NetBSD/sys/arch/sparc/dev/tctrl.c

986 lines
25 KiB
C

/* $NetBSD: tctrl.c,v 1.5 1999/12/17 00:32:25 garbled Exp $ */
/*-
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Matt Thomas.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ioctl.h>
#include <sys/select.h>
#include <sys/tty.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/uio.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <sys/types.h>
#include <sys/device.h>
#include <sys/envsys.h>
#include <sys/poll.h>
#include <machine/apmvar.h>
#include <machine/autoconf.h>
#include <machine/cpu.h>
#include <machine/bus.h>
#include <machine/tctrl.h>
#include <sparc/dev/ts102reg.h>
#include <sparc/dev/tctrlvar.h>
cdev_decl(tctrl);
extern struct cfdriver tctrl_cd;
static const char *tctrl_ext_statuses[16] = {
"main power available",
"internal battery attached",
"external battery attached",
"external VGA attached",
"external keyboard attached",
"external mouse attached",
"lid down",
"internal battery charging",
"external battery charging",
"internal battery discharging",
"external battery discharging",
};
struct tctrl_softc {
struct device sc_dev;
bus_space_tag_t sc_memt;
bus_space_handle_t sc_memh;
unsigned int sc_junk;
unsigned int sc_ext_status;
unsigned int sc_flags;
#define TCTRL_SEND_REQUEST 0x0001
#define TCTRL_APM_CTLOPEN 0x0002
unsigned int sc_wantdata;
enum { TCTRL_IDLE, TCTRL_ARGS,
TCTRL_ACK, TCTRL_DATA } sc_state;
u_int8_t sc_cmdbuf[16];
u_int8_t sc_rspbuf[16];
u_int8_t sc_bitport;
u_int8_t sc_tft_on;
u_int8_t sc_op;
u_int8_t sc_cmdoff;
u_int8_t sc_cmdlen;
u_int8_t sc_rspoff;
u_int8_t sc_rsplen;
/* APM stuff */
#define APM_NEVENTS 16
struct apm_event_info sc_event_list[APM_NEVENTS];
int sc_event_count;
int sc_event_ptr;
struct selinfo sc_rsel;
/* ENVSYS stuff */
#define ENVSYS_NUMSENSORS 3
struct envsys_sensor sc_esensors[ENVSYS_NUMSENSORS];
struct evcnt sc_intrcnt; /* interrupt counting */
};
#define TCTRL_STD_DEV 0
#define TCTRL_APMCTL_DEV 8
static int tctrl_match __P((struct device *parent, struct cfdata *cf,
void *aux));
static void tctrl_attach __P((struct device *parent, struct device *self,
void *aux));
static void tctrl_write __P((struct tctrl_softc *sc, bus_size_t off,
u_int8_t v));
static u_int8_t tctrl_read __P((struct tctrl_softc *sc, bus_size_t off));
static void tctrl_write_data __P((struct tctrl_softc *sc, u_int8_t v));
static u_int8_t tctrl_read_data __P((struct tctrl_softc *sc));
static int tctrl_intr __P((void *arg));
static void tctrl_setup_bitport __P((void));
static void tctrl_setup_bitport_nop __P((void));
static void tctrl_read_ext_status __P((void));
static void tctrl_read_event_status __P((void *arg));
static int tctrl_apm_record_event __P((struct tctrl_softc *sc,
u_int event_type));
struct cfattach tctrl_ca = {
sizeof(struct tctrl_softc), tctrl_match, tctrl_attach
};
extern struct cfdriver tctrl_cd;
/* XXX wtf is this? see i386/apm.c */
int tctrl_apm_evindex;
static int
tctrl_match(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
union obio_attach_args *uoba = aux;
struct sbus_attach_args *sa = &uoba->uoba_sbus;
if (uoba->uoba_isobio4 != 0) {
return (0);
}
/* Tadpole 3GX/3GS uses "uctrl" for the Tadpole Microcontroller
* (who's interface is off the TS102 PCMCIA controller but there
* exists a OpenProm for microcontroller interface).
