261 lines
8.3 KiB
Groff
261 lines
8.3 KiB
Groff
.\" $NetBSD: BIO_s_mem.3,v 1.3 2002/02/07 09:24:08 ross Exp $
|
|
.\"
|
|
.\" Automatically generated by Pod::Man version 1.02
|
|
.\" Thu Apr 12 19:26:43 2001
|
|
.\"
|
|
.\" Standard preamble:
|
|
.\" ======================================================================
|
|
.de Sh \" Subsection heading
|
|
.br
|
|
.if t .Sp
|
|
.ne 5
|
|
.PP
|
|
\fB\\$1\fR
|
|
.PP
|
|
..
|
|
.de Sp \" Vertical space (when we can't use .PP)
|
|
.if t .sp .5v
|
|
.if n .sp
|
|
..
|
|
.de Ip \" List item
|
|
.br
|
|
.ie \\n(.$>=3 .ne \\$3
|
|
.el .ne 3
|
|
.IP "\\$1" \\$2
|
|
..
|
|
.de Vb \" Begin verbatim text
|
|
.ft CW
|
|
.nf
|
|
.ne \\$1
|
|
..
|
|
.de Ve \" End verbatim text
|
|
.ft R
|
|
|
|
.fi
|
|
..
|
|
.\" Set up some character translations and predefined strings. \*(-- will
|
|
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
|
|
.\" double quote, and \*(R" will give a right double quote. | will give a
|
|
.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used
|
|
.\" to do unbreakable dashes and therefore won't be available. \*(C` and
|
|
.\" \*(C' expand to `' in nroff, nothing in troff, for use with C<>
|
|
.tr \(*W-|\(bv\*(Tr
|
|
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
|
|
.ie n \{\
|
|
. ds -- \(*W-
|
|
. ds PI pi
|
|
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
|
|
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
|
|
. ds L" ""
|
|
. ds R" ""
|
|
. ds C` `
|
|
. ds C' '
|
|
'br\}
|
|
.el\{\
|
|
. ds -- \|\(em\|
|
|
. ds PI \(*p
|
|
. ds L" ``
|
|
. ds R" ''
|
|
'br\}
|
|
.\"
|
|
.\" If the F register is turned on, we'll generate index entries on stderr
|
|
.\" for titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and
|
|
.\" index entries marked with X<> in POD. Of course, you'll have to process
|
|
.\" the output yourself in some meaningful fashion.
|
|
.if \nF \{\
|
|
. de IX
|
|
. tm Index:\\$1\t\\n%\t"\\$2"
|
|
. .
|
|
. nr % 0
|
|
. rr F
|
|
.\}
|
|
.\"
|
|
.\" For nroff, turn off justification. Always turn off hyphenation; it
|
|
.\" makes way too many mistakes in technical documents.
|
|
.hy 0
|
|
.if n .na
|
|
.\"
|
|
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
|
|
.\" Fear. Run. Save yourself. No user-serviceable parts.
