NetBSD/sys/dev/usb/if_kue.c
dyoung de87fe677d *** Summary ***
When a link-layer address changes (e.g., ifconfig ex0 link
02🇩🇪ad:be:ef:02 active), send a gratuitous ARP and/or a Neighbor
Advertisement to update the network-/link-layer address bindings
on our LAN peers.

Refuse a change of ethernet address to the address 00:00:00:00:00:00
or to any multicast/broadcast address.  (Thanks matt@.)

Reorder ifnet ioctl operations so that driver ioctls may inherit
the functions of their "class"---ether_ioctl(), fddi_ioctl(), et
cetera---and the class ioctls may inherit from the generic ioctl,
ifioctl_common(), but both driver- and class-ioctls may override
the generic behavior.  Make network drivers share more code.

Distinguish a "factory" link-layer address from others for the
purposes of both protecting that address from deletion and computing
EUI64.

Return consistent, appropriate error codes from network drivers.

Improve readability.  KNF.

*** Details ***

In if_attach(), always initialize the interface ioctl routine,
ifnet->if_ioctl, if the driver has not already initialized it.
Delete if_ioctl == NULL tests everywhere else, because it cannot
happen.

In the ioctl routines of network interfaces, inherit common ioctl
behaviors by calling either ifioctl_common() or whichever ioctl
routine is appropriate for the class of interface---e.g., ether_ioctl()
for ethernets.

Stop (ab)using SIOCSIFADDR and start to use SIOCINITIFADDR.  In
the user->kernel interface, SIOCSIFADDR's argument was an ifreq,
but on the protocol->ifnet interface, SIOCSIFADDR's argument was
an ifaddr.  That was confusing, and it would work against me as I
make it possible for a network interface to overload most ioctls.
On the protocol->ifnet interface, replace SIOCSIFADDR with
SIOCINITIFADDR.  In ifioctl(), return EPERM if userland tries to
invoke SIOCINITIFADDR.

In ifioctl(), give the interface the first shot at handling most
interface ioctls, and give the protocol the second shot, instead
of the other way around. Finally, let compatibility code (COMPAT_OSOCK)
take a shot.

Pull device initialization out of switch statements under
SIOCINITIFADDR.  For example, pull ..._init() out of any switch
statement that looks like this:

        switch (...->sa_family) {
        case ...:
                ..._init();
                ...
                break;
        ...
        default:
                ..._init();
                ...
                break;
        }

Rewrite many if-else clauses that handle all permutations of IFF_UP
and IFF_RUNNING to use a switch statement,

        switch (x & (IFF_UP|IFF_RUNNING)) {
        case 0:
                ...
                break;
        case IFF_RUNNING:
                ...
                break;
        case IFF_UP:
                ...
                break;
        case IFF_UP|IFF_RUNNING:
                ...
                break;
        }

unifdef lots of code containing #ifdef FreeBSD, #ifdef NetBSD, and
#ifdef SIOCSIFMTU, especially in fwip(4) and in ndis(4).

In ipw(4), remove an if_set_sadl() call that is out of place.

In nfe(4), reuse the jumbo MTU logic in ether_ioctl().

Let ethernets register a callback for setting h/w state such as
promiscuous mode and the multicast filter in accord with a change
in the if_flags: ether_set_ifflags_cb() registers a callback that
returns ENETRESET if the caller should reset the ethernet by calling
if_init(), 0 on success, != 0 on failure.  Pull common code from
ex(4), gem(4), nfe(4), sip(4), tlp(4), vge(4) into ether_ioctl(),
and register if_flags callbacks for those drivers.

Return ENOTTY instead of EINVAL for inappropriate ioctls.  In
zyd(4), use ENXIO instead of ENOTTY to indicate that the device is
not any longer attached.

Add to if_set_sadl() a boolean 'factory' argument that indicates
whether a link-layer address was assigned by the factory or some
other source.  In a comment, recommend using the factory address
for generating an EUI64, and update in6_get_hw_ifid() to prefer a
factory address to any other link-layer address.

Add a routing message, RTM_LLINFO_UPD, that tells protocols to
update the binding of network-layer addresses to link-layer addresses.
Implement this message in IPv4 and IPv6 by sending a gratuitous
ARP or a neighbor advertisement, respectively.  Generate RTM_LLINFO_UPD
messages on a change of an interface's link-layer address.

In ether_ioctl(), do not let SIOCALIFADDR set a link-layer address
that is broadcast/multicast or equal to 00:00:00:00:00:00.

Make ether_ioctl() call ifioctl_common() to handle ioctls that it
does not understand.

In gif(4), initialize if_softc and use it, instead of assuming that
the gif_softc and ifp overlap.

Let ifioctl_common() handle SIOCGIFADDR.

Sprinkle rtcache_invariants(), which checks on DIAGNOSTIC kernels
that certain invariants on a struct route are satisfied.