*/
return strcmp("uctrl", sa->sa_name) == 0;
}
static void
tctrl_attach(parent, self, aux)
struct device *parent;
struct device *self;
void *aux;
{
struct tctrl_softc *sc = (void *)self;
union obio_attach_args *uoba = aux;
struct sbus_attach_args *sa = &uoba->uoba_sbus;
unsigned int i, v;
#if 0
unsigned int ack, msb, lsb;
#endif
/* We're living on a sbus slot that looks like an obio that
* looks like an sbus slot.
*/
sc->sc_memt = sa->sa_bustag;
if (sbus_bus_map(sc->sc_memt, sa->sa_slot,
sa->sa_offset - TS102_REG_UCTRL_INT, sa->sa_size,
BUS_SPACE_MAP_LINEAR, 0,
&sc->sc_memh) != 0) {
printf(": can't map registers\n");
return;
}
printf("\n");
sc->sc_tft_on = 1;
/* clear any pending data.
*/
for (i = 0; i < 10000; i++) {
if ((TS102_UCTRL_STS_RXNE_STA &
tctrl_read(sc, TS102_REG_UCTRL_STS)) == 0) {
break;
}
v = tctrl_read(sc, TS102_REG_UCTRL_DATA);
tctrl_write(sc, TS102_REG_UCTRL_STS, TS102_UCTRL_STS_RXNE_STA);
}
if (sa->sa_nintr != 0) {
(void)bus_intr_establish(sc->sc_memt, sa->sa_pri,
0, tctrl_intr, sc);
evcnt_attach(&sc->sc_dev, "intr", &sc->sc_intrcnt);
}
/* See what the external status is
*/
tctrl_read_ext_status();
if (sc->sc_ext_status != 0) {
const char *sep;
printf("%s: ", sc->sc_dev.dv_xname);
v = sc->sc_ext_status;
for (i = 0, sep = ""; v != 0; i++, v >>= 1) {
if (v & 1) {
printf("%s%s", sep, tctrl_ext_statuses[i]);
sep = ", ";
}
}
printf("\n");
}
/* Get a current of the control bitport;
*/
tctrl_setup_bitport_nop();
tctrl_write(sc, TS102_REG_UCTRL_INT,
TS102_UCTRL_INT_RXNE_REQ|TS102_UCTRL_INT_RXNE_MSK);
sc->sc_wantdata = 0;
sc->sc_event_count = 0;
/* prime the sensor data */
sprintf(sc->sc_esensors[0].desc, "%s", "Internal Unit Temperature");
sc->sc_esensors[0].units = ENVSYS_STEMP;
sprintf(sc->sc_esensors[1].desc, "%s", "Internal Battery Voltage");
sc->sc_esensors[1].units = ENVSYS_SVOLTS_DC;
sprintf(sc->sc_esensors[2].desc, "%s", "DC-In Voltage");
sc->sc_esensors[2].units = ENVSYS_SVOLTS_DC;
}
static int
tctrl_intr(arg)
void *arg;
{
struct tctrl_softc *sc = arg;
unsigned int v, d;
int progress = 0;
again:
/* find out the cause(s) of the interrupt */
v = tctrl_read(sc, TS102_REG_UCTRL_STS);
/* clear the cause(s) of the interrupt */
tctrl_write(sc, TS102_REG_UCTRL_STS, v);
v &= ~(TS102_UCTRL_STS_RXO_STA|TS102_UCTRL_STS_TXE_STA);
if (sc->sc_cmdoff >= sc->sc_cmdlen) {
v &= ~TS102_UCTRL_STS_TXNF_STA;
if (tctrl_read(sc, TS102_REG_UCTRL_INT) & TS102_UCTRL_INT_TXNF_REQ) {
tctrl_write(sc, TS102_REG_UCTRL_INT, 0);
progress = 1;
}
}
if ((v == 0) && ((sc->sc_flags & TCTRL_SEND_REQUEST) == 0 ||
sc->sc_state != TCTRL_IDLE)) {
wakeup(sc);
return progress;
}
progress = 1;
if (v & TS102_UCTRL_STS_RXNE_STA) {
d = tctrl_read_data(sc);
switch (sc->sc_state) {
case TCTRL_IDLE:
if (d == 0xfa) {
/* external event */