|
|
.bd B 3
|
|
. \" fudge factors for nroff and troff
|
|
.if n \{\
|
|
. ds #H 0
|
|
. ds #V .8m
|
|
. ds #F .3m
|
|
. ds #[ \f1
|
|
. ds #] \fP
|
|
.\}
|
|
.if t \{\
|
|
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
|
|
. ds #V .6m
|
|
. ds #F 0
|
|
. ds #[ \&
|
|
. ds #] \&
|
|
.\}
|
|
. \" simple accents for nroff and troff
|
|
.if n \{\
|
|
. ds ' \&
|
|
. ds ` \&
|
|
. ds ^ \&
|
|
. ds , \&
|
|
. ds ~ ~
|
|
. ds /
|
|
.\}
|
|
.if t \{\
|
|
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
|
|
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
|
|
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
|
|
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
|
|
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
|
|
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
|
|
.\}
|
|
. \" troff and (daisy-wheel) nroff accents
|
|
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
|
|
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
|
|
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
|
|
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
|
|
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
|
|
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
|
|
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
|
|
.ds ae a\h'-(\w'a'u*4/10)'e
|
|
.ds Ae A\h'-(\w'A'u*4/10)'E
|
|
. \" corrections for vroff
|
|
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
|
|
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
|
|
. \" for low resolution devices (crt and lpr)
|
|
.if \n(.H>23 .if \n(.V>19 \
|
|
\{\
|
|
. ds : e
|
|
. ds 8 ss
|
|
. ds o a
|
|
. ds d- d\h'-1'\(ga
|
|
. ds D- D\h'-1'\(hy
|
|
. ds th \o'bp'
|
|
. ds Th \o'LP'
|
|
. ds ae ae
|
|
. ds Ae AE
|
|
.\}
|
|
.rm #[ #] #H #V #F C
|
|
.\" ======================================================================
|
|
.\"
|
|
.IX Title "BIO_s_mem 3"
|
|
.TH BIO_s_mem 3 "0.9.6a" "2001-04-12" "OpenSSL"
|
|
.UC
|
|
.SH "NAME"
|
|
BIO_s_mem, BIO_set_mem_eof_return, BIO_get_mem_data, BIO_set_mem_buf,
|
|
BIO_get_mem_ptr, BIO_new_mem_buf \- memory \s-1BIO\s0
|
|
.SH "LIBRARY"
|
|
libcrypto, -lcrypto
|
|
.SH "SYNOPSIS"
|
|
.IX Header "SYNOPSIS"
|
|
.Vb 1
|
|
\& #include \*[Lt]openssl/bio.h\*[Gt]
|
|
.Ve
|
|
.Vb 1
|
|
\& BIO_METHOD * BIO_s_mem(void);
|
|
.Ve
|
|
.Vb 4
|
|
\& BIO_set_mem_eof_return(BIO *b,int v)
|
|
\& long BIO_get_mem_data(BIO *b, char **pp)
|
|
\& BIO_set_mem_buf(BIO *b,BUF_MEM *bm,int c)
|
|
\& BIO_get_mem_ptr(BIO *b,BUF_MEM **pp)
|
|
.Ve
|
|
.Vb 1
|
|
\& BIO *BIO_new_mem_buf(void *buf, int len);
|
|
.Ve
|
|
.SH "DESCRIPTION"
|
|
.IX Header "DESCRIPTION"
|
|
\&\fIBIO_s_mem()\fR return the memory \s-1BIO\s0 method function.
|
|
.PP
|
|
A memory \s-1BIO\s0 is a source/sink \s-1BIO\s0 which uses memory for its I/O. Data
|
|
written to a memory \s-1BIO\s0 is stored in a \s-1BUF_MEM\s0 structure which is extended
|
|
as appropriate to accommodate the stored data.
|
|
.PP
|
|
Any data written to a memory \s-1BIO\s0 can be recalled by reading from it.
|
|
Unless the memory \s-1BIO\s0 is read only any data read from it is deleted from
|
|
the \s-1BIO\s0.
|
|
.PP
|
|
Memory BIOs support \fIBIO_gets()\fR and \fIBIO_puts()\fR.
|
|
.PP
|
|
If the \s-1BIO_CLOSE\s0 flag is set when a memory \s-1BIO\s0 is freed then the underlying
|
|
\&\s-1BUF_MEM\s0 structure is also freed.
|
|
.PP
|
|
Calling \fIBIO_reset()\fR on a read write memory \s-1BIO\s0 clears any data in it. On a
|
|
read only \s-1BIO\s0 it restores the \s-1BIO\s0 to its original state and the read only
|
|
data can be read again.
|
|
.PP
|
|
\&\fIBIO_eof()\fR is true if no data is in the \s-1BIO\s0.
|
|
.PP
|
|
\&\fIBIO_ctrl_pending()\fR returns the number of bytes currently stored.
|
|
.PP
|
|
\&\fIBIO_set_mem_eof_return()\fR sets the behaviour of memory \s-1BIO\s0 \fBb\fR when it is
|
|
empty. If the \fBv\fR is zero then an empty memory \s-1BIO\s0 will return \s-1EOF\s0 (that is
|
|
it will return zero and \fIBIO_should_retry\fR\|(b) will be false. If \fBv\fR is non
|
|
zero then it will return \fBv\fR when it is empty and it will set the read retry
|
|
flag (that is \fIBIO_read_retry\fR\|(b) is true). To avoid ambiguity with a normal
|
|
positive return value \fBv\fR should be set to a negative value, typically \-1.
