0014588545
and is much easier to read. No functionality changes.
909 lines
30 KiB
C
909 lines
30 KiB
C
/* $NetBSD: rf_map.c,v 1.3 1999/02/05 00:06:12 oster Exp $ */
|
|
/*
|
|
* Copyright (c) 1995 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Author: Mark Holland
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
/**************************************************************************
|
|
*
|
|
* map.c -- main code for mapping RAID addresses to physical disk addresses
|
|
*
|
|
**************************************************************************/
|
|
|
|
#include "rf_types.h"
|
|
#include "rf_threadstuff.h"
|
|
#include "rf_raid.h"
|
|
#include "rf_general.h"
|
|
#include "rf_map.h"
|
|
#include "rf_freelist.h"
|
|
#include "rf_shutdown.h"
|
|
#include "rf_sys.h"
|
|
|
|
static void rf_FreePDAList(RF_PhysDiskAddr_t * start, RF_PhysDiskAddr_t * end, int count);
|
|
static void
|
|
rf_FreeASMList(RF_AccessStripeMap_t * start, RF_AccessStripeMap_t * end,
|
|
int count);
|
|
|
|
/*****************************************************************************************
|
|
*
|
|
* MapAccess -- main 1st order mapping routine.
|
|
*
|
|
* Maps an access in the RAID address space to the corresponding set of physical disk
|
|
* addresses. The result is returned as a list of AccessStripeMap structures, one per
|
|
* stripe accessed. Each ASM structure contains a pointer to a list of PhysDiskAddr
|
|
* structures, which describe the physical locations touched by the user access. Note
|
|
* that this routine returns only static mapping information, i.e. the list of physical
|
|
* addresses returned does not necessarily identify the set of physical locations that
|
|
* will actually be read or written.
|
|
*
|
|
* The routine also maps the parity. The physical disk location returned always
|
|
* indicates the entire parity unit, even when only a subset of it is being accessed.
|
|
* This is because an access that is not stripe unit aligned but that spans a stripe
|
|
* unit boundary may require access two distinct portions of the parity unit, and we
|
|
* can't yet tell which portion(s) we'll actually need. We leave it up to the algorithm
|
|
* selection code to decide what subset of the parity unit to access.
|
|
*
|
|
* Note that addresses in the RAID address space must always be maintained as
|
|
* longs, instead of ints.
|
|
*
|
|
* This routine returns NULL if numBlocks is 0
|
|
*
|
|
****************************************************************************************/
|
|
|
|
RF_AccessStripeMapHeader_t *
|
|
rf_MapAccess(raidPtr, raidAddress, numBlocks, buffer, remap)
|
|
RF_Raid_t *raidPtr;
|
|
RF_RaidAddr_t raidAddress; /* starting address in RAID address
|
|
* space */
|
|
RF_SectorCount_t numBlocks; /* number of blocks in RAID address
|
|
* space to access */
|
|
caddr_t buffer; /* buffer to supply/receive data */
|
|
int remap; /* 1 => remap addresses to spare space */
|
|
{
|
|
RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
|
|
RF_AccessStripeMapHeader_t *asm_hdr = NULL;
|
|
RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
|
|
int faultsTolerated = layoutPtr->map->faultsTolerated;
|
|
RF_RaidAddr_t startAddress = raidAddress; /* we'll change
|
|
* raidAddress along the
|
|
* way */
|
|
RF_RaidAddr_t endAddress = raidAddress + numBlocks;
|
|
RF_RaidDisk_t **disks = raidPtr->Disks;
|
|
|
|
RF_PhysDiskAddr_t *pda_p, *pda_q;
|
|
RF_StripeCount_t numStripes = 0;
|
|
RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress, nextStripeUnitAddress;
|
|
RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
|
|
RF_StripeCount_t totStripes;
|
|
RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
|
|
RF_AccessStripeMap_t *asmList, *t_asm;
|
|
RF_PhysDiskAddr_t *pdaList, *t_pda;
|
|
|
|
/* allocate all the ASMs and PDAs up front */
|
|
lastRaidAddr = raidAddress + numBlocks - 1;
|
|
stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
|
|
lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
|
|
totStripes = lastSID - stripeID + 1;
|
|
SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
|
|
lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
|
|
|
|
asmList = rf_AllocASMList(totStripes);
|
|
pdaList = rf_AllocPDAList(lastSUID - SUID + 1 + faultsTolerated * totStripes); /* may also need pda(s)
|
|
* per stripe for parity */
|
|
|
|
if (raidAddress + numBlocks > raidPtr->totalSectors) {
|
|
RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
|
|
(int) raidAddress);
|
|
return (NULL);
|
|
}
|
|
if (rf_mapDebug)
|
|
rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
|
|
for (; raidAddress < endAddress;) {
|
|
/* make the next stripe structure */
|
|
