NetBSD/sys/kern/subr_vmem.c
hubertf 3bfc0c42ee Remove duplicate #include's
From: Slava Semushin <php-coder@altlinux.ru>
2007-03-26 22:52:44 +00:00

1291 lines
28 KiB
C

/* $NetBSD: subr_vmem.c,v 1.29 2007/03/26 22:52:44 hubertf Exp $ */
/*-
* Copyright (c)2006 YAMAMOTO Takashi,
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* reference:
* - Magazines and Vmem: Extending the Slab Allocator
* to Many CPUs and Arbitrary Resources
* http://www.usenix.org/event/usenix01/bonwick.html
*
* todo:
* - decide how to import segments for vmem_xalloc.
* - don't rely on malloc(9).
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.29 2007/03/26 22:52:44 hubertf Exp $");
#define VMEM_DEBUG
#if defined(_KERNEL)
#define QCACHE
#endif /* defined(_KERNEL) */
#include <sys/param.h>
#include <sys/hash.h>
#include <sys/queue.h>
#if defined(_KERNEL)
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/once.h>
#include <sys/pool.h>
#include <sys/proc.h>
#include <sys/vmem.h>
#else /* defined(_KERNEL) */
#include "../sys/vmem.h"
#endif /* defined(_KERNEL) */
#if defined(_KERNEL)
#define SIMPLELOCK_DECL(name) struct simplelock name
#else /* defined(_KERNEL) */
#include <errno.h>
#include <assert.h>
#include <stdlib.h>
#define KASSERT(a) assert(a)
#define SIMPLELOCK_DECL(name) /* nothing */
#define LOCK_ASSERT(a) /* nothing */
#define simple_lock_init(a) /* nothing */
#define simple_lock(a) /* nothing */
#define simple_unlock(a) /* nothing */
#define ASSERT_SLEEPABLE(lk, msg) /* nothing */
#endif /* defined(_KERNEL) */
struct vmem;
struct vmem_btag;
#if defined(VMEM_DEBUG)
void vmem_dump(const vmem_t *);
#endif /* defined(VMEM_DEBUG) */
#define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
#define VMEM_HASHSIZE_INIT 4096 /* XXX */
#define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
LIST_HEAD(vmem_freelist, vmem_btag);
LIST_HEAD(vmem_hashlist, vmem_btag);
#if defined(QCACHE)
#define VMEM_QCACHE_IDX_MAX 32
#define QC_NAME_MAX 16
struct qcache {
struct pool qc_pool;
struct pool_cache qc_cache;
vmem_t *qc_vmem;
char qc_name[QC_NAME_MAX];
};
typedef struct qcache qcache_t;
#define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool))
#endif /* defined(QCACHE) */
/* vmem arena */
struct vmem {
SIMPLELOCK_DECL(vm_lock);
vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
vm_flag_t);
void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
vmem_t *vm_source;
struct vmem_seglist vm_seglist;
struct vmem_freelist vm_freelist[VMEM_MAXORDER];
size_t vm_hashsize;
size_t vm_nbusytag;
struct vmem_hashlist *vm_hashlist;
size_t vm_quantum_mask;
int vm_quantum_shift;
const char *vm_name;
#if defined(QCACHE)
/* quantum cache */
size_t vm_qcache_max;
struct pool_allocator vm_qcache_allocator;
qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
#endif /* defined(QCACHE) */
};
#define VMEM_LOCK(vm) simple_lock(&vm->vm_lock)
#define VMEM_UNLOCK(vm) simple_unlock(&vm->vm_lock)
#define VMEM_LOCK_INIT(vm) simple_lock_init(&vm->vm_lock);
#define VMEM_ASSERT_LOCKED(vm) \
LOCK_ASSERT(simple_lock_held(&vm->vm_lock))
#define VMEM_ASSERT_UNLOCKED(vm) \
LOCK_ASSERT(!simple_lock_held(&vm->vm_lock))
/* boundary tag */
struct vmem_btag {
CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
union {
LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
} bt_u;
#define bt_hashlist bt_u.u_hashlist
#define bt_freelist bt_u.u_freelist
vmem_addr_t bt_start;
vmem_size_t bt_size;
int bt_type;
};
#define BT_TYPE_SPAN 1
#define BT_TYPE_SPAN_STATIC 2
#define BT_TYPE_FREE 3
#define BT_TYPE_BUSY 4
#define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
#define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
typedef struct vmem_btag bt_t;
/* ---- misc */
#define VMEM_ALIGNUP(addr, align) \
(-(-(addr) & -(align)))
#define VMEM_CROSS_P(addr1, addr2, boundary) \
((((addr1) ^ (addr2)) & -(boundary)) != 0)
#define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
static int
calc_order(vmem_size_t size)
{
vmem_size_t target;
int i;
KASSERT(size != 0);
i = 0;
target = size >> 1;
while (ORDER2SIZE(i) <= target) {
i++;
}
KASSERT(ORDER2SIZE(i) <= size);
KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
return i;
}
#if defined(_KERNEL)
static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
#endif /* defined(_KERNEL) */
static void *
xmalloc(size_t sz, vm_flag_t flags)
{
#if defined(_KERNEL)
return malloc(sz, M_VMEM,
M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
#else /* defined(_KERNEL) */
return malloc(sz);
#endif /* defined(_KERNEL) */
}
static void
xfree(void *p)
{
#if defined(_KERNEL)
return free(p, M_VMEM);
#else /* defined(_KERNEL) */
return free(p);
#endif /* defined(_KERNEL) */
}
/* ---- boundary tag */
#if defined(_KERNEL)
static struct pool_cache bt_poolcache;
static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL, IPL_VM);
#endif /* defined(_KERNEL) */
static bt_t *
bt_alloc(vmem_t *vm, vm_flag_t flags)
{
bt_t *bt;
#if defined(_KERNEL)
int s;
/* XXX bootstrap */
s = splvm();
bt = pool_cache_get(&bt_poolcache,
(flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
splx(s);
#else /* defined(_KERNEL) */
bt = malloc(sizeof *bt);
#endif /* defined(_KERNEL) */
return bt;
}
static void
bt_free(vmem_t *vm, bt_t *bt)
{
#if defined(_KERNEL)
int s;
/* XXX bootstrap */
s = splvm();
pool_cache_put(&bt_poolcache, bt);
splx(s);
#else /* defined(_KERNEL) */
free(bt);
#endif /* defined(_KERNEL) */
}
/*
* freelist[0] ... [1, 1]
* freelist[1] ... [2, 3]
* freelist[2] ... [4, 7]
* freelist[3] ... [8, 15]
* :
* freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
* :
*/
static struct vmem_freelist *
bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
{
const vmem_size_t qsize = size >> vm->vm_quantum_shift;
int idx;
KASSERT((size & vm->vm_quantum_mask) == 0);
KASSERT(size != 0);
idx = calc_order(qsize);
KASSERT(idx >= 0);
KASSERT(idx < VMEM_MAXORDER);
return &vm->vm_freelist[idx];
}
static struct vmem_freelist *
bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
{
const vmem_size_t qsize = size >> vm->vm_quantum_shift;
int idx;
KASSERT((size & vm->vm_quantum_mask) == 0);
KASSERT(size != 0);
idx = calc_order(qsize);
if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
idx++;
/* check too large request? */
}
KASSERT(idx >= 0);
KASSERT(idx < VMEM_MAXORDER);
return &vm->vm_freelist[idx];
}
/* ---- boundary tag hash */
static struct vmem_hashlist *