timeout(tctrl_read_event_status, (void *)0, 1);
} else {
printf("%s: (op=0x%02x): unexpected data (0x%02x)\n",
sc->sc_dev.dv_xname, sc->sc_op, d);
}
goto again;
case TCTRL_ACK:
if (d != 0xfe) {
printf("%s: (op=0x%02x): unexpected ack value (0x%02x)\n",
sc->sc_dev.dv_xname, sc->sc_op, d);
}
#ifdef TCTRLDEBUG
printf(" ack=0x%02x", d);
#endif
sc->sc_rsplen--;
sc->sc_rspoff = 0;
sc->sc_state = sc->sc_rsplen ? TCTRL_DATA : TCTRL_IDLE;
sc->sc_wantdata = sc->sc_rsplen ? 1 : 0;
#ifdef TCTRLDEBUG
if (sc->sc_rsplen > 0) {
printf(" [data(%u)]", sc->sc_rsplen);
} else {
printf(" [idle]\n");
}
#endif
goto again;
case TCTRL_DATA:
sc->sc_rspbuf[sc->sc_rspoff++] = d;
#ifdef TCTRLDEBUG
printf(" [%d]=0x%02x", sc->sc_rspoff-1, d);
#endif
if (sc->sc_rspoff == sc->sc_rsplen) {
#ifdef TCTRLDEBUG
printf(" [idle]\n");
#endif
sc->sc_state = TCTRL_IDLE;
sc->sc_wantdata = 0;
}
goto again;
default:
printf("%s: (op=0x%02x): unexpected data (0x%02x) in state %d\n",
sc->sc_dev.dv_xname, sc->sc_op, d, sc->sc_state);
goto again;
}
}
if ((sc->sc_state == TCTRL_IDLE && sc->sc_wantdata == 0) ||
sc->sc_flags & TCTRL_SEND_REQUEST) {
if (sc->sc_flags & TCTRL_SEND_REQUEST) {
sc->sc_flags &= ~TCTRL_SEND_REQUEST;
sc->sc_wantdata = 1;
}
if (sc->sc_cmdlen > 0) {
tctrl_write(sc, TS102_REG_UCTRL_INT,
tctrl_read(sc, TS102_REG_UCTRL_INT)
|TS102_UCTRL_INT_TXNF_MSK
|TS102_UCTRL_INT_TXNF_REQ);
v = tctrl_read(sc, TS102_REG_UCTRL_STS);
}
}
if ((sc->sc_cmdoff < sc->sc_cmdlen) && (v & TS102_UCTRL_STS_TXNF_STA)) {
tctrl_write_data(sc, sc->sc_cmdbuf[sc->sc_cmdoff++]);
#ifdef TCTRLDEBUG
if (sc->sc_cmdoff == 1) {
printf("%s: op=0x%02x(l=%u)", sc->sc_dev.dv_xname,
sc->sc_cmdbuf[0], sc->sc_rsplen);
} else {
printf(" [%d]=0x%02x", sc->sc_cmdoff-1,
sc->sc_cmdbuf[sc->sc_cmdoff-1]);
}
#endif
if (sc->sc_cmdoff == sc->sc_cmdlen) {
sc->sc_state = sc->sc_rsplen ? TCTRL_ACK : TCTRL_IDLE;
#ifdef TCTRLDEBUG
printf(" %s", sc->sc_rsplen ? "[ack]" : "[idle]\n");
#endif
if (sc->sc_cmdoff == 1) {
sc->sc_op = sc->sc_cmdbuf[0];
}
tctrl_write(sc, TS102_REG_UCTRL_INT,
tctrl_read(sc, TS102_REG_UCTRL_INT)
& (~TS102_UCTRL_INT_TXNF_MSK
|TS102_UCTRL_INT_TXNF_REQ));
} else if (sc->sc_state == TCTRL_IDLE) {
sc->sc_op = sc->sc_cmdbuf[0];
sc->sc_state = TCTRL_ARGS;
#ifdef TCTRLDEBUG
printf(" [args]");
#endif
}
}
goto again;
}
static void
tctrl_setup_bitport_nop(void)
{
struct tctrl_softc *sc;
struct tctrl_req req;
int s;
sc = (struct tctrl_softc *) tctrl_cd.cd_devs[TCTRL_STD_DEV];
req.cmdbuf[0] = TS102_OP_CTL_BITPORT;
req.cmdbuf[1] = 0xff;
req.cmdbuf[2] = 0;
req.cmdlen = 3;
req.rsplen = 2;
req.p = NULL;
tadpole_request(&req, 1);
s = splts102();
sc->sc_bitport = (req.rspbuf[0] & req.cmdbuf[1]) ^ req.cmdbuf[2];
splx(s);
}
static void
tctrl_setup_bitport(void)
{
struct tctrl_softc *sc;
