NetBSD/sys/dev/scsipi/sd.c
2010-04-14 22:26:33 +00:00

2332 lines
59 KiB
C

/* $NetBSD: sd.c,v 1.293 2010/04/14 22:26:33 jakllsch Exp $ */
/*-
* Copyright (c) 1998, 2003, 2004 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Originally written by Julian Elischer (julian@dialix.oz.au)
* for TRW Financial Systems for use under the MACH(2.5) operating system.
*
* TRW Financial Systems, in accordance with their agreement with Carnegie
* Mellon University, makes this software available to CMU to distribute
* or use in any manner that they see fit as long as this message is kept with
* the software. For this reason TFS also grants any other persons or
* organisations permission to use or modify this software.
*
* TFS supplies this software to be publicly redistributed
* on the understanding that TFS is not responsible for the correct
* functioning of this software in any circumstances.
*
* Ported to run under 386BSD by Julian Elischer (julian@dialix.oz.au) Sept 1992
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sd.c,v 1.293 2010/04/14 22:26:33 jakllsch Exp $");
#include "opt_scsi.h"
#include "rnd.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/scsiio.h>
#include <sys/buf.h>
#include <sys/bufq.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/disklabel.h>
#include <sys/disk.h>
#include <sys/proc.h>
#include <sys/conf.h>
#include <sys/vnode.h>
#if NRND > 0
#include <sys/rnd.h>
#endif
#include <dev/scsipi/scsi_spc.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsi_all.h>
#include <dev/scsipi/scsipi_disk.h>
#include <dev/scsipi/scsi_disk.h>
#include <dev/scsipi/scsiconf.h>
#include <dev/scsipi/scsipi_base.h>
#include <dev/scsipi/sdvar.h>
#include <prop/proplib.h>
#define SDUNIT(dev) DISKUNIT(dev)
#define SDPART(dev) DISKPART(dev)
#define SDMINOR(unit, part) DISKMINOR(unit, part)
#define MAKESDDEV(maj, unit, part) MAKEDISKDEV(maj, unit, part)
#define SDLABELDEV(dev) (MAKESDDEV(major(dev), SDUNIT(dev), RAW_PART))
#define SD_DEFAULT_BLKSIZE 512
static void sdminphys(struct buf *);
static void sdgetdefaultlabel(struct sd_softc *, struct disklabel *);
static int sdgetdisklabel(struct sd_softc *);
static void sdstart(struct scsipi_periph *);
static void sdrestart(void *);
static void sddone(struct scsipi_xfer *, int);
static bool sd_suspend(device_t, const pmf_qual_t *);
static bool sd_shutdown(device_t, int);
static int sd_interpret_sense(struct scsipi_xfer *);
static int sdlastclose(device_t);
static int sd_mode_sense(struct sd_softc *, u_int8_t, void *, size_t, int,
int, int *);
static int sd_mode_select(struct sd_softc *, u_int8_t, void *, size_t, int,
int);
static int sd_validate_blksize(struct scsipi_periph *, int);
static u_int64_t sd_read_capacity(struct scsipi_periph *, int *, int flags);
static int sd_get_simplifiedparms(struct sd_softc *, struct disk_parms *,
int);
static int sd_get_capacity(struct sd_softc *, struct disk_parms *, int);
static int sd_get_parms(struct sd_softc *, struct disk_parms *, int);
static int sd_get_parms_page4(struct sd_softc *, struct disk_parms *,
int);
static int sd_get_parms_page5(struct sd_softc *, struct disk_parms *,
int);
static int sd_flush(struct sd_softc *, int);
static int sd_getcache(struct sd_softc *, int *);
static int sd_setcache(struct sd_softc *, int);
static int sdmatch(device_t, cfdata_t, void *);
static void sdattach(device_t, device_t, void *);
static int sddetach(device_t, int);
static void sd_set_properties(struct sd_softc *);
CFATTACH_DECL3_NEW(sd, sizeof(struct sd_softc), sdmatch, sdattach, sddetach,
NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
extern struct cfdriver sd_cd;
static const struct scsipi_inquiry_pattern sd_patterns[] = {
{T_DIRECT, T_FIXED,
"", "", ""},
{T_DIRECT, T_REMOV,
"", "", ""},
{T_OPTICAL, T_FIXED,
"", "", ""},
{T_OPTICAL, T_REMOV,
"", "", ""},
{T_SIMPLE_DIRECT, T_FIXED,
"", "", ""},
{T_SIMPLE_DIRECT, T_REMOV,
"", "", ""},
};
static dev_type_open(sdopen);
static dev_type_close(sdclose);
static dev_type_read(sdread);
static dev_type_write(sdwrite);
static dev_type_ioctl(sdioctl);
static dev_type_strategy(sdstrategy);
static dev_type_dump(sddump);
static dev_type_size(sdsize);
const struct bdevsw sd_bdevsw = {
sdopen, sdclose, sdstrategy, sdioctl, sddump, sdsize, D_DISK
};
const struct cdevsw sd_cdevsw = {
sdopen, sdclose, sdread, sdwrite, sdioctl,
nostop, notty, nopoll, nommap, nokqfilter, D_DISK
};
static struct dkdriver sddkdriver = { sdstrategy, sdminphys };
static const struct scsipi_periphsw sd_switch = {
sd_interpret_sense, /* check our error handler first */
sdstart, /* have a queue, served by this */
NULL, /* have no async handler */
sddone, /* deal with stats at interrupt time */
};
struct sd_mode_sense_data {
/*
* XXX
* We are not going to parse this as-is -- it just has to be large
* enough.
*/
union {
struct scsi_mode_parameter_header_6 small;
struct scsi_mode_parameter_header_10 big;
} header;
struct scsi_general_block_descriptor blk_desc;
union scsi_disk_pages pages;
};
/*
* The routine called by the low level scsi routine when it discovers
* A device suitable for this driver
*/
static int
sdmatch(device_t parent, cfdata_t match,
void *aux)
{
struct scsipibus_attach_args *sa = aux;
int priority;
(void)scsipi_inqmatch(&sa->sa_inqbuf,
sd_patterns, sizeof(sd_patterns) / sizeof(sd_patterns[0]),
sizeof(sd_patterns[0]), &priority);
return (priority);
}
/*
* Attach routine common to atapi & scsi.
*/
static void
sdattach(device_t parent, device_t self, void *aux)
{
struct sd_softc *sd = device_private(self);
struct scsipibus_attach_args *sa = aux;
struct scsipi_periph *periph = sa->sa_periph;
int error, result;
struct disk_parms *dp = &sd->params;
char pbuf[9];
SC_DEBUG(periph, SCSIPI_DB2, ("sdattach: "));
sd->sc_dev = self;
sd->type = (sa->sa_inqbuf.type & SID_TYPE);
strncpy(sd->name, sa->sa_inqbuf.product, sizeof(sd->name));
if (sd->type == T_SIMPLE_DIRECT)
periph->periph_quirks |= PQUIRK_ONLYBIG | PQUIRK_NOBIGMODESENSE;
if (scsipi_periph_bustype(sa->sa_periph) == SCSIPI_BUSTYPE_SCSI &&
periph->periph_version == 0)
sd->flags |= SDF_ANCIENT;
bufq_alloc(&sd->buf_queue, BUFQ_DISK_DEFAULT_STRAT, BUFQ_SORT_RAWBLOCK);
callout_init(&sd->sc_callout, 0);
/*
* Store information needed to contact our base driver
*/
sd->sc_periph = periph;
periph->periph_dev = sd->sc_dev;
periph->periph_switch = &sd_switch;
/*
* Increase our openings to the maximum-per-periph
* supported by the adapter. This will either be
* clamped down or grown by the adapter if necessary.
*/
periph->periph_openings =
SCSIPI_CHAN_MAX_PERIPH(periph->periph_channel);
periph->periph_flags |= PERIPH_GROW_OPENINGS;
/*
* Initialize and attach the disk structure.
*/
disk_init(&sd->sc_dk, device_xname(sd->sc_dev), &sddkdriver);
disk_attach(&sd->sc_dk);
/*
* Use the subdriver to request information regarding the drive.
*/
aprint_naive("\n");
aprint_normal("\n");
error = scsipi_test_unit_ready(periph,
XS_CTL_DISCOVERY | XS_CTL_IGNORE_ILLEGAL_REQUEST |
XS_CTL_IGNORE_MEDIA_CHANGE | XS_CTL_SILENT_NODEV);
if (error)
result = SDGP_RESULT_OFFLINE;
else
result = sd_get_parms(sd, &sd->params, XS_CTL_DISCOVERY);
aprint_normal_dev(sd->sc_dev, "");
switch (result) {
case SDGP_RESULT_OK:
format_bytes(pbuf, sizeof(pbuf),
(u_int64_t)dp->disksize * dp->blksize);
aprint_normal(
"%s, %ld cyl, %ld head, %ld sec, %ld bytes/sect x %llu sectors",
pbuf, dp->cyls, dp->heads, dp->sectors, dp->blksize,
(unsigned long long)dp->disksize);
break;
case SDGP_RESULT_OFFLINE:
aprint_normal("drive offline");
break;
case SDGP_RESULT_UNFORMATTED:
aprint_normal("unformatted media");
break;
#ifdef DIAGNOSTIC
default:
panic("sdattach: unknown result from get_parms");
break;
#endif
}
aprint_normal("\n");
/*
* Establish a shutdown hook so that we can ensure that
* our data has actually made it onto the platter at
* shutdown time. Note that this relies on the fact
* that the shutdown hooks at the "leaves" of the device tree
* are run, first (thus guaranteeing that our hook runs before
* our ancestors').
