NetBSD/sys/dev/pci/pci.c
2010-01-08 19:53:10 +00:00

973 lines
25 KiB
C

/* $NetBSD: pci.c,v 1.125 2010/01/08 19:56:52 dyoung Exp $ */
/*
* Copyright (c) 1995, 1996, 1997, 1998
* Christopher G. Demetriou. All rights reserved.
* Copyright (c) 1994 Charles M. Hannum. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Charles M. Hannum.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* PCI bus autoconfiguration.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: pci.c,v 1.125 2010/01/08 19:56:52 dyoung Exp $");
#include "opt_pci.h"
#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <uvm/uvm_extern.h>
#include <net/if.h>
#include "locators.h"
static bool pci_child_register(device_t);
#ifdef PCI_CONFIG_DUMP
int pci_config_dump = 1;
#else
int pci_config_dump = 0;
#endif
int pciprint(void *, const char *);
#ifdef PCI_MACHDEP_ENUMERATE_BUS
#define pci_enumerate_bus PCI_MACHDEP_ENUMERATE_BUS
#else
int pci_enumerate_bus(struct pci_softc *, const int *,
int (*)(struct pci_attach_args *), struct pci_attach_args *);
#endif
/*
* Important note about PCI-ISA bridges:
*
* Callbacks are used to configure these devices so that ISA/EISA bridges
* can attach their child busses after PCI configuration is done.
*
* This works because:
* (1) there can be at most one ISA/EISA bridge per PCI bus, and
* (2) any ISA/EISA bridges must be attached to primary PCI
* busses (i.e. bus zero).
*
* That boils down to: there can only be one of these outstanding
* at a time, it is cleared when configuring PCI bus 0 before any
* subdevices have been found, and it is run after all subdevices
* of PCI bus 0 have been found.
*
* This is needed because there are some (legacy) PCI devices which
* can show up as ISA/EISA devices as well (the prime example of which
* are VGA controllers). If you attach ISA from a PCI-ISA/EISA bridge,
* and the bridge is seen before the video board is, the board can show
* up as an ISA device, and that can (bogusly) complicate the PCI device's
* attach code, or make the PCI device not be properly attached at all.
*
* We use the generic config_defer() facility to achieve this.
*/
int
pcirescan(device_t self, const char *ifattr, const int *locators)
{
struct pci_softc *sc = device_private(self);
KASSERT(ifattr && !strcmp(ifattr, "pci"));
KASSERT(locators);
pci_enumerate_bus(sc, locators, NULL, NULL);
return 0;
}
int
pcimatch(device_t parent, cfdata_t cf, void *aux)
{
struct pcibus_attach_args *pba = aux;
/* Check the locators */
if (cf->cf_loc[PCIBUSCF_BUS] != PCIBUSCF_BUS_DEFAULT &&
cf->cf_loc[PCIBUSCF_BUS] != pba->pba_bus)
return 0;
/* sanity */
if (pba->pba_bus < 0 || pba->pba_bus > 255)
return 0;
/*
* XXX check other (hardware?) indicators
*/
return 1;
}
void
pciattach(device_t parent, device_t self, void *aux)
{
struct pcibus_attach_args *pba = aux;
struct pci_softc *sc = device_private(self);
int io_enabled, mem_enabled, mrl_enabled, mrm_enabled, mwi_enabled;
const char *sep = "";
static const int wildcard[PCICF_NLOCS] = {
PCICF_DEV_DEFAULT, PCICF_FUNCTION_DEFAULT
};
sc->sc_dev = self;
pci_attach_hook(parent, self, pba);
aprint_naive("\n");
aprint_normal("\n");
io_enabled = (pba->pba_flags & PCI_FLAGS_IO_ENABLED);
mem_enabled = (pba->pba_flags & PCI_FLAGS_MEM_ENABLED);
mrl_enabled = (pba->pba_flags & PCI_FLAGS_MRL_OKAY);
mrm_enabled = (pba->pba_flags & PCI_FLAGS_MRM_OKAY);
mwi_enabled = (pba->pba_flags & PCI_FLAGS_MWI_OKAY);
if (io_enabled == 0 && mem_enabled == 0) {
aprint_error_dev(self, "no spaces enabled!\n");
goto fail;
}
#define PRINT(str) \
do { \
aprint_verbose("%s%s", sep, str); \
sep = ", "; \
} while (/*CONSTCOND*/0)
aprint_verbose_dev(self, "");