struct tctrl_req req;
int s;
sc = (struct tctrl_softc *) tctrl_cd.cd_devs[TCTRL_STD_DEV];
s = splts102();
if ((sc->sc_ext_status & TS102_EXT_STATUS_LID_DOWN)
|| (!sc->sc_tft_on)) {
req.cmdbuf[2] = TS102_BITPORT_TFTPWR;
} else {
req.cmdbuf[2] = 0;
}
req.cmdbuf[0] = TS102_OP_CTL_BITPORT;
req.cmdbuf[1] = ~TS102_BITPORT_TFTPWR;
req.cmdlen = 3;
req.rsplen = 2;
req.p = NULL;
tadpole_request(&req, 1);
s = splts102();
sc->sc_bitport = (req.rspbuf[0] & req.cmdbuf[1]) ^ req.cmdbuf[2];
splx(s);
}
static void
tctrl_read_ext_status(void)
{
struct tctrl_softc *sc;
struct tctrl_req req;
int s;
sc = (struct tctrl_softc *) tctrl_cd.cd_devs[TCTRL_STD_DEV];
req.cmdbuf[0] = TS102_OP_RD_EXT_STATUS;
req.cmdlen = 1;
req.rsplen = 3;
req.p = NULL;
#ifdef TCTRLDEBUG
printf("pre read: sc->sc_ext_status = 0x%x\n", sc->sc_ext_status);
#endif
tadpole_request(&req, 1);
s = splts102();
sc->sc_ext_status = req.rspbuf[0] * 256 + req.rspbuf[1];
splx(s);
#ifdef TCTRLDEBUG
printf("post read: sc->sc_ext_status = 0x%x\n", sc->sc_ext_status);
#endif
}
/*
* return 0 if the user will notice and handle the event,
* return 1 if the kernel driver should do so.
*/
static int
tctrl_apm_record_event(sc, event_type)
struct tctrl_softc *sc;
u_int event_type;
{
struct apm_event_info *evp;
if ((sc->sc_flags & TCTRL_APM_CTLOPEN) &&
(sc->sc_event_count < APM_NEVENTS)) {
evp = &sc->sc_event_list[sc->sc_event_ptr];
sc->sc_event_count++;
sc->sc_event_ptr++;
sc->sc_event_ptr %= APM_NEVENTS;
evp->type = event_type;
evp->index = ++tctrl_apm_evindex;
selwakeup(&sc->sc_rsel);
return(sc->sc_flags & TCTRL_APM_CTLOPEN) ? 0 : 1;
}
return(1);
}
static void
tctrl_read_event_status(arg)
void *arg;
{
struct tctrl_softc *sc;
struct tctrl_req req;
int s;
unsigned int v;
sc = (struct tctrl_softc *) tctrl_cd.cd_devs[TCTRL_STD_DEV];
req.cmdbuf[0] = TS102_OP_RD_EVENT_STATUS;
req.cmdlen = 1;
req.rsplen = 3;
req.p = NULL;
tadpole_request(&req, 1);
s = splts102();
v = req.rspbuf[0] * 256 + req.rspbuf[1];
if (v & TS102_EVENT_STATUS_SHUTDOWN_REQUEST) {
printf("%s: SHUTDOWN REQUEST!\n", sc->sc_dev.dv_xname);
}
if (v & TS102_EVENT_STATUS_VERY_LOW_POWER_WARNING) {
/*printf("%s: VERY LOW POWER WARNING!\n", sc->sc_dev.dv_xname);*/
/* according to a tadpole header, and observation */
#ifdef TCTRLDEBUG
printf("%s: Battery charge level change\n", sc->sc_dev.dv_xname);
#endif
}
if (v & TS102_EVENT_STATUS_LOW_POWER_WARNING) {
if (tctrl_apm_record_event(sc, APM_BATTERY_LOW))
printf("%s: LOW POWER WARNING!\n", sc->sc_dev.dv_xname);
}
if (v & TS102_EVENT_STATUS_DC_STATUS_CHANGE) {
splx(s);
tctrl_read_ext_status();
s = splts102();
if (tctrl_apm_record_event(sc, APM_POWER_CHANGE))
printf("%s: main power %s\n", sc->sc_dev.dv_xname,
(sc->sc_ext_status &
TS102_EXT_STATUS_MAIN_POWER_AVAILABLE) ?