*/
if (!pmf_device_register1(self, sd_suspend, NULL, sd_shutdown))
aprint_error_dev(self, "couldn't establish power handler\n");
#if NRND > 0
/*
* attach the device into the random source list
*/
rnd_attach_source(&sd->rnd_source, device_xname(sd->sc_dev),
RND_TYPE_DISK, 0);
#endif
/* Discover wedges on this disk. */
dkwedge_discover(&sd->sc_dk);
}
static int
sddetach(device_t self, int flags)
{
struct sd_softc *sd = device_private(self);
int s, bmaj, cmaj, i, mn, rc;
if ((rc = disk_begindetach(&sd->sc_dk, sdlastclose, self, flags)) != 0)
return rc;
/* locate the major number */
bmaj = bdevsw_lookup_major(&sd_bdevsw);
cmaj = cdevsw_lookup_major(&sd_cdevsw);
/* Nuke the vnodes for any open instances */
for (i = 0; i < MAXPARTITIONS; i++) {
mn = SDMINOR(device_unit(self), i);
vdevgone(bmaj, mn, mn, VBLK);
vdevgone(cmaj, mn, mn, VCHR);
}
/* kill any pending restart */
callout_stop(&sd->sc_callout);
/* Delete all of our wedges. */
dkwedge_delall(&sd->sc_dk);
s = splbio();
/* Kill off any queued buffers. */
bufq_drain(sd->buf_queue);
bufq_free(sd->buf_queue);
/* Kill off any pending commands. */
scsipi_kill_pending(sd->sc_periph);
splx(s);
/* Detach from the disk list. */
disk_detach(&sd->sc_dk);
disk_destroy(&sd->sc_dk);
callout_destroy(&sd->sc_callout);
pmf_device_deregister(self);
#if NRND > 0
/* Unhook the entropy source. */
rnd_detach_source(&sd->rnd_source);
#endif
return (0);
}
/*
* open the device. Make sure the partition info is a up-to-date as can be.
*/
static int
sdopen(dev_t dev, int flag, int fmt, struct lwp *l)
{
struct sd_softc *sd;
struct scsipi_periph *periph;
struct scsipi_adapter *adapt;
int unit, part;
int error;
unit = SDUNIT(dev);
sd = device_lookup_private(&sd_cd, unit);
if (sd == NULL)
return (ENXIO);
if (!device_is_active(sd->sc_dev))
return (ENODEV);
part = SDPART(dev);
mutex_enter(&sd->sc_dk.dk_openlock);
/*
* If there are wedges, and this is not RAW_PART, then we
* need to fail.
*/
if (sd->sc_dk.dk_nwedges != 0 && part != RAW_PART) {
error = EBUSY;
goto bad1;
}
periph = sd->sc_periph;
adapt = periph->periph_channel->chan_adapter;
SC_DEBUG(periph, SCSIPI_DB1,
("sdopen: dev=0x%"PRIx64" (unit %d (of %d), partition %d)\n", dev, unit,
sd_cd.cd_ndevs, part));
/*
* If this is the first open of this device, add a reference
* to the adapter.
*/
if (sd->sc_dk.dk_openmask == 0 &&
(error = scsipi_adapter_addref(adapt)) != 0)
goto bad1;
if ((periph->periph_flags & PERIPH_OPEN) != 0) {
/*
* If any partition is open, but the disk has been invalidated,
* disallow further opens of non-raw partition
*/
if ((periph->periph_flags & PERIPH_MEDIA_LOADED) == 0 &&
(part != RAW_PART || fmt != S_IFCHR)) {
error = EIO;
goto bad2;
}
} else {
int silent;
if (part == RAW_PART && fmt == S_IFCHR)
silent = XS_CTL_SILENT;
else
silent = 0;
/* Check that it is still responding and ok. */
error = scsipi_test_unit_ready(periph,
XS_CTL_IGNORE_ILLEGAL_REQUEST | XS_CTL_IGNORE_MEDIA_CHANGE |
silent);
/*
* Start the pack spinning if necessary. Always allow the
* raw parition to be opened, for raw IOCTLs. Data transfers
* will check for SDEV_MEDIA_LOADED.
*/
if (error == EIO) {
int error2;
error2 = scsipi_start(periph, SSS_START, silent);
switch (error2) {
case 0:
error = 0;
break;
case EIO:
case EINVAL:
break;
default:
error = error2;
break;
}
}
if (error) {
if (silent)
goto out;
goto bad2;
}
periph->periph_flags |= PERIPH_OPEN;
if (periph->periph_flags & PERIPH_REMOVABLE) {
/* Lock the pack in. */
error = scsipi_prevent(periph, SPAMR_PREVENT_DT,
XS_CTL_IGNORE_ILLEGAL_REQUEST |
XS_CTL_IGNORE_MEDIA_CHANGE |
XS_CTL_SILENT);
if (error)
goto bad3;
}
if ((periph->periph_flags & PERIPH_MEDIA_LOADED) == 0) {
int param_error;
periph->periph_flags |= PERIPH_MEDIA_LOADED;
/*
* Load the physical device parameters.
*
* Note that if media is present but unformatted,
* we allow the open (so that it can be formatted!).
* The drive should refuse real I/O, if the media is
* unformatted.
*/
if ((param_error = sd_get_parms(sd, &sd->params, 0))
== SDGP_RESULT_OFFLINE) {
error = ENXIO;
periph->periph_flags &= ~PERIPH_MEDIA_LOADED;
goto bad3;
}
SC_DEBUG(periph, SCSIPI_DB3, ("Params loaded "));
/* Load the partition info if not already loaded. */
if (param_error == 0) {
if ((sdgetdisklabel(sd) != 0) && (part != RAW_PART)) {
error = EIO;
goto bad3;
}
SC_DEBUG(periph, SCSIPI_DB3,
("Disklabel loaded "));
}
}
}
/* Check that the partition exists. */
if (part != RAW_PART &&
(part >= sd->sc_dk.dk_label->d_npartitions ||
sd->sc_dk.dk_label->d_partitions[part].p_fstype == FS_UNUSED)) {
error = ENXIO;
goto bad3;
}
out: /* Insure only one open at a time. */
switch (fmt) {
case S_IFCHR:
sd->sc_dk.dk_copenmask |= (1 << part);
break;
case S_IFBLK:
sd->sc_dk.dk_bopenmask |= (1 << part);
break;
}
sd->sc_dk.dk_openmask =
sd->sc_dk.dk_copenmask | sd->sc_dk.dk_bopenmask;
SC_DEBUG(periph, SCSIPI_DB3, ("open complete\n"));
mutex_exit(&sd->sc_dk.dk_openlock);
return (0);
bad3:
if (sd->sc_dk.dk_openmask == 0) {
if (periph->periph_flags & PERIPH_REMOVABLE)
scsipi_prevent(periph, SPAMR_ALLOW,
XS_CTL_IGNORE_ILLEGAL_REQUEST |
XS_CTL_IGNORE_MEDIA_CHANGE |
XS_CTL_SILENT);
periph->periph_flags &= ~PERIPH_OPEN;
}
bad2:
if (sd->sc_dk.dk_openmask == 0)
scsipi_adapter_delref(adapt);
bad1:
mutex_exit(&sd->sc_dk.dk_openlock);
return (error);
}
/*
* Caller must hold sd->sc_dk.dk_openlock.
*/
static int
sdlastclose(device_t self)
{
struct sd_softc *sd = device_private(self);
struct scsipi_periph *periph = sd->sc_periph;
struct scsipi_adapter *adapt = periph->periph_channel->chan_adapter;
/*
* If the disk cache needs flushing, and the disk supports
* it, do it now.
*/
if ((sd->flags & SDF_DIRTY) != 0) {
if (sd_flush(sd, 0)) {
aprint_error_dev(sd->sc_dev,
"cache synchronization failed\n");
sd->flags &= ~SDF_FLUSHING;
} else
sd->flags &= ~(SDF_FLUSHING|SDF_DIRTY);
}
scsipi_wait_drain(periph);
if (periph->periph_flags & PERIPH_REMOVABLE)
scsipi_prevent(periph, SPAMR_ALLOW,
XS_CTL_IGNORE_ILLEGAL_REQUEST |
XS_CTL_IGNORE_NOT_READY |
XS_CTL_SILENT);
periph->periph_flags &= ~PERIPH_OPEN;
scsipi_wait_drain(periph);
scsipi_adapter_delref(adapt);
return 0;
}
/*
* close the device.. only called if we are the LAST occurence of an open
* device. Convenient now but usually a pain.