RF_ASSERT(asmList);
|
|
t_asm = asmList;
|
|
asmList = asmList->next;
|
|
bzero((char *) t_asm, sizeof(RF_AccessStripeMap_t));
|
|
if (!asm_p)
|
|
asm_list = asm_p = t_asm;
|
|
else {
|
|
asm_p->next = t_asm;
|
|
asm_p = asm_p->next;
|
|
}
|
|
numStripes++;
|
|
|
|
/* map SUs from current location to the end of the stripe */
|
|
asm_p->stripeID = /* rf_RaidAddressToStripeID(layoutPtr,
|
|
raidAddress) */ stripeID++;
|
|
stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
|
|
stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
|
|
asm_p->raidAddress = raidAddress;
|
|
asm_p->endRaidAddress = stripeEndAddress;
|
|
|
|
/* map each stripe unit in the stripe */
|
|
pda_p = NULL;
|
|
startAddrWithinStripe = raidAddress; /* Raid addr of start of
|
|
* portion of access
|
|
* that is within this
|
|
* stripe */
|
|
for (; raidAddress < stripeEndAddress;) {
|
|
RF_ASSERT(pdaList);
|
|
t_pda = pdaList;
|
|
pdaList = pdaList->next;
|
|
bzero((char *) t_pda, sizeof(RF_PhysDiskAddr_t));
|
|
if (!pda_p)
|
|
asm_p->physInfo = pda_p = t_pda;
|
|
else {
|
|
pda_p->next = t_pda;
|
|
pda_p = pda_p->next;
|
|
}
|
|
|
|
pda_p->type = RF_PDA_TYPE_DATA;
|
|
(layoutPtr->map->MapSector) (raidPtr, raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
|
|
|
|
/* mark any failures we find. failedPDA is don't-care
|
|
* if there is more than one failure */
|
|
pda_p->raidAddress = raidAddress; /* the RAID address
|
|
* corresponding to this
|
|
* physical disk address */
|
|
nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
|
|
pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
|
|
RF_ASSERT(pda_p->numSector != 0);
|
|
rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
|
|
pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
|
|
asm_p->totalSectorsAccessed += pda_p->numSector;
|
|
asm_p->numStripeUnitsAccessed++;
|
|
asm_p->origRow = pda_p->row; /* redundant but
|
|
* harmless to do this
|
|
* in every loop
|
|
* iteration */
|
|
|
|
raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
|
|
}
|
|
|
|
/* Map the parity. At this stage, the startSector and
|
|
* numSector fields for the parity unit are always set to
|
|
* indicate the entire parity unit. We may modify this after
|
|
* mapping the data portion. */
|
|
switch (faultsTolerated) {
|
|
case 0:
|
|
break;
|
|
case 1: /* single fault tolerant */
|
|
RF_ASSERT(pdaList);
|
|
t_pda = pdaList;
|
|
pdaList = pdaList->next;
|
|
bzero((char *) t_pda, sizeof(RF_PhysDiskAddr_t));
|
|
pda_p = asm_p->parityInfo = t_pda;
|
|
pda_p->type = RF_PDA_TYPE_PARITY;
|
|
(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
|
|
&(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
|
|
pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
|
|
/* raidAddr may be needed to find unit to redirect to */
|
|
pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
|
|
rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
|
|
rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
|
|
|
|
break;
|
|
case 2: /* two fault tolerant */
|
|
RF_ASSERT(pdaList && pdaList->next);
|
|
t_pda = pdaList;
|
|
pdaList = pdaList->next;
|
|
bzero((char *) t_pda, sizeof(RF_PhysDiskAddr_t));
|
|
pda_p = asm_p->parityInfo = t_pda;
|
|
pda_p->type = RF_PDA_TYPE_PARITY;
|
|
t_pda = pdaList;
|
|
pdaList = pdaList->next;
|
|
bzero((char *) t_pda, sizeof(RF_PhysDiskAddr_t));
|
|
pda_q = asm_p->qInfo = t_pda;
|
|
pda_q->type = RF_PDA_TYPE_Q;
|
|
(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
|
|
&(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
|
|
(layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
|
|
&(pda_q->row), &(pda_q->col), &(pda_q->startSector), remap);
|
|
pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
|
|
/* raidAddr may be needed to find unit to redirect to */
|
|
pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
|
|
pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
|
|
/* failure mode stuff */
|
|
rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
|
|
rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
|
|
rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
|
|
rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
|
|
break;
|
|
}
|
|
}
|
|
RF_ASSERT(asmList == NULL && pdaList == NULL);
|
|
/* make the header structure */
|
|
asm_hdr = rf_AllocAccessStripeMapHeader();
|
|
RF_ASSERT(numStripes == totStripes);
|
|
asm_hdr->numStripes = numStripes;
|
|
asm_hdr->stripeMap = asm_list;
|
|
|
|
if (rf_mapDebug)
|
|
rf_PrintAccessStripeMap(asm_hdr);
|
|
return (asm_hdr);
|
|
}
|
|
/*****************************************************************************************
|
|
* This routine walks through an ASM list and marks the PDAs that have failed.