"restored" : "removed");
}
if (v & TS102_EVENT_STATUS_LID_STATUS_CHANGE) {
splx(s);
tctrl_read_ext_status();
tctrl_setup_bitport();
#ifdef TCTRLDEBUG
printf("%s: lid %s\n", sc->sc_dev.dv_xname,
(sc->sc_ext_status & TS102_EXT_STATUS_LID_DOWN)
? "closed" : "opened");
#endif
}
splx(s);
}
void
tadpole_request(req, spin)
struct tctrl_req *req;
int spin;
{
struct tctrl_softc *sc;
int i, s;
if (tctrl_cd.cd_devs == NULL
|| tctrl_cd.cd_ndevs == 0
|| tctrl_cd.cd_devs[TCTRL_STD_DEV] == NULL) {
return;
}
sc = (struct tctrl_softc *) tctrl_cd.cd_devs[TCTRL_STD_DEV];
while (sc->sc_wantdata != 0) {
if (req->p != NULL)
tsleep(&sc->sc_wantdata, PLOCK, "tctrl_lock", 10);
else
DELAY(1);
}
if (spin)
s = splhigh();
else
s = splts102();
sc->sc_flags |= TCTRL_SEND_REQUEST;
memcpy(sc->sc_cmdbuf, req->cmdbuf, req->cmdlen);
sc->sc_wantdata = 1;
sc->sc_rsplen = req->rsplen;
sc->sc_cmdlen = req->cmdlen;
sc->sc_cmdoff = sc->sc_rspoff = 0;
/* we spin for certain commands, like poweroffs */
if (spin) {
for (i = 0; i < 30000; i++) {
tctrl_intr(sc);
DELAY(1);
}
} else {
tctrl_intr(sc);
i = 0;
while (((sc->sc_rspoff != sc->sc_rsplen) ||
(sc->sc_cmdoff != sc->sc_cmdlen)) &&
(i < (5 * sc->sc_rsplen + sc->sc_cmdlen)))
if (req->p != NULL) {
tsleep(sc, PWAIT, "tctrl_data", 15);
i++;
}
else
DELAY(1);
}
/*
* we give the user a reasonable amount of time for a command
* to complete. If it doesn't complete in time, we hand them
* garbage. This is here to stop things like setting the
* rsplen too long, and sleeping forever in a CMD_REQ ioctl.
*/
sc->sc_wantdata = 0;
memcpy(req->rspbuf, sc->sc_rspbuf, req->rsplen);
splx(s);
}
void
tadpole_powerdown(void)
{
struct tctrl_req req;
req.cmdbuf[0] = TS102_OP_ADMIN_POWER_OFF;
req.cmdlen = 1;
req.rsplen = 1;
req.p = NULL;
tadpole_request(&req, 1);
}
void
tadpole_set_video(enabled)
int enabled;
{
struct tctrl_softc *sc;
struct tctrl_req req;
int s;
sc = (struct tctrl_softc *) tctrl_cd.cd_devs[TCTRL_STD_DEV];
while (sc->sc_wantdata != 0)
DELAY(1);
s = splts102();
req.p = NULL;
if ((sc->sc_ext_status & TS102_EXT_STATUS_LID_DOWN && !enabled)
|| (sc->sc_tft_on)) {
req.cmdbuf[2] = TS102_BITPORT_TFTPWR;
} else {
req.cmdbuf[2] = 0;
}
req.cmdbuf[0] = TS102_OP_CTL_BITPORT;
req.cmdbuf[1] = ~TS102_BITPORT_TFTPWR;
req.cmdlen = 3;
req.rsplen = 2;
if ((sc->sc_tft_on && !enabled) || (!sc->sc_tft_on && enabled)) {
sc->sc_tft_on = enabled;
if (sc->sc_ext_status & TS102_EXT_STATUS_LID_DOWN) {
splx(s);
return;
}
tadpole_request(&req, 1);
sc->sc_bitport =
(req.rspbuf[0] & req.cmdbuf[1]) ^ req.cmdbuf[2];
}
splx(s);
}
static void
tctrl_write_data(sc, v)