*/
static int
sdclose(dev_t dev, int flag, int fmt, struct lwp *l)
{
struct sd_softc *sd = device_lookup_private(&sd_cd, SDUNIT(dev));
int part = SDPART(dev);
mutex_enter(&sd->sc_dk.dk_openlock);
switch (fmt) {
case S_IFCHR:
sd->sc_dk.dk_copenmask &= ~(1 << part);
break;
case S_IFBLK:
sd->sc_dk.dk_bopenmask &= ~(1 << part);
break;
}
sd->sc_dk.dk_openmask =
sd->sc_dk.dk_copenmask | sd->sc_dk.dk_bopenmask;
if (sd->sc_dk.dk_openmask == 0)
sdlastclose(sd->sc_dev);
mutex_exit(&sd->sc_dk.dk_openlock);
return (0);
}
/*
* Actually translate the requested transfer into one the physical driver
* can understand. The transfer is described by a buf and will include
* only one physical transfer.
*/
static void
sdstrategy(struct buf *bp)
{
struct sd_softc *sd = device_lookup_private(&sd_cd, SDUNIT(bp->b_dev));
struct scsipi_periph *periph = sd->sc_periph;
struct disklabel *lp;
daddr_t blkno;
int s;
bool sector_aligned;
SC_DEBUG(sd->sc_periph, SCSIPI_DB2, ("sdstrategy "));
SC_DEBUG(sd->sc_periph, SCSIPI_DB1,
("%d bytes @ blk %" PRId64 "\n", bp->b_bcount, bp->b_blkno));
/*
* If the device has been made invalid, error out
*/
if ((periph->periph_flags & PERIPH_MEDIA_LOADED) == 0 ||
!device_is_active(sd->sc_dev)) {
if (periph->periph_flags & PERIPH_OPEN)
bp->b_error = EIO;
else
bp->b_error = ENODEV;
goto done;
}
lp = sd->sc_dk.dk_label;
/*
* The transfer must be a whole number of blocks, offset must not be
* negative.
*/
if (lp->d_secsize == DEV_BSIZE) {
sector_aligned = (bp->b_bcount & (DEV_BSIZE - 1)) == 0;
} else {
sector_aligned = (bp->b_bcount % lp->d_secsize) == 0;
}
if (!sector_aligned || bp->b_blkno < 0) {
bp->b_error = EINVAL;
goto done;
}
/*
* If it's a null transfer, return immediatly
*/
if (bp->b_bcount == 0)
goto done;
/*
* Do bounds checking, adjust transfer. if error, process.
* If end of partition, just return.
*/
if (SDPART(bp->b_dev) == RAW_PART) {
if (bounds_check_with_mediasize(bp, DEV_BSIZE,
sd->params.disksize512) <= 0)
goto done;
} else {
if (bounds_check_with_label(&sd->sc_dk, bp,
(sd->flags & (SDF_WLABEL|SDF_LABELLING)) != 0) <= 0)
goto done;
}
/*
* Now convert the block number to absolute and put it in
* terms of the device's logical block size.
*/
if (lp->d_secsize == DEV_BSIZE)
blkno = bp->b_blkno;
else if (lp->d_secsize > DEV_BSIZE)
blkno = bp->b_blkno / (lp->d_secsize / DEV_BSIZE);
else
blkno = bp->b_blkno * (DEV_BSIZE / lp->d_secsize);
if (SDPART(bp->b_dev) != RAW_PART)
blkno += lp->d_partitions[SDPART(bp->b_dev)].p_offset;
bp->b_rawblkno = blkno;
s = splbio();
/*
* Place it in the queue of disk activities for this disk.
*
* XXX Only do disksort() if the current operating mode does not
* XXX include tagged queueing.
*/
bufq_put(sd->buf_queue, bp);
/*
* Tell the device to get going on the transfer if it's
* not doing anything, otherwise just wait for completion
*/
sdstart(sd->sc_periph);
splx(s);
return;
done:
/*
* Correctly set the buf to indicate a completed xfer
*/
bp->b_resid = bp->b_bcount;
biodone(bp);
}
/*
* sdstart looks to see if there is a buf waiting for the device
* and that the device is not already busy. If both are true,
* It dequeues the buf and creates a scsi command to perform the
* transfer in the buf. The transfer request will call scsipi_done
* on completion, which will in turn call this routine again
* so that the next queued transfer is performed.
* The bufs are queued by the strategy routine (sdstrategy)
*
* This routine is also called after other non-queued requests
* have been made of the scsi driver, to ensure that the queue
* continues to be drained.
*
* must be called at the correct (highish) spl level
* sdstart() is called at splbio from sdstrategy, sdrestart and scsipi_done
*/
static void
sdstart(struct scsipi_periph *periph)
{
struct sd_softc *sd = device_private(periph->periph_dev);
struct disklabel *lp = sd->sc_dk.dk_label;
struct buf *bp = 0;
struct scsipi_rw_16 cmd16;
struct scsipi_rw_10 cmd_big;
struct scsi_rw_6 cmd_small;
struct scsipi_generic *cmdp;
struct scsipi_xfer *xs;
int nblks, cmdlen, error, flags;
SC_DEBUG(periph, SCSIPI_DB2, ("sdstart "));
/*
* Check if the device has room for another command
*/
while (periph->periph_active < periph->periph_openings) {
/*
* there is excess capacity, but a special waits
* It'll need the adapter as soon as we clear out of the
* way and let it run (user level wait).
*/
if (periph->periph_flags & PERIPH_WAITING) {
periph->periph_flags &= ~PERIPH_WAITING;
wakeup((void *)periph);
return;
}
/*
* If the device has become invalid, abort all the
* reads and writes until all files have been closed and
* re-opened
*/
if (__predict_false(
(periph->periph_flags & PERIPH_MEDIA_LOADED) == 0)) {
if ((bp = bufq_get(sd->buf_queue)) != NULL) {
bp->b_error = EIO;
bp->b_resid = bp->b_bcount;
biodone(bp);
continue;
} else {
return;
}
}
/*
* See if there is a buf with work for us to do..
*/
if ((bp = bufq_peek(sd->buf_queue)) == NULL)
return;
/*
* We have a buf, now we should make a command.
*/
if (lp->d_secsize == DEV_BSIZE)
nblks = bp->b_bcount >> DEV_BSHIFT;
else
nblks = howmany(bp->b_bcount, lp->d_secsize);
/*
* Fill out the scsi command. Use the smallest CDB possible
* (6-byte, 10-byte, or 16-byte).
*/
if (((bp->b_rawblkno & 0x1fffff) == bp->b_rawblkno) &&
((nblks & 0xff) == nblks) &&
!(periph->periph_quirks & PQUIRK_ONLYBIG)) {
/* 6-byte CDB */
memset(&cmd_small, 0, sizeof(cmd_small));
cmd_small.opcode = (bp->b_flags & B_READ) ?
SCSI_READ_6_COMMAND : SCSI_WRITE_6_COMMAND;
_lto3b(bp->b_rawblkno, cmd_small.addr);
cmd_small.length = nblks & 0xff;
cmdlen = sizeof(cmd_small);
cmdp = (struct scsipi_generic *)&cmd_small;
} else if ((bp->b_rawblkno & 0xffffffff) == bp->b_rawblkno) {
/* 10-byte CDB */
memset(&cmd_big, 0, sizeof(cmd_big));
cmd_big.opcode = (bp->b_flags & B_READ) ?
READ_10 : WRITE_10;
_lto4b(bp->b_rawblkno, cmd_big.addr);
_lto2b(nblks, cmd_big.length);
cmdlen = sizeof(cmd_big);
cmdp = (struct scsipi_generic *)&cmd_big;
} else {
/* 16-byte CDB */
memset(&cmd16, 0, sizeof(cmd16));
cmd16.opcode = (bp->b_flags & B_READ) ?
READ_16 : WRITE_16;
_lto8b(bp->b_rawblkno, cmd16.addr);
_lto4b(nblks, cmd16.length);
cmdlen = sizeof(cmd16);
cmdp = (struct scsipi_generic *)&cmd16;
}
/* Instrumentation. */
disk_busy(&sd->sc_dk);
/*
* Mark the disk dirty so that the cache will be
* flushed on close.
*/
if ((bp->b_flags & B_READ) == 0)
sd->flags |= SDF_DIRTY;
/*
* Figure out what flags to use.
*/
flags = XS_CTL_NOSLEEP|XS_CTL_ASYNC|XS_CTL_SIMPLE_TAG;
if (bp->b_flags & B_READ)
flags |= XS_CTL_DATA_IN;
else
flags |= XS_CTL_DATA_OUT;
/*
* Call the routine that chats with the adapter.
* Note: we cannot sleep as we may be an interrupt
*/
xs = scsipi_make_xs(periph, cmdp, cmdlen,
(u_char *)bp->b_data, bp->b_bcount,
SDRETRIES, SD_IO_TIMEOUT, bp, flags);
if (__predict_false(xs == NULL)) {
/*
* out of memory. Keep this buffer in the queue, and
* retry later.