|
|
.PP
|
|
\&\fIBIO_get_mem_data()\fR sets \fBpp\fR to a pointer to the start of the memory BIOs data
|
|
and returns the total amount of data available. It is implemented as a macro.
|
|
.PP
|
|
\&\fIBIO_set_mem_buf()\fR sets the internal \s-1BUF_MEM\s0 structure to \fBbm\fR and sets the
|
|
close flag to \fBc\fR, that is \fBc\fR should be either \s-1BIO_CLOSE\s0 or \s-1BIO_NOCLOSE\s0.
|
|
It is a macro.
|
|
.PP
|
|
\&\fIBIO_get_mem_ptr()\fR places the underlying \s-1BUF_MEM\s0 structure in \fBpp\fR. It is
|
|
a macro.
|
|
.PP
|
|
\&\fIBIO_new_mem_buf()\fR creates a memory \s-1BIO\s0 using \fBlen\fR bytes of data at \fBbuf\fR,
|
|
if \fBlen\fR is \-1 then the \fBbuf\fR is assumed to be null terminated and its
|
|
length is determined by \fBstrlen\fR. The \s-1BIO\s0 is set to a read only state and
|
|
as a result cannot be written to. This is useful when some data needs to be
|
|
made available from a static area of memory in the form of a \s-1BIO\s0. The
|
|
supplied data is read directly from the supplied buffer: it is \fBnot\fR copied
|
|
first, so the supplied area of memory must be unchanged until the \s-1BIO\s0 is freed.
|
|
.SH "NOTES"
|
|
.IX Header "NOTES"
|
|
Writes to memory BIOs will always succeed if memory is available: that is
|
|
their size can grow indefinitely.
|
|
.PP
|
|
Every read from a read write memory \s-1BIO\s0 will remove the data just read with
|
|
an internal copy operation, if a \s-1BIO\s0 contains a lots of data and it is
|
|
read in small chunks the operation can be very slow. The use of a read only
|
|
memory \s-1BIO\s0 avoids this problem. If the \s-1BIO\s0 must be read write then adding
|
|
a buffering \s-1BIO\s0 to the chain will speed up the process.
|
|
.SH "BUGS"
|
|
.IX Header "BUGS"
|
|
There should be an option to set the maximum size of a memory \s-1BIO\s0.
|
|
.PP
|
|
There should be a way to \*(L"rewind\*(R" a read write \s-1BIO\s0 without destroying
|
|
its contents.
|
|
.PP
|
|
The copying operation should not occur after every small read of a large \s-1BIO\s0
|
|
to improve efficiency.
|
|
.SH "EXAMPLE"
|
|
.IX Header "EXAMPLE"
|
|
Create a memory \s-1BIO\s0 and write some data to it:
|
|
.PP
|
|
.Vb 2
|
|
\& BIO *mem = BIO_new(BIO_s_mem());
|
|
\& BIO_puts(mem, "Hello World\en");
|
|
.Ve
|
|
Create a read only memory \s-1BIO:\s0
|
|
.PP
|
|
.Vb 3
|
|
\& char data[] = "Hello World";
|
|
\& BIO *mem;
|
|
\& mem = BIO_new_mem_buf(data, -1);
|
|
.Ve
|
|
Extract the \s-1BUF_MEM\s0 structure from a memory \s-1BIO\s0 and then free up the \s-1BIO:\s0
|
|
.PP
|
|
.Vb 4
|
|
\& BUF_MEM *bptr;
|
|
\& BIO_get_mem_ptr(mem, \*[Am]bptr);
|
|
\& BIO_set_close(mem, BIO_NOCLOSE); /* So BIO_free() leaves BUF_MEM alone */
|
|
\& BIO_free(mem);
|
|
.Ve
|
|
.SH "SEE ALSO"
|
|
.IX Header "SEE ALSO"
|
|
\&\s-1TBA\s0
|