|
|
* It's called only when a disk failure causes an in-flight DAG to fail.
|
|
* The parity may consist of two components, but we want to use only one failedPDA
|
|
* pointer. Thus we set failedPDA to point to the first parity component, and rely
|
|
* on the rest of the code to do the right thing with this.
|
|
****************************************************************************************/
|
|
|
|
void
|
|
rf_MarkFailuresInASMList(raidPtr, asm_h)
|
|
RF_Raid_t *raidPtr;
|
|
RF_AccessStripeMapHeader_t *asm_h;
|
|
{
|
|
RF_RaidDisk_t **disks = raidPtr->Disks;
|
|
RF_AccessStripeMap_t *asmap;
|
|
RF_PhysDiskAddr_t *pda;
|
|
|
|
for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
|
|
asmap->numDataFailed = asmap->numParityFailed = asmap->numQFailed = 0;
|
|
asmap->numFailedPDAs = 0;
|
|
bzero((char *) asmap->failedPDAs,
|
|
RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *));
|
|
for (pda = asmap->physInfo; pda; pda = pda->next) {
|
|
if (RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
|
|
printf("DEAD DISK BOGUSLY DETECTED!!\n");
|
|
asmap->numDataFailed++;
|
|
asmap->failedPDAs[asmap->numFailedPDAs] = pda;
|
|
asmap->numFailedPDAs++;
|
|
}
|
|
}
|
|
pda = asmap->parityInfo;
|
|
if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
|
|
asmap->numParityFailed++;
|
|
asmap->failedPDAs[asmap->numFailedPDAs] = pda;
|
|
asmap->numFailedPDAs++;
|
|
}
|
|
pda = asmap->qInfo;
|
|
if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
|
|
asmap->numQFailed++;
|
|
asmap->failedPDAs[asmap->numFailedPDAs] = pda;
|
|
asmap->numFailedPDAs++;
|
|
}
|
|
}
|
|
}
|
|
/*****************************************************************************************
|
|
*
|
|
* DuplicateASM -- duplicates an ASM and returns the new one
|
|
*
|
|
****************************************************************************************/
|
|
RF_AccessStripeMap_t *
|
|
rf_DuplicateASM(asmap)
|
|
RF_AccessStripeMap_t *asmap;
|
|
{
|
|
RF_AccessStripeMap_t *new_asm;
|
|
RF_PhysDiskAddr_t *pda, *new_pda, *t_pda;
|
|
|
|
new_pda = NULL;
|
|
new_asm = rf_AllocAccessStripeMapComponent();
|
|
bcopy((char *) asmap, (char *) new_asm, sizeof(RF_AccessStripeMap_t));
|
|
new_asm->numFailedPDAs = 0; /* ??? */
|
|
new_asm->failedPDAs[0] = NULL;
|
|
new_asm->physInfo = NULL;
|
|
new_asm->parityInfo = NULL;
|
|
new_asm->next = NULL;
|
|
|
|
for (pda = asmap->physInfo; pda; pda = pda->next) { /* copy the physInfo
|
|
* list */
|
|
t_pda = rf_AllocPhysDiskAddr();
|
|
bcopy((char *) pda, (char *) t_pda, sizeof(RF_PhysDiskAddr_t));
|
|
t_pda->next = NULL;
|
|
if (!new_asm->physInfo) {
|
|
new_asm->physInfo = t_pda;
|
|
new_pda = t_pda;
|
|
} else {
|
|
new_pda->next = t_pda;
|
|
new_pda = new_pda->next;
|
|
}
|
|
if (pda == asmap->failedPDAs[0])
|
|
new_asm->failedPDAs[0] = t_pda;
|
|
}
|
|
for (pda = asmap->parityInfo; pda; pda = pda->next) { /* copy the parityInfo
|
|
* list */
|
|
t_pda = rf_AllocPhysDiskAddr();
|
|
bcopy((char *) pda, (char *) t_pda, sizeof(RF_PhysDiskAddr_t));
|
|
t_pda->next = NULL;
|
|
if (!new_asm->parityInfo) {
|
|
new_asm->parityInfo = t_pda;
|
|
new_pda = t_pda;
|
|
} else {
|
|
new_pda->next = t_pda;
|
|
new_pda = new_pda->next;
|
|
}
|
|
if (pda == asmap->failedPDAs[0])
|
|
new_asm->failedPDAs[0] = t_pda;
|
|
}
|
|
return (new_asm);
|
|
}
|
|
/*****************************************************************************************
|
|
*
|
|
* DuplicatePDA -- duplicates a PDA and returns the new one
|
|
*
|
|
****************************************************************************************/
|
|
RF_PhysDiskAddr_t *
|
|
rf_DuplicatePDA(pda)
|
|
RF_PhysDiskAddr_t *pda;
|
|
{
|
|
RF_PhysDiskAddr_t *new;
|
|
|
|
new = rf_AllocPhysDiskAddr();
|
|
bcopy((char *) pda, (char *) new, sizeof(RF_PhysDiskAddr_t));
|
|
return (new);
|
|
}
|
|
/*****************************************************************************************
|
|
*
|
|
* routines to allocate and free list elements. All allocation routines zero the
|
|
* structure before returning it.