In agr(4), rewrite agr_ioctl_filter() to be a bit more explicit
about the ioctls that we do not allow on an agr(4) member interface.

bzero -> memset.  Delete unnecessary casts to void *.  Use
sockaddr_in_init() and sockaddr_in6_init().  Compare pointers with
NULL instead of "testing truth".  Replace some instances of (type
*)0 with NULL.  Change some K&R prototypes to ANSI C, and join
lines.
2008-11-07 00:20:01 +00:00

1247 lines
32 KiB
C

/* $NetBSD: if_kue.c,v 1.64 2008/11/07 00:20:12 dyoung Exp $ */
/*
* Copyright (c) 1997, 1998, 1999, 2000
* Bill Paul <wpaul@ee.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD: src/sys/dev/usb/if_kue.c,v 1.14 2000/01/14 01:36:15 wpaul Exp $
*/
/*
* Kawasaki LSI KL5KUSB101B USB to ethernet adapter driver.
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The KLSI USB to ethernet adapter chip contains an USB serial interface,
* ethernet MAC and embedded microcontroller (called the QT Engine).
* The chip must have firmware loaded into it before it will operate.
* Packets are passed between the chip and host via bulk transfers.
* There is an interrupt endpoint mentioned in the software spec, however
* it's currently unused. This device is 10Mbps half-duplex only, hence
* there is no media selection logic. The MAC supports a 128 entry
* multicast filter, though the exact size of the filter can depend
* on the firmware. Curiously, while the software spec describes various
* ethernet statistics counters, my sample adapter and firmware combination
* claims not to support any statistics counters at all.
*
* Note that once we load the firmware in the device, we have to be
* careful not to load it again: if you restart your computer but
* leave the adapter attached to the USB controller, it may remain
* powered on and retain its firmware. In this case, we don't need
* to load the firmware a second time.
*
* Special thanks to Rob Furr for providing an ADS Technologies
* adapter for development and testing. No monkeys were harmed during
* the development of this driver.
*/
/*
* Ported to NetBSD and somewhat rewritten by Lennart Augustsson.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_kue.c,v 1.64 2008/11/07 00:20:12 dyoung Exp $");
#if defined(__NetBSD__)
#include "opt_inet.h"
#include "bpfilter.h"
#include "rnd.h"
#elif defined(__OpenBSD__)
#include "bpfilter.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <sys/proc.h>
#if NRND > 0
#include <sys/rnd.h>
#endif
#include <net/if.h>
#if defined(__NetBSD__)
#include <net/if_arp.h>
#endif
#include <net/if_dl.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#if defined(__NetBSD__)
#include <net/if_ether.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#endif
#endif /* defined (__NetBSD__) */
#if defined(__OpenBSD__)
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#endif
#endif /* defined (__OpenBSD__) */
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/if_kuereg.h>
#include <dev/usb/kue_fw.h>
#ifdef KUE_DEBUG
#define DPRINTF(x) if (kuedebug) logprintf x
#define DPRINTFN(n,x) if (kuedebug >= (n)) logprintf x
int kuedebug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
/*
* Various supported device vendors/products.
*/
Static const struct usb_devno kue_devs[] = {
{ USB_VENDOR_3COM, USB_PRODUCT_3COM_3C19250 },
{ USB_VENDOR_3COM, USB_PRODUCT_3COM_3C460 },
{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_URE450 },
{ USB_VENDOR_ADS, USB_PRODUCT_ADS_UBS10BT },
{ USB_VENDOR_ADS, USB_PRODUCT_ADS_UBS10BTX },
{ USB_VENDOR_AOX, USB_PRODUCT_AOX_USB101 },
{ USB_VENDOR_ASANTE, USB_PRODUCT_ASANTE_EA },
{ USB_VENDOR_ATEN, USB_PRODUCT_ATEN_UC10T },
{ USB_VENDOR_ATEN, USB_PRODUCT_ATEN_DSB650C },
{ USB_VENDOR_COREGA, USB_PRODUCT_COREGA_ETHER_USB_T },
{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650C },
{ USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_E45 },
{ USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_XX1 },
{ USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_XX2 },
{ USB_VENDOR_IODATA, USB_PRODUCT_IODATA_USBETT },
{ USB_VENDOR_JATON, USB_PRODUCT_JATON_EDA },
