NetBSD/sys/dev/usb/if_zyd.c
jmcneill 7c64a30e85 - Add a USBD_MPSAFE flag to usbd_open_pipe. If not set, acquire KERNEL_LOCK
before invoking xfer callbacks on this pipe.
- Add an extra flags parameter to usb_init_task. If USBD_TASKQ_MPSAFE is not
  present, acquire KERNEL_LOCK before invoking the task callback.
2013-01-22 12:40:42 +00:00

2681 lines
68 KiB
C

/* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
/* $NetBSD: if_zyd.c,v 1.36 2013/01/22 12:40:43 jmcneill Exp $ */
/*-
* Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*-
* ZyDAS ZD1211/ZD1211B USB WLAN driver.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.36 2013/01/22 12:40:43 jmcneill Exp $");
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/proc.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/bus.h>
#include <machine/endian.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_netbsd.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/firmload.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/if_zydreg.h>
#ifdef ZYD_DEBUG
#define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0)
int zyddebug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
/* various supported device vendors/products */
#define ZYD_ZD1211_DEV(v, p) \
{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
#define ZYD_ZD1211B_DEV(v, p) \
{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
static const struct zyd_type {
struct usb_devno dev;
uint8_t rev;
#define ZYD_ZD1211 0
#define ZYD_ZD1211B 1
} zyd_devs[] = {
ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
ZYD_ZD1211_DEV(ABOCOM, WL54),
ZYD_ZD1211_DEV(ASUSTEK, WL159G),
ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
ZYD_ZD1211_DEV(PLANEX2, GWUS54GD),
ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
ZYD_ZD1211_DEV(SAGEM, XG760A),
ZYD_ZD1211_DEV(SENAO, NUB8301),
ZYD_ZD1211_DEV(SITECOMEU, WL113),
ZYD_ZD1211_DEV(SWEEX, ZD1211),
ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
ZYD_ZD1211_DEV(TWINMOS, G240),
ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
ZYD_ZD1211_DEV(ZCOM, ZD1211),
ZYD_ZD1211_DEV(ZYDAS, ZD1211),
ZYD_ZD1211_DEV(ZYXEL, AG225H),
ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
ZYD_ZD1211_DEV(ZYXEL, G200V2),
ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
ZYD_ZD1211B_DEV(ACCTON, WN4501H_LF_IR),
ZYD_ZD1211B_DEV(ACCTON, WUS201),
ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI),
ZYD_ZD1211B_DEV(BELKIN, F5D7050C),
ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
ZYD_ZD1211B_DEV(BEWAN, BWIFI_USB54AR),
ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B),
ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
ZYD_ZD1211B_DEV(MELCO, KG54L),
ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
ZYD_ZD1211B_DEV(PHILIPS, SNU5630NS05),
ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS),
ZYD_ZD1211B_DEV(SAGEM, XG76NA),
ZYD_ZD1211B_DEV(SITECOMEU, WL603),
ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
ZYD_ZD1211B_DEV(SONY, IFU_WLM2),
ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1),
ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2),
ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B),
ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B),
ZYD_ZD1211B_DEV(USR, USR5423),
ZYD_ZD1211B_DEV(VTECH, ZD1211B),
ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
ZYD_ZD1211B_DEV(ZYDAS, ZD1211B_2),
ZYD_ZD1211B_DEV(ZYXEL, M202),
ZYD_ZD1211B_DEV(ZYXEL, G220V2),
};
#define zyd_lookup(v, p) \
((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
int zyd_match(device_t, cfdata_t, void *);
void zyd_attach(device_t, device_t, void *);
int zyd_detach(device_t, int);
int zyd_activate(device_t, enum devact);
extern struct cfdriver zyd_cd;
CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
zyd_attach, zyd_detach, zyd_activate);
Static void zyd_attachhook(device_t);
Static int zyd_complete_attach(struct zyd_softc *);
Static int zyd_open_pipes(struct zyd_softc *);
Static void zyd_close_pipes(struct zyd_softc *);
Static int zyd_alloc_tx_list(struct zyd_softc *);
Static void zyd_free_tx_list(struct zyd_softc *);
Static int zyd_alloc_rx_list(struct zyd_softc *);
Static void zyd_free_rx_list(struct zyd_softc *);
Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
Static int zyd_media_change(struct ifnet *);
Static void zyd_next_scan(void *);
Static void zyd_task(void *);
Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
void *, int, u_int);
Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
Static int zyd_rfwrite(struct zyd_softc *, uint32_t);
Static void zyd_lock_phy(struct zyd_softc *);
Static void zyd_unlock_phy(struct zyd_softc *);
Static int zyd_rfmd_init(struct zyd_rf *);
Static int zyd_rfmd_switch_radio(struct zyd_rf *, int);
Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
Static int zyd_al2230_init(struct zyd_rf *);
Static int zyd_al2230_switch_radio(struct zyd_rf *, int);
Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
Static int zyd_al2230_init_b(struct zyd_rf *);
Static int zyd_al7230B_init(struct zyd_rf *);
Static int zyd_al7230B_switch_radio(struct zyd_rf *, int);
Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
Static int zyd_al2210_init(struct zyd_rf *);
Static int zyd_al2210_switch_radio(struct zyd_rf *, int);
Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
Static int zyd_gct_init(struct zyd_rf *);
Static int zyd_gct_switch_radio(struct zyd_rf *, int);
Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t);
Static int zyd_maxim_init(struct zyd_rf *);
Static int zyd_maxim_switch_radio(struct zyd_rf *, int);
Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
Static int zyd_maxim2_init(struct zyd_rf *);
Static int zyd_maxim2_switch_radio(struct zyd_rf *, int);
Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
Static int zyd_rf_attach(struct zyd_softc *, uint8_t);
Static const char *zyd_rf_name(uint8_t);
Static int zyd_hw_init(struct zyd_softc *);
Static int zyd_read_eeprom(struct zyd_softc *);
Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *);
Static int zyd_switch_radio(struct zyd_softc *, int);
Static void zyd_set_led(struct zyd_softc *, int, int);
Static int zyd_set_rxfilter(struct zyd_softc *);
Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
Static int zyd_set_beacon_interval(struct zyd_softc *, int);
Static uint8_t zyd_plcp_signal(int);
Static void zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
Static void zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
Static void zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
struct ieee80211_node *);
Static int zyd_tx_data(struct zyd_softc *, struct mbuf *,
struct ieee80211_node *);
Static void zyd_start(struct ifnet *);
Static void zyd_watchdog(struct ifnet *);
Static int zyd_ioctl(struct ifnet *, u_long, void *);
Static int zyd_init(struct ifnet *);
Static void zyd_stop(struct ifnet *, int);
Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
Static void zyd_iter_func(void *, struct ieee80211_node *);
Static void zyd_amrr_timeout(void *);
Static void zyd_newassoc(struct ieee80211_node *, int);
static const struct ieee80211_rateset zyd_rateset_11b =
{ 4, { 2, 4, 11, 22 } };
static const struct ieee80211_rateset zyd_rateset_11g =
{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
int
zyd_match(device_t parent, cfdata_t match, void *aux)
{
struct usb_attach_arg *uaa = aux;
return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ?
UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
}
Static void
zyd_attachhook(device_t self)
{
struct zyd_softc *sc = device_private(self);
firmware_handle_t fwh;
const char *fwname;
u_char *fw;
size_t size;
int error;
fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
aprint_error_dev(sc->sc_dev,
"failed to open firmware %s (error=%d)\n", fwname, error);
return;
}
size = firmware_get_size(fwh);
fw = firmware_malloc(size);
if (fw == NULL) {
aprint_error_dev(sc->sc_dev,
"failed to allocate firmware memory\n");
firmware_close(fwh);
return;
}
error = firmware_read(fwh, 0, fw, size);
firmware_close(fwh);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"failed to read firmware (error %d)\n", error);
firmware_free(fw, 0);
return;
}
error = zyd_loadfirmware(sc, fw, size);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not load firmware (error=%d)\n", error);
firmware_free(fw, 0);
return;
}
firmware_free(fw, 0);
sc->sc_flags |= ZD1211_FWLOADED;
/* complete the attach process */
if ((error = zyd_complete_attach(sc)) == 0)
sc->attached = 1;
return;
}
void
zyd_attach(device_t parent, device_t self, void *aux)
{
struct zyd_softc *sc = device_private(self);
struct usb_attach_arg *uaa = aux;
char *devinfop;
usb_device_descriptor_t* ddesc;
struct ifnet *ifp = &sc->sc_if;
sc->sc_dev = self;
sc->sc_udev = uaa->device;
sc->sc_flags = 0;
aprint_naive("\n");
aprint_normal("\n");
devinfop = usbd_devinfo_alloc(uaa->device, 0);
aprint_normal_dev(self, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev;
ddesc = usbd_get_device_descriptor(sc->sc_udev);
if (UGETW(ddesc->bcdDevice) < 0x4330) {
aprint_error_dev(self, "device version mismatch: 0x%x "
"(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
return;
}
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = zyd_init;
ifp->if_ioctl = zyd_ioctl;
ifp->if_start = zyd_start;
ifp->if_watchdog = zyd_watchdog;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
IFQ_SET_READY(&ifp->if_snd);
memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
SIMPLEQ_INIT(&sc->sc_rqh);
/* defer configrations after file system is ready to load firmware */
config_mountroot(self, zyd_attachhook);
}
Static int
zyd_complete_attach(struct zyd_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
usbd_status error;
int i;
usb_init_task(&sc->sc_task, zyd_task, sc, 0);
callout_init(&(sc->sc_scan_ch), 0);
sc->amrr.amrr_min_success_threshold = 1;
sc->amrr.amrr_max_success_threshold = 10;
callout_init(&sc->sc_amrr_ch, 0);
error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "failed to set configuration"
", err=%s\n", usbd_errstr(error));
goto fail;
}
error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
&sc->sc_iface);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"getting interface handle failed\n");
goto fail;
}
if ((error = zyd_open_pipes(sc)) != 0) {
aprint_error_dev(sc->sc_dev, "could not open pipes\n");
goto fail;
}
if ((error = zyd_read_eeprom(sc)) != 0) {
aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
goto fail;
}
if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
aprint_error_dev(sc->sc_dev, "could not attach RF\n");
goto fail;
}
if ((error = zyd_hw_init(sc)) != 0) {
aprint_error_dev(sc->sc_dev,
"hardware initialization failed\n");
goto fail;
}
aprint_normal_dev(sc->sc_dev,
"HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
(sc->mac_rev == ZYD_ZD1211) ? "": "B",
sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
sc->pa_rev, ether_sprintf(ic->ic_myaddr));
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_TXPMGT | /* tx power management */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_WEP; /* s/w WEP */
/* set supported .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g;
/* set supported .11b and .11g channels (1 through 14) */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
if_attach(ifp);
ieee80211_ifattach(ic);
ic->ic_node_alloc = zyd_node_alloc;
ic->ic_newassoc = zyd_newassoc;
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = zyd_newstate;
ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
&sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtapu;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
ieee80211_announce(ic);
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
fail: return error;
}
int
zyd_detach(device_t self, int flags)
{
struct zyd_softc *sc = device_private(self);
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
int s;
if (!sc->attached)
return 0;
s = splusb();
zyd_stop(ifp, 1);
usb_rem_task(sc->sc_udev, &sc->sc_task);
callout_stop(&sc->sc_scan_ch);
callout_stop(&sc->sc_amrr_ch);
zyd_close_pipes(sc);
sc->attached = 0;
bpf_detach(ifp);
ieee80211_ifdetach(ic);
if_detach(ifp);
splx(s);
usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
sc->sc_dev);
return 0;
}
Static int
zyd_open_pipes(struct zyd_softc *sc)
{
usb_endpoint_descriptor_t *edesc;
int isize;
usbd_status error;
/* interrupt in */
edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
if (edesc == NULL)
return EINVAL;
isize = UGETW(edesc->wMaxPacketSize);
if (isize == 0) /* should not happen */
return EINVAL;
sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
if (sc->ibuf == NULL)
return ENOMEM;
error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
&sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr,
USBD_DEFAULT_INTERVAL);
if (error != 0) {
printf("%s: open rx intr pipe failed: %s\n",
device_xname(sc->sc_dev), usbd_errstr(error));
goto fail;
}
/* interrupt out (not necessarily an interrupt pipe) */
error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
&sc->zyd_ep[ZYD_ENDPT_IOUT]);
if (error != 0) {
printf("%s: open tx intr pipe failed: %s\n",
device_xname(sc->sc_dev), usbd_errstr(error));
goto fail;
}
/* bulk in */
error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
&sc->zyd_ep[ZYD_ENDPT_BIN]);
if (error != 0) {
printf("%s: open rx pipe failed: %s\n",
device_xname(sc->sc_dev), usbd_errstr(error));
goto fail;
}
/* bulk out */
error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
&sc->zyd_ep[ZYD_ENDPT_BOUT]);
if (error != 0) {
printf("%s: open tx pipe failed: %s\n",
device_xname(sc->sc_dev), usbd_errstr(error));
goto fail;
}
return 0;
fail: zyd_close_pipes(sc);
return error;
}
Static void
zyd_close_pipes(struct zyd_softc *sc)
{
int i;
for (i = 0; i < ZYD_ENDPT_CNT; i++) {
if (sc->zyd_ep[i] != NULL) {
usbd_abort_pipe(sc->zyd_ep[i]);
usbd_close_pipe(sc->zyd_ep[i]);
sc->zyd_ep[i] = NULL;
}
}
if (sc->ibuf != NULL) {
free(sc->ibuf, M_USBDEV);
sc->ibuf = NULL;
}
}
Static int
zyd_alloc_tx_list(struct zyd_softc *sc)
{
int i, error;
sc->tx_queued = 0;
for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
struct zyd_tx_data *data = &sc->tx_data[i];
data->sc = sc; /* backpointer for callbacks */
data->xfer = usbd_alloc_xfer(sc->sc_udev);
if (data->xfer == NULL) {
printf("%s: could not allocate tx xfer\n",
device_xname(sc->sc_dev));
error = ENOMEM;
goto fail;
}
data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ);