|
|
*
|
|
* FreePhysDiskAddr is static. It should never be called directly, because
|
|
* FreeAccessStripeMap takes care of freeing the PhysDiskAddr list.
|
|
*
|
|
****************************************************************************************/
|
|
|
|
static RF_FreeList_t *rf_asmhdr_freelist;
|
|
#define RF_MAX_FREE_ASMHDR 128
|
|
#define RF_ASMHDR_INC 16
|
|
#define RF_ASMHDR_INITIAL 32
|
|
|
|
static RF_FreeList_t *rf_asm_freelist;
|
|
#define RF_MAX_FREE_ASM 192
|
|
#define RF_ASM_INC 24
|
|
#define RF_ASM_INITIAL 64
|
|
|
|
static RF_FreeList_t *rf_pda_freelist;
|
|
#define RF_MAX_FREE_PDA 192
|
|
#define RF_PDA_INC 24
|
|
#define RF_PDA_INITIAL 64
|
|
|
|
/* called at shutdown time. So far, all that is necessary is to release all the free lists */
|
|
static void rf_ShutdownMapModule(void *);
|
|
static void
|
|
rf_ShutdownMapModule(ignored)
|
|
void *ignored;
|
|
{
|
|
RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
|
|
RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
|
|
RF_FREELIST_DESTROY(rf_asm_freelist, next, (RF_AccessStripeMap_t *));
|
|
}
|
|
|
|
int
|
|
rf_ConfigureMapModule(listp)
|
|
RF_ShutdownList_t **listp;
|
|
{
|
|
int rc;
|
|
|
|
RF_FREELIST_CREATE(rf_asmhdr_freelist, RF_MAX_FREE_ASMHDR,
|
|
RF_ASMHDR_INC, sizeof(RF_AccessStripeMapHeader_t));
|
|
if (rf_asmhdr_freelist == NULL) {
|
|
return (ENOMEM);
|
|
}
|
|
RF_FREELIST_CREATE(rf_asm_freelist, RF_MAX_FREE_ASM,
|
|
RF_ASM_INC, sizeof(RF_AccessStripeMap_t));
|
|
if (rf_asm_freelist == NULL) {
|
|
RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
|
|
return (ENOMEM);
|
|
}
|
|
RF_FREELIST_CREATE(rf_pda_freelist, RF_MAX_FREE_PDA,
|
|
RF_PDA_INC, sizeof(RF_PhysDiskAddr_t));
|
|
if (rf_pda_freelist == NULL) {
|
|
RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
|
|
RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
|
|
return (ENOMEM);
|
|
}
|
|
rc = rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
|
|
if (rc) {
|
|
RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__,
|
|
__LINE__, rc);
|
|
rf_ShutdownMapModule(NULL);
|
|
return (rc);
|
|
}
|
|
RF_FREELIST_PRIME(rf_asmhdr_freelist, RF_ASMHDR_INITIAL, next,
|
|
(RF_AccessStripeMapHeader_t *));
|
|
RF_FREELIST_PRIME(rf_asm_freelist, RF_ASM_INITIAL, next,
|
|
(RF_AccessStripeMap_t *));
|
|
RF_FREELIST_PRIME(rf_pda_freelist, RF_PDA_INITIAL, next,
|
|
(RF_PhysDiskAddr_t *));
|
|
|
|
return (0);
|
|
}
|
|
|
|
RF_AccessStripeMapHeader_t *
|
|
rf_AllocAccessStripeMapHeader()
|
|
{
|
|
RF_AccessStripeMapHeader_t *p;
|
|
|
|
RF_FREELIST_GET(rf_asmhdr_freelist, p, next, (RF_AccessStripeMapHeader_t *));
|
|
bzero((char *) p, sizeof(RF_AccessStripeMapHeader_t));
|
|
|
|
return (p);
|
|
}
|
|
|
|
|
|
void
|
|
rf_FreeAccessStripeMapHeader(p)
|
|
RF_AccessStripeMapHeader_t *p;
|
|
{
|
|
RF_FREELIST_FREE(rf_asmhdr_freelist, p, next);
|
|
}
|
|
|
|
RF_PhysDiskAddr_t *
|
|
rf_AllocPhysDiskAddr()
|
|
{
|
|
RF_PhysDiskAddr_t *p;
|
|
|
|
RF_FREELIST_GET(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *));
|
|
bzero((char *) p, sizeof(RF_PhysDiskAddr_t));
|
|
|
|
return (p);
|
|
}
|
|
/* allocates a list of PDAs, locking the free list only once
|
|
* when we have to call calloc, we do it one component at a time to simplify
|
|
* the process of freeing the list at program shutdown. This should not be
|
|
* much of a performance hit, because it should be very infrequently executed.