{ USB_VENDOR_KINGSTON, USB_PRODUCT_KINGSTON_XX1 },
{ USB_VENDOR_KLSI, USB_PRODUCT_KLSI_DUH3E10BT },
{ USB_VENDOR_KLSI, USB_PRODUCT_KLSI_DUH3E10BTN },
{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10T },
{ USB_VENDOR_MOBILITY, USB_PRODUCT_MOBILITY_EA },
{ USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_EA101 },
{ USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_EA101X },
{ USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET },
{ USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET2 },
{ USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET3 },
{ USB_VENDOR_PORTGEAR, USB_PRODUCT_PORTGEAR_EA8 },
{ USB_VENDOR_PORTGEAR, USB_PRODUCT_PORTGEAR_EA9 },
{ USB_VENDOR_PORTSMITH, USB_PRODUCT_PORTSMITH_EEA },
{ USB_VENDOR_SHARK, USB_PRODUCT_SHARK_PA },
{ USB_VENDOR_SILICOM, USB_PRODUCT_SILICOM_U2E },
{ USB_VENDOR_SMC, USB_PRODUCT_SMC_2102USB },
};
#define kue_lookup(v, p) (usb_lookup(kue_devs, v, p))
USB_DECLARE_DRIVER(kue);
Static int kue_tx_list_init(struct kue_softc *);
Static int kue_rx_list_init(struct kue_softc *);
Static int kue_newbuf(struct kue_softc *, struct kue_chain *,struct mbuf *);
Static int kue_send(struct kue_softc *, struct mbuf *, int);
Static int kue_open_pipes(struct kue_softc *);
Static void kue_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
Static void kue_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
Static void kue_start(struct ifnet *);
Static int kue_ioctl(struct ifnet *, u_long, void *);
Static void kue_init(void *);
Static void kue_stop(struct kue_softc *);
Static void kue_watchdog(struct ifnet *);
Static void kue_setmulti(struct kue_softc *);
Static void kue_reset(struct kue_softc *);
Static usbd_status kue_ctl(struct kue_softc *, int, u_int8_t,
u_int16_t, void *, u_int32_t);
Static usbd_status kue_setword(struct kue_softc *, u_int8_t, u_int16_t);
Static int kue_load_fw(struct kue_softc *);
Static usbd_status
kue_setword(struct kue_softc *sc, u_int8_t breq, u_int16_t word)
{
usb_device_request_t req;
DPRINTFN(10,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev),__func__));
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = breq;
USETW(req.wValue, word);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
return (usbd_do_request(sc->kue_udev, &req, NULL));
}
Static usbd_status
kue_ctl(struct kue_softc *sc, int rw, u_int8_t breq, u_int16_t val,
void *data, u_int32_t len)
{
usb_device_request_t req;
DPRINTFN(10,("%s: %s: enter, len=%d\n", USBDEVNAME(sc->kue_dev),
__func__, len));
if (rw == KUE_CTL_WRITE)
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
else
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = breq;
USETW(req.wValue, val);
USETW(req.wIndex, 0);
USETW(req.wLength, len);
return (usbd_do_request(sc->kue_udev, &req, data));
}
Static int
kue_load_fw(struct kue_softc *sc)
{
usb_device_descriptor_t dd;
usbd_status err;
DPRINTFN(1,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev), __func__));
/*
* First, check if we even need to load the firmware.
* If the device was still attached when the system was
* rebooted, it may already have firmware loaded in it.
* If this is the case, we don't need to do it again.
* And in fact, if we try to load it again, we'll hang,
* so we have to avoid this condition if we don't want
* to look stupid.
*
* We can test this quickly by checking the bcdRevision
* code. The NIC will return a different revision code if
* it's probed while the firmware is still loaded and
* running.
*/
if (usbd_get_device_desc(sc->kue_udev, &dd))
return (EIO);
if (UGETW(dd.bcdDevice) == KUE_WARM_REV) {
printf("%s: warm boot, no firmware download\n",
USBDEVNAME(sc->kue_dev));
return (0);
}
printf("%s: cold boot, downloading firmware\n",
USBDEVNAME(sc->kue_dev));
/* Load code segment */
DPRINTFN(1,("%s: kue_load_fw: download code_seg\n",
USBDEVNAME(sc->kue_dev)));
/*XXXUNCONST*/
err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN,
0, __UNCONST(kue_code_seg), sizeof(kue_code_seg));
if (err) {
printf("%s: failed to load code segment: %s\n",
USBDEVNAME(sc->kue_dev), usbd_errstr(err));