bt_hashhead(vmem_t *vm, vmem_addr_t addr)
{
struct vmem_hashlist *list;
unsigned int hash;
hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
list = &vm->vm_hashlist[hash % vm->vm_hashsize];
return list;
}
static bt_t *
bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
{
struct vmem_hashlist *list;
bt_t *bt;
list = bt_hashhead(vm, addr);
LIST_FOREACH(bt, list, bt_hashlist) {
if (bt->bt_start == addr) {
break;
}
}
return bt;
}
static void
bt_rembusy(vmem_t *vm, bt_t *bt)
{
KASSERT(vm->vm_nbusytag > 0);
vm->vm_nbusytag--;
LIST_REMOVE(bt, bt_hashlist);
}
static void
bt_insbusy(vmem_t *vm, bt_t *bt)
{
struct vmem_hashlist *list;
KASSERT(bt->bt_type == BT_TYPE_BUSY);
list = bt_hashhead(vm, bt->bt_start);
LIST_INSERT_HEAD(list, bt, bt_hashlist);
vm->vm_nbusytag++;
}
/* ---- boundary tag list */
static void
bt_remseg(vmem_t *vm, bt_t *bt)
{
CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
}
static void
bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
{
CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
}
static void
bt_insseg_tail(vmem_t *vm, bt_t *bt)
{
CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
}
static void
bt_remfree(vmem_t *vm, bt_t *bt)
{
KASSERT(bt->bt_type == BT_TYPE_FREE);
LIST_REMOVE(bt, bt_freelist);
}
static void
bt_insfree(vmem_t *vm, bt_t *bt)
{
struct vmem_freelist *list;
list = bt_freehead_tofree(vm, bt->bt_size);
LIST_INSERT_HEAD(list, bt, bt_freelist);
}
/* ---- vmem internal functions */
#if defined(QCACHE)
static inline vm_flag_t
prf_to_vmf(int prflags)
{
vm_flag_t vmflags;
KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
if ((prflags & PR_WAITOK) != 0) {
vmflags = VM_SLEEP;
} else {
vmflags = VM_NOSLEEP;
}
return vmflags;
}
static inline int
vmf_to_prf(vm_flag_t vmflags)
{
int prflags;
if ((vmflags & VM_SLEEP) != 0) {
prflags = PR_WAITOK;
} else {
prflags = PR_NOWAIT;
}
return prflags;
}
static size_t
qc_poolpage_size(size_t qcache_max)
{
int i;
for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
/* nothing */
}
return ORDER2SIZE(i);
}
static void *
qc_poolpage_alloc(struct pool *pool, int prflags)
{
qcache_t *qc = QC_POOL_TO_QCACHE(pool);
vmem_t *vm = qc->qc_vmem;
return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
prf_to_vmf(prflags) | VM_INSTANTFIT);
}
static void
qc_poolpage_free(struct pool *pool, void *addr)
{
qcache_t *qc = QC_POOL_TO_QCACHE(pool);
vmem_t *vm = qc->qc_vmem;
vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
}
static void
qc_init(vmem_t *vm, size_t qcache_max)
{
qcache_t *prevqc;
struct pool_allocator *pa;
int qcache_idx_max;
int i;
KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
}
vm->vm_qcache_max = qcache_max;
pa = &vm->vm_qcache_allocator;
memset(pa, 0, sizeof(*pa));
pa->pa_alloc = qc_poolpage_alloc;
pa->pa_free = qc_poolpage_free;
pa->pa_pagesz = qc_poolpage_size(qcache_max);
qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
prevqc = NULL;
for (i = qcache_idx_max; i > 0; i--) {
qcache_t *qc = &vm->vm_qcache_store[i - 1];
size_t size = i << vm->vm_quantum_shift;
qc->qc_vmem = vm;
snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
vm->vm_name, size);
pool_init(&qc->qc_pool, size, ORDER2SIZE(vm->vm_quantum_shift),