*/
callout_reset(&sd->sc_callout, hz / 2, sdrestart,
periph);
return;
}
/*
* need to dequeue the buffer before queuing the command,
* because cdstart may be called recursively from the
* HBA driver
*/
#ifdef DIAGNOSTIC
if (bufq_get(sd->buf_queue) != bp)
panic("sdstart(): dequeued wrong buf");
#else
bufq_get(sd->buf_queue);
#endif
error = scsipi_execute_xs(xs);
/* with a scsipi_xfer preallocated, scsipi_command can't fail */
KASSERT(error == 0);
}
}
static void
sdrestart(void *v)
{
int s = splbio();
sdstart((struct scsipi_periph *)v);
splx(s);
}
static void
sddone(struct scsipi_xfer *xs, int error)
{
struct sd_softc *sd = device_private(xs->xs_periph->periph_dev);
struct buf *bp = xs->bp;
if (sd->flags & SDF_FLUSHING) {
/* Flush completed, no longer dirty. */
sd->flags &= ~(SDF_FLUSHING|SDF_DIRTY);
}
if (bp) {
bp->b_error = error;
bp->b_resid = xs->resid;
if (error) {
/* on a read/write error bp->b_resid is zero, so fix */
bp->b_resid = bp->b_bcount;
}
disk_unbusy(&sd->sc_dk, bp->b_bcount - bp->b_resid,
(bp->b_flags & B_READ));
#if NRND > 0
rnd_add_uint32(&sd->rnd_source, bp->b_rawblkno);
#endif
biodone(bp);
}
}
static void
sdminphys(struct buf *bp)
{
struct sd_softc *sd = device_lookup_private(&sd_cd, SDUNIT(bp->b_dev));
long xmax;
/*
* If the device is ancient, we want to make sure that
* the transfer fits into a 6-byte cdb.
*
* XXX Note that the SCSI-I spec says that 256-block transfers
* are allowed in a 6-byte read/write, and are specified
* by settng the "length" to 0. However, we're conservative
* here, allowing only 255-block transfers in case an
* ancient device gets confused by length == 0. A length of 0
* in a 10-byte read/write actually means 0 blocks.
*/
if ((sd->flags & SDF_ANCIENT) &&
((sd->sc_periph->periph_flags &
(PERIPH_REMOVABLE | PERIPH_MEDIA_LOADED)) != PERIPH_REMOVABLE)) {
xmax = sd->sc_dk.dk_label->d_secsize * 0xff;
if (bp->b_bcount > xmax)
bp->b_bcount = xmax;
}
scsipi_adapter_minphys(sd->sc_periph->periph_channel, bp);
}
static int
sdread(dev_t dev, struct uio *uio, int ioflag)
{
return (physio(sdstrategy, NULL, dev, B_READ, sdminphys, uio));
}
static int
sdwrite(dev_t dev, struct uio *uio, int ioflag)
{
return (physio(sdstrategy, NULL, dev, B_WRITE, sdminphys, uio));
}
/*
* Perform special action on behalf of the user
* Knows about the internals of this device
*/
static int
sdioctl(dev_t dev, u_long cmd, void *addr, int flag, struct lwp *l)
{
struct sd_softc *sd = device_lookup_private(&sd_cd, SDUNIT(dev));
struct scsipi_periph *periph = sd->sc_periph;
int part = SDPART(dev);
int error = 0;
int s;
#ifdef __HAVE_OLD_DISKLABEL
struct disklabel *newlabel = NULL;
#endif
SC_DEBUG(sd->sc_periph, SCSIPI_DB2, ("sdioctl 0x%lx ", cmd));
/*
* If the device is not valid, some IOCTLs can still be
* handled on the raw partition. Check this here.
*/
if ((periph->periph_flags & PERIPH_MEDIA_LOADED) == 0) {
switch (cmd) {
case DIOCKLABEL:
case DIOCWLABEL:
case DIOCLOCK:
case DIOCEJECT:
case ODIOCEJECT:
case DIOCGCACHE:
case DIOCSCACHE:
case DIOCGSTRATEGY:
case DIOCSSTRATEGY:
case SCIOCIDENTIFY:
case OSCIOCIDENTIFY:
case SCIOCCOMMAND:
case SCIOCDEBUG:
if (part == RAW_PART)
break;
/* FALLTHROUGH */
default:
if ((periph->periph_flags & PERIPH_OPEN) == 0)
return (ENODEV);
else
return (EIO);
}
}
error = disk_ioctl(&sd->sc_dk, cmd, addr, flag, l);
if (error != EPASSTHROUGH)
return (error);
switch (cmd) {
case DIOCGDINFO:
*(struct disklabel *)addr = *(sd->sc_dk.dk_label);
return (0);
#ifdef __HAVE_OLD_DISKLABEL
case ODIOCGDINFO:
newlabel = malloc(sizeof *newlabel, M_TEMP, M_WAITOK);
if (newlabel == NULL)
return EIO;
memcpy(newlabel, sd->sc_dk.dk_label, sizeof (*newlabel));
if (newlabel->d_npartitions <= OLDMAXPARTITIONS)
memcpy(addr, newlabel, sizeof (struct olddisklabel));
else
error = ENOTTY;
free(newlabel, M_TEMP);
return error;
#endif
case DIOCGPART:
((struct partinfo *)addr)->disklab = sd->sc_dk.dk_label;
((struct partinfo *)addr)->part =
&sd->sc_dk.dk_label->d_partitions[part];
return (0);
case DIOCWDINFO:
case DIOCSDINFO:
#ifdef __HAVE_OLD_DISKLABEL
case ODIOCWDINFO:
case ODIOCSDINFO:
#endif
{
struct disklabel *lp;
if ((flag & FWRITE) == 0)
return (EBADF);
#ifdef __HAVE_OLD_DISKLABEL
if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
newlabel = malloc(sizeof *newlabel, M_TEMP, M_WAITOK);
if (newlabel == NULL)
return EIO;
memset(newlabel, 0, sizeof newlabel);
memcpy(newlabel, addr, sizeof (struct olddisklabel));
lp = newlabel;
} else
#endif
lp = (struct disklabel *)addr;
mutex_enter(&sd->sc_dk.dk_openlock);
sd->flags |= SDF_LABELLING;
error = setdisklabel(sd->sc_dk.dk_label,
lp, /*sd->sc_dk.dk_openmask : */0,
sd->sc_dk.dk_cpulabel);
if (error == 0) {
if (cmd == DIOCWDINFO
#ifdef __HAVE_OLD_DISKLABEL
|| cmd == ODIOCWDINFO
#endif
)
error = writedisklabel(SDLABELDEV(dev),
sdstrategy, sd->sc_dk.dk_label,
sd->sc_dk.dk_cpulabel);
}
sd->flags &= ~SDF_LABELLING;
mutex_exit(&sd->sc_dk.dk_openlock);
#ifdef __HAVE_OLD_DISKLABEL
if (newlabel != NULL)
free(newlabel, M_TEMP);
#endif
return (error);
}
case DIOCKLABEL:
if (*(int *)addr)
periph->periph_flags |= PERIPH_KEEP_LABEL;
else
periph->periph_flags &= ~PERIPH_KEEP_LABEL;
return (0);
case DIOCWLABEL:
if ((flag & FWRITE) == 0)
return (EBADF);
if (*(int *)addr)
sd->flags |= SDF_WLABEL;
else
sd->flags &= ~SDF_WLABEL;
return (0);
case DIOCLOCK:
if (periph->periph_flags & PERIPH_REMOVABLE)
return (scsipi_prevent(periph,
(*(int *)addr) ?
SPAMR_PREVENT_DT : SPAMR_ALLOW, 0));
else
return (ENOTTY);
case DIOCEJECT:
if ((periph->periph_flags & PERIPH_REMOVABLE) == 0)
return (ENOTTY);
if (*(int *)addr == 0) {
/*
* Don't force eject: check that we are the only
* partition open. If so, unlock it.
*/
if ((sd->sc_dk.dk_openmask & ~(1 << part)) == 0 &&
sd->sc_dk.dk_bopenmask + sd->sc_dk.dk_copenmask ==
sd->sc_dk.dk_openmask) {
error = scsipi_prevent(periph, SPAMR_ALLOW,
XS_CTL_IGNORE_NOT_READY);
if (error)
return (error);
} else {
return (EBUSY);
}
}
/* FALLTHROUGH */
case ODIOCEJECT:
return ((periph->periph_flags & PERIPH_REMOVABLE) == 0 ?
ENOTTY : scsipi_start(periph, SSS_STOP|SSS_LOEJ, 0));
case DIOCGDEFLABEL:
sdgetdefaultlabel(sd, (struct disklabel *)addr);
return (0);
#ifdef __HAVE_OLD_DISKLABEL
case ODIOCGDEFLABEL:
newlabel = malloc(sizeof *newlabel, M_TEMP, M_WAITOK);
if (newlabel == NULL)
return EIO;
sdgetdefaultlabel(sd, newlabel);
if (newlabel->d_npartitions <= OLDMAXPARTITIONS)
memcpy(addr, newlabel, sizeof (struct olddisklabel));
else
error = ENOTTY;
free(newlabel, M_TEMP);
return error;
#endif
case DIOCGCACHE:
return (sd_getcache(sd, (int *) addr));
case DIOCSCACHE:
if ((flag & FWRITE) == 0)
return (EBADF);
return (sd_setcache(sd, *(int *) addr));
case DIOCCACHESYNC:
/*
* XXX Do we really need to care about having a writable
* file descriptor here?