if (io_enabled)
PRINT("i/o space");
if (mem_enabled)
PRINT("memory space");
aprint_verbose(" enabled");
if (mrl_enabled || mrm_enabled || mwi_enabled) {
if (mrl_enabled)
PRINT("rd/line");
if (mrm_enabled)
PRINT("rd/mult");
if (mwi_enabled)
PRINT("wr/inv");
aprint_verbose(" ok");
}
aprint_verbose("\n");
#undef PRINT
sc->sc_iot = pba->pba_iot;
sc->sc_memt = pba->pba_memt;
sc->sc_dmat = pba->pba_dmat;
sc->sc_dmat64 = pba->pba_dmat64;
sc->sc_pc = pba->pba_pc;
sc->sc_bus = pba->pba_bus;
sc->sc_bridgetag = pba->pba_bridgetag;
sc->sc_maxndevs = pci_bus_maxdevs(pba->pba_pc, pba->pba_bus);
sc->sc_intrswiz = pba->pba_intrswiz;
sc->sc_intrtag = pba->pba_intrtag;
sc->sc_flags = pba->pba_flags;
device_pmf_driver_set_child_register(sc->sc_dev, pci_child_register);
pcirescan(sc->sc_dev, "pci", wildcard);
fail:
if (!pmf_device_register(self, NULL, NULL))
aprint_error_dev(self, "couldn't establish power handler\n");
}
int
pcidetach(device_t self, int flags)
{
int rc;
if ((rc = config_detach_children(self, flags)) != 0)
return rc;
pmf_device_deregister(self);
return 0;
}
int
pciprint(void *aux, const char *pnp)
{
struct pci_attach_args *pa = aux;
char devinfo[256];
const struct pci_quirkdata *qd;
if (pnp) {
pci_devinfo(pa->pa_id, pa->pa_class, 1, devinfo, sizeof(devinfo));
aprint_normal("%s at %s", devinfo, pnp);
}
aprint_normal(" dev %d function %d", pa->pa_device, pa->pa_function);
if (pci_config_dump) {
printf(": ");
pci_conf_print(pa->pa_pc, pa->pa_tag, NULL);
if (!pnp)
pci_devinfo(pa->pa_id, pa->pa_class, 1, devinfo, sizeof(devinfo));
printf("%s at %s", devinfo, pnp ? pnp : "?");
printf(" dev %d function %d (", pa->pa_device, pa->pa_function);
#ifdef __i386__
printf("tag %#lx, intrtag %#lx, intrswiz %#lx, intrpin %#lx",
*(long *)&pa->pa_tag, *(long *)&pa->pa_intrtag,
(long)pa->pa_intrswiz, (long)pa->pa_intrpin);
#else
printf("intrswiz %#lx, intrpin %#lx",
(long)pa->pa_intrswiz, (long)pa->pa_intrpin);
#endif
printf(", i/o %s, mem %s,",
pa->pa_flags & PCI_FLAGS_IO_ENABLED ? "on" : "off",
pa->pa_flags & PCI_FLAGS_MEM_ENABLED ? "on" : "off");
qd = pci_lookup_quirkdata(PCI_VENDOR(pa->pa_id),
PCI_PRODUCT(pa->pa_id));
if (qd == NULL) {
printf(" no quirks");
} else {
snprintb(devinfo, sizeof (devinfo),
"\002\001multifn\002singlefn\003skipfunc0"
"\004skipfunc1\005skipfunc2\006skipfunc3"
"\007skipfunc4\010skipfunc5\011skipfunc6"
"\012skipfunc7", qd->quirks);
printf(" quirks %s", devinfo);
}
printf(")");
}
return UNCONF;
}
int
pci_probe_device(struct pci_softc *sc, pcitag_t tag,
int (*match)(struct pci_attach_args *), struct pci_attach_args *pap)
{
pci_chipset_tag_t pc = sc->sc_pc;
struct pci_attach_args pa;
pcireg_t id, csr, class, intr, bhlcr;
int ret, pin, bus, device, function;
int locs[PCICF_NLOCS];
pci_decompose_tag(pc, tag, &bus, &device, &function);
/* a driver already attached? */
if (sc->PCI_SC_DEVICESC(device, function).c_dev != NULL && !match)
return 0;
bhlcr = pci_conf_read(pc, tag, PCI_BHLC_REG);
if (PCI_HDRTYPE_TYPE(bhlcr) > 2)
return 0;
id = pci_conf_read(pc, tag, PCI_ID_REG);
csr = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG);
class = pci_conf_read(pc, tag, PCI_CLASS_REG);
/* Invalid vendor ID value? */
if (PCI_VENDOR(id) == PCI_VENDOR_INVALID)
return 0;
/* XXX Not invalid, but we've done this ~forever. */
if (PCI_VENDOR(id) == 0)
return 0;
pa.pa_iot = sc->sc_iot;
pa.pa_memt = sc->sc_memt;
pa.pa_dmat = sc->sc_dmat;
pa.pa_dmat64 = sc->sc_dmat64;
pa.pa_pc = pc;
pa.pa_bus = bus;
pa.pa_device = device;
pa.pa_function = function;
pa.pa_tag = tag;
pa.pa_id = id;
pa.pa_class = class;
/*
* Set up memory, I/O enable, and PCI command flags
* as appropriate.