return (EIO);
}
/* Load fixup segment */
DPRINTFN(1,("%s: kue_load_fw: download fix_seg\n",
USBDEVNAME(sc->kue_dev)));
/*XXXUNCONST*/
err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN,
0, __UNCONST(kue_fix_seg), sizeof(kue_fix_seg));
if (err) {
printf("%s: failed to load fixup segment: %s\n",
USBDEVNAME(sc->kue_dev), usbd_errstr(err));
return (EIO);
}
/* Send trigger command. */
DPRINTFN(1,("%s: kue_load_fw: download trig_seg\n",
USBDEVNAME(sc->kue_dev)));
/*XXXUNCONST*/
err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN,
0, __UNCONST(kue_trig_seg), sizeof(kue_trig_seg));
if (err) {
printf("%s: failed to load trigger segment: %s\n",
USBDEVNAME(sc->kue_dev), usbd_errstr(err));
return (EIO);
}
usbd_delay_ms(sc->kue_udev, 10);
/*
* Reload device descriptor.
* Why? The chip without the firmware loaded returns
* one revision code. The chip with the firmware
* loaded and running returns a *different* revision
* code. This confuses the quirk mechanism, which is
* dependent on the revision data.
*/
(void)usbd_reload_device_desc(sc->kue_udev);
DPRINTFN(1,("%s: %s: done\n", USBDEVNAME(sc->kue_dev), __func__));
/* Reset the adapter. */
kue_reset(sc);
return (0);
}
Static void
kue_setmulti(struct kue_softc *sc)
{
struct ifnet *ifp = GET_IFP(sc);
struct ether_multi *enm;
struct ether_multistep step;
int i;
DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev), __func__));
if (ifp->if_flags & IFF_PROMISC) {
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
sc->kue_rxfilt |= KUE_RXFILT_ALLMULTI;
sc->kue_rxfilt &= ~KUE_RXFILT_MULTICAST;
kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt);
return;
}
sc->kue_rxfilt &= ~KUE_RXFILT_ALLMULTI;
i = 0;
#if defined (__NetBSD__)
ETHER_FIRST_MULTI(step, &sc->kue_ec, enm);
#else
ETHER_FIRST_MULTI(step, &sc->arpcom, enm);
#endif
while (enm != NULL) {
if (i == KUE_MCFILTCNT(sc) ||
memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN) != 0)
goto allmulti;
memcpy(KUE_MCFILT(sc, i), enm->enm_addrlo, ETHER_ADDR_LEN);
ETHER_NEXT_MULTI(step, enm);
i++;
}
ifp->if_flags &= ~IFF_ALLMULTI;
sc->kue_rxfilt |= KUE_RXFILT_MULTICAST;
kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SET_MCAST_FILTERS,
i, sc->kue_mcfilters, i * ETHER_ADDR_LEN);
kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt);
}
/*
* Issue a SET_CONFIGURATION command to reset the MAC. This should be
* done after the firmware is loaded into the adapter in order to
* bring it into proper operation.
*/
Static void
kue_reset(struct kue_softc *sc)
{
DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev), __func__));
if (usbd_set_config_no(sc->kue_udev, KUE_CONFIG_NO, 1) ||
usbd_device2interface_handle(sc->kue_udev, KUE_IFACE_IDX,
&sc->kue_iface))
printf("%s: reset failed\n", USBDEVNAME(sc->kue_dev));
/* Wait a little while for the chip to get its brains in order. */
usbd_delay_ms(sc->kue_udev, 10);
}
/*
* Probe for a KLSI chip.
*/
USB_MATCH(kue)
{
USB_MATCH_START(kue, uaa);
DPRINTFN(25,("kue_match: enter\n"));
return (kue_lookup(uaa->vendor, uaa->product) != NULL ?
UMATCH_VENDOR_PRODUCT : UMATCH_NONE);
}
/*
* Attach the interface. Allocate softc structures, do
* setup and ethernet/BPF attach.
*/
USB_ATTACH(kue)
{
USB_ATTACH_START(kue, sc, uaa);
char *devinfop;
int s;
struct ifnet *ifp;
usbd_device_handle dev = uaa->device;
usbd_interface_handle iface;
usbd_status err;
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
int i;
DPRINTFN(5,(" : kue_attach: sc=%p, dev=%p", sc, dev));
sc->kue_dev = self;
devinfop = usbd_devinfo_alloc(dev, 0);
USB_ATTACH_SETUP;
aprint_normal_dev(self, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
err = usbd_set_config_no(dev, KUE_CONFIG_NO, 1);
if (err) {
aprint_error_dev(self, " setting config no failed\n");
USB_ATTACH_ERROR_RETURN;
}
sc->kue_udev = dev;
sc->kue_product = uaa->product;
sc->kue_vendor = uaa->vendor;
/* Load the firmware into the NIC. */
if (kue_load_fw(sc)) {
aprint_error_dev(self, "loading firmware failed\n");
USB_ATTACH_ERROR_RETURN;
}
err = usbd_device2interface_handle(dev, KUE_IFACE_IDX, &iface);