|
|
*/
|
|
RF_PhysDiskAddr_t *
|
|
rf_AllocPDAList(count)
|
|
int count;
|
|
{
|
|
RF_PhysDiskAddr_t *p = NULL;
|
|
|
|
RF_FREELIST_GET_N(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *), count);
|
|
return (p);
|
|
}
|
|
|
|
void
|
|
rf_FreePhysDiskAddr(p)
|
|
RF_PhysDiskAddr_t *p;
|
|
{
|
|
RF_FREELIST_FREE(rf_pda_freelist, p, next);
|
|
}
|
|
|
|
static void
|
|
rf_FreePDAList(l_start, l_end, count)
|
|
RF_PhysDiskAddr_t *l_start, *l_end; /* pointers to start and end
|
|
* of list */
|
|
int count; /* number of elements in list */
|
|
{
|
|
RF_FREELIST_FREE_N(rf_pda_freelist, l_start, next, (RF_PhysDiskAddr_t *), count);
|
|
}
|
|
|
|
RF_AccessStripeMap_t *
|
|
rf_AllocAccessStripeMapComponent()
|
|
{
|
|
RF_AccessStripeMap_t *p;
|
|
|
|
RF_FREELIST_GET(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *));
|
|
bzero((char *) p, sizeof(RF_AccessStripeMap_t));
|
|
|
|
return (p);
|
|
}
|
|
/* this is essentially identical to AllocPDAList. I should combine the two.
|
|
* when we have to call calloc, we do it one component at a time to simplify
|
|
* the process of freeing the list at program shutdown. This should not be
|
|
* much of a performance hit, because it should be very infrequently executed.
|
|
*/
|
|
RF_AccessStripeMap_t *
|
|
rf_AllocASMList(count)
|
|
int count;
|
|
{
|
|
RF_AccessStripeMap_t *p = NULL;
|
|
|
|
RF_FREELIST_GET_N(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *), count);
|
|
return (p);
|
|
}
|
|
|
|
void
|
|
rf_FreeAccessStripeMapComponent(p)
|
|
RF_AccessStripeMap_t *p;
|
|
{
|
|
RF_FREELIST_FREE(rf_asm_freelist, p, next);
|
|
}
|
|
|
|
static void
|
|
rf_FreeASMList(l_start, l_end, count)
|
|
RF_AccessStripeMap_t *l_start, *l_end;
|
|
int count;
|
|
{
|
|
RF_FREELIST_FREE_N(rf_asm_freelist, l_start, next, (RF_AccessStripeMap_t *), count);
|
|
}
|
|
|
|
void
|
|
rf_FreeAccessStripeMap(hdr)
|
|
RF_AccessStripeMapHeader_t *hdr;
|
|
{
|
|
RF_AccessStripeMap_t *p, *pt = NULL;
|
|
RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
|
|
int count = 0, t, asm_count = 0;
|
|
|
|
for (p = hdr->stripeMap; p; p = p->next) {
|
|
|
|
/* link the 3 pda lists into the accumulating pda list */
|
|
|
|
if (!pdaList)
|
|
pdaList = p->qInfo;
|
|
else
|
|
pdaEnd->next = p->qInfo;
|
|
for (trailer = NULL, pdp = p->qInfo; pdp;) {
|
|
trailer = pdp;
|
|
pdp = pdp->next;
|
|
count++;
|
|
}
|
|
if (trailer)
|
|
pdaEnd = trailer;
|
|
|
|
if (!pdaList)
|
|
pdaList = p->parityInfo;
|
|
else
|
|
pdaEnd->next = p->parityInfo;
|
|
for (trailer = NULL, pdp = p->parityInfo; pdp;) {
|
|
trailer = pdp;
|
|
pdp = pdp->next;
|
|
count++;
|
|
}
|
|
if (trailer)
|
|
pdaEnd = trailer;
|
|
|
|
if (!pdaList)
|
|
pdaList = p->physInfo;
|
|
else
|
|
pdaEnd->next = p->physInfo;
|
|
for (trailer = NULL, pdp = p->physInfo; pdp;) {
|
|
trailer = pdp;
|
|
pdp = pdp->next;
|
|
count++;
|
|
}
|
|
if (trailer)
|
|
pdaEnd = trailer;
|
|
|
|
pt = p;
|
|
asm_count++;
|
|
}
|
|
|
|
/* debug only */
|
|
for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
|
|
t++;
|
|
RF_ASSERT(t == count);
|
|
|
|
if (pdaList)
|
|
rf_FreePDAList(pdaList, pdaEnd, count);
|
|
rf_FreeASMList(hdr->stripeMap, pt, asm_count);
|
|
rf_FreeAccessStripeMapHeader(hdr);
|
|
}
|
|
/* We can't use the large write optimization if there are any failures in the stripe.