*/
pa.pa_flags = sc->sc_flags;
if ((csr & PCI_COMMAND_IO_ENABLE) == 0)
pa.pa_flags &= ~PCI_FLAGS_IO_ENABLED;
if ((csr & PCI_COMMAND_MEM_ENABLE) == 0)
pa.pa_flags &= ~PCI_FLAGS_MEM_ENABLED;
/*
* If the cache line size is not configured, then
* clear the MRL/MRM/MWI command-ok flags.
*/
if (PCI_CACHELINE(bhlcr) == 0)
pa.pa_flags &= ~(PCI_FLAGS_MRL_OKAY|
PCI_FLAGS_MRM_OKAY|PCI_FLAGS_MWI_OKAY);
if (sc->sc_bridgetag == NULL) {
pa.pa_intrswiz = 0;
pa.pa_intrtag = tag;
} else {
pa.pa_intrswiz = sc->sc_intrswiz + device;
pa.pa_intrtag = sc->sc_intrtag;
}
intr = pci_conf_read(pc, tag, PCI_INTERRUPT_REG);
pin = PCI_INTERRUPT_PIN(intr);
pa.pa_rawintrpin = pin;
if (pin == PCI_INTERRUPT_PIN_NONE) {
/* no interrupt */
pa.pa_intrpin = 0;
} else {
/*
* swizzle it based on the number of busses we're
* behind and our device number.
*/
pa.pa_intrpin = /* XXX */
((pin + pa.pa_intrswiz - 1) % 4) + 1;
}
pa.pa_intrline = PCI_INTERRUPT_LINE(intr);
if (match != NULL) {
ret = (*match)(&pa);
if (ret != 0 && pap != NULL)
*pap = pa;
} else {
struct pci_child *c;
locs[PCICF_DEV] = device;
locs[PCICF_FUNCTION] = function;
c = &sc->PCI_SC_DEVICESC(device, function);
pci_conf_capture(pc, tag, &c->c_conf);
if (pci_get_powerstate(pc, tag, &c->c_powerstate) == 0)
c->c_psok = true;
else
c->c_psok = false;
c->c_dev = config_found_sm_loc(sc->sc_dev, "pci", locs, &pa,
pciprint, config_stdsubmatch);
ret = (c->c_dev != NULL);
}
return ret;
}
void
pcidevdetached(device_t self, device_t child)
{
struct pci_softc *sc = device_private(self);
int d, f;
pcitag_t tag;
struct pci_child *c;
d = device_locator(child, PCICF_DEV);
f = device_locator(child, PCICF_FUNCTION);
c = &sc->PCI_SC_DEVICESC(d, f);
KASSERT(c->c_dev == child);
tag = pci_make_tag(sc->sc_pc, sc->sc_bus, d, f);
if (c->c_psok)
pci_set_powerstate(sc->sc_pc, tag, c->c_powerstate);
pci_conf_restore(sc->sc_pc, tag, &c->c_conf);
c->c_dev = NULL;
}
CFATTACH_DECL3_NEW(pci, sizeof(struct pci_softc),
pcimatch, pciattach, pcidetach, NULL, pcirescan, pcidevdetached,
DVF_DETACH_SHUTDOWN);
int
pci_get_capability(pci_chipset_tag_t pc, pcitag_t tag, int capid,
int *offset, pcireg_t *value)
{
pcireg_t reg;
unsigned int ofs;
reg = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG);
if (!(reg & PCI_STATUS_CAPLIST_SUPPORT))
return 0;
/* Determine the Capability List Pointer register to start with. */
reg = pci_conf_read(pc, tag, PCI_BHLC_REG);
switch (PCI_HDRTYPE_TYPE(reg)) {
case 0: /* standard device header */
case 1: /* PCI-PCI bridge header */
ofs = PCI_CAPLISTPTR_REG;
break;
case 2: /* PCI-CardBus Bridge header */
ofs = PCI_CARDBUS_CAPLISTPTR_REG;
break;
default:
return 0;
}
ofs = PCI_CAPLIST_PTR(pci_conf_read(pc, tag, ofs));
while (ofs != 0) {
if ((ofs & 3) || (ofs < 0x40)) {
int bus, device, function;
pci_decompose_tag(pc, tag, &bus, &device, &function);
printf("Skipping broken PCI header on %d:%d:%d\n",
bus, device, function);
break;
}
reg = pci_conf_read(pc, tag, ofs);