0, PR_NOALIGN | PR_NOTOUCH /* XXX */, qc->qc_name, pa,
IPL_NONE);
if (prevqc != NULL &&
qc->qc_pool.pr_itemsperpage ==
prevqc->qc_pool.pr_itemsperpage) {
pool_destroy(&qc->qc_pool);
vm->vm_qcache[i - 1] = prevqc;
continue;
}
pool_cache_init(&qc->qc_cache, &qc->qc_pool, NULL, NULL, NULL);
vm->vm_qcache[i - 1] = qc;
prevqc = qc;
}
}
static void
qc_destroy(vmem_t *vm)
{
const qcache_t *prevqc;
int i;
int qcache_idx_max;
qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
prevqc = NULL;
for (i = 0; i < qcache_idx_max; i++) {
qcache_t *qc = vm->vm_qcache[i];
if (prevqc == qc) {
continue;
}
pool_cache_destroy(&qc->qc_cache);
pool_destroy(&qc->qc_pool);
prevqc = qc;
}
}
static bool
qc_reap(vmem_t *vm)
{
const qcache_t *prevqc;
int i;
int qcache_idx_max;
bool didsomething = false;
qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
prevqc = NULL;
for (i = 0; i < qcache_idx_max; i++) {
qcache_t *qc = vm->vm_qcache[i];
if (prevqc == qc) {
continue;
}
if (pool_reclaim(&qc->qc_pool) != 0) {
didsomething = true;
}
prevqc = qc;
}
return didsomething;
}
#endif /* defined(QCACHE) */
#if defined(_KERNEL)
static int
vmem_init(void)
{
pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
return 0;
}
#endif /* defined(_KERNEL) */
static vmem_addr_t
vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
int spanbttype)
{
bt_t *btspan;
bt_t *btfree;
KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
VMEM_ASSERT_UNLOCKED(vm);
btspan = bt_alloc(vm, flags);
if (btspan == NULL) {
return VMEM_ADDR_NULL;
}
btfree = bt_alloc(vm, flags);
if (btfree == NULL) {
bt_free(vm, btspan);
return VMEM_ADDR_NULL;
}
btspan->bt_type = spanbttype;
btspan->bt_start = addr;
btspan->bt_size = size;
btfree->bt_type = BT_TYPE_FREE;
btfree->bt_start = addr;
btfree->bt_size = size;
VMEM_LOCK(vm);
bt_insseg_tail(vm, btspan);
bt_insseg(vm, btfree, btspan);
bt_insfree(vm, btfree);
VMEM_UNLOCK(vm);
return addr;
}
static int
vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
{
vmem_addr_t addr;
VMEM_ASSERT_UNLOCKED(vm);
if (vm->vm_allocfn == NULL) {
return EINVAL;
}
addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
if (addr == VMEM_ADDR_NULL) {
return ENOMEM;
}
if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
(*vm->vm_freefn)(vm->vm_source, addr, size);
return ENOMEM;
}
return 0;
}
static int
vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
{
bt_t *bt;
int i;
struct vmem_hashlist *newhashlist;
struct vmem_hashlist *oldhashlist;
size_t oldhashsize;
KASSERT(newhashsize > 0);
VMEM_ASSERT_UNLOCKED(vm);
newhashlist =
xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
if (newhashlist == NULL) {
return ENOMEM;
}
for (i = 0; i < newhashsize; i++) {
LIST_INIT(&newhashlist[i]);
}
VMEM_LOCK(vm);
oldhashlist = vm->vm_hashlist;
oldhashsize = vm->vm_hashsize;
vm->vm_hashlist = newhashlist;
vm->vm_hashsize = newhashsize;
if (oldhashlist == NULL) {
VMEM_UNLOCK(vm);
return 0;
}
for (i = 0; i < oldhashsize; i++) {
while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
bt_rembusy(vm, bt); /* XXX */
bt_insbusy(vm, bt);
}
}
VMEM_UNLOCK(vm);
xfree(oldhashlist);
return 0;
}
/*
* vmem_fit: check if a bt can satisfy the given restrictions.