if (data->buf == NULL) {
printf("%s: could not allocate tx buffer\n",
device_xname(sc->sc_dev));
error = ENOMEM;
goto fail;
}
/* clear Tx descriptor */
memset(data->buf, 0, sizeof (struct zyd_tx_desc));
}
return 0;
fail: zyd_free_tx_list(sc);
return error;
}
Static void
zyd_free_tx_list(struct zyd_softc *sc)
{
int i;
for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
struct zyd_tx_data *data = &sc->tx_data[i];
if (data->xfer != NULL) {
usbd_free_xfer(data->xfer);
data->xfer = NULL;
}
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
}
}
Static int
zyd_alloc_rx_list(struct zyd_softc *sc)
{
int i, error;
for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
struct zyd_rx_data *data = &sc->rx_data[i];
data->sc = sc; /* backpointer for callbacks */
data->xfer = usbd_alloc_xfer(sc->sc_udev);
if (data->xfer == NULL) {
printf("%s: could not allocate rx xfer\n",
device_xname(sc->sc_dev));
error = ENOMEM;
goto fail;
}
data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ);
if (data->buf == NULL) {
printf("%s: could not allocate rx buffer\n",
device_xname(sc->sc_dev));
error = ENOMEM;
goto fail;
}
}
return 0;
fail: zyd_free_rx_list(sc);
return error;
}
Static void
zyd_free_rx_list(struct zyd_softc *sc)
{
int i;
for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
struct zyd_rx_data *data = &sc->rx_data[i];
if (data->xfer != NULL) {
usbd_free_xfer(data->xfer);
data->xfer = NULL;
}
}
}
/* ARGUSED */
Static struct ieee80211_node *
zyd_node_alloc(struct ieee80211_node_table *nt __unused)
{
struct zyd_node *zn;
zn = malloc(sizeof (struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
return &zn->ni;
}
Static int
zyd_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
zyd_init(ifp);
return 0;
}
/*
* This function is called periodically (every 200ms) during scanning to
* switch from one channel to another.
*/
Static void
zyd_next_scan(void *arg)
{
struct zyd_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(ic);
}
Static void
zyd_task(void *arg)
{
struct zyd_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
enum ieee80211_state ostate;
ostate = ic->ic_state;
switch (sc->sc_state) {
case IEEE80211_S_INIT:
if (ostate == IEEE80211_S_RUN) {
/* turn link LED off */
zyd_set_led(sc, ZYD_LED1, 0);
/* stop data LED from blinking */
zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
}
break;
case IEEE80211_S_SCAN:
zyd_set_chan(sc, ic->ic_curchan);
callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
break;
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
zyd_set_chan(sc, ic->ic_curchan);
break;
case IEEE80211_S_RUN:
{
struct ieee80211_node *ni = ic->ic_bss;
zyd_set_chan(sc, ic->ic_curchan);
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
/* turn link LED on */
zyd_set_led(sc, ZYD_LED1, 1);
/* make data LED blink upon Tx */
zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
zyd_set_bssid(sc, ni->ni_bssid);
}
if (ic->ic_opmode == IEEE80211_M_STA) {
/* fake a join to init the tx rate */
zyd_newassoc(ni, 1);
}
/* start automatic rate control timer */
if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
break;
}
}
sc->sc_newstate(ic, sc->sc_state, -1);
}
Static int
zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct zyd_softc *sc = ic->ic_ifp->if_softc;
if (!sc->attached)
return ENXIO;
usb_rem_task(sc->sc_udev, &sc->sc_task);
callout_stop(&sc->sc_scan_ch);
callout_stop(&sc->sc_amrr_ch);
/* do it in a process context */
sc->sc_state = nstate;
usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
return 0;
}
Static int
zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
void *odata, int olen, u_int flags)
{
usbd_xfer_handle xfer;
struct zyd_cmd cmd;
struct rq rq;
uint16_t xferflags;
int error;
usbd_status uerror;
int s = 0;
if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL)
return ENOMEM;
cmd.code = htole16(code);
bcopy(idata, cmd.data, ilen);
xferflags = USBD_FORCE_SHORT_XFER;
if (!(flags & ZYD_CMD_FLAG_READ))
xferflags |= USBD_SYNCHRONOUS;
else {
s = splusb();
rq.idata = idata;
rq.odata = odata;
rq.len = olen / sizeof (struct zyd_pair);
SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
}
usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd,
sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL);
uerror = usbd_transfer(xfer);
if (uerror != USBD_IN_PROGRESS && uerror != 0) {
if (flags & ZYD_CMD_FLAG_READ)
splx(s);
printf("%s: could not send command (error=%s)\n",
device_xname(sc->sc_dev), usbd_errstr(uerror));
(void)usbd_free_xfer(xfer);
return EIO;
}
if (!(flags & ZYD_CMD_FLAG_READ)) {
(void)usbd_free_xfer(xfer);
return 0; /* write: don't wait for reply */
}
/* wait at most one second for command reply */
error = tsleep(odata, PCATCH, "zydcmd", hz);
if (error == EWOULDBLOCK)
printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
splx(s);
(void)usbd_free_xfer(xfer);
return error;
}
Static int
zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
{
struct zyd_pair tmp;
int error;
reg = htole16(reg);
error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof reg, &tmp, sizeof tmp,
ZYD_CMD_FLAG_READ);
if (error == 0)
*val = le16toh(tmp.val);
else
*val = 0;
return error;
}
Static int
zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
{
struct zyd_pair tmp[2];
uint16_t regs[2];
int error;
regs[0] = htole16(ZYD_REG32_HI(reg));
regs[1] = htole16(ZYD_REG32_LO(reg));
error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp,
ZYD_CMD_FLAG_READ);
if (error == 0)
*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
else
*val = 0;
return error;
}
Static int
zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
{
struct zyd_pair pair;
pair.reg = htole16(reg);
pair.val = htole16(val);
return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0);
}
Static int
zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
{
struct zyd_pair pair[2];
pair[0].reg = htole16(ZYD_REG32_HI(reg));
pair[0].val = htole16(val >> 16);
pair[1].reg = htole16(ZYD_REG32_LO(reg));
pair[1].val = htole16(val & 0xffff);
return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0);
}
Static int
zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
{
struct zyd_rf *rf = &sc->sc_rf;
struct zyd_rfwrite req;
uint16_t cr203;
int i;
(void)zyd_read16(sc, ZYD_CR203, &cr203);
cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
req.code = htole16(2);
req.width = htole16(rf->width);
for (i = 0; i < rf->width; i++) {
req.bit[i] = htole16(cr203);
if (val & (1 << (rf->width - 1 - i)))
req.bit[i] |= htole16(ZYD_RF_DATA);
}
return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
}
Static void
zyd_lock_phy(struct zyd_softc *sc)
{
uint32_t tmp;
(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
tmp &= ~ZYD_UNLOCK_PHY_REGS;
(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
}
Static void
zyd_unlock_phy(struct zyd_softc *sc)
{
uint32_t tmp;
(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
tmp |= ZYD_UNLOCK_PHY_REGS;
(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
}
/*
* RFMD RF methods.