if (PCI_CAPLIST_CAP(reg) == capid) {
if (offset)
*offset = ofs;
if (value)
*value = reg;
return 1;
}
ofs = PCI_CAPLIST_NEXT(reg);
}
return 0;
}
int
pci_find_device(struct pci_attach_args *pa,
int (*match)(struct pci_attach_args *))
{
extern struct cfdriver pci_cd;
device_t pcidev;
int i;
static const int wildcard[2] = {
PCICF_DEV_DEFAULT,
PCICF_FUNCTION_DEFAULT
};
for (i = 0; i < pci_cd.cd_ndevs; i++) {
pcidev = device_lookup(&pci_cd, i);
if (pcidev != NULL &&
pci_enumerate_bus(device_private(pcidev), wildcard,
match, pa) != 0)
return 1;
}
return 0;
}
#ifndef PCI_MACHDEP_ENUMERATE_BUS
/*
* Generic PCI bus enumeration routine. Used unless machine-dependent
* code needs to provide something else.
*/
int
pci_enumerate_bus(struct pci_softc *sc, const int *locators,
int (*match)(struct pci_attach_args *), struct pci_attach_args *pap)
{
pci_chipset_tag_t pc = sc->sc_pc;
int device, function, nfunctions, ret;
const struct pci_quirkdata *qd;
pcireg_t id, bhlcr;
pcitag_t tag;
#ifdef __PCI_BUS_DEVORDER
char devs[32];
int i;
#endif
#ifdef __PCI_BUS_DEVORDER
pci_bus_devorder(sc->sc_pc, sc->sc_bus, devs);
for (i = 0; (device = devs[i]) < 32 && device >= 0; i++)
#else
for (device = 0; device < sc->sc_maxndevs; device++)
#endif
{
if ((locators[PCICF_DEV] != PCICF_DEV_DEFAULT) &&
(locators[PCICF_DEV] != device))
continue;
tag = pci_make_tag(pc, sc->sc_bus, device, 0);
bhlcr = pci_conf_read(pc, tag, PCI_BHLC_REG);
if (PCI_HDRTYPE_TYPE(bhlcr) > 2)
continue;
id = pci_conf_read(pc, tag, PCI_ID_REG);
/* Invalid vendor ID value? */
if (PCI_VENDOR(id) == PCI_VENDOR_INVALID)
continue;
/* XXX Not invalid, but we've done this ~forever. */
if (PCI_VENDOR(id) == 0)
continue;
qd = pci_lookup_quirkdata(PCI_VENDOR(id), PCI_PRODUCT(id));
if (qd != NULL &&
(qd->quirks & PCI_QUIRK_MULTIFUNCTION) != 0)
nfunctions = 8;
else if (qd != NULL &&
(qd->quirks & PCI_QUIRK_MONOFUNCTION) != 0)
nfunctions = 1;
else
nfunctions = PCI_HDRTYPE_MULTIFN(bhlcr) ? 8 : 1;
for (function = 0; function < nfunctions; function++) {
if ((locators[PCICF_FUNCTION] != PCICF_FUNCTION_DEFAULT)
&& (locators[PCICF_FUNCTION] != function))
continue;
if (qd != NULL &&
(qd->quirks & PCI_QUIRK_SKIP_FUNC(function)) != 0)
continue;
tag = pci_make_tag(pc, sc->sc_bus, device, function);
ret = pci_probe_device(sc, tag, match, pap);
if (match != NULL && ret != 0)
return ret;
}
}
return 0;
}
#endif /* PCI_MACHDEP_ENUMERATE_BUS */
/*
* Vital Product Data (PCI 2.2)
*/
int
pci_vpd_read(pci_chipset_tag_t pc, pcitag_t tag, int offset, int count,
pcireg_t *data)
{
uint32_t reg;
int ofs, i, j;
KASSERT(data != NULL);
KASSERT((offset + count) < 0x7fff);
if (pci_get_capability(pc, tag, PCI_CAP_VPD, &ofs, &reg) == 0)
return 1;
for (i = 0; i < count; offset += sizeof(*data), i++) {
reg &= 0x0000ffff;
reg &= ~PCI_VPD_OPFLAG;
reg |= PCI_VPD_ADDRESS(offset);
pci_conf_write(pc, tag, ofs, reg);
/*
* PCI 2.2 does not specify how long we should poll
* for completion nor whether the operation can fail.