*/
static vmem_addr_t
vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
{
vmem_addr_t start;
vmem_addr_t end;
KASSERT(bt->bt_size >= size);
/*
* XXX assumption: vmem_addr_t and vmem_size_t are
* unsigned integer of the same size.
*/
start = bt->bt_start;
if (start < minaddr) {
start = minaddr;
}
end = BT_END(bt);
if (end > maxaddr - 1) {
end = maxaddr - 1;
}
if (start >= end) {
return VMEM_ADDR_NULL;
}
start = VMEM_ALIGNUP(start - phase, align) + phase;
if (start < bt->bt_start) {
start += align;
}
if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
KASSERT(align < nocross);
start = VMEM_ALIGNUP(start - phase, nocross) + phase;
}
if (start < end && end - start >= size) {
KASSERT((start & (align - 1)) == phase);
KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
KASSERT(minaddr <= start);
KASSERT(maxaddr == 0 || start + size <= maxaddr);
KASSERT(bt->bt_start <= start);
KASSERT(start + size <= BT_END(bt));
return start;
}
return VMEM_ADDR_NULL;
}
/* ---- vmem API */
/*
* vmem_create: create an arena.
*
* => must not be called from interrupt context.
*/
vmem_t *
vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
vmem_size_t quantum,
vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags)
{
vmem_t *vm;
int i;
#if defined(_KERNEL)
static ONCE_DECL(control);
#endif /* defined(_KERNEL) */
KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
#if defined(_KERNEL)
if (RUN_ONCE(&control, vmem_init)) {
return NULL;
}
#endif /* defined(_KERNEL) */
vm = xmalloc(sizeof(*vm), flags);
if (vm == NULL) {
return NULL;
}
VMEM_LOCK_INIT(vm);
vm->vm_name = name;
vm->vm_quantum_mask = quantum - 1;
vm->vm_quantum_shift = calc_order(quantum);
KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
vm->vm_allocfn = allocfn;
vm->vm_freefn = freefn;
vm->vm_source = source;
vm->vm_nbusytag = 0;
#if defined(QCACHE)
qc_init(vm, qcache_max);
#endif /* defined(QCACHE) */
CIRCLEQ_INIT(&vm->vm_seglist);
for (i = 0; i < VMEM_MAXORDER; i++) {
LIST_INIT(&vm->vm_freelist[i]);
}
vm->vm_hashlist = NULL;
if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
vmem_destroy(vm);
return NULL;
}
if (size != 0) {
if (vmem_add(vm, base, size, flags) == 0) {
vmem_destroy(vm);
return NULL;
}
}
return vm;
}
void
vmem_destroy(vmem_t *vm)
{
VMEM_ASSERT_UNLOCKED(vm);
#if defined(QCACHE)
qc_destroy(vm);
#endif /* defined(QCACHE) */
if (vm->vm_hashlist != NULL) {
int i;
for (i = 0; i < vm->vm_hashsize; i++) {
bt_t *bt;
while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
bt_free(vm, bt);
}
}
xfree(vm->vm_hashlist);
}
xfree(vm);
}
vmem_size_t
vmem_roundup_size(vmem_t *vm, vmem_size_t size)
{
return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
}
/*
* vmem_alloc:
*
* => caller must ensure appropriate spl,
* if the arena can be accessed from interrupt context.