*/
Static int
zyd_rfmd_init(struct zyd_rf *rf)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
static const uint32_t rfini[] = ZYD_RFMD_RF;
int error;
size_t i;
/* init RF-dependent PHY registers */
for (i = 0; i < __arraycount(phyini); i++) {
error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
if (error != 0)
return error;
}
/* init RFMD radio */
for (i = 0; i < __arraycount(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return error;
}
return 0;
}
Static int
zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
{
struct zyd_softc *sc = rf->rf_sc;
(void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
(void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
return 0;
}
Static int
zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct {
uint32_t r1, r2;
} rfprog[] = ZYD_RFMD_CHANTABLE;
(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
return 0;
}
/*
* AL2230 RF methods.
*/
Static int
zyd_al2230_init(struct zyd_rf *rf)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
static const uint32_t rfini[] = ZYD_AL2230_RF;
int error;
size_t i;
/* init RF-dependent PHY registers */
for (i = 0; i < __arraycount(phyini); i++) {
error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
if (error != 0)
return error;
}
if (sc->rf_rev == ZYD_RF_AL2230S) {
for (i = 0; i < __arraycount(phy2230s); i++) {
error = zyd_write16(sc, phy2230s[i].reg,
phy2230s[i].val);
if (error != 0)
return error;
}
}
/* init AL2230 radio */
for (i = 0; i < __arraycount(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return error;
}
return 0;
}
Static int
zyd_al2230_init_b(struct zyd_rf *rf)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
static const uint32_t rfini[] = ZYD_AL2230_RF_B;
int error;
size_t i;
/* init RF-dependent PHY registers */
for (i = 0; i < __arraycount(phyini); i++) {
error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
if (error != 0)
return error;
}
/* init AL2230 radio */
for (i = 0; i < __arraycount(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return error;
}
return 0;
}
Static int
zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
{
struct zyd_softc *sc = rf->rf_sc;
int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
(void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
(void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
return 0;
}
Static int
zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct {
uint32_t r1, r2, r3;
} rfprog[] = ZYD_AL2230_CHANTABLE;
(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
(void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
(void)zyd_write16(sc, ZYD_CR138, 0x28);
(void)zyd_write16(sc, ZYD_CR203, 0x06);
return 0;
}
/*
* AL7230B RF methods.
*/
Static int
zyd_al7230B_init(struct zyd_rf *rf)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
int error;
size_t i;
/* for AL7230B, PHY and RF need to be initialized in "phases" */
/* init RF-dependent PHY registers, part one */
for (i = 0; i < __arraycount(phyini_1); i++) {
error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
if (error != 0)
return error;
}
/* init AL7230B radio, part one */
for (i = 0; i < __arraycount(rfini_1); i++) {
if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
return error;
}
/* init RF-dependent PHY registers, part two */
for (i = 0; i < __arraycount(phyini_2); i++) {
error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
if (error != 0)
return error;
}
/* init AL7230B radio, part two */
for (i = 0; i < __arraycount(rfini_2); i++) {
if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
return error;
}
/* init RF-dependent PHY registers, part three */
for (i = 0; i < __arraycount(phyini_3); i++) {
error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
if (error != 0)
return error;
}
return 0;
}
Static int
zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
{
struct zyd_softc *sc = rf->rf_sc;
(void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
(void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
return 0;
}
Static int
zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct {
uint32_t r1, r2;
} rfprog[] = ZYD_AL7230B_CHANTABLE;
static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
int error;
size_t i;
(void)zyd_write16(sc, ZYD_CR240, 0x57);
(void)zyd_write16(sc, ZYD_CR251, 0x2f);
for (i = 0; i < __arraycount(rfsc); i++) {
if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
return error;
}
(void)zyd_write16(sc, ZYD_CR128, 0x14);
(void)zyd_write16(sc, ZYD_CR129, 0x12);
(void)zyd_write16(sc, ZYD_CR130, 0x10);
(void)zyd_write16(sc, ZYD_CR38, 0x38);
(void)zyd_write16(sc, ZYD_CR136, 0xdf);
(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
(void)zyd_rfwrite(sc, 0x3c9000);
(void)zyd_write16(sc, ZYD_CR251, 0x3f);
(void)zyd_write16(sc, ZYD_CR203, 0x06);
(void)zyd_write16(sc, ZYD_CR240, 0x08);
return 0;
}
/*
* AL2210 RF methods.
*/
Static int
zyd_al2210_init(struct zyd_rf *rf)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
static const uint32_t rfini[] = ZYD_AL2210_RF;
uint32_t tmp;
int error;
size_t i;
(void)zyd_write32(sc, ZYD_CR18, 2);
/* init RF-dependent PHY registers */
for (i = 0; i < __arraycount(phyini); i++) {
error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
if (error != 0)
return error;
}
/* init AL2210 radio */
for (i = 0; i < __arraycount(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return error;
}
(void)zyd_write16(sc, ZYD_CR47, 0x1e);
(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
(void)zyd_write16(sc, ZYD_CR47, 0x1e);
(void)zyd_write32(sc, ZYD_CR18, 3);
return 0;
}
Static int
zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
{
/* vendor driver does nothing for this RF chip */
return 0;
}
Static int
zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
{
struct zyd_softc *sc = rf->rf_sc;
static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
uint32_t tmp;
(void)zyd_write32(sc, ZYD_CR18, 2);
(void)zyd_write16(sc, ZYD_CR47, 0x1e);
(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
(void)zyd_write16(sc, ZYD_CR47, 0x1e);
/* actually set the channel */
(void)zyd_rfwrite(sc, rfprog[chan - 1]);
(void)zyd_write32(sc, ZYD_CR18, 3);
return 0;
}
/*
* GCT RF methods.
*/
Static int
zyd_gct_init(struct zyd_rf *rf)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
static const uint32_t rfini[] = ZYD_GCT_RF;
int error;
size_t i;
/* init RF-dependent PHY registers */
for (i = 0; i < __arraycount(phyini); i++) {
error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
if (error != 0)
return error;
}
/* init cgt radio */
for (i = 0; i < __arraycount(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return error;
}
return 0;
}
Static int
zyd_gct_switch_radio(struct zyd_rf *rf, int on)
{
/* vendor driver does nothing for this RF chip */
return 0;
}
Static int
zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
{
struct zyd_softc *sc = rf->rf_sc;
static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
(void)zyd_rfwrite(sc, 0x1c0000);
(void)zyd_rfwrite(sc, rfprog[chan - 1]);
(void)zyd_rfwrite(sc, 0x1c0008);
return 0;
}
/*
* Maxim RF methods.