*/
if ((flag & FWRITE) == 0)
return (EBADF);
if (((sd->flags & SDF_DIRTY) != 0 || *(int *)addr != 0)) {
error = sd_flush(sd, 0);
if (error)
sd->flags &= ~SDF_FLUSHING;
else
sd->flags &= ~(SDF_FLUSHING|SDF_DIRTY);
} else
error = 0;
return (error);
case DIOCAWEDGE:
{
struct dkwedge_info *dkw = (void *) addr;
if ((flag & FWRITE) == 0)
return (EBADF);
/* If the ioctl happens here, the parent is us. */
strlcpy(dkw->dkw_parent, device_xname(sd->sc_dev),
sizeof(dkw->dkw_parent));
return (dkwedge_add(dkw));
}
case DIOCDWEDGE:
{
struct dkwedge_info *dkw = (void *) addr;
if ((flag & FWRITE) == 0)
return (EBADF);
/* If the ioctl happens here, the parent is us. */
strlcpy(dkw->dkw_parent, device_xname(sd->sc_dev),
sizeof(dkw->dkw_parent));
return (dkwedge_del(dkw));
}
case DIOCLWEDGES:
{
struct dkwedge_list *dkwl = (void *) addr;
return (dkwedge_list(&sd->sc_dk, dkwl, l));
}
case DIOCGSTRATEGY:
{
struct disk_strategy *dks = addr;
s = splbio();
strlcpy(dks->dks_name, bufq_getstrategyname(sd->buf_queue),
sizeof(dks->dks_name));
splx(s);
dks->dks_paramlen = 0;
return 0;
}
case DIOCSSTRATEGY:
{
struct disk_strategy *dks = addr;
struct bufq_state *new;
struct bufq_state *old;
if ((flag & FWRITE) == 0) {
return EBADF;
}
if (dks->dks_param != NULL) {
return EINVAL;
}
dks->dks_name[sizeof(dks->dks_name) - 1] = 0; /* ensure term */
error = bufq_alloc(&new, dks->dks_name,
BUFQ_EXACT|BUFQ_SORT_RAWBLOCK);
if (error) {
return error;
}
s = splbio();
old = sd->buf_queue;
bufq_move(new, old);
sd->buf_queue = new;
splx(s);
bufq_free(old);
return 0;
}
default:
if (part != RAW_PART)
return (ENOTTY);
return (scsipi_do_ioctl(periph, dev, cmd, addr, flag, l));
}
#ifdef DIAGNOSTIC
panic("sdioctl: impossible");
#endif
}
static void
sdgetdefaultlabel(struct sd_softc *sd, struct disklabel *lp)
{
memset(lp, 0, sizeof(struct disklabel));
lp->d_secsize = sd->params.blksize;
lp->d_ntracks = sd->params.heads;
lp->d_nsectors = sd->params.sectors;
lp->d_ncylinders = sd->params.cyls;
lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
switch (scsipi_periph_bustype(sd->sc_periph)) {
case SCSIPI_BUSTYPE_SCSI:
lp->d_type = DTYPE_SCSI;
break;
case SCSIPI_BUSTYPE_ATAPI:
lp->d_type = DTYPE_ATAPI;
break;
}
/*
* XXX
* We could probe the mode pages to figure out what kind of disc it is.
* Is this worthwhile?
*/
strncpy(lp->d_typename, sd->name, 16);
strncpy(lp->d_packname, "fictitious", 16);
lp->d_secperunit = sd->params.disksize;
lp->d_rpm = sd->params.rot_rate;
lp->d_interleave = 1;
lp->d_flags = sd->sc_periph->periph_flags & PERIPH_REMOVABLE ?
D_REMOVABLE : 0;
lp->d_partitions[RAW_PART].p_offset = 0;
lp->d_partitions[RAW_PART].p_size = lp->d_secperunit;
lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
lp->d_npartitions = RAW_PART + 1;
lp->d_magic = DISKMAGIC;
lp->d_magic2 = DISKMAGIC;
lp->d_checksum = dkcksum(lp);
}
/*
* Load the label information on the named device
*/
static int
sdgetdisklabel(struct sd_softc *sd)
{
struct disklabel *lp = sd->sc_dk.dk_label;
const char *errstring;
memset(sd->sc_dk.dk_cpulabel, 0, sizeof(struct cpu_disklabel));
sdgetdefaultlabel(sd, lp);
if (lp->d_secpercyl == 0) {
lp->d_secpercyl = 100;
/* as long as it's not 0 - readdisklabel divides by it (?) */
}
/*
* Call the generic disklabel extraction routine
*/
errstring = readdisklabel(MAKESDDEV(0, device_unit(sd->sc_dev),
RAW_PART), sdstrategy, lp, sd->sc_dk.dk_cpulabel);
if (errstring) {
aprint_error_dev(sd->sc_dev, "%s\n", errstring);
return EIO;
}
return 0;
}
static bool
sd_shutdown(device_t self, int how)
{
struct sd_softc *sd = device_private(self);
/*
* If the disk cache needs to be flushed, and the disk supports
* it, flush it. We're cold at this point, so we poll for
* completion.
*/
if ((sd->flags & SDF_DIRTY) != 0) {
if (sd_flush(sd, XS_CTL_NOSLEEP|XS_CTL_POLL)) {
aprint_error_dev(sd->sc_dev,
"cache synchronization failed\n");
sd->flags &= ~SDF_FLUSHING;
} else
sd->flags &= ~(SDF_FLUSHING|SDF_DIRTY);
}
return true;
}
static bool
sd_suspend(device_t dv, const pmf_qual_t *qual)
{
return sd_shutdown(dv, boothowto); /* XXX no need to poll */
}
/*
* Check Errors
*/
static int
sd_interpret_sense(struct scsipi_xfer *xs)
{
struct scsipi_periph *periph = xs->xs_periph;
struct scsi_sense_data *sense = &xs->sense.scsi_sense;
struct sd_softc *sd = device_private(periph->periph_dev);
int s, error, retval = EJUSTRETURN;
/*
* If the periph is already recovering, just do the normal
* error processing.
*/
if (periph->periph_flags & PERIPH_RECOVERING)
return (retval);
/*
* Ignore errors from accessing illegal fields (e.g. trying to
* lock the door of a digicam, which doesn't have a door that
* can be locked) for the SCSI_PREVENT_ALLOW_MEDIUM_REMOVAL command.
*/
if (xs->cmd->opcode == SCSI_PREVENT_ALLOW_MEDIUM_REMOVAL &&
SSD_SENSE_KEY(sense->flags) == SKEY_ILLEGAL_REQUEST &&
sense->asc == 0x24 &&
sense->ascq == 0x00) { /* Illegal field in CDB */
if (!(xs->xs_control & XS_CTL_SILENT)) {
scsipi_printaddr(periph);
printf("no door lock\n");
}
xs->xs_control |= XS_CTL_IGNORE_ILLEGAL_REQUEST;
return (retval);
}
/*
* If the device is not open yet, let the generic code handle it.
*/
if ((periph->periph_flags & PERIPH_MEDIA_LOADED) == 0)
return (retval);
/*
* If it isn't a extended or extended/deferred error, let
* the generic code handle it.
*/
if (SSD_RCODE(sense->response_code) != SSD_RCODE_CURRENT &&
SSD_RCODE(sense->response_code) != SSD_RCODE_DEFERRED)
return (retval);
if (SSD_SENSE_KEY(sense->flags) == SKEY_NOT_READY &&
sense->asc == 0x4) {
if (sense->ascq == 0x01) {
/*
* Unit In The Process Of Becoming Ready.
*/
printf("%s: waiting for pack to spin up...\n",
device_xname(sd->sc_dev));
if (!callout_pending(&periph->periph_callout))
scsipi_periph_freeze(periph, 1);
callout_reset(&periph->periph_callout,
5 * hz, scsipi_periph_timed_thaw, periph);
retval = ERESTART;
} else if (sense->ascq == 0x02) {
printf("%s: pack is stopped, restarting...\n",
device_xname(sd->sc_dev));
s = splbio();
periph->periph_flags |= PERIPH_RECOVERING;
splx(s);
error = scsipi_start(periph, SSS_START,
XS_CTL_URGENT|XS_CTL_HEAD_TAG|
XS_CTL_THAW_PERIPH|XS_CTL_FREEZE_PERIPH);
if (error) {
aprint_error_dev(sd->sc_dev,
"unable to restart pack\n");
retval = error;
} else
retval = ERESTART;
s = splbio();
periph->periph_flags &= ~PERIPH_RECOVERING;
splx(s);
}
}
if (SSD_SENSE_KEY(sense->flags) == SKEY_MEDIUM_ERROR &&
sense->asc == 0x31 &&
sense->ascq == 0x00) { /* maybe for any asq ? */
/* Medium Format Corrupted */
retval = EFTYPE;
}
return (retval);
}
static int
sdsize(dev_t dev)
{
struct sd_softc *sd;
int part, unit, omask;
int size;
unit = SDUNIT(dev);
sd = device_lookup_private(&sd_cd, unit);
if (sd == NULL)
return (-1);
if (!device_is_active(sd->sc_dev))
return (-1);
part = SDPART(dev);
omask = sd->sc_dk.dk_openmask & (1 << part);
if (omask == 0 && sdopen(dev, 0, S_IFBLK, NULL) != 0)
return (-1);
if ((sd->sc_periph->periph_flags & PERIPH_MEDIA_LOADED) == 0)
size = -1;
else if (sd->sc_dk.dk_label->d_partitions[part].p_fstype != FS_SWAP)
size = -1;
else
size = sd->sc_dk.dk_label->d_partitions[part].p_size *
(sd->sc_dk.dk_label->d_secsize / DEV_BSIZE);
if (omask == 0 && sdclose(dev, 0, S_IFBLK, NULL) != 0)
return (-1);
return (size);
}
/* #define SD_DUMP_NOT_TRUSTED if you just want to watch */
static struct scsipi_xfer sx;
static int sddoingadump;
/*
* dump all of physical memory into the partition specified, starting
* at offset 'dumplo' into the partition.