*/
vmem_addr_t
vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
{
const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
const vm_flag_t strat __unused = flags & VM_FITMASK;
KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
VMEM_ASSERT_UNLOCKED(vm);
KASSERT(size0 > 0);
KASSERT(size > 0);
KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
if ((flags & VM_SLEEP) != 0) {
ASSERT_SLEEPABLE(NULL, __func__);
}
#if defined(QCACHE)
if (size <= vm->vm_qcache_max) {
int qidx = size >> vm->vm_quantum_shift;
qcache_t *qc = vm->vm_qcache[qidx - 1];
return (vmem_addr_t)pool_cache_get(&qc->qc_cache,
vmf_to_prf(flags));
}
#endif /* defined(QCACHE) */
return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
}
vmem_addr_t
vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
vm_flag_t flags)
{
struct vmem_freelist *list;
struct vmem_freelist *first;
struct vmem_freelist *end;
bt_t *bt;
bt_t *btnew;
bt_t *btnew2;
const vmem_size_t size = vmem_roundup_size(vm, size0);
vm_flag_t strat = flags & VM_FITMASK;
vmem_addr_t start;
KASSERT(size0 > 0);
KASSERT(size > 0);
KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
if ((flags & VM_SLEEP) != 0) {
ASSERT_SLEEPABLE(NULL, __func__);
}
KASSERT((align & vm->vm_quantum_mask) == 0);
KASSERT((align & (align - 1)) == 0);
KASSERT((phase & vm->vm_quantum_mask) == 0);
KASSERT((nocross & vm->vm_quantum_mask) == 0);
KASSERT((nocross & (nocross - 1)) == 0);
KASSERT((align == 0 && phase == 0) || phase < align);
KASSERT(nocross == 0 || nocross >= size);
KASSERT(maxaddr == 0 || minaddr < maxaddr);
KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
if (align == 0) {
align = vm->vm_quantum_mask + 1;
}
btnew = bt_alloc(vm, flags);
if (btnew == NULL) {
return VMEM_ADDR_NULL;
}
btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
if (btnew2 == NULL) {
bt_free(vm, btnew);
return VMEM_ADDR_NULL;
}
retry_strat:
first = bt_freehead_toalloc(vm, size, strat);
end = &vm->vm_freelist[VMEM_MAXORDER];
retry:
bt = NULL;
VMEM_LOCK(vm);
if (strat == VM_INSTANTFIT) {
for (list = first; list < end; list++) {
bt = LIST_FIRST(list);
if (bt != NULL) {
start = vmem_fit(bt, size, align, phase,
nocross, minaddr, maxaddr);
if (start != VMEM_ADDR_NULL) {
goto gotit;
}
}
}
} else { /* VM_BESTFIT */
for (list = first; list < end; list++) {
LIST_FOREACH(bt, list, bt_freelist) {
if (bt->bt_size >= size) {
start = vmem_fit(bt, size, align, phase,
nocross, minaddr, maxaddr);
if (start != VMEM_ADDR_NULL) {
goto gotit;
}
}
}
}
}
VMEM_UNLOCK(vm);
#if 1
if (strat == VM_INSTANTFIT) {
strat = VM_BESTFIT;
goto retry_strat;
}
#endif
if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
nocross != 0 || minaddr != 0 || maxaddr != 0) {
/*
* XXX should try to import a region large enough to
* satisfy restrictions?
*/
goto fail;
}
if (vmem_import(vm, size, flags) == 0) {
goto retry;
}
/* XXX */
fail:
bt_free(vm, btnew);
bt_free(vm, btnew2);
return VMEM_ADDR_NULL;
gotit:
KASSERT(bt->bt_type == BT_TYPE_FREE);
KASSERT(bt->bt_size >= size);
bt_remfree(vm, bt);
if (bt->bt_start != start) {
btnew2->bt_type = BT_TYPE_FREE;
btnew2->bt_start = bt->bt_start;
btnew2->bt_size = start - bt->bt_start;
bt->bt_start = start;
bt->bt_size -= btnew2->bt_size;
bt_insfree(vm, btnew2);
bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
btnew2 = NULL;
}
KASSERT(bt->bt_start == start);
if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
/* split */
btnew->bt_type = BT_TYPE_BUSY;
btnew->bt_start = bt->bt_start;
btnew->bt_size = size;
bt->bt_start = bt->bt_start + size;
bt->bt_size -= size;
bt_insfree(vm, bt);
bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
bt_insbusy(vm, btnew);
VMEM_UNLOCK(vm);
} else {
bt->bt_type = BT_TYPE_BUSY;
bt_insbusy(vm, bt);
VMEM_UNLOCK(vm);
bt_free(vm, btnew);
btnew = bt;
}
if (btnew2 != NULL) {
bt_free(vm, btnew2);
}
KASSERT(btnew->bt_size >= size);
btnew->bt_type = BT_TYPE_BUSY;
return btnew->bt_start;
}
/*
* vmem_free:
*
* => caller must ensure appropriate spl,
* if the arena can be accessed from interrupt context.