*/
j = 0;
do {
if (j++ == 20)
return 1;
delay(4);
reg = pci_conf_read(pc, tag, ofs);
} while ((reg & PCI_VPD_OPFLAG) == 0);
data[i] = pci_conf_read(pc, tag, PCI_VPD_DATAREG(ofs));
}
return 0;
}
int
pci_vpd_write(pci_chipset_tag_t pc, pcitag_t tag, int offset, int count,
pcireg_t *data)
{
pcireg_t reg;
int ofs, i, j;
KASSERT(data != NULL);
KASSERT((offset + count) < 0x7fff);
if (pci_get_capability(pc, tag, PCI_CAP_VPD, &ofs, &reg) == 0)
return 1;
for (i = 0; i < count; offset += sizeof(*data), i++) {
pci_conf_write(pc, tag, PCI_VPD_DATAREG(ofs), data[i]);
reg &= 0x0000ffff;
reg |= PCI_VPD_OPFLAG;
reg |= PCI_VPD_ADDRESS(offset);
pci_conf_write(pc, tag, ofs, reg);
/*
* PCI 2.2 does not specify how long we should poll
* for completion nor whether the operation can fail.
*/
j = 0;
do {
if (j++ == 20)
return 1;
delay(1);
reg = pci_conf_read(pc, tag, ofs);
} while (reg & PCI_VPD_OPFLAG);
}
return 0;
}
int
pci_dma64_available(struct pci_attach_args *pa)
{
#ifdef _PCI_HAVE_DMA64
if (BUS_DMA_TAG_VALID(pa->pa_dmat64))
return 1;
#endif
return 0;
}
void
pci_conf_capture(pci_chipset_tag_t pc, pcitag_t tag,
struct pci_conf_state *pcs)
{
int off;
for (off = 0; off < 16; off++)
pcs->reg[off] = pci_conf_read(pc, tag, (off * 4));
return;
}
void
pci_conf_restore(pci_chipset_tag_t pc, pcitag_t tag,
struct pci_conf_state *pcs)
{
int off;
pcireg_t val;
for (off = 15; off >= 0; off--) {
val = pci_conf_read(pc, tag, (off * 4));
if (val != pcs->reg[off])
pci_conf_write(pc, tag, (off * 4), pcs->reg[off]);
}
return;
}
/*
* Power Management Capability (Rev 2.2)
*/
static int
pci_get_powerstate_int(pci_chipset_tag_t pc, pcitag_t tag , pcireg_t *state,
int offset)
{
pcireg_t value, now;
value = pci_conf_read(pc, tag, offset + PCI_PMCSR);
now = value & PCI_PMCSR_STATE_MASK;
switch (now) {
case PCI_PMCSR_STATE_D0:
case PCI_PMCSR_STATE_D1:
case PCI_PMCSR_STATE_D2:
case PCI_PMCSR_STATE_D3:
*state = now;
return 0;
default:
return EINVAL;
}
}
int
pci_get_powerstate(pci_chipset_tag_t pc, pcitag_t tag , pcireg_t *state)
{
int offset;
pcireg_t value;
if (!pci_get_capability(pc, tag, PCI_CAP_PWRMGMT, &offset, &value))
return EOPNOTSUPP;
return pci_get_powerstate_int(pc, tag, state, offset);
}
static int
pci_set_powerstate_int(pci_chipset_tag_t pc, pcitag_t tag, pcireg_t state,
int offset, pcireg_t cap_reg)
{
pcireg_t value, cap, now;
cap = cap_reg >> PCI_PMCR_SHIFT;
value = pci_conf_read(pc, tag, offset + PCI_PMCSR);
now = value & PCI_PMCSR_STATE_MASK;
value &= ~PCI_PMCSR_STATE_MASK;
if (now == state)
return 0;
switch (state) {
case PCI_PMCSR_STATE_D0:
break;
case PCI_PMCSR_STATE_D1:
if (now == PCI_PMCSR_STATE_D2 || now == PCI_PMCSR_STATE_D3) {
printf("invalid transition from %d to D1\n", (int)now);
return EINVAL;
}
if (!(cap & PCI_PMCR_D1SUPP)) {
printf("D1 not supported\n");
return EOPNOTSUPP;
}
break;
case PCI_PMCSR_STATE_D2:
if (now == PCI_PMCSR_STATE_D3) {
printf("invalid transition from %d to D2\n", (int)now);