*/
static int
sddump(dev_t dev, daddr_t blkno, void *va, size_t size)
{
struct sd_softc *sd; /* disk unit to do the I/O */
struct disklabel *lp; /* disk's disklabel */
int unit, part;
int sectorsize; /* size of a disk sector */
int nsects; /* number of sectors in partition */
int sectoff; /* sector offset of partition */
int totwrt; /* total number of sectors left to write */
int nwrt; /* current number of sectors to write */
struct scsipi_rw_10 cmd; /* write command */
struct scsipi_xfer *xs; /* ... convenience */
struct scsipi_periph *periph;
struct scsipi_channel *chan;
/* Check if recursive dump; if so, punt. */
if (sddoingadump)
return (EFAULT);
/* Mark as active early. */
sddoingadump = 1;
unit = SDUNIT(dev); /* Decompose unit & partition. */
part = SDPART(dev);
/* Check for acceptable drive number. */
sd = device_lookup_private(&sd_cd, unit);
if (sd == NULL)
return (ENXIO);
if (!device_is_active(sd->sc_dev))
return (ENODEV);
periph = sd->sc_periph;
chan = periph->periph_channel;
/* Make sure it was initialized. */
if ((periph->periph_flags & PERIPH_MEDIA_LOADED) == 0)
return (ENXIO);
/* Convert to disk sectors. Request must be a multiple of size. */
lp = sd->sc_dk.dk_label;
sectorsize = lp->d_secsize;
if ((size % sectorsize) != 0)
return (EFAULT);
totwrt = size / sectorsize;
blkno = dbtob(blkno) / sectorsize; /* blkno in DEV_BSIZE units */
nsects = lp->d_partitions[part].p_size;
sectoff = lp->d_partitions[part].p_offset;
/* Check transfer bounds against partition size. */
if ((blkno < 0) || ((blkno + totwrt) > nsects))
return (EINVAL);
/* Offset block number to start of partition. */
blkno += sectoff;
xs = &sx;
while (totwrt > 0) {
nwrt = totwrt; /* XXX */
#ifndef SD_DUMP_NOT_TRUSTED
/*
* Fill out the scsi command
*/
memset(&cmd, 0, sizeof(cmd));
cmd.opcode = WRITE_10;
_lto4b(blkno, cmd.addr);
_lto2b(nwrt, cmd.length);
/*
* Fill out the scsipi_xfer structure
* Note: we cannot sleep as we may be an interrupt
* don't use scsipi_command() as it may want to wait
* for an xs.
*/
memset(xs, 0, sizeof(sx));
xs->xs_control |= XS_CTL_NOSLEEP | XS_CTL_POLL |
XS_CTL_DATA_OUT;
xs->xs_status = 0;
xs->xs_periph = periph;
xs->xs_retries = SDRETRIES;
xs->timeout = 10000; /* 10000 millisecs for a disk ! */
xs->cmd = (struct scsipi_generic *)&cmd;
xs->cmdlen = sizeof(cmd);
xs->resid = nwrt * sectorsize;
xs->error = XS_NOERROR;
xs->bp = 0;
xs->data = va;
xs->datalen = nwrt * sectorsize;
callout_init(&xs->xs_callout, 0);
/*
* Pass all this info to the scsi driver.
*/
scsipi_adapter_request(chan, ADAPTER_REQ_RUN_XFER, xs);
if ((xs->xs_status & XS_STS_DONE) == 0 ||
xs->error != XS_NOERROR)
return (EIO);
#else /* SD_DUMP_NOT_TRUSTED */
/* Let's just talk about this first... */
printf("sd%d: dump addr 0x%x, blk %d\n", unit, va, blkno);
delay(500 * 1000); /* half a second */
#endif /* SD_DUMP_NOT_TRUSTED */
/* update block count */
totwrt -= nwrt;
blkno += nwrt;
va = (char *)va + sectorsize * nwrt;
}
sddoingadump = 0;
return (0);
}
static int
sd_mode_sense(struct sd_softc *sd, u_int8_t byte2, void *sense, size_t size,
int page, int flags, int *big)
{
if ((sd->sc_periph->periph_quirks & PQUIRK_ONLYBIG) &&
!(sd->sc_periph->periph_quirks & PQUIRK_NOBIGMODESENSE)) {
*big = 1;
return scsipi_mode_sense_big(sd->sc_periph, byte2, page, sense,
size + sizeof(struct scsi_mode_parameter_header_10),
flags, SDRETRIES, 6000);
} else {
*big = 0;
return scsipi_mode_sense(sd->sc_periph, byte2, page, sense,
size + sizeof(struct scsi_mode_parameter_header_6),
flags, SDRETRIES, 6000);
}
}
static int
sd_mode_select(struct sd_softc *sd, u_int8_t byte2, void *sense, size_t size,
int flags, int big)
{
if (big) {
struct scsi_mode_parameter_header_10 *header = sense;
_lto2b(0, header->data_length);
return scsipi_mode_select_big(sd->sc_periph, byte2, sense,
size + sizeof(struct scsi_mode_parameter_header_10),
flags, SDRETRIES, 6000);
} else {
struct scsi_mode_parameter_header_6 *header = sense;
header->data_length = 0;
return scsipi_mode_select(sd->sc_periph, byte2, sense,
size + sizeof(struct scsi_mode_parameter_header_6),
flags, SDRETRIES, 6000);
}
}
/*
* sd_validate_blksize:
*
* Validate the block size. Print error if periph is specified,
*/
static int
sd_validate_blksize(struct scsipi_periph *periph, int len)
{
switch (len) {
case 256:
case 512:
case 1024:
case 2048:
case 4096:
return 1;
}
if (periph) {
scsipi_printaddr(periph);
printf("%s sector size: 0x%x. Defaulting to %d bytes.\n",
(len ^ (1 << (ffs(len) - 1))) ?
"preposterous" : "unsupported",
len, SD_DEFAULT_BLKSIZE);
}
return 0;
}
/*
* sd_read_capacity:
*
* Find out from the device what its capacity is.
*/
static u_int64_t
sd_read_capacity(struct scsipi_periph *periph, int *blksize, int flags)
{
union {
struct scsipi_read_capacity_10 cmd;
struct scsipi_read_capacity_16 cmd16;
} cmd;
union {
struct scsipi_read_capacity_10_data data;
struct scsipi_read_capacity_16_data data16;
} *datap;
uint64_t rv;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd.opcode = READ_CAPACITY_10;
/*
* Don't allocate data buffer on stack;
* The lower driver layer might use the same stack and
* if it uses region which is in the same cacheline,
* cache flush ops against the data buffer won't work properly.
*/
datap = malloc(sizeof(*datap), M_TEMP, M_WAITOK);
if (datap == NULL)
return 0;
/*
* If the command works, interpret the result as a 4 byte
* number of blocks
*/
rv = 0;
memset(datap, 0, sizeof(datap->data));
if (scsipi_command(periph, (void *)&cmd.cmd, sizeof(cmd.cmd),
(void *)datap, sizeof(datap->data), SCSIPIRETRIES, 20000, NULL,
flags | XS_CTL_DATA_IN | XS_CTL_SILENT) != 0)
goto out;
if (_4btol(datap->data.addr) != 0xffffffff) {
*blksize = _4btol(datap->data.length);
rv = _4btol(datap->data.addr) + 1;
goto out;
}
/*
* Device is larger than can be reflected by READ CAPACITY (10).
* Try READ CAPACITY (16).
*/
memset(&cmd, 0, sizeof(cmd));
cmd.cmd16.opcode = READ_CAPACITY_16;
cmd.cmd16.byte2 = SRC16_SERVICE_ACTION;
_lto4b(sizeof(datap->data16), cmd.cmd16.len);
memset(datap, 0, sizeof(datap->data16));
if (scsipi_command(periph, (void *)&cmd.cmd16, sizeof(cmd.cmd16),
(void *)datap, sizeof(datap->data16), SCSIPIRETRIES, 20000, NULL,
flags | XS_CTL_DATA_IN | XS_CTL_SILENT) != 0)
goto out;
*blksize = _4btol(datap->data16.length);
rv = _8btol(datap->data16.addr) + 1;
out:
free(datap, M_TEMP);
return rv;
}
static int
sd_get_simplifiedparms(struct sd_softc *sd, struct disk_parms *dp, int flags)
{
struct {
struct scsi_mode_parameter_header_6 header;
/* no block descriptor */
u_int8_t pg_code; /* page code (should be 6) */
u_int8_t pg_length; /* page length (should be 11) */
u_int8_t wcd; /* bit0: cache disable */
u_int8_t lbs[2]; /* logical block size */
u_int8_t size[5]; /* number of log. blocks */
u_int8_t pp; /* power/performance */
u_int8_t flags;
u_int8_t resvd;
} scsipi_sense;
u_int64_t blocks;
int error, blksize;
/*
* sd_read_capacity (ie "read capacity") and mode sense page 6
* give the same information. Do both for now, and check
* for consistency.
