12;
mctx->__gregs[_REG_R13] = lsigctx->r13;
mctx->__gregs[_REG_R14] = lsigctx->r14;
mctx->__gregs[_REG_R15] = lsigctx->r15;
mctx->__gregs[_REG_RDI] = lsigctx->rdi;
mctx->__gregs[_REG_RSI] = lsigctx->rsi;
mctx->__gregs[_REG_RBP] = lsigctx->rbp;
mctx->__gregs[_REG_RBX] = lsigctx->rbx;
mctx->__gregs[_REG_RAX] = tf->tf_rax;
mctx->__gregs[_REG_RDX] = lsigctx->rdx;
mctx->__gregs[_REG_RCX] = lsigctx->rcx;
mctx->__gregs[_REG_RIP] = lsigctx->rip;
mctx->__gregs[_REG_RFL] = lsigctx->eflags;
mctx->__gregs[_REG_CS] = lsigctx->cs;
mctx->__gregs[_REG_GS] = lsigctx->gs;
mctx->__gregs[_REG_FS] = lsigctx->fs;
mctx->__gregs[_REG_ERR] = lsigctx->err;
mctx->__gregs[_REG_TRAPNO] = lsigctx->trapno;
mctx->__gregs[_REG_ES] = tf->tf_es;
mctx->__gregs[_REG_DS] = tf->tf_ds;
mctx->__gregs[_REG_URSP] = lsigctx->rsp; /* XXX */
mctx->__gregs[_REG_SS] = tf->tf_ss;
/*
* FPU state
*/
if (lsigctx->fpstate != NULL) {
error = copyin(lsigctx->fpstate, &fpstate, sizeof(fpstate));
if (error != 0) {
sigexit(l, SIGILL);
return error;
}
fxsave->fx_fcw = fpstate.cwd;
fxsave->fx_fsw = fpstate.swd;
fxsave->fx_ftw = fpstate.twd;
fxsave->fx_fop = fpstate.fop;
fxsave->fx_rip = fpstate.rip;
fxsave->fx_rdp = fpstate.rdp;
fxsave->fx_mxcsr = fpstate.mxcsr;
fxsave->fx_mxcsr_mask = fpstate.mxcsr_mask;
memcpy(&fxsave->fx_st, &fpstate.st_space,
sizeof(fxsave->fx_st));
memcpy(&fxsave->fx_xmm, &fpstate.xmm_space,
sizeof(fxsave->fx_xmm));
}
/*
* And the stack
*/
uctx.uc_stack.ss_flags = 0;
if (luctx->luc_stack.ss_flags & LINUX_SS_ONSTACK);
uctx.uc_stack.ss_flags = SS_ONSTACK;
if (luctx->luc_stack.ss_flags & LINUX_SS_DISABLE);
uctx.uc_stack.ss_flags = SS_DISABLE;
uctx.uc_stack.ss_sp = luctx->luc_stack.ss_sp;
uctx.uc_stack.ss_size = luctx->luc_stack.ss_size;
/*
* And let setucontext deal with that.