if (err) {
aprint_error_dev(self, "getting interface handle failed\n");
USB_ATTACH_ERROR_RETURN;
}
sc->kue_iface = iface;
id = usbd_get_interface_descriptor(iface);
/* Find endpoints. */
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(iface, i);
if (ed == NULL) {
aprint_error_dev(self, "couldn't get ep %d\n", i);
USB_ATTACH_ERROR_RETURN;
}
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
sc->kue_ed[KUE_ENDPT_RX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
sc->kue_ed[KUE_ENDPT_TX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) {
sc->kue_ed[KUE_ENDPT_INTR] = ed->bEndpointAddress;
}
}
if (sc->kue_ed[KUE_ENDPT_RX] == 0 || sc->kue_ed[KUE_ENDPT_TX] == 0) {
aprint_error_dev(self, "missing endpoint\n");
USB_ATTACH_ERROR_RETURN;
}
/* Read ethernet descriptor */
err = kue_ctl(sc, KUE_CTL_READ, KUE_CMD_GET_ETHER_DESCRIPTOR,
0, &sc->kue_desc, sizeof(sc->kue_desc));
if (err) {
aprint_error_dev(self, "could not read Ethernet descriptor\n");
USB_ATTACH_ERROR_RETURN;
}
sc->kue_mcfilters = malloc(KUE_MCFILTCNT(sc) * ETHER_ADDR_LEN,
M_USBDEV, M_NOWAIT);
if (sc->kue_mcfilters == NULL) {
aprint_error_dev(self,
"no memory for multicast filter buffer\n");
USB_ATTACH_ERROR_RETURN;
}
s = splnet();
/*
* A KLSI chip was detected. Inform the world.
*/
aprint_normal_dev(self, "Ethernet address %s\n",
ether_sprintf(sc->kue_desc.kue_macaddr));
/* Initialize interface info.*/
ifp = GET_IFP(sc);
ifp->if_softc = sc;
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = kue_ioctl;
ifp->if_start = kue_start;
ifp->if_watchdog = kue_watchdog;
#if defined(__OpenBSD__)
ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
#endif
strncpy(ifp->if_xname, USBDEVNAME(sc->kue_dev), IFNAMSIZ);
IFQ_SET_READY(&ifp->if_snd);
/* Attach the interface. */
if_attach(ifp);
Ether_ifattach(ifp, sc->kue_desc.kue_macaddr);
#if NRND > 0
rnd_attach_source(&sc->rnd_source, USBDEVNAME(sc->kue_dev),
RND_TYPE_NET, 0);
#endif
sc->kue_attached = 1;
splx(s);
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->kue_udev,
USBDEV(sc->kue_dev));
USB_ATTACH_SUCCESS_RETURN;
}
USB_DETACH(kue)
{
USB_DETACH_START(kue, sc);
struct ifnet *ifp = GET_IFP(sc);
int s;
s = splusb(); /* XXX why? */
if (sc->kue_mcfilters != NULL) {
free(sc->kue_mcfilters, M_USBDEV);
sc->kue_mcfilters = NULL;
}
if (!sc->kue_attached) {
/* Detached before attached finished, so just bail out. */
splx(s);
return (0);
}
if (ifp->if_flags & IFF_RUNNING)
kue_stop(sc);
#if defined(__NetBSD__)
#if NRND > 0
rnd_detach_source(&sc->rnd_source);
#endif
ether_ifdetach(ifp);
#endif /* __NetBSD__ */
if_detach(ifp);
#ifdef DIAGNOSTIC
if (sc->kue_ep[KUE_ENDPT_TX] != NULL ||
sc->kue_ep[KUE_ENDPT_RX] != NULL ||
sc->kue_ep[KUE_ENDPT_INTR] != NULL)
aprint_debug_dev(self, "detach has active endpoints\n");
#endif
sc->kue_attached = 0;
splx(s);
return (0);
}
int
kue_activate(device_ptr_t self, enum devact act)
{
struct kue_softc *sc = device_private(self);
DPRINTFN(2,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev), __func__));
switch (act) {
case DVACT_ACTIVATE:
return (EOPNOTSUPP);
break;
case DVACT_DEACTIVATE:
#if defined(__NetBSD__)
/* Deactivate the interface. */
if_deactivate(&sc->kue_ec.ec_if);
#endif
sc->kue_dying = 1;
break;
}
return (0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
Static int
kue_newbuf(struct kue_softc *sc, struct kue_chain *c, struct mbuf *m)
{
struct mbuf *m_new = NULL;
DPRINTFN(10,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev),__func__));
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("%s: no memory for rx list "
"-- packet dropped!\n", USBDEVNAME(sc->kue_dev));
return (ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("%s: no memory for rx list "
"-- packet dropped!\n", USBDEVNAME(sc->kue_dev));
m_freem(m_new);
return (ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
c->kue_mbuf = m_new;
return (0);
}
Static int
kue_rx_list_init(struct kue_softc *sc)
{
struct kue_cdata *cd;
struct kue_chain *c;
int i;
DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev), __func__));
cd = &sc->kue_cdata;