* XXX probably differs for removable media
*/
dp->blksize = SD_DEFAULT_BLKSIZE;
if ((blocks = sd_read_capacity(sd->sc_periph, &blksize, flags)) == 0)
return (SDGP_RESULT_OFFLINE); /* XXX? */
error = scsipi_mode_sense(sd->sc_periph, SMS_DBD, 6,
&scsipi_sense.header, sizeof(scsipi_sense),
flags, SDRETRIES, 6000);
if (error != 0)
return (SDGP_RESULT_OFFLINE); /* XXX? */
dp->blksize = blksize;
if (!sd_validate_blksize(NULL, dp->blksize))
dp->blksize = _2btol(scsipi_sense.lbs);
if (!sd_validate_blksize(sd->sc_periph, dp->blksize))
dp->blksize = SD_DEFAULT_BLKSIZE;
/*
* Create a pseudo-geometry.
*/
dp->heads = 64;
dp->sectors = 32;
dp->cyls = blocks / (dp->heads * dp->sectors);
dp->disksize = _5btol(scsipi_sense.size);
if (dp->disksize <= UINT32_MAX && dp->disksize != blocks) {
printf("RBC size: mode sense=%llu, get cap=%llu\n",
(unsigned long long)dp->disksize,
(unsigned long long)blocks);
dp->disksize = blocks;
}
dp->disksize512 = (dp->disksize * dp->blksize) / DEV_BSIZE;
return (SDGP_RESULT_OK);
}
/*
* Get the scsi driver to send a full inquiry to the * device and use the
* results to fill out the disk parameter structure.
*/
static int
sd_get_capacity(struct sd_softc *sd, struct disk_parms *dp, int flags)
{
u_int64_t blocks;
int error, blksize;
#if 0
int i;
u_int8_t *p;
#endif
dp->disksize = blocks = sd_read_capacity(sd->sc_periph, &blksize,
flags);
if (blocks == 0) {
struct scsipi_read_format_capacities cmd;
struct {
struct scsipi_capacity_list_header header;
struct scsipi_capacity_descriptor desc;
} __packed data;
memset(&cmd, 0, sizeof(cmd));
memset(&data, 0, sizeof(data));
cmd.opcode = READ_FORMAT_CAPACITIES;
_lto2b(sizeof(data), cmd.length);
error = scsipi_command(sd->sc_periph,
(void *)&cmd, sizeof(cmd), (void *)&data, sizeof(data),
SDRETRIES, 20000, NULL,
flags | XS_CTL_DATA_IN);
if (error == EFTYPE) {
/* Medium Format Corrupted, handle as not formatted */
return (SDGP_RESULT_UNFORMATTED);
}
if (error || data.header.length == 0)
return (SDGP_RESULT_OFFLINE);
#if 0
printf("rfc: length=%d\n", data.header.length);
printf("rfc result:"); for (i = sizeof(struct scsipi_capacity_list_header) + data.header.length, p = (void *)&data; i; i--, p++) printf(" %02x", *p); printf("\n");
#endif
switch (data.desc.byte5 & SCSIPI_CAP_DESC_CODE_MASK) {
case SCSIPI_CAP_DESC_CODE_RESERVED:
case SCSIPI_CAP_DESC_CODE_FORMATTED:
break;
case SCSIPI_CAP_DESC_CODE_UNFORMATTED:
return (SDGP_RESULT_UNFORMATTED);
case SCSIPI_CAP_DESC_CODE_NONE:
return (SDGP_RESULT_OFFLINE);
}
dp->disksize = blocks = _4btol(data.desc.nblks);
if (blocks == 0)
return (SDGP_RESULT_OFFLINE); /* XXX? */
blksize = _3btol(data.desc.blklen);
} else if (!sd_validate_blksize(NULL, blksize)) {
struct sd_mode_sense_data scsipi_sense;
int big, bsize;
struct scsi_general_block_descriptor *bdesc;
memset(&scsipi_sense, 0, sizeof(scsipi_sense));
error = sd_mode_sense(sd, 0, &scsipi_sense,
sizeof(scsipi_sense.blk_desc), 0, flags | XS_CTL_SILENT, &big);
if (!error) {
if (big) {
bdesc = (void *)(&scsipi_sense.header.big + 1);
bsize = _2btol(scsipi_sense.header.big.blk_desc_len);
} else {
bdesc = (void *)(&scsipi_sense.header.small + 1);
bsize = scsipi_sense.header.small.blk_desc_len;
}
#if 0
printf("page 0 sense:"); for (i = sizeof(scsipi_sense), p = (void *)&scsipi_sense; i; i--, p++) printf(" %02x", *p); printf("\n");
printf("page 0 bsize=%d\n", bsize);
printf("page 0 ok\n");
#endif
if (bsize >= 8) {
blksize = _3btol(bdesc->blklen);
}
}
}
if (!sd_validate_blksize(sd->sc_periph, blksize))
blksize = SD_DEFAULT_BLKSIZE;
dp->blksize = blksize;
dp->disksize512 = (blocks * dp->blksize) / DEV_BSIZE;
return (0);
}
static int
sd_get_parms_page4(struct sd_softc *sd, struct disk_parms *dp, int flags)
{
struct sd_mode_sense_data scsipi_sense;
int error;
int big, byte2;
size_t poffset;
union scsi_disk_pages *pages;
byte2 = SMS_DBD;
again:
memset(&scsipi_sense, 0, sizeof(scsipi_sense));
error = sd_mode_sense(sd, byte2, &scsipi_sense,
(byte2 ? 0 : sizeof(scsipi_sense.blk_desc)) +
sizeof(scsipi_sense.pages.rigid_geometry), 4,
flags | XS_CTL_SILENT, &big);
if (error) {
if (byte2 == SMS_DBD) {
/* No result; try once more with DBD off */
byte2 = 0;
goto again;
}
return (error);
}
if (big) {
poffset = sizeof scsipi_sense.header.big;
poffset += _2btol(scsipi_sense.header.big.blk_desc_len);
} else {
poffset = sizeof scsipi_sense.header.small;
poffset += scsipi_sense.header.small.blk_desc_len;
}
if (poffset > sizeof(scsipi_sense) - sizeof(pages->rigid_geometry))
return ERESTART;
pages = (void *)((u_long)&scsipi_sense + poffset);
#if 0
{
size_t i;
u_int8_t *p;
printf("page 4 sense:");
for (i = sizeof(scsipi_sense), p = (void *)&scsipi_sense; i;
i--, p++)
printf(" %02x", *p);
printf("\n");
printf("page 4 pg_code=%d sense=%p/%p\n",
pages->rigid_geometry.pg_code, &scsipi_sense, pages);
}
#endif
if ((pages->rigid_geometry.pg_code & PGCODE_MASK) != 4)
return (ERESTART);
SC_DEBUG(sd->sc_periph, SCSIPI_DB3,
("%d cyls, %d heads, %d precomp, %d red_write, %d land_zone\n",
_3btol(pages->rigid_geometry.ncyl),
pages->rigid_geometry.nheads,
_2btol(pages->rigid_geometry.st_cyl_wp),
_2btol(pages->rigid_geometry.st_cyl_rwc),
_2btol(pages->rigid_geometry.land_zone)));
/*
* KLUDGE!! (for zone recorded disks)
* give a number of sectors so that sec * trks * cyls
* is <= disk_size
* can lead to wasted space! THINK ABOUT THIS !