|
|
* In the declustered layout, there is no way to immediately determine what disks
|
|
* constitute a stripe, so we actually have to hunt through the stripe looking for failures.
|
|
* The reason we map the parity instead of just using asm->parityInfo->col is because
|
|
* the latter may have been already redirected to a spare drive, which would
|
|
* mess up the computation of the stripe offset.
|
|
*
|
|
* ASSUMES AT MOST ONE FAILURE IN THE STRIPE.
|
|
*/
|
|
int
|
|
rf_CheckStripeForFailures(raidPtr, asmap)
|
|
RF_Raid_t *raidPtr;
|
|
RF_AccessStripeMap_t *asmap;
|
|
{
|
|
RF_RowCol_t trow, tcol, prow, pcol, *diskids, row, i;
|
|
RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
|
|
RF_StripeCount_t stripeOffset;
|
|
int numFailures;
|
|
RF_RaidAddr_t sosAddr;
|
|
RF_SectorNum_t diskOffset, poffset;
|
|
RF_RowCol_t testrow;
|
|
|
|
/* quick out in the fault-free case. */
|
|
RF_LOCK_MUTEX(raidPtr->mutex);
|
|
numFailures = raidPtr->numFailures;
|
|
RF_UNLOCK_MUTEX(raidPtr->mutex);
|
|
if (numFailures == 0)
|
|
return (0);
|
|
|
|
sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
|
|
row = asmap->physInfo->row;
|
|
(layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &testrow);
|
|
(layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress, &prow, &pcol, &poffset, 0); /* get pcol */
|
|
|
|
/* this need not be true if we've redirected the access to a spare in
|
|
* another row RF_ASSERT(row == testrow); */
|
|
stripeOffset = 0;
|
|
for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
|
|
if (diskids[i] != pcol) {
|
|
if (RF_DEAD_DISK(raidPtr->Disks[testrow][diskids[i]].status)) {
|
|
if (raidPtr->status[testrow] != rf_rs_reconstructing)
|
|
return (1);
|
|
RF_ASSERT(raidPtr->reconControl[testrow]->fcol == diskids[i]);
|
|
layoutPtr->map->MapSector(raidPtr,
|
|
sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
|
|
&trow, &tcol, &diskOffset, 0);
|
|
RF_ASSERT((trow == testrow) && (tcol == diskids[i]));
|
|
if (!rf_CheckRUReconstructed(raidPtr->reconControl[testrow]->reconMap, diskOffset))
|
|
return (1);
|
|
asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
|
|
return (0);
|
|
}
|
|
stripeOffset++;
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
/*
|
|
return the number of failed data units in the stripe.