struct tctrl_softc *sc;
u_int8_t v;
{
unsigned int i;
for (i = 0; i < 100; i++) {
if (TS102_UCTRL_STS_TXNF_STA & tctrl_read(sc, TS102_REG_UCTRL_STS))
break;
}
tctrl_write(sc, TS102_REG_UCTRL_DATA, v);
}
static u_int8_t
tctrl_read_data(sc)
struct tctrl_softc *sc;
{
unsigned int i, v;
for (i = 0; i < 100000; i++) {
if (TS102_UCTRL_STS_RXNE_STA & tctrl_read(sc, TS102_REG_UCTRL_STS))
break;
DELAY(1);
}
v = tctrl_read(sc, TS102_REG_UCTRL_DATA);
tctrl_write(sc, TS102_REG_UCTRL_STS, TS102_UCTRL_STS_RXNE_STA);
return v;
}
static u_int8_t
tctrl_read(sc, off)
struct tctrl_softc *sc;
bus_size_t off;
{
sc->sc_junk = bus_space_read_1(sc->sc_memt, sc->sc_memh, off);
return sc->sc_junk;
}
static void
tctrl_write(sc, off, v)
struct tctrl_softc *sc;
bus_size_t off;
u_int8_t v;
{
sc->sc_junk = v;
bus_space_write_1(sc->sc_memt, sc->sc_memh, off, v);
}
int
tctrlopen(dev, flags, mode, p)
dev_t dev;
int flags, mode;
struct proc *p;
{
int unit = (minor(dev)&0xf0);
int ctl = (minor(dev)&0x0f);
struct tctrl_softc *sc;
if (unit >= tctrl_cd.cd_ndevs)
return(ENXIO);
sc = tctrl_cd.cd_devs[TCTRL_STD_DEV];
if (!sc)
return(ENXIO);
switch (ctl) {
case TCTRL_STD_DEV:
break;
case TCTRL_APMCTL_DEV:
if (!(flags & FWRITE))
return(EINVAL);
if (sc->sc_flags & TCTRL_APM_CTLOPEN)
return(EBUSY);
sc->sc_flags |= TCTRL_APM_CTLOPEN;
break;
default:
return(ENXIO);
break;
}
return(0);
}
int
tctrlclose(dev, flags, mode, p)
dev_t dev;
int flags, mode;
struct proc *p;
{
int ctl = (minor(dev)&0x0f);
struct tctrl_softc *sc;
sc = tctrl_cd.cd_devs[TCTRL_STD_DEV];
if (!sc)
return(ENXIO);
switch (ctl) {
case TCTRL_STD_DEV:
break;
case TCTRL_APMCTL_DEV:
sc->sc_flags &= ~TCTRL_APM_CTLOPEN;
break;
}
return(0);
}
int
tctrlioctl(dev, cmd, data, flags, p)
dev_t dev;
u_long cmd;
caddr_t data;
int flags;
struct proc *p;
{
struct tctrl_req req, *reqn;
envsys_range_t *envrange;
envsys_temp_data_t *envdata;
envsys_temp_info_t *envinfo;
struct apm_power_info *powerp;
struct apm_event_info *evp;
struct tctrl_softc *sc;
int i;
u_int j;
u_int16_t a;
u_int8_t c;
if (tctrl_cd.cd_devs == NULL
|| tctrl_cd.cd_ndevs == 0
|| tctrl_cd.cd_devs[TCTRL_STD_DEV] == NULL) {
return ENXIO;
}
sc = (struct tctrl_softc *) tctrl_cd.cd_devs[TCTRL_STD_DEV];
switch (cmd) {
case APM_IOC_STANDBY:
return(EOPNOTSUPP); /* for now */
case APM_IOC_SUSPEND:
return(EOPNOTSUPP); /* for now */
case APM_IOC_GETPOWER:
powerp = (struct apm_power_info *)data;
req.cmdbuf[0] = TS102_OP_RD_INT_CHARGE_RATE;
req.cmdlen = 1;
req.rsplen = 2;
req.p = p;
tadpole_request(&req, 0);
if (req.rspbuf[0] > 0x00)
powerp->battery_state = APM_BATT_CHARGING;