*/
dp->heads = pages->rigid_geometry.nheads;
dp->cyls = _3btol(pages->rigid_geometry.ncyl);
if (dp->heads == 0 || dp->cyls == 0)
return (ERESTART);
dp->sectors = dp->disksize / (dp->heads * dp->cyls); /* XXX */
dp->rot_rate = _2btol(pages->rigid_geometry.rpm);
if (dp->rot_rate == 0)
dp->rot_rate = 3600;
#if 0
printf("page 4 ok\n");
#endif
return (0);
}
static int
sd_get_parms_page5(struct sd_softc *sd, struct disk_parms *dp, int flags)
{
struct sd_mode_sense_data scsipi_sense;
int error;
int big, byte2;
size_t poffset;
union scsi_disk_pages *pages;
byte2 = SMS_DBD;
again:
memset(&scsipi_sense, 0, sizeof(scsipi_sense));
error = sd_mode_sense(sd, 0, &scsipi_sense,
(byte2 ? 0 : sizeof(scsipi_sense.blk_desc)) +
sizeof(scsipi_sense.pages.flex_geometry), 5,
flags | XS_CTL_SILENT, &big);
if (error) {
if (byte2 == SMS_DBD) {
/* No result; try once more with DBD off */
byte2 = 0;
goto again;
}
return (error);
}
if (big) {
poffset = sizeof scsipi_sense.header.big;
poffset += _2btol(scsipi_sense.header.big.blk_desc_len);
} else {
poffset = sizeof scsipi_sense.header.small;
poffset += scsipi_sense.header.small.blk_desc_len;
}
if (poffset > sizeof(scsipi_sense) - sizeof(pages->flex_geometry))
return ERESTART;
pages = (void *)((u_long)&scsipi_sense + poffset);
#if 0
{
size_t i;
u_int8_t *p;
printf("page 5 sense:");
for (i = sizeof(scsipi_sense), p = (void *)&scsipi_sense; i;
i--, p++)
printf(" %02x", *p);
printf("\n");
printf("page 5 pg_code=%d sense=%p/%p\n",
pages->flex_geometry.pg_code, &scsipi_sense, pages);
}
#endif
if ((pages->flex_geometry.pg_code & PGCODE_MASK) != 5)
return (ERESTART);
SC_DEBUG(sd->sc_periph, SCSIPI_DB3,
("%d cyls, %d heads, %d sec, %d bytes/sec\n",
_3btol(pages->flex_geometry.ncyl),
pages->flex_geometry.nheads,
pages->flex_geometry.ph_sec_tr,
_2btol(pages->flex_geometry.bytes_s)));
dp->heads = pages->flex_geometry.nheads;
dp->cyls = _2btol(pages->flex_geometry.ncyl);
dp->sectors = pages->flex_geometry.ph_sec_tr;
if (dp->heads == 0 || dp->cyls == 0 || dp->sectors == 0)
return (ERESTART);
dp->rot_rate = _2btol(pages->rigid_geometry.rpm);
if (dp->rot_rate == 0)
dp->rot_rate = 3600;
#if 0
printf("page 5 ok\n");
#endif
return (0);
}
static int
sd_get_parms(struct sd_softc *sd, struct disk_parms *dp, int flags)
{
int error;
/*
* If offline, the SDEV_MEDIA_LOADED flag will be
* cleared by the caller if necessary.
*/
if (sd->type == T_SIMPLE_DIRECT) {
error = sd_get_simplifiedparms(sd, dp, flags);
if (!error)
disk_blocksize(&sd->sc_dk, dp->blksize);
return (error);
}
error = sd_get_capacity(sd, dp, flags);
if (error)
return (error);
disk_blocksize(&sd->sc_dk, dp->blksize);
if (sd->type == T_OPTICAL)
goto page0;
if (sd->sc_periph->periph_flags & PERIPH_REMOVABLE) {
if (!sd_get_parms_page5(sd, dp, flags) ||
!sd_get_parms_page4(sd, dp, flags))
goto setprops;
} else {
if (!sd_get_parms_page4(sd, dp, flags) ||
!sd_get_parms_page5(sd, dp, flags))
goto setprops;
}
page0:
printf("%s: fabricating a geometry\n", device_xname(sd->sc_dev));
/* Try calling driver's method for figuring out geometry. */
if (!sd->sc_periph->periph_channel->chan_adapter->adapt_getgeom ||
!(*sd->sc_periph->periph_channel->chan_adapter->adapt_getgeom)
(sd->sc_periph, dp, dp->disksize)) {
/*
* Use adaptec standard fictitious geometry
* this depends on which controller (e.g. 1542C is
* different. but we have to put SOMETHING here..)
*/
dp->heads = 64;
dp->sectors = 32;
dp->cyls = dp->disksize / (64 * 32);
}
dp->rot_rate = 3600;
setprops:
sd_set_properties(sd);
return (SDGP_RESULT_OK);
}
static int
sd_flush(struct sd_softc *sd, int flags)
{
struct scsipi_periph *periph = sd->sc_periph;
struct scsi_synchronize_cache_10 cmd;
/*
* If the device is SCSI-2, issue a SYNCHRONIZE CACHE.
* We issue with address 0 length 0, which should be
* interpreted by the device as "all remaining blocks
* starting at address 0". We ignore ILLEGAL REQUEST
* in the event that the command is not supported by
* the device, and poll for completion so that we know
* that the cache has actually been flushed.
*
* Unless, that is, the device can't handle the SYNCHRONIZE CACHE
* command, as indicated by our quirks flags.
*
* XXX What about older devices?
*/
if (periph->periph_version < 2 ||
(periph->periph_quirks & PQUIRK_NOSYNCCACHE))
return (0);
sd->flags |= SDF_FLUSHING;
memset(&cmd, 0, sizeof(cmd));
cmd.opcode = SCSI_SYNCHRONIZE_CACHE_10;
return (scsipi_command(periph, (void *)&cmd, sizeof(cmd), 0, 0,
SDRETRIES, 100000, NULL, flags | XS_CTL_IGNORE_ILLEGAL_REQUEST));
}
static int
sd_getcache(struct sd_softc *sd, int *bitsp)
{
struct scsipi_periph *periph = sd->sc_periph;
struct sd_mode_sense_data scsipi_sense;
int error, bits = 0;
int big;
union scsi_disk_pages *pages;
if (periph->periph_version < 2)
return (EOPNOTSUPP);
memset(&scsipi_sense, 0, sizeof(scsipi_sense));
error = sd_mode_sense(sd, SMS_DBD, &scsipi_sense,
sizeof(scsipi_sense.pages.caching_params), 8, 0, &big);
if (error)
return (error);
if (big)
pages = (void *)(&scsipi_sense.header.big + 1);
else
pages = (void *)(&scsipi_sense.header.small + 1);
if ((pages->caching_params.flags & CACHING_RCD) == 0)
bits |= DKCACHE_READ;
if (pages->caching_params.flags & CACHING_WCE)
bits |= DKCACHE_WRITE;
if (pages->caching_params.pg_code & PGCODE_PS)
bits |= DKCACHE_SAVE;
memset(&scsipi_sense, 0, sizeof(scsipi_sense));
error = sd_mode_sense(sd, SMS_DBD, &scsipi_sense,
sizeof(scsipi_sense.pages.caching_params),
SMS_PCTRL_CHANGEABLE|8, 0, &big);
if (error == 0) {
if (big)
pages = (void *)(&scsipi_sense.header.big + 1);
else
pages = (void *)(&scsipi_sense.header.small + 1);
if (pages->caching_params.flags & CACHING_RCD)
bits |= DKCACHE_RCHANGE;
if (pages->caching_params.flags & CACHING_WCE)
bits |= DKCACHE_WCHANGE;
}
*bitsp = bits;
return (0);
}
static int
sd_setcache(struct sd_softc *sd, int bits)
{
struct scsipi_periph *periph = sd->sc_periph;
struct sd_mode_sense_data scsipi_sense;
int error;
uint8_t oflags, byte2 = 0;
int big;
union scsi_disk_pages *pages;
if (periph->periph_version < 2)
return (EOPNOTSUPP);
memset(&scsipi_sense, 0, sizeof(scsipi_sense));
error = sd_mode_sense(sd, SMS_DBD, &scsipi_sense,
sizeof(scsipi_sense.pages.caching_params), 8, 0, &big);
if (error)
return (error);
if (big)
pages = (void *)(&scsipi_sense.header.big + 1);
else
pages = (void *)(&scsipi_sense.header.small + 1);
oflags = pages->caching_params.flags;
if (bits & DKCACHE_READ)
pages->caching_params.flags &= ~CACHING_RCD;
else
pages->caching_params.flags |= CACHING_RCD;
if (bits & DKCACHE_WRITE)
pages->caching_params.flags |= CACHING_WCE;
else
pages->caching_params.flags &= ~CACHING_WCE;
if (oflags == pages->caching_params.flags)
return (0);
pages->caching_params.pg_code &= PGCODE_MASK;
if (bits & DKCACHE_SAVE)
byte2 |= SMS_SP;
return (sd_mode_select(sd, byte2|SMS_PF, &scsipi_sense,
sizeof(struct scsi_mode_page_header) +
pages->caching_params.pg_length, 0, big));
}
static void
sd_set_properties(struct sd_softc *sd)
{
prop_dictionary_t disk_info, odisk_info, geom;
disk_info = prop_dictionary_create();
geom = prop_dictionary_create();
prop_dictionary_set_uint64(geom, "sectors-per-unit",
sd->params.disksize);
prop_dictionary_set_uint32(geom, "sector-size",
sd->params.blksize);
prop_dictionary_set_uint16(geom, "sectors-per-track",
sd->params.sectors);
prop_dictionary_set_uint16(geom, "tracks-per-cylinder",
sd->params.heads);
prop_dictionary_set_uint64(geom, "cylinders-per-unit",
sd->params.cyls);
prop_dictionary_set(disk_info, "geometry", geom);
prop_object_release(geom);
prop_dictionary_set(device_properties(sd->sc_dev),
"disk-info", disk_info);
/*
* Don't release disk_info here; we keep a reference to it.
* disk_detach() will release it when we go away.
*/
odisk_info = sd->sc_dk.dk_info;
sd->sc_dk.dk_info = disk_info;
if (odisk_info)
prop_object_release(odisk_info);
}