*/
Static int
zyd_maxim_init(struct zyd_rf *rf)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
static const uint32_t rfini[] = ZYD_MAXIM_RF;
uint16_t tmp;
int error;
size_t i;
/* init RF-dependent PHY registers */
for (i = 0; i < __arraycount(phyini); i++) {
error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
if (error != 0)
return error;
}
(void)zyd_read16(sc, ZYD_CR203, &tmp);
(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
/* init maxim radio */
for (i = 0; i < __arraycount(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return error;
}
(void)zyd_read16(sc, ZYD_CR203, &tmp);
(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
return 0;
}
Static int
zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
{
/* vendor driver does nothing for this RF chip */
return 0;
}
Static int
zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
static const uint32_t rfini[] = ZYD_MAXIM_RF;
static const struct {
uint32_t r1, r2;
} rfprog[] = ZYD_MAXIM_CHANTABLE;
uint16_t tmp;
int error;
size_t i;
/*
* Do the same as we do when initializing it, except for the channel
* values coming from the two channel tables.
*/
/* init RF-dependent PHY registers */
for (i = 0; i < __arraycount(phyini); i++) {
error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
if (error != 0)
return error;
}
(void)zyd_read16(sc, ZYD_CR203, &tmp);
(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
/* first two values taken from the chantables */
(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
/* init maxim radio - skipping the two first values */
for (i = 2; i < __arraycount(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return error;
}
(void)zyd_read16(sc, ZYD_CR203, &tmp);
(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
return 0;
}
/*
* Maxim2 RF methods.
*/
Static int
zyd_maxim2_init(struct zyd_rf *rf)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
static const uint32_t rfini[] = ZYD_MAXIM2_RF;
uint16_t tmp;
int error;
size_t i;
/* init RF-dependent PHY registers */
for (i = 0; i < __arraycount(phyini); i++) {
error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
if (error != 0)
return error;
}
(void)zyd_read16(sc, ZYD_CR203, &tmp);
(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
/* init maxim2 radio */
for (i = 0; i < __arraycount(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return error;
}
(void)zyd_read16(sc, ZYD_CR203, &tmp);
(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
return 0;
}
Static int
zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
{
/* vendor driver does nothing for this RF chip */
return 0;
}
Static int
zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
static const uint32_t rfini[] = ZYD_MAXIM2_RF;
static const struct {
uint32_t r1, r2;
} rfprog[] = ZYD_MAXIM2_CHANTABLE;
uint16_t tmp;
int error;
size_t i;
/*
* Do the same as we do when initializing it, except for the channel
* values coming from the two channel tables.
*/
/* init RF-dependent PHY registers */
for (i = 0; i < __arraycount(phyini); i++) {
error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
if (error != 0)
return error;
}
(void)zyd_read16(sc, ZYD_CR203, &tmp);
(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
/* first two values taken from the chantables */
(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
/* init maxim2 radio - skipping the two first values */
for (i = 2; i < __arraycount(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return error;
}
(void)zyd_read16(sc, ZYD_CR203, &tmp);
(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
return 0;
}
Static int
zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
{
struct zyd_rf *rf = &sc->sc_rf;
rf->rf_sc = sc;
switch (type) {
case ZYD_RF_RFMD:
rf->init = zyd_rfmd_init;
rf->switch_radio = zyd_rfmd_switch_radio;
rf->set_channel = zyd_rfmd_set_channel;
rf->width = 24; /* 24-bit RF values */
break;
case ZYD_RF_AL2230:
case ZYD_RF_AL2230S:
if (sc->mac_rev == ZYD_ZD1211B)
rf->init = zyd_al2230_init_b;
else
rf->init = zyd_al2230_init;
rf->switch_radio = zyd_al2230_switch_radio;
rf->set_channel = zyd_al2230_set_channel;
rf->width = 24; /* 24-bit RF values */
break;
case ZYD_RF_AL7230B:
rf->init = zyd_al7230B_init;
rf->switch_radio = zyd_al7230B_switch_radio;
rf->set_channel = zyd_al7230B_set_channel;
rf->width = 24; /* 24-bit RF values */
break;
case ZYD_RF_AL2210:
rf->init = zyd_al2210_init;
rf->switch_radio = zyd_al2210_switch_radio;
rf->set_channel = zyd_al2210_set_channel;
rf->width = 24; /* 24-bit RF values */
break;
case ZYD_RF_GCT:
rf->init = zyd_gct_init;
rf->switch_radio = zyd_gct_switch_radio;
rf->set_channel = zyd_gct_set_channel;
rf->width = 21; /* 21-bit RF values */
break;
case ZYD_RF_MAXIM_NEW:
rf->init = zyd_maxim_init;
rf->switch_radio = zyd_maxim_switch_radio;
rf->set_channel = zyd_maxim_set_channel;
rf->width = 18; /* 18-bit RF values */
break;
case ZYD_RF_MAXIM_NEW2:
rf->init = zyd_maxim2_init;
rf->switch_radio = zyd_maxim2_switch_radio;
rf->set_channel = zyd_maxim2_set_channel;
rf->width = 18; /* 18-bit RF values */
break;
default:
printf("%s: sorry, radio \"%s\" is not supported yet\n",
device_xname(sc->sc_dev), zyd_rf_name(type));
return EINVAL;
}
return 0;
}
Static const char *
zyd_rf_name(uint8_t type)
{
static const char * const zyd_rfs[] = {
"unknown", "unknown", "UW2451", "UCHIP", "AL2230",
"AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
"AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
"PHILIPS"
};
return zyd_rfs[(type > 15) ? 0 : type];
}
Static int
zyd_hw_init(struct zyd_softc *sc)
{
struct zyd_rf *rf = &sc->sc_rf;
const struct zyd_phy_pair *phyp;
int error;
/* specify that the plug and play is finished */
(void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
(void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
/* retrieve firmware revision number */
(void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
(void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
(void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
/* disable interrupts */
(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
/* PHY init */
zyd_lock_phy(sc);
phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
for (; phyp->reg != 0; phyp++) {
if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
goto fail;
}
zyd_unlock_phy(sc);
/* HMAC init */
zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
if (sc->mac_rev == ZYD_ZD1211) {
zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
} else {
zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
}
zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
/* RF chip init */
zyd_lock_phy(sc);
error = (*rf->init)(rf);
zyd_unlock_phy(sc);
if (error != 0) {
printf("%s: radio initialization failed\n",
device_xname(sc->sc_dev));
goto fail;
}
/* init beacon interval to 100ms */
if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
goto fail;
fail: return error;
}
Static int
zyd_read_eeprom(struct zyd_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
uint16_t val;
int i;
/* read MAC address */
(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
ic->ic_myaddr[0] = tmp & 0xff;
ic->ic_myaddr[1] = tmp >> 8;
ic->ic_myaddr[2] = tmp >> 16;