|
|
*/
|
|
|
|
int
|
|
rf_NumFailedDataUnitsInStripe(raidPtr, asmap)
|
|
RF_Raid_t *raidPtr;
|
|
RF_AccessStripeMap_t *asmap;
|
|
{
|
|
RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
|
|
RF_RowCol_t trow, tcol, row, i;
|
|
RF_SectorNum_t diskOffset;
|
|
RF_RaidAddr_t sosAddr;
|
|
int numFailures;
|
|
|
|
/* quick out in the fault-free case. */
|
|
RF_LOCK_MUTEX(raidPtr->mutex);
|
|
numFailures = raidPtr->numFailures;
|
|
RF_UNLOCK_MUTEX(raidPtr->mutex);
|
|
if (numFailures == 0)
|
|
return (0);
|
|
numFailures = 0;
|
|
|
|
sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
|
|
row = asmap->physInfo->row;
|
|
for (i = 0; i < layoutPtr->numDataCol; i++) {
|
|
(layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
|
|
&trow, &tcol, &diskOffset, 0);
|
|
if (RF_DEAD_DISK(raidPtr->Disks[trow][tcol].status))
|
|
numFailures++;
|
|
}
|
|
|
|
return numFailures;
|
|
}
|
|
|
|
|
|
/*****************************************************************************************
|
|
*
|
|
* debug routines
|
|
*
|
|
****************************************************************************************/
|
|
|
|
void
|
|
rf_PrintAccessStripeMap(asm_h)
|
|
RF_AccessStripeMapHeader_t *asm_h;
|
|
{
|
|
rf_PrintFullAccessStripeMap(asm_h, 0);
|
|
}
|
|
|
|
void
|
|
rf_PrintFullAccessStripeMap(asm_h, prbuf)
|
|
RF_AccessStripeMapHeader_t *asm_h;
|
|
int prbuf; /* flag to print buffer pointers */
|
|
{
|
|
int i;
|
|
RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
|
|
RF_PhysDiskAddr_t *p;
|
|
printf("%d stripes total\n", (int) asm_h->numStripes);
|
|
for (; asmap; asmap = asmap->next) {
|
|
/* printf("Num failures: %d\n",asmap->numDataFailed); */
|
|
/* printf("Num sectors:
|
|
* %d\n",(int)asmap->totalSectorsAccessed); */
|
|
printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
|
|
(int) asmap->stripeID,
|
|
(int) asmap->totalSectorsAccessed,
|
|
(int) asmap->numDataFailed,
|
|
(int) asmap->numParityFailed);
|
|
if (asmap->parityInfo) {
|
|
printf("Parity [r%d c%d s%d-%d", asmap->parityInfo->row, asmap->parityInfo->col,
|
|
(int) asmap->parityInfo->startSector,
|
|
(int) (asmap->parityInfo->startSector +
|
|
asmap->parityInfo->numSector - 1));
|
|
if (prbuf)
|
|
printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
|
|
if (asmap->parityInfo->next) {
|
|
printf(", r%d c%d s%d-%d", asmap->parityInfo->next->row,
|
|
asmap->parityInfo->next->col,
|
|
(int) asmap->parityInfo->next->startSector,
|
|
(int) (asmap->parityInfo->next->startSector +
|
|
asmap->parityInfo->next->numSector - 1));
|
|
if (prbuf)
|
|
printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
|
|
RF_ASSERT(asmap->parityInfo->next->next == NULL);
|
|
}
|
|
printf("]\n\t");
|
|
}
|
|
for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
|
|
printf("SU r%d c%d s%d-%d ", p->row, p->col, (int) p->startSector,
|
|
(int) (p->startSector + p->numSector - 1));
|
|
if (prbuf)
|
|
printf("b0x%lx ", (unsigned long) p->bufPtr);
|
|
if (i && !(i & 1))
|
|
printf("\n\t");
|
|
}
|
|
printf("\n");
|
|
p = asm_h->stripeMap->failedPDAs[0];
|
|
if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
|
|
printf("[multiple failures]\n");
|
|
else
|
|
if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
|
|
printf("\t[Failed PDA: r%d c%d s%d-%d]\n", p->row, p->col,
|
|
(int) p->startSector, (int) (p->startSector + p->numSector - 1));
|
|
}
|
|
}
|
|
|
|
void
|
|
rf_PrintRaidAddressInfo(raidPtr, raidAddr, numBlocks)
|
|
RF_Raid_t *raidPtr;
|
|
RF_RaidAddr_t raidAddr;
|
|
RF_SectorCount_t numBlocks;
|
|
{
|
|
RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
|
|
RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
|
|
|
|
printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
|
|
for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
|
|
printf("%d (0x%x), ", (int) ra, (int) ra);
|
|
}
|
|
printf("\n");
|
|
printf("Offset into stripe unit: %d (0x%x)\n",
|
|
(int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
|
|
(int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
|
|
}
|
|
/*
|
|
given a parity descriptor and the starting address within a stripe,
|
|
range restrict the parity descriptor to touch only the correct stuff.