for (i = 0; i < KUE_RX_LIST_CNT; i++) {
c = &cd->kue_rx_chain[i];
c->kue_sc = sc;
c->kue_idx = i;
if (kue_newbuf(sc, c, NULL) == ENOBUFS)
return (ENOBUFS);
if (c->kue_xfer == NULL) {
c->kue_xfer = usbd_alloc_xfer(sc->kue_udev);
if (c->kue_xfer == NULL)
return (ENOBUFS);
c->kue_buf = usbd_alloc_buffer(c->kue_xfer, KUE_BUFSZ);
if (c->kue_buf == NULL)
return (ENOBUFS); /* XXX free xfer */
}
}
return (0);
}
Static int
kue_tx_list_init(struct kue_softc *sc)
{
struct kue_cdata *cd;
struct kue_chain *c;
int i;
DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev), __func__));
cd = &sc->kue_cdata;
for (i = 0; i < KUE_TX_LIST_CNT; i++) {
c = &cd->kue_tx_chain[i];
c->kue_sc = sc;
c->kue_idx = i;
c->kue_mbuf = NULL;
if (c->kue_xfer == NULL) {
c->kue_xfer = usbd_alloc_xfer(sc->kue_udev);
if (c->kue_xfer == NULL)
return (ENOBUFS);
c->kue_buf = usbd_alloc_buffer(c->kue_xfer, KUE_BUFSZ);
if (c->kue_buf == NULL)
return (ENOBUFS);
}
}
return (0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
Static void
kue_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
{
struct kue_chain *c = priv;
struct kue_softc *sc = c->kue_sc;
struct ifnet *ifp = GET_IFP(sc);
struct mbuf *m;
int total_len = 0;
int s;
DPRINTFN(10,("%s: %s: enter status=%d\n", USBDEVNAME(sc->kue_dev),
__func__, status));
if (sc->kue_dying)
return;
if (!(ifp->if_flags & IFF_RUNNING))
return;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
sc->kue_rx_errs++;
if (usbd_ratecheck(&sc->kue_rx_notice)) {
printf("%s: %u usb errors on rx: %s\n",
USBDEVNAME(sc->kue_dev), sc->kue_rx_errs,
usbd_errstr(status));
sc->kue_rx_errs = 0;
}
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->kue_ep[KUE_ENDPT_RX]);
goto done;
}
usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL);
DPRINTFN(10,("%s: %s: total_len=%d len=%d\n", USBDEVNAME(sc->kue_dev),
__func__, total_len,
UGETW(mtod(c->kue_mbuf, u_int8_t *))));
if (total_len <= 1)
goto done;
m = c->kue_mbuf;
/* copy data to mbuf */
memcpy(mtod(m, char *), c->kue_buf, total_len);
/* No errors; receive the packet. */
total_len = UGETW(mtod(m, u_int8_t *));
m_adj(m, sizeof(u_int16_t));
if (total_len < sizeof(struct ether_header)) {
ifp->if_ierrors++;
goto done;
}
ifp->if_ipackets++;
m->m_pkthdr.len = m->m_len = total_len;
m->m_pkthdr.rcvif = ifp;
s = splnet();
/* XXX ugly */
if (kue_newbuf(sc, c, NULL) == ENOBUFS) {
ifp->if_ierrors++;
goto done1;
}
#if NBPFILTER > 0
/*
* Handle BPF listeners. Let the BPF user see the packet, but
* don't pass it up to the ether_input() layer unless it's
* a broadcast packet, multicast packet, matches our ethernet
* address or the interface is in promiscuous mode.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
DPRINTFN(10,("%s: %s: deliver %d\n", USBDEVNAME(sc->kue_dev),
__func__, m->m_len));
IF_INPUT(ifp, m);
done1:
splx(s);
done:
/* Setup new transfer. */
usbd_setup_xfer(c->kue_xfer, sc->kue_ep[KUE_ENDPT_RX],
c, c->kue_buf, KUE_BUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
USBD_NO_TIMEOUT, kue_rxeof);
usbd_transfer(c->kue_xfer);
DPRINTFN(10,("%s: %s: start rx\n", USBDEVNAME(sc->kue_dev),
__func__));
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
Static void
kue_txeof(usbd_xfer_handle xfer, usbd_private_handle priv,
usbd_status status)
{
struct kue_chain *c = priv;
struct kue_softc *sc = c->kue_sc;
struct ifnet *ifp = GET_IFP(sc);
int s;
if (sc->kue_dying)
return;
s = splnet();
DPRINTFN(10,("%s: %s: enter status=%d\n", USBDEVNAME(sc->kue_dev),
__func__, status));
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
splx(s);
return;
}
ifp->if_oerrors++;
printf("%s: usb error on tx: %s\n", USBDEVNAME(sc->kue_dev),
usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->kue_ep[KUE_ENDPT_TX]);
splx(s);
return;
}
ifp->if_opackets++;
m_freem(c->kue_mbuf);
c->kue_mbuf = NULL;
if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
kue_start(ifp);
splx(s);
}
Static int
kue_send(struct kue_softc *sc, struct mbuf *m, int idx)
{
int total_len;
struct kue_chain *c;
usbd_status err;
DPRINTFN(10,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev),__func__));