req.cmdbuf[0] = TS102_OP_RD_INT_CHARGE_LEVEL;
req.cmdlen = 1;
req.rsplen = 3;
req.p = p;
tadpole_request(&req, 0);
c = req.rspbuf[0];
powerp->battery_life = c;
powerp->minutes_left = (45 * c) / 100; /* XXX based on 45 min */
if (powerp->battery_state != APM_BATT_CHARGING) {
if (c < 0x20)
powerp->battery_state = APM_BATT_CRITICAL;
else if (c < 0x40)
powerp->battery_state = APM_BATT_LOW;
else if (c < 0x66)
powerp->battery_state = APM_BATT_HIGH;
else
powerp->battery_state = APM_BATT_UNKNOWN;
}
req.cmdbuf[0] = TS102_OP_RD_EXT_STATUS;
req.cmdlen = 1;
req.rsplen = 3;
req.p = p;
tadpole_request(&req, 0);
a = req.rspbuf[0] * 256 + req.rspbuf[1];
if (a & TS102_EXT_STATUS_MAIN_POWER_AVAILABLE)
powerp->ac_state = APM_AC_ON;
else
powerp->ac_state = APM_AC_OFF;
break;
case APM_IOC_NEXTEVENT:
if (!sc->sc_event_count)
return EAGAIN;
evp = (struct apm_event_info *)data;
i = sc->sc_event_ptr + APM_NEVENTS - sc->sc_event_count;
i %= APM_NEVENTS;
*evp = sc->sc_event_list[i];
sc->sc_event_count--;
return(0);
/* this ioctl assumes the caller knows exactly what he is doing */
case TCTRL_CMD_REQ:
reqn = (struct tctrl_req *)data;
if ((i = suser(p->p_ucred, &p->p_acflag)) != 0 &&
(reqn->cmdbuf[0] == TS102_OP_CTL_BITPORT ||
(reqn->cmdbuf[0] >= TS102_OP_CTL_WATCHDOG &&
reqn->cmdbuf[0] <= TS102_OP_CTL_SECURITY_KEY) ||
reqn->cmdbuf[0] == TS102_OP_CTL_TIMEZONE ||
reqn->cmdbuf[0] == TS102_OP_CTL_DIAGNOSTIC_MODE ||
reqn->cmdbuf[0] == TS102_OP_CMD_SOFTWARE_RESET ||
(reqn->cmdbuf[0] >= TS102_OP_CMD_SET_RTC &&
reqn->cmdbuf[0] < TS102_OP_RD_INT_CHARGE_LEVEL) ||
reqn->cmdbuf[0] > TS102_OP_RD_EXT_CHARGE_LEVEL))
return(i);
reqn->p = p;
tadpole_request(reqn, 0);
break;
case ENVSYS_VERSION:
*(int32_t *)data = 1000;
break;
case ENVSYS_GRANGE:
envrange = (envsys_range_t *)data;
i = 0;
envrange->high = envrange->low = 0;
for (j=0; j < ENVSYS_NUMSENSORS; j++) {
if (!i && envrange->units == sc->sc_esensors[j].units) {
envrange->low = j;
i++;
}
if (i && envrange->units == sc->sc_esensors[j].units)
envrange->high = j;
}
if (!i) {
envrange->high = 0;
envrange->low = 1;
}
break;
case ENVSYS_GTREDATA:
envdata = (envsys_temp_data_t *)data;
if (envdata->sensor >= ENVSYS_NUMSENSORS) {
envdata->validflags = 0;
break;
}
envdata->warnflags = ENVSYS_WARN_OK;
if (envdata->sensor == 0) {
envdata->validflags |= ENVSYS_FVALID;
req.cmdbuf[0] = TS102_OP_RD_CURRENT_TEMP;
req.cmdlen = 1;
req.rsplen = 2;
req.p = p;
tadpole_request(&req, 0);
envdata->cur.data_us = /* 273160? */
(u_int32_t)((int)((int)req.rspbuf[0]-32)*5000/9+273000);
envdata->validflags |= ENVSYS_FCURVALID;