*/
return setucontext(l, &uctx);
}
int
linux_sys_arch_prctl(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct linux_sys_arch_prctl_args /* {
syscallarg(int) code;
syscallarg(unsigned long) addr;
} */ *uap = v;
struct pcb *pcb = &l->l_addr->u_pcb;
struct trapframe *tf = l->l_md.md_regs;
int error;
uint64_t taddr;
switch(SCARG(uap, code)) {
case LINUX_ARCH_SET_GS:
taddr = SCARG(uap, addr);
if (taddr >= VM_MAXUSER_ADDRESS)
return EINVAL;
pcb->pcb_gs = taddr;
pcb->pcb_flags |= PCB_GS64;
if (l == curlwp)
wrmsr(MSR_KERNELGSBASE, taddr);
break;
case LINUX_ARCH_GET_GS:
if (pcb->pcb_flags & PCB_GS64)
taddr = pcb->pcb_gs;
else {
error = memseg_baseaddr(l, tf->tf_fs, NULL, 0, &taddr);
if (error != 0)
return error;
}
error = copyout(&taddr, (char *)SCARG(uap, addr), 8);
if (error != 0)
return error;
break;
case LINUX_ARCH_SET_FS:
taddr = SCARG(uap, addr);
if (taddr >= VM_MAXUSER_ADDRESS)
return EINVAL;
pcb->pcb_fs = taddr;
pcb->pcb_flags |= PCB_FS64;
if (l == curlwp)
wrmsr(MSR_FSBASE, taddr);
break;
case LINUX_ARCH_GET_FS:
if (pcb->pcb_flags & PCB_FS64)
taddr = pcb->pcb_fs;
else {
error = memseg_baseaddr(l, tf->tf_fs, NULL, 0, &taddr);
if (error != 0)
return error;
}
error = copyout(&taddr, (char *)SCARG(uap, addr), 8);
if (error != 0)
return error;
break;
default:
#ifdef DEBUG_LINUX
printf("linux_sys_arch_prctl: unexpected code %d\n",
SCARG(uap, code));
#endif
return EINVAL;
}
return 0;
}
const int linux_vsyscall_to_syscall[] = {
LINUX_SYS_gettimeofday,
LINUX_SYS_time,
LINUX_SYS_nosys,
LINUX_SYS_nosys,
};
int
linux_usertrap(struct lwp *l, vaddr_t trapaddr, void *arg)
{
struct trapframe *tf = arg;
uint64_t retaddr;
int vsyscallnr;
/*
* Check for a vsyscall. %rip must be the fault address,
* and the address must be in the Linux vsyscall area.
* Also, vsyscalls are only done at 1024-byte boundaries.
*/
if (__predict_true(trapaddr < LINUX_VSYSCALL_START))
return 0;
if (trapaddr != tf->tf_rip)
return 0;
if ((tf->tf_rip & (LINUX_VSYSCALL_SIZE - 1)) != 0)
return 0;
vsyscallnr = (tf->tf_rip - LINUX_VSYSCALL_START) / LINUX_VSYSCALL_SIZE;
if (vsyscallnr > LINUX_VSYSCALL_MAXNR)
return 0;
/*
* Get the return address from the top of the stack,
* and fix up the return address.
* This assumes the faulting instruction was callq *reg,
* which is the only way that vsyscalls are ever entered.
*/
if (copyin((void *)tf->tf_rsp, &retaddr, sizeof retaddr) != 0)
return 0;
tf->tf_rip = retaddr;
tf->tf_rax = linux_vsyscall_to_syscall[vsyscallnr];
tf->tf_rsp += 8; /* "pop" the return address */
#if 0
printf("usertrap: rip %p rsp %p retaddr %p vsys %d sys %d\n",
(void *)tf->tf_rip, (void *)tf->tf_rsp, (void *)retaddr,
vsyscallnr, (int)tf->tf_rax);
#endif
(*l->l_proc->p_md.md_syscall)(tf);
return 1;
}
static void
linux_buildcontext(struct lwp *l, void *catcher, void *f)
{
struct trapframe *tf = l->l_md.md_regs;
tf->tf_ds = GSEL(GUDATA_SEL, SEL_UPL);
tf->tf_rip = (u_int64_t)catcher;
tf->tf_cs = GSEL(GUCODE_SEL, SEL_UPL);
tf->tf_rflags &= ~(PSL_T|PSL_VM|PSL_AC);
tf->tf_rsp = (u_int64_t)f;
tf->tf_ss = GSEL(GUDATA_SEL, SEL_UPL);
}
unsigned long
linux_get_newtls(l)
struct lwp *l;
{
struct trapframe *tf = l->l_md.md_regs;
return tf->tf_r8;
}
int
linux_set_newtls(l, tls)
struct lwp *l;
unsigned long tls;
{
struct linux_sys_arch_prctl_args cup;
register_t retval;
SCARG(&cup, code) = LINUX_ARCH_SET_FS;
SCARG(&cup, addr) = tls;
return linux_sys_arch_prctl(l, &cup, &retval);
}