c = &sc->kue_cdata.kue_tx_chain[idx];
/*
* Copy the mbuf data into a contiguous buffer, leaving two
* bytes at the beginning to hold the frame length.
*/
m_copydata(m, 0, m->m_pkthdr.len, c->kue_buf + 2);
c->kue_mbuf = m;
total_len = m->m_pkthdr.len + 2;
/* XXX what's this? */
total_len += 64 - (total_len % 64);
/* Frame length is specified in the first 2 bytes of the buffer. */
c->kue_buf[0] = (u_int8_t)m->m_pkthdr.len;
c->kue_buf[1] = (u_int8_t)(m->m_pkthdr.len >> 8);
usbd_setup_xfer(c->kue_xfer, sc->kue_ep[KUE_ENDPT_TX],
c, c->kue_buf, total_len, USBD_NO_COPY, USBD_DEFAULT_TIMEOUT,
kue_txeof);
/* Transmit */
err = usbd_transfer(c->kue_xfer);
if (err != USBD_IN_PROGRESS) {
printf("%s: kue_send error=%s\n", USBDEVNAME(sc->kue_dev),
usbd_errstr(err));
kue_stop(sc);
return (EIO);
}
sc->kue_cdata.kue_tx_cnt++;
return (0);
}
Static void
kue_start(struct ifnet *ifp)
{
struct kue_softc *sc = ifp->if_softc;
struct mbuf *m_head = NULL;
DPRINTFN(10,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev),__func__));
if (sc->kue_dying)
return;
if (ifp->if_flags & IFF_OACTIVE)
return;
IFQ_POLL(&ifp->if_snd, m_head);
if (m_head == NULL)
return;
if (kue_send(sc, m_head, 0)) {
ifp->if_flags |= IFF_OACTIVE;
return;
}
IFQ_DEQUEUE(&ifp->if_snd, m_head);
#if NBPFILTER > 0
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m_head);
#endif
ifp->if_flags |= IFF_OACTIVE;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 6;
}
Static void
kue_init(void *xsc)
{
struct kue_softc *sc = xsc;
struct ifnet *ifp = GET_IFP(sc);
int s;
u_char eaddr[ETHER_ADDR_LEN];
DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev),__func__));
if (ifp->if_flags & IFF_RUNNING)
return;
s = splnet();
memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
/* Set MAC address */
kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SET_MAC, 0, eaddr, ETHER_ADDR_LEN);
sc->kue_rxfilt = KUE_RXFILT_UNICAST | KUE_RXFILT_BROADCAST;
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
sc->kue_rxfilt |= KUE_RXFILT_PROMISC;
kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt);
/* I'm not sure how to tune these. */
#if 0
/*
* Leave this one alone for now; setting it
* wrong causes lockups on some machines/controllers.
*/
kue_setword(sc, KUE_CMD_SET_SOFS, 1);
#endif
kue_setword(sc, KUE_CMD_SET_URB_SIZE, 64);
/* Init TX ring. */
if (kue_tx_list_init(sc) == ENOBUFS) {
printf("%s: tx list init failed\n", USBDEVNAME(sc->kue_dev));
splx(s);
return;
}
/* Init RX ring. */
if (kue_rx_list_init(sc) == ENOBUFS) {
printf("%s: rx list init failed\n", USBDEVNAME(sc->kue_dev));
splx(s);
return;
}
/* Load the multicast filter. */
kue_setmulti(sc);
if (sc->kue_ep[KUE_ENDPT_RX] == NULL) {
if (kue_open_pipes(sc)) {
splx(s);
return;
}
}
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
splx(s);
}
Static int
kue_open_pipes(struct kue_softc *sc)
{
usbd_status err;
struct kue_chain *c;
int i;
DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev),__func__));
/* Open RX and TX pipes. */
err = usbd_open_pipe(sc->kue_iface, sc->kue_ed[KUE_ENDPT_RX],
USBD_EXCLUSIVE_USE, &sc->kue_ep[KUE_ENDPT_RX]);
if (err) {
printf("%s: open rx pipe failed: %s\n",
USBDEVNAME(sc->kue_dev), usbd_errstr(err));
return (EIO);
}
err = usbd_open_pipe(sc->kue_iface, sc->kue_ed[KUE_ENDPT_TX],
USBD_EXCLUSIVE_USE, &sc->kue_ep[KUE_ENDPT_TX]);
if (err) {
printf("%s: open tx pipe failed: %s\n",
USBDEVNAME(sc->kue_dev), usbd_errstr(err));
return (EIO);
}
/* Start up the receive pipe. */
for (i = 0; i < KUE_RX_LIST_CNT; i++) {
c = &sc->kue_cdata.kue_rx_chain[i];
usbd_setup_xfer(c->kue_xfer, sc->kue_ep[KUE_ENDPT_RX],
c, c->kue_buf, KUE_BUFSZ,
USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT,
kue_rxeof);
DPRINTFN(5,("%s: %s: start read\n", USBDEVNAME(sc->kue_dev),
__func__));
usbd_transfer(c->kue_xfer);
}
return (0);
}
Static int
kue_ioctl(struct ifnet *ifp, u_long command, void *data)
{
struct kue_softc *sc = ifp->if_softc;
struct ifaddr *ifa = (struct ifaddr *)data;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev),__func__));
if (sc->kue_dying)
return (EIO);
#ifdef DIAGNOSTIC