*/
void
vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
{
VMEM_ASSERT_UNLOCKED(vm);
KASSERT(addr != VMEM_ADDR_NULL);
KASSERT(size > 0);
#if defined(QCACHE)
if (size <= vm->vm_qcache_max) {
int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
qcache_t *qc = vm->vm_qcache[qidx - 1];
return pool_cache_put(&qc->qc_cache, (void *)addr);
}
#endif /* defined(QCACHE) */
vmem_xfree(vm, addr, size);
}
void
vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
{
bt_t *bt;
bt_t *t;
VMEM_ASSERT_UNLOCKED(vm);
KASSERT(addr != VMEM_ADDR_NULL);
KASSERT(size > 0);
VMEM_LOCK(vm);
bt = bt_lookupbusy(vm, addr);
KASSERT(bt != NULL);
KASSERT(bt->bt_start == addr);
KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
KASSERT(bt->bt_type == BT_TYPE_BUSY);
bt_rembusy(vm, bt);
bt->bt_type = BT_TYPE_FREE;
/* coalesce */
t = CIRCLEQ_NEXT(bt, bt_seglist);
if (t != NULL && t->bt_type == BT_TYPE_FREE) {
KASSERT(BT_END(bt) == t->bt_start);
bt_remfree(vm, t);
bt_remseg(vm, t);
bt->bt_size += t->bt_size;
bt_free(vm, t);
}
t = CIRCLEQ_PREV(bt, bt_seglist);
if (t != NULL && t->bt_type == BT_TYPE_FREE) {
KASSERT(BT_END(t) == bt->bt_start);
bt_remfree(vm, t);
bt_remseg(vm, t);
bt->bt_size += t->bt_size;
bt->bt_start = t->bt_start;
bt_free(vm, t);
}
t = CIRCLEQ_PREV(bt, bt_seglist);
KASSERT(t != NULL);
KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
t->bt_size == bt->bt_size) {
vmem_addr_t spanaddr;
vmem_size_t spansize;
KASSERT(t->bt_start == bt->bt_start);
spanaddr = bt->bt_start;
spansize = bt->bt_size;
bt_remseg(vm, bt);
bt_free(vm, bt);
bt_remseg(vm, t);
bt_free(vm, t);
VMEM_UNLOCK(vm);
(*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
} else {
bt_insfree(vm, bt);
VMEM_UNLOCK(vm);
}
}
/*
* vmem_add:
*
* => caller must ensure appropriate spl,
* if the arena can be accessed from interrupt context.
*/
vmem_addr_t
vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
{
return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
}
/*
* vmem_reap: reap unused resources.
*
* => return true if we successfully reaped something.