ic->ic_myaddr[3] = tmp >> 24;
(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
ic->ic_myaddr[4] = tmp & 0xff;
ic->ic_myaddr[5] = tmp >> 8;
(void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
sc->rf_rev = tmp & 0x0f;
sc->pa_rev = (tmp >> 16) & 0x0f;
/* read regulatory domain (currently unused) */
(void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
sc->regdomain = tmp >> 16;
DPRINTF(("regulatory domain %x\n", sc->regdomain));
/* read Tx power calibration tables */
for (i = 0; i < 7; i++) {
(void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
sc->pwr_cal[i * 2] = val >> 8;
sc->pwr_cal[i * 2 + 1] = val & 0xff;
(void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
sc->pwr_int[i * 2] = val >> 8;
sc->pwr_int[i * 2 + 1] = val & 0xff;
(void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
sc->ofdm36_cal[i * 2] = val >> 8;
sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
(void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
sc->ofdm48_cal[i * 2] = val >> 8;
sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
(void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
sc->ofdm54_cal[i * 2] = val >> 8;
sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
}
return 0;
}
Static int
zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
{
uint32_t tmp;
tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
(void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
tmp = addr[5] << 8 | addr[4];
(void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
return 0;
}
Static int
zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
{
uint32_t tmp;
tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
(void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
tmp = addr[5] << 8 | addr[4];
(void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
return 0;
}
Static int
zyd_switch_radio(struct zyd_softc *sc, int on)
{
struct zyd_rf *rf = &sc->sc_rf;
int error;
zyd_lock_phy(sc);
error = (*rf->switch_radio)(rf, on);
zyd_unlock_phy(sc);
return error;
}
Static void
zyd_set_led(struct zyd_softc *sc, int which, int on)
{
uint32_t tmp;
(void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
tmp &= ~which;
if (on)
tmp |= which;
(void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
}
Static int
zyd_set_rxfilter(struct zyd_softc *sc)
{
uint32_t rxfilter;
switch (sc->sc_ic.ic_opmode) {
case IEEE80211_M_STA:
rxfilter = ZYD_FILTER_BSS;
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_HOSTAP:
rxfilter = ZYD_FILTER_HOSTAP;
break;
case IEEE80211_M_MONITOR:
rxfilter = ZYD_FILTER_MONITOR;
break;
default:
/* should not get there */
return EINVAL;
}
return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
}
Static void
zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
{
struct ieee80211com *ic = &sc->sc_ic;
struct zyd_rf *rf = &sc->sc_rf;
u_int chan;
chan = ieee80211_chan2ieee(ic, c);
if (chan == 0 || chan == IEEE80211_CHAN_ANY)
return;
zyd_lock_phy(sc);
(*rf->set_channel)(rf, chan);
/* update Tx power */
(void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
(void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
if (sc->mac_rev == ZYD_ZD1211B) {
(void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
(void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
(void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
(void)zyd_write32(sc, ZYD_CR69, 0x28);
(void)zyd_write32(sc, ZYD_CR69, 0x2a);
}
zyd_unlock_phy(sc);
}
Static int
zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
{
/* XXX this is probably broken.. */
(void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
(void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1);
(void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval);
return 0;
}
Static uint8_t
zyd_plcp_signal(int rate)
{
switch (rate) {
/* CCK rates (returned values are device-dependent) */
case 2: return 0x0;
case 4: return 0x1;
case 11: return 0x2;
case 22: return 0x3;
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
case 12: return 0xb;
case 18: return 0xf;
case 24: return 0xa;
case 36: return 0xe;
case 48: return 0x9;
case 72: return 0xd;
case 96: return 0x8;
case 108: return 0xc;
/* unsupported rates (should not get there) */
default: return 0xff;
}
}
Static void
zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
{
struct zyd_softc *sc = (struct zyd_softc *)priv;
struct zyd_cmd *cmd;
uint32_t datalen;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
if (status == USBD_STALLED) {
usbd_clear_endpoint_stall_async(
sc->zyd_ep[ZYD_ENDPT_IIN]);
}
return;
}
cmd = (struct zyd_cmd *)sc->ibuf;
if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
struct zyd_notif_retry *retry =
(struct zyd_notif_retry *)cmd->data;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct ieee80211_node *ni;
DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
le16toh(retry->rate), ether_sprintf(retry->macaddr),
le16toh(retry->count) & 0xff, le16toh(retry->count)));
/*
* Find the node to which the packet was sent and update its
* retry statistics. In BSS mode, this node is the AP we're
* associated to so no lookup is actually needed.
*/
if (ic->ic_opmode != IEEE80211_M_STA) {
ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
if (ni == NULL)
return; /* just ignore */
} else
ni = ic->ic_bss;
((struct zyd_node *)ni)->amn.amn_retrycnt++;
if (le16toh(retry->count) & 0x100)
ifp->if_oerrors++; /* too many retries */
} else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
struct rq *rqp;
if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
return; /* HMAC interrupt */
usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
datalen -= sizeof(cmd->code);
datalen -= 2; /* XXX: padding? */
SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
int i;
if (sizeof(struct zyd_pair) * rqp->len != datalen)
continue;
for (i = 0; i < rqp->len; i++) {
if (*(((const uint16_t *)rqp->idata) + i) !=
(((struct zyd_pair *)cmd->data) + i)->reg)
break;
}
if (i != rqp->len)
continue;
/* copy answer into caller-supplied buffer */
bcopy(cmd->data, rqp->odata,
sizeof(struct zyd_pair) * rqp->len);
wakeup(rqp->odata); /* wakeup caller */
return;
}
return; /* unexpected IORD notification */
} else {
printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
le16toh(cmd->code));
}
}
Static void
zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct ieee80211_node *ni;
struct ieee80211_frame *wh;
const struct zyd_plcphdr *plcp;
const struct zyd_rx_stat *stat;
struct mbuf *m;
int rlen, s;
if (len < ZYD_MIN_FRAGSZ) {
printf("%s: frame too short (length=%d)\n",
device_xname(sc->sc_dev), len);
ifp->if_ierrors++;
return;
}
plcp = (const struct zyd_plcphdr *)buf;
stat = (const struct zyd_rx_stat *)
(buf + len - sizeof (struct zyd_rx_stat));
if (stat->flags & ZYD_RX_ERROR) {
DPRINTF(("%s: RX status indicated error (%x)\n",
device_xname(sc->sc_dev), stat->flags));
ifp->if_ierrors++;
return;
}
/* compute actual frame length */
rlen = len - sizeof (struct zyd_plcphdr) -
sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN;
/* allocate a mbuf to store the frame */
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
printf("%s: could not allocate rx mbuf\n",
device_xname(sc->sc_dev));