return EINVAL;
}
if (!(cap & PCI_PMCR_D2SUPP)) {
printf("D2 not supported\n");
return EOPNOTSUPP;
}
break;
case PCI_PMCSR_STATE_D3:
break;
default:
return EINVAL;
}
value |= state;
pci_conf_write(pc, tag, offset + PCI_PMCSR, value);
/* delay according to pcipm1.2, ch. 5.6.1 */
if (state == PCI_PMCSR_STATE_D3 || now == PCI_PMCSR_STATE_D3)
DELAY(10000);
else if (state == PCI_PMCSR_STATE_D2 || now == PCI_PMCSR_STATE_D2)
DELAY(200);
return 0;
}
int
pci_set_powerstate(pci_chipset_tag_t pc, pcitag_t tag, pcireg_t state)
{
int offset;
pcireg_t value;
if (!pci_get_capability(pc, tag, PCI_CAP_PWRMGMT, &offset, &value)) {
printf("pci_set_powerstate not supported\n");
return EOPNOTSUPP;
}
return pci_set_powerstate_int(pc, tag, state, offset, value);
}
int
pci_activate(pci_chipset_tag_t pc, pcitag_t tag, device_t dev,
int (*wakefun)(pci_chipset_tag_t, pcitag_t, device_t, pcireg_t))
{
pcireg_t pmode;
int error;
if ((error = pci_get_powerstate(pc, tag, &pmode)))
return error;
switch (pmode) {
case PCI_PMCSR_STATE_D0:
break;
case PCI_PMCSR_STATE_D3:
if (wakefun == NULL) {
/*
* The card has lost all configuration data in
* this state, so punt.
*/
aprint_error_dev(dev,
"unable to wake up from power state D3\n");
return EOPNOTSUPP;
}
/*FALLTHROUGH*/
default:
if (wakefun) {
error = (*wakefun)(pc, tag, dev, pmode);
if (error)
return error;
}
aprint_normal_dev(dev, "waking up from power state D%d\n",
pmode);
if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
return error;
}
return 0;
}
int
pci_activate_null(pci_chipset_tag_t pc, pcitag_t tag,
device_t dev, pcireg_t state)
{
return 0;
}
/* I have disabled this code for now. --dyoung
*
* Insofar as I understand what the PCI retry timeout is [1],
* I see no justification for any driver to disable when it
* attaches/resumes a device.
*
* A PCI bus bridge may tell a bus master to retry its transaction
* at a later time if the resources to complete the transaction
* are not immediately available. Taking a guess, PCI bus masters
* that implement a PCI retry timeout register count down from the
* retry timeout to 0 while it retries a delayed PCI transaction.
* When it reaches 0, it stops retrying. A PCI master is *never*
* supposed to stop retrying a delayed transaction, though.
*
* Incidentally, I initially suspected that writing 0 to the register
* would not disable *retries*, but would disable the timeout.
* That is, any device whose retry timeout was set to 0 would
* *never* timeout. However, I found out, by using PCI debug
* facilities on the AMD Elan SC520, that if I write 0 to the retry
* timeout register on an ath(4) MiniPCI card, the card really does
* not retry transactions.
*
* Some uses of this register have mentioned "interference" with
* a CPU's "C3 sleep state." It seems to me that if a bus master
* is properly put to sleep, it will neither initiate new transactions,
* nor retry delayed transactions, so disabling retries should not
* be necessary.