*/
bool
vmem_reap(vmem_t *vm)
{
bool didsomething = false;
VMEM_ASSERT_UNLOCKED(vm);
#if defined(QCACHE)
didsomething = qc_reap(vm);
#endif /* defined(QCACHE) */
return didsomething;
}
/* ---- debug */
#if defined(VMEM_DEBUG)
#if !defined(_KERNEL)
#include <stdio.h>
#endif /* !defined(_KERNEL) */
void bt_dump(const bt_t *);
void
bt_dump(const bt_t *bt)
{
printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
bt->bt_type);
}
void
vmem_dump(const vmem_t *vm)
{
const bt_t *bt;
int i;
printf("vmem %p '%s'\n", vm, vm->vm_name);
CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
bt_dump(bt);
}
for (i = 0; i < VMEM_MAXORDER; i++) {
const struct vmem_freelist *fl = &vm->vm_freelist[i];
if (LIST_EMPTY(fl)) {
continue;
}
printf("freelist[%d]\n", i);
LIST_FOREACH(bt, fl, bt_freelist) {
bt_dump(bt);
if (bt->bt_size) {
}
}
}
}
#if !defined(_KERNEL)
int
main()
{
vmem_t *vm;
vmem_addr_t p;
struct reg {
vmem_addr_t p;
vmem_size_t sz;
bool x;
} *reg = NULL;
int nreg = 0;
int nalloc = 0;
int nfree = 0;
vmem_size_t total = 0;
#if 1
vm_flag_t strat = VM_INSTANTFIT;
#else
vm_flag_t strat = VM_BESTFIT;
#endif
vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
NULL, NULL, NULL, 0, VM_NOSLEEP);
if (vm == NULL) {
printf("vmem_create\n");
exit(EXIT_FAILURE);
}
vmem_dump(vm);
p = vmem_add(vm, 100, 200, VM_SLEEP);
p = vmem_add(vm, 2000, 1, VM_SLEEP);
p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
p = vmem_add(vm, 10000, 10000, VM_SLEEP);
p = vmem_add(vm, 500, 1000, VM_SLEEP);
vmem_dump(vm);
for (;;) {
struct reg *r;
int t = rand() % 100;
if (t > 45) {
/* alloc */
vmem_size_t sz = rand() % 500 + 1;
bool x;
vmem_size_t align, phase, nocross;
vmem_addr_t minaddr, maxaddr;
if (t > 70) {
x = true;
/* XXX */
align = 1 << (rand() % 15);
phase = rand() % 65536;
nocross = 1 << (rand() % 15);
if (align <= phase) {
phase = 0;
}
if (VMEM_CROSS_P(phase, phase + sz - 1,
nocross)) {
nocross = 0;
}
minaddr = rand() % 50000;
maxaddr = rand() % 70000;
if (minaddr > maxaddr) {
minaddr = 0;
maxaddr = 0;
}
printf("=== xalloc %" PRIu64
" align=%" PRIu64 ", phase=%" PRIu64
", nocross=%" PRIu64 ", min=%" PRIu64
", max=%" PRIu64 "\n",
(uint64_t)sz,
(uint64_t)align,
(uint64_t)phase,
(uint64_t)nocross,
(uint64_t)minaddr,
(uint64_t)maxaddr);
p = vmem_xalloc(vm, sz, align, phase, nocross,
minaddr, maxaddr, strat|VM_SLEEP);
} else {
x = false;
printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
p = vmem_alloc(vm, sz, strat|VM_SLEEP);
}
printf("-> %" PRIu64 "\n", (uint64_t)p);
vmem_dump(vm);
if (p == VMEM_ADDR_NULL) {
if (x) {
continue;
}
break;
}
nreg++;
reg = realloc(reg, sizeof(*reg) * nreg);
r = &reg[nreg - 1];
r->p = p;
r->sz = sz;
r->x = x;
total += sz;
nalloc++;
} else if (nreg != 0) {
/* free */
r = &reg[rand() % nreg];
printf("=== free %" PRIu64 ", %" PRIu64 "\n",
(uint64_t)r->p, (uint64_t)r->sz);
if (r->x) {
vmem_xfree(vm, r->p, r->sz);
} else {
vmem_free(vm, r->p, r->sz);
}
total -= r->sz;
vmem_dump(vm);
*r = reg[nreg - 1];
nreg--;
nfree++;
}
printf("total=%" PRIu64 "\n", (uint64_t)total);
}
fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
(uint64_t)total, nalloc, nfree);
exit(EXIT_SUCCESS);
}
#endif /* !defined(_KERNEL) */
#endif /* defined(VMEM_DEBUG) */