ifp->if_ierrors++;
return;
}
if (rlen > MHLEN) {
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
printf("%s: could not allocate rx mbuf cluster\n",
device_xname(sc->sc_dev));
m_freem(m);
ifp->if_ierrors++;
return;
}
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = rlen;
bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen);
s = splnet();
if (sc->sc_drvbpf != NULL) {
struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
static const uint8_t rates[] = {
/* reverse function of zyd_plcp_signal() */
2, 4, 11, 22, 0, 0, 0, 0,
96, 48, 24, 12, 108, 72, 36, 18
};
tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
tap->wr_rssi = stat->rssi;
tap->wr_rate = rates[plcp->signal & 0xf];
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
}
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
ieee80211_input(ic, m, ni, stat->rssi, 0);
/* node is no longer needed */
ieee80211_free_node(ni);
splx(s);
}
Static void
zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
{
struct zyd_rx_data *data = priv;
struct zyd_softc *sc = data->sc;
struct ifnet *ifp = &sc->sc_if;
const struct zyd_rx_desc *desc;
int len;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
if (status == USBD_STALLED)
usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
goto skip;
}
usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
if (len < ZYD_MIN_RXBUFSZ) {
printf("%s: xfer too short (length=%d)\n",
device_xname(sc->sc_dev), len);
ifp->if_ierrors++;
goto skip;
}
desc = (const struct zyd_rx_desc *)
(data->buf + len - sizeof (struct zyd_rx_desc));
if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
const uint8_t *p = data->buf, *end = p + len;
int i;
DPRINTFN(3, ("received multi-frame transfer\n"));
for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
const uint16_t len16 = UGETW(desc->len[i]);
if (len16 == 0 || p + len16 > end)
break;
zyd_rx_data(sc, p, len16);
/* next frame is aligned on a 32-bit boundary */
p += (len16 + 3) & ~3;
}
} else {
DPRINTFN(3, ("received single-frame transfer\n"));
zyd_rx_data(sc, data->buf, len);
}
skip: /* setup a new transfer */
usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL,
ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
USBD_NO_TIMEOUT, zyd_rxeof);
(void)usbd_transfer(xfer);
}
Static int
zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct zyd_tx_desc *desc;
struct zyd_tx_data *data;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
int xferlen, totlen, rate;
uint16_t pktlen;
usbd_status error;
data = &sc->tx_data[0];
desc = (struct zyd_tx_desc *)data->buf;
rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
wh = mtod(m0, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
}
data->ni = ni;
wh = mtod(m0, struct ieee80211_frame *);
xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
/* fill Tx descriptor */
desc->len = htole16(totlen);
desc->flags = ZYD_TX_FLAG_BACKOFF;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
/* multicast frames are not sent at OFDM rates in 802.11b/g */
if (totlen > ic->ic_rtsthreshold) {
desc->flags |= ZYD_TX_FLAG_RTS;
} else if (ZYD_RATE_IS_OFDM(rate) &&
(ic->ic_flags & IEEE80211_F_USEPROT)) {
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
desc->flags |= ZYD_TX_FLAG_RTS;
}
} else
desc->flags |= ZYD_TX_FLAG_MULTICAST;
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
desc->phy = zyd_plcp_signal(rate);
if (ZYD_RATE_IS_OFDM(rate)) {
desc->phy |= ZYD_TX_PHY_OFDM;
if (ic->ic_curmode == IEEE80211_MODE_11A)
desc->phy |= ZYD_TX_PHY_5GHZ;
} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
/* actual transmit length (XXX why +10?) */
pktlen = sizeof (struct zyd_tx_desc) + 10;
if (sc->mac_rev == ZYD_ZD1211)
pktlen += totlen;
desc->pktlen = htole16(pktlen);
desc->plcp_length = (16 * totlen + rate - 1) / rate;
desc->plcp_service = 0;
if (rate == 22) {
const int remainder = (16 * totlen) % 22;
if (remainder != 0 && remainder < 7)
desc->plcp_service |= ZYD_PLCP_LENGEXT;
}
if (sc->sc_drvbpf != NULL) {
struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
}
m_copydata(m0, 0, m0->m_pkthdr.len,
data->buf + sizeof (struct zyd_tx_desc));
DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
m_freem(m0); /* mbuf no longer needed */
usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
ZYD_TX_TIMEOUT, zyd_txeof);
error = usbd_transfer(data->xfer);
if (error != USBD_IN_PROGRESS && error != 0) {
ifp->if_oerrors++;
return EIO;
}
sc->tx_queued++;
return 0;
}
Static void
zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
{
struct zyd_tx_data *data = priv;
struct zyd_softc *sc = data->sc;
struct ifnet *ifp = &sc->sc_if;
int s;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
printf("%s: could not transmit buffer: %s\n",
device_xname(sc->sc_dev), usbd_errstr(status));
if (status == USBD_STALLED) {
usbd_clear_endpoint_stall_async(
sc->zyd_ep[ZYD_ENDPT_BOUT]);
}
ifp->if_oerrors++;
return;
}
s = splnet();
/* update rate control statistics */
((struct zyd_node *)data->ni)->amn.amn_txcnt++;
ieee80211_free_node(data->ni);
data->ni = NULL;
sc->tx_queued--;
ifp->if_opackets++;
sc->tx_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
zyd_start(ifp);
splx(s);
}
Static int
zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct zyd_tx_desc *desc;
struct zyd_tx_data *data;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
int xferlen, totlen, rate;
uint16_t pktlen;
usbd_status error;
wh = mtod(m0, struct ieee80211_frame *);
if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
else
rate = ni->ni_rates.rs_rates[ni->ni_txrate];
rate &= IEEE80211_RATE_VAL;
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
data = &sc->tx_data[0];
desc = (struct zyd_tx_desc *)data->buf;
data->ni = ni;
xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
/* fill Tx descriptor */
desc->len = htole16(totlen);
desc->flags = ZYD_TX_FLAG_BACKOFF;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
/* multicast frames are not sent at OFDM rates in 802.11b/g */
if (totlen > ic->ic_rtsthreshold) {
desc->flags |= ZYD_TX_FLAG_RTS;
} else if (ZYD_RATE_IS_OFDM(rate) &&
(ic->ic_flags & IEEE80211_F_USEPROT)) {
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
desc->flags |= ZYD_TX_FLAG_RTS;
}
} else
desc->flags |= ZYD_TX_FLAG_MULTICAST;
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
desc->phy = zyd_plcp_signal(rate);
if (ZYD_RATE_IS_OFDM(rate)) {
desc->phy |= ZYD_TX_PHY_OFDM;
if (ic->ic_curmode == IEEE80211_MODE_11A)
desc->phy |= ZYD_TX_PHY_5GHZ;
} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
/* actual transmit length (XXX why +10?) */
pktlen = sizeof (struct zyd_tx_desc) + 10;
if (sc->mac_rev == ZYD_ZD1211)
pktlen += totlen;
desc->pktlen = htole16(pktlen);
desc->plcp_length = (16 * totlen + rate - 1) / rate;
desc->plcp_service = 0;
if (rate == 22) {
const int remainder = (16 * totlen) % 22;
if (remainder != 0 && remainder < 7)
desc->plcp_service |= ZYD_PLCP_LENGEXT;
}
if (sc->sc_drvbpf != NULL) {
struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
}
m_copydata(m0, 0, m0->m_pkthdr.len,
data->buf + sizeof (struct zyd_tx_desc));
DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
m_freem(m0); /* mbuf no longer needed */
usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
ZYD_TX_TIMEOUT, zyd_txeof);
error = usbd_transfer(data->xfer);
if (error != USBD_IN_PROGRESS && error != 0) {
ifp->if_oerrors++;
return EIO;
}
sc->tx_queued++;
return 0;
}
Static void
zyd_start(struct ifnet *ifp)
{
struct zyd_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ether_header *eh;
struct ieee80211_node *ni;
struct mbuf *m0;
for (;;) {
IF_POLL(&ic->ic_mgtq, m0);
if (m0 != NULL) {
if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
IF_DEQUEUE(&ic->ic_mgtq, m0);
ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
m0->m_pkthdr.rcvif = NULL;
bpf_mtap3(ic->ic_rawbpf, m0);
if (zyd_tx_mgt(sc, m0, ni) != 0)
break;
} else {
if (ic->ic_state != IEEE80211_S_RUN)
break;
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
if (m0->m_len < sizeof(struct ether_header) &&
!(m0 = m_pullup(m0, sizeof(struct ether_header))))
continue;
eh = mtod(m0, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m0);
continue;
}
bpf_mtap(ifp, m0);
if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
bpf_mtap3(ic->ic_rawbpf, m0);
if (zyd_tx_data(sc, m0, ni) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
break;
}
}
sc->tx_timer = 5;
ifp->if_timer = 1;
}
}
Static void
zyd_watchdog(struct ifnet *ifp)
{
struct zyd_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
ifp->if_timer = 0;
if (sc->tx_timer > 0) {
if (--sc->tx_timer == 0) {
printf("%s: device timeout\n", device_xname(sc->sc_dev));
/* zyd_init(ifp); XXX needs a process context ? */
ifp->if_oerrors++;
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(ic);
}
Static int
zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct zyd_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
/* XXX re-use ether_ioctl() */
switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
case IFF_UP:
zyd_init(ifp);
break;
case IFF_RUNNING:
zyd_stop(ifp, 1);
break;
default:
break;
}
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
}
if (error == ENETRESET) {
if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
(IFF_RUNNING | IFF_UP))
zyd_init(ifp);
error = 0;
}
splx(s);
return error;
}
Static int
zyd_init(struct ifnet *ifp)
{
struct zyd_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int i, error;
zyd_stop(ifp, 0);
IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
error = zyd_set_macaddr(sc, ic->ic_myaddr);
if (error != 0)
return error;
/* we'll do software WEP decryption for now */
DPRINTF(("setting encryption type\n"));
error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
if (error != 0)
return error;
/* promiscuous mode */
(void)zyd_write32(sc, ZYD_MAC_SNIFFER,
(ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
(void)zyd_set_rxfilter(sc);
/* switch radio transmitter ON */
(void)zyd_switch_radio(sc, 1);
/* set basic rates */
if (ic->ic_curmode == IEEE80211_MODE_11B)
(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
else if (ic->ic_curmode == IEEE80211_MODE_11A)
(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
else /* assumes 802.11b/g */
(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
/* set mandatory rates */
if (ic->ic_curmode == IEEE80211_MODE_11B)
(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
else if (ic->ic_curmode == IEEE80211_MODE_11A)
(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
else /* assumes 802.11b/g */
(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
/* set default BSS channel */
ic->ic_bss->ni_chan = ic->ic_ibss_chan;
zyd_set_chan(sc, ic->ic_bss->ni_chan);
/* enable interrupts */
(void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
/*
* Allocate Tx and Rx xfer queues.
*/
if ((error = zyd_alloc_tx_list(sc)) != 0) {
printf("%s: could not allocate Tx list\n",
device_xname(sc->sc_dev));
goto fail;
}
if ((error = zyd_alloc_rx_list(sc)) != 0) {
printf("%s: could not allocate Rx list\n",
device_xname(sc->sc_dev));
goto fail;
}
/*
* Start up the receive pipe.
*/
for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
struct zyd_rx_data *data = &sc->rx_data[i];
usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data,
NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
USBD_NO_TIMEOUT, zyd_rxeof);
error = usbd_transfer(data->xfer);
if (error != USBD_IN_PROGRESS && error != 0) {
printf("%s: could not queue Rx transfer\n",
device_xname(sc->sc_dev));
goto fail;
}
}
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode == IEEE80211_M_MONITOR)
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
else
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
return 0;
fail: zyd_stop(ifp, 1);
return error;
}
Static void
zyd_stop(struct ifnet *ifp, int disable)
{
struct zyd_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
sc->tx_timer = 0;
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
/* switch radio transmitter OFF */
(void)zyd_switch_radio(sc, 0);
/* disable Rx */
(void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
/* disable interrupts */
(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
zyd_free_rx_list(sc);
zyd_free_tx_list(sc);
}
Static int
zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
{
usb_device_request_t req;
uint16_t addr;
uint8_t stat;
DPRINTF(("firmware size=%zu\n", size));
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = ZYD_DOWNLOADREQ;
USETW(req.wIndex, 0);
addr = ZYD_FIRMWARE_START_ADDR;
while (size > 0) {
#if 0
const int mlen = min(size, 4096);
#else
/*
* XXXX: When the transfer size is 4096 bytes, it is not
* likely to be able to transfer it.
* The cause is port or machine or chip?
*/
const int mlen = min(size, 64);
#endif
DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
addr));
USETW(req.wValue, addr);
USETW(req.wLength, mlen);
if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
return EIO;
addr += mlen / 2;
fw += mlen;
size -= mlen;
}
/* check whether the upload succeeded */
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = ZYD_DOWNLOADSTS;
USETW(req.wValue, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, sizeof stat);
if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
return EIO;
return (stat & 0x80) ? EIO : 0;
}
Static void
zyd_iter_func(void *arg, struct ieee80211_node *ni)
{
struct zyd_softc *sc = arg;
struct zyd_node *zn = (struct zyd_node *)ni;
ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
}
Static void
zyd_amrr_timeout(void *arg)
{
struct zyd_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
int s;
s = splnet();
if (ic->ic_opmode == IEEE80211_M_STA)
zyd_iter_func(sc, ic->ic_bss);
else
ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
splx(s);
callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
}
Static void
zyd_newassoc(struct ieee80211_node *ni, int isnew)
{
struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
int i;
ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
/* set rate to some reasonable initial value */
for (i = ni->ni_rates.rs_nrates - 1;
i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
i--);
ni->ni_txrate = i;
}
int
zyd_activate(device_t self, enum devact act)
{
struct zyd_softc *sc = device_private(self);
switch (act) {
case DVACT_DEACTIVATE:
if_deactivate(&sc->sc_if);
return 0;
default:
return EOPNOTSUPP;
}
}