if (!curproc) {
printf("%s: no proc!!\n", USBDEVNAME(sc->kue_dev));
return EIO;
}
#endif
s = splnet();
switch(command) {
case SIOCINITIFADDR:
ifp->if_flags |= IFF_UP;
kue_init(sc);
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
#if defined(__NetBSD__)
arp_ifinit(ifp, ifa);
#else
arp_ifinit(&sc->arpcom, ifa);
#endif
break;
#endif /* INET */
}
break;
case SIOCSIFMTU:
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
error = EINVAL;
else if ((error = ifioctl_common(ifp, command, data)) == ENETRESET)
error = 0;
break;
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, command, data)) != 0)
break;
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->kue_if_flags & IFF_PROMISC)) {
sc->kue_rxfilt |= KUE_RXFILT_PROMISC;
kue_setword(sc, KUE_CMD_SET_PKT_FILTER,
sc->kue_rxfilt);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->kue_if_flags & IFF_PROMISC) {
sc->kue_rxfilt &= ~KUE_RXFILT_PROMISC;
kue_setword(sc, KUE_CMD_SET_PKT_FILTER,
sc->kue_rxfilt);
} else if (!(ifp->if_flags & IFF_RUNNING))
kue_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
kue_stop(sc);
}
sc->kue_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
kue_setmulti(sc);
error = 0;
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
splx(s);
return (error);
}
Static void
kue_watchdog(struct ifnet *ifp)
{
struct kue_softc *sc = ifp->if_softc;
struct kue_chain *c;
usbd_status stat;
int s;
DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev),__func__));
if (sc->kue_dying)
return;
ifp->if_oerrors++;
printf("%s: watchdog timeout\n", USBDEVNAME(sc->kue_dev));
s = splusb();
c = &sc->kue_cdata.kue_tx_chain[0];
usbd_get_xfer_status(c->kue_xfer, NULL, NULL, NULL, &stat);
kue_txeof(c->kue_xfer, c, stat);
if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
kue_start(ifp);
splx(s);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
Static void
kue_stop(struct kue_softc *sc)
{
usbd_status err;
struct ifnet *ifp;
int i;
DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev),__func__));
ifp = GET_IFP(sc);
ifp->if_timer = 0;
/* Stop transfers. */
if (sc->kue_ep[KUE_ENDPT_RX] != NULL) {
err = usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_RX]);
if (err) {
printf("%s: abort rx pipe failed: %s\n",
USBDEVNAME(sc->kue_dev), usbd_errstr(err));
}
err = usbd_close_pipe(sc->kue_ep[KUE_ENDPT_RX]);
if (err) {
printf("%s: close rx pipe failed: %s\n",
USBDEVNAME(sc->kue_dev), usbd_errstr(err));
}
sc->kue_ep[KUE_ENDPT_RX] = NULL;
}
if (sc->kue_ep[KUE_ENDPT_TX] != NULL) {
err = usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_TX]);
if (err) {
printf("%s: abort tx pipe failed: %s\n",
USBDEVNAME(sc->kue_dev), usbd_errstr(err));
}
err = usbd_close_pipe(sc->kue_ep[KUE_ENDPT_TX]);
if (err) {
printf("%s: close tx pipe failed: %s\n",
USBDEVNAME(sc->kue_dev), usbd_errstr(err));
}
sc->kue_ep[KUE_ENDPT_TX] = NULL;
}
if (sc->kue_ep[KUE_ENDPT_INTR] != NULL) {
err = usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_INTR]);
if (err) {
printf("%s: abort intr pipe failed: %s\n",
USBDEVNAME(sc->kue_dev), usbd_errstr(err));
}
err = usbd_close_pipe(sc->kue_ep[KUE_ENDPT_INTR]);
if (err) {
printf("%s: close intr pipe failed: %s\n",
USBDEVNAME(sc->kue_dev), usbd_errstr(err));
}
sc->kue_ep[KUE_ENDPT_INTR] = NULL;
}
/* Free RX resources. */
for (i = 0; i < KUE_RX_LIST_CNT; i++) {
if (sc->kue_cdata.kue_rx_chain[i].kue_mbuf != NULL) {
m_freem(sc->kue_cdata.kue_rx_chain[i].kue_mbuf);
sc->kue_cdata.kue_rx_chain[i].kue_mbuf = NULL;
}
if (sc->kue_cdata.kue_rx_chain[i].kue_xfer != NULL) {
usbd_free_xfer(sc->kue_cdata.kue_rx_chain[i].kue_xfer);
sc->kue_cdata.kue_rx_chain[i].kue_xfer = NULL;
}
}
/* Free TX resources. */
for (i = 0; i < KUE_TX_LIST_CNT; i++) {
if (sc->kue_cdata.kue_tx_chain[i].kue_mbuf != NULL) {
m_freem(sc->kue_cdata.kue_tx_chain[i].kue_mbuf);
sc->kue_cdata.kue_tx_chain[i].kue_mbuf = NULL;
}
if (sc->kue_cdata.kue_tx_chain[i].kue_xfer != NULL) {
usbd_free_xfer(sc->kue_cdata.kue_tx_chain[i].kue_xfer);
sc->kue_cdata.kue_tx_chain[i].kue_xfer = NULL;
}
}
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
}