*
* [1] The timeout does not appear to be documented in any PCI
* standard, and we have no documentation of it for the devices by
* Atheros, and others, that supposedly implement it.
*/
void
pci_disable_retry(pci_chipset_tag_t pc, pcitag_t tag)
{
#if 0
pcireg_t retry;
/*
* Disable retry timeout to keep PCI Tx retries from
* interfering with ACPI C3 CPU state.
*/
retry = pci_conf_read(pc, tag, PCI_RETRY_TIMEOUT_REG);
retry &= ~PCI_RETRY_TIMEOUT_REG_MASK;
pci_conf_write(pc, tag, PCI_RETRY_TIMEOUT_REG, retry);
#endif
}
struct pci_child_power {
struct pci_conf_state p_pciconf;
pci_chipset_tag_t p_pc;
pcitag_t p_tag;
bool p_has_pm;
int p_pm_offset;
pcireg_t p_pm_cap;
pcireg_t p_class;
};
static bool
pci_child_suspend(device_t dv, pmf_qual_t qual)
{
struct pci_child_power *priv = device_pmf_bus_private(dv);
pcireg_t ocsr, csr;
pci_conf_capture(priv->p_pc, priv->p_tag, &priv->p_pciconf);
if (!priv->p_has_pm)
return true; /* ??? hopefully handled by ACPI */
if (PCI_CLASS(priv->p_class) == PCI_CLASS_DISPLAY)
return true; /* XXX */
/* disable decoding and busmastering, see pcipm1.2 ch. 8.2.1 */
ocsr = pci_conf_read(priv->p_pc, priv->p_tag, PCI_COMMAND_STATUS_REG);
csr = ocsr & ~(PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE
| PCI_COMMAND_MASTER_ENABLE);
pci_conf_write(priv->p_pc, priv->p_tag, PCI_COMMAND_STATUS_REG, csr);
if (pci_set_powerstate_int(priv->p_pc, priv->p_tag,
PCI_PMCSR_STATE_D3, priv->p_pm_offset, priv->p_pm_cap)) {
pci_conf_write(priv->p_pc, priv->p_tag,
PCI_COMMAND_STATUS_REG, ocsr);
aprint_error_dev(dv, "unsupported state, continuing.\n");
return false;
}
return true;
}
static bool
pci_child_resume(device_t dv, pmf_qual_t qual)
{
struct pci_child_power *priv = device_pmf_bus_private(dv);
if (priv->p_has_pm &&
pci_set_powerstate_int(priv->p_pc, priv->p_tag,
PCI_PMCSR_STATE_D0, priv->p_pm_offset, priv->p_pm_cap)) {
aprint_error_dev(dv, "unsupported state, continuing.\n");
return false;
}
pci_conf_restore(priv->p_pc, priv->p_tag, &priv->p_pciconf);
return true;
}
static bool
pci_child_shutdown(device_t dv, int how)
{
struct pci_child_power *priv = device_pmf_bus_private(dv);
pcireg_t csr;
/* disable busmastering */
csr = pci_conf_read(priv->p_pc, priv->p_tag, PCI_COMMAND_STATUS_REG);
csr &= ~PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(priv->p_pc, priv->p_tag, PCI_COMMAND_STATUS_REG, csr);
return true;
}
static void
pci_child_deregister(device_t dv)
{
struct pci_child_power *priv = device_pmf_bus_private(dv);
free(priv, M_DEVBUF);
}
static bool
pci_child_register(device_t child)
{
device_t self = device_parent(child);
struct pci_softc *sc = device_private(self);
struct pci_child_power *priv;
int device, function, off;
pcireg_t reg;
priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK);
device = device_locator(child, PCICF_DEV);
function = device_locator(child, PCICF_FUNCTION);
priv->p_pc = sc->sc_pc;
priv->p_tag = pci_make_tag(priv->p_pc, sc->sc_bus, device,
function);
priv->p_class = pci_conf_read(priv->p_pc, priv->p_tag, PCI_CLASS_REG);
if (pci_get_capability(priv->p_pc, priv->p_tag,
PCI_CAP_PWRMGMT, &off, &reg)) {
priv->p_has_pm = true;
priv->p_pm_offset = off;
priv->p_pm_cap = reg;
} else {
priv->p_has_pm = false;
priv->p_pm_offset = -1;
}
device_pmf_bus_register(child, priv, pci_child_suspend,
pci_child_resume, pci_child_shutdown, pci_child_deregister);
return true;
}