|
|
*/
|
|
void
|
|
rf_ASMParityAdjust(
|
|
RF_PhysDiskAddr_t * toAdjust,
|
|
RF_StripeNum_t startAddrWithinStripe,
|
|
RF_SectorNum_t endAddress,
|
|
RF_RaidLayout_t * layoutPtr,
|
|
RF_AccessStripeMap_t * asm_p)
|
|
{
|
|
RF_PhysDiskAddr_t *new_pda;
|
|
|
|
/* when we're accessing only a portion of one stripe unit, we want the
|
|
* parity descriptor to identify only the chunk of parity associated
|
|
* with the data. When the access spans exactly one stripe unit
|
|
* boundary and is less than a stripe unit in size, it uses two
|
|
* disjoint regions of the parity unit. When an access spans more
|
|
* than one stripe unit boundary, it uses all of the parity unit.
|
|
*
|
|
* To better handle the case where stripe units are small, we may
|
|
* eventually want to change the 2nd case so that if the SU size is
|
|
* below some threshold, we just read/write the whole thing instead of
|
|
* breaking it up into two accesses. */
|
|
if (asm_p->numStripeUnitsAccessed == 1) {
|
|
int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
|
|
toAdjust->startSector += x;
|
|
toAdjust->raidAddress += x;
|
|
toAdjust->numSector = asm_p->physInfo->numSector;
|
|
RF_ASSERT(toAdjust->numSector != 0);
|
|
} else
|
|
if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
|
|
int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
|
|
|
|
/* create a second pda and copy the parity map info
|
|
* into it */
|
|
RF_ASSERT(toAdjust->next == NULL);
|
|
new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
|
|
*new_pda = *toAdjust; /* structure assignment */
|
|
new_pda->next = NULL;
|
|
|
|
/* adjust the start sector & number of blocks for the
|
|
* first parity pda */
|
|
toAdjust->startSector += x;
|
|
toAdjust->raidAddress += x;
|
|
toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
|
|
RF_ASSERT(toAdjust->numSector != 0);
|
|
|
|
/* adjust the second pda */
|
|
new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
|
|
/* new_pda->raidAddress =
|
|
* rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
|
|
* toAdjust->raidAddress); */
|
|
RF_ASSERT(new_pda->numSector != 0);
|
|
}
|
|
}
|
|
/*
|
|
Check if a disk has been spared or failed. If spared,
|
|
redirect the I/O.
|
|
If it has been failed, record it in the asm pointer.
|
|
Fourth arg is whether data or parity.
|
|
*/
|
|
void
|
|
rf_ASMCheckStatus(
|
|
RF_Raid_t * raidPtr,
|
|
RF_PhysDiskAddr_t * pda_p,
|
|
RF_AccessStripeMap_t * asm_p,
|
|
RF_RaidDisk_t ** disks,
|
|
int parity)
|
|
{
|
|
RF_DiskStatus_t dstatus;
|
|
RF_RowCol_t frow, fcol;
|
|
|
|
dstatus = disks[pda_p->row][pda_p->col].status;
|
|
|
|
if (dstatus == rf_ds_spared) {
|
|
/* if the disk has been spared, redirect access to the spare */
|
|
frow = pda_p->row;
|
|
fcol = pda_p->col;
|
|
pda_p->row = disks[frow][fcol].spareRow;
|
|
pda_p->col = disks[frow][fcol].spareCol;
|
|
} else
|
|
if (dstatus == rf_ds_dist_spared) {
|
|
/* ditto if disk has been spared to dist spare space */
|
|
RF_RowCol_t or = pda_p->row, oc = pda_p->col;
|
|
RF_SectorNum_t oo = pda_p->startSector;
|
|
|
|
if (pda_p->type == RF_PDA_TYPE_DATA)
|
|
raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
|
|
else
|
|
raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
|
|
|
|
if (rf_mapDebug) {
|
|
printf("Redirected r %d c %d o %d -> r%d c %d o %d\n", or, oc, (int) oo,
|
|
pda_p->row, pda_p->col, (int) pda_p->startSector);
|
|
}
|
|
} else
|
|
if (RF_DEAD_DISK(dstatus)) {
|
|
/* if the disk is inaccessible, mark the
|
|
* failure */
|
|
if (parity)
|
|
asm_p->numParityFailed++;
|
|
else {
|
|
asm_p->numDataFailed++;
|
|
#if 0
|
|
/* XXX Do we really want this spewing
|
|
* out on the console? GO */
|
|
printf("DATA_FAILED!\n");
|
|
#endif
|
|
}
|
|
asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
|
|
asm_p->numFailedPDAs++;
|
|
#if 0
|
|
switch (asm_p->numParityFailed + asm_p->numDataFailed) {
|
|
case 1:
|
|
asm_p->failedPDAs[0] = pda_p;
|
|
break;
|
|
case 2:
|
|
asm_p->failedPDAs[1] = pda_p;
|
|
default:
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
/* the redirected access should never span a stripe unit boundary */
|
|
RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
|
|
rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
|
|
RF_ASSERT(pda_p->col != -1);
|
|
}
|