req.cmdbuf[0] = TS102_OP_RD_MAX_TEMP;
req.cmdlen = 1;
req.rsplen = 2;
req.p = p;
tadpole_request(&req, 0);
envdata->max.data_us =
(u_int32_t)((int)((int)req.rspbuf[0]-32)*5000/9+273000);
envdata->validflags |= ENVSYS_FMAXVALID;
req.cmdbuf[0] = TS102_OP_RD_MIN_TEMP;
req.cmdlen = 1;
req.rsplen = 2;
req.p = p;
tadpole_request(&req, 0);
envdata->min.data_us =
(u_int32_t)((int)((int)req.rspbuf[0]-32)*5000/9+273000);
envdata->validflags |= ENVSYS_FMINVALID;
envdata->units = sc->sc_esensors[envdata->sensor].units;
break;
} else if (envdata->sensor == 1 || envdata->sensor == 2) {
envdata->validflags = ENVSYS_FVALID|ENVSYS_FCURVALID;
envdata->units = sc->sc_esensors[envdata->sensor].units;
if (envdata->sensor == 1)
req.cmdbuf[0] = TS102_OP_RD_INT_BATT_VLT;
else
req.cmdbuf[0] = TS102_OP_RD_DC_IN_VLT;
req.cmdlen = 1;
req.rsplen = 2;
req.p = p;
tadpole_request(&req, 0);
envdata->cur.data_s = (int32_t)req.rspbuf[0]*1000/11;
break;
}
break;
case ENVSYS_GTREINFO:
envinfo = (envsys_temp_info_t *)data;
if (envinfo->sensor >= ENVSYS_NUMSENSORS) {
envinfo->validflags = 0;
break;
}
envinfo->units = sc->sc_esensors[envinfo->sensor].units;
memcpy(envinfo->desc, sc->sc_esensors[envinfo->sensor].desc,
sizeof(sc->sc_esensors[envinfo->sensor].desc) >
sizeof(envinfo->desc) ? sizeof(envinfo->desc) :
sizeof(sc->sc_esensors[envinfo->sensor].desc));
if (envinfo->units == ENVSYS_STEMP) {
envinfo->validflags = ENVSYS_FVALID|ENVSYS_FCURVALID|
ENVSYS_FMINVALID|ENVSYS_FMAXVALID;
} else if (envinfo->units == ENVSYS_SVOLTS_DC) {
envinfo->validflags = ENVSYS_FVALID|ENVSYS_FCURVALID;
} else
envinfo->validflags = 0;
break;
case ENVSYS_STREINFO:
envinfo = (envsys_temp_info_t *)data;
if (envinfo->sensor >= ENVSYS_NUMSENSORS) {
envinfo->validflags = 0;
break;
}
if (envinfo->units == sc->sc_esensors[envinfo->sensor].units)
memcpy(sc->sc_esensors[envinfo->sensor].desc,
envinfo->desc,
sizeof(envinfo->desc) > sizeof(char)*32 ?
sizeof(char)*32 : sizeof(envinfo->desc) );
if (envinfo->units == ENVSYS_STEMP) {
envinfo->validflags = ENVSYS_FVALID|ENVSYS_FCURVALID|
ENVSYS_FMINVALID|ENVSYS_FMAXVALID;
} else if (envinfo->units == ENVSYS_SVOLTS_DC) {
envinfo->validflags = ENVSYS_FVALID|ENVSYS_FCURVALID;
} else
envinfo->validflags = 0;
break;
default:
return (ENOTTY);
}
return (0);
}
int
tctrlpoll(dev, events, p)
dev_t dev;
int events;
struct proc *p;
{
struct tctrl_softc *sc = tctrl_cd.cd_devs[TCTRL_STD_DEV];
int revents = 0;
if (events & (POLLIN | POLLRDNORM)) {
if (sc->sc_event_count)
revents |= events & (POLLIN | POLLRDNORM);
else
selrecord(p, &sc->sc_rsel);
}
return (revents);
}