1699 lines
40 KiB
C
1699 lines
40 KiB
C
/* $NetBSD: usbnet.c,v 1.118 2023/10/09 17:44:33 riastradh Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2019 Matthew R. Green
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Common code shared between USB network drivers.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: usbnet.c,v 1.118 2023/10/09 17:44:33 riastradh Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/module.h>
|
|
#include <sys/atomic.h>
|
|
|
|
#include <dev/usb/usbnet.h>
|
|
#include <dev/usb/usbhist.h>
|
|
|
|
struct usbnet_cdata {
|
|
struct usbnet_chain *uncd_tx_chain;
|
|
struct usbnet_chain *uncd_rx_chain;
|
|
|
|
int uncd_tx_prod;
|
|
int uncd_tx_cnt;
|
|
};
|
|
|
|
struct usbnet_private {
|
|
/*
|
|
* - unp_miilock protects the MII / media data and tick scheduling.
|
|
* - unp_rxlock protects the rx path and its data
|
|
* - unp_txlock protects the tx path and its data
|
|
*
|
|
* the lock ordering is:
|
|
* ifnet lock -> unp_miilock
|
|
* -> unp_rxlock
|
|
* -> unp_txlock
|
|
* -> unp_mcastlock
|
|
*/
|
|
kmutex_t unp_miilock;
|
|
kmutex_t unp_rxlock;
|
|
kmutex_t unp_txlock;
|
|
|
|
kmutex_t unp_mcastlock;
|
|
bool unp_mcastactive;
|
|
|
|
struct usbnet_cdata unp_cdata;
|
|
|
|
struct ethercom unp_ec;
|
|
struct mii_data unp_mii;
|
|
struct usb_task unp_ticktask;
|
|
struct callout unp_stat_ch;
|
|
struct usbd_pipe *unp_ep[USBNET_ENDPT_MAX];
|
|
|
|
volatile bool unp_dying;
|
|
bool unp_stopped;
|
|
bool unp_rxstopped;
|
|
bool unp_txstopped;
|
|
bool unp_attached;
|
|
bool unp_ifp_attached;
|
|
bool unp_link;
|
|
|
|
int unp_timer;
|
|
unsigned short unp_if_flags;
|
|
unsigned unp_number;
|
|
|
|
krndsource_t unp_rndsrc;
|
|
|
|
struct timeval unp_rx_notice;
|
|
struct timeval unp_tx_notice;
|
|
struct timeval unp_intr_notice;
|
|
};
|
|
|
|
#define un_cdata(un) (&(un)->un_pri->unp_cdata)
|
|
|
|
volatile unsigned usbnet_number;
|
|
|
|
static void usbnet_isowned_rx(struct usbnet *);
|
|
static void usbnet_isowned_tx(struct usbnet *);
|
|
|
|
static inline void
|
|
usbnet_isowned_mii(struct usbnet *un)
|
|
{
|
|
KASSERT(mutex_owned(&un->un_pri->unp_miilock));
|
|
}
|
|
|
|
static int usbnet_modcmd(modcmd_t, void *);
|
|
|
|
#ifdef USB_DEBUG
|
|
#ifndef USBNET_DEBUG
|
|
#define usbnetdebug 0
|
|
#else
|
|
static int usbnetdebug = 0;
|
|
|
|
SYSCTL_SETUP(sysctl_hw_usbnet_setup, "sysctl hw.usbnet setup")
|
|
{
|
|
int err;
|
|
const struct sysctlnode *rnode;
|
|
const struct sysctlnode *cnode;
|
|
|
|
err = sysctl_createv(clog, 0, NULL, &rnode,
|
|
CTLFLAG_PERMANENT, CTLTYPE_NODE, "usbnet",
|
|
SYSCTL_DESCR("usbnet global controls"),
|
|
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
|
|
|
|
if (err)
|
|
goto fail;
|
|
|
|
/* control debugging printfs */
|
|
err = sysctl_createv(clog, 0, &rnode, &cnode,
|
|
CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
|
|
"debug", SYSCTL_DESCR("Enable debugging output"),
|
|
NULL, 0, &usbnetdebug, sizeof(usbnetdebug), CTL_CREATE, CTL_EOL);
|
|
if (err)
|
|
goto fail;
|
|
|
|
return;
|
|
fail:
|
|
aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
|
|
}
|
|
|
|
#endif /* USBNET_DEBUG */
|
|
#endif /* USB_DEBUG */
|
|
|
|
#define DPRINTF(FMT,A,B,C,D) USBHIST_LOGN(usbnetdebug,1,FMT,A,B,C,D)
|
|
#define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(usbnetdebug,N,FMT,A,B,C,D)
|
|
#define USBNETHIST_FUNC() USBHIST_FUNC()
|
|
#define USBNETHIST_CALLED(name) USBHIST_CALLED(usbnetdebug)
|
|
#define USBNETHIST_CALLARGS(FMT,A,B,C,D) \
|
|
USBHIST_CALLARGS(usbnetdebug,FMT,A,B,C,D)
|
|
#define USBNETHIST_CALLARGSN(N,FMT,A,B,C,D) \
|
|
USBHIST_CALLARGSN(usbnetdebug,N,FMT,A,B,C,D)
|
|
|
|
/* Callback vectors. */
|
|
|
|
static void
|
|
uno_stop(struct usbnet *un, struct ifnet *ifp, int disable)
|
|
{
|
|
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
|
|
if (un->un_ops->uno_stop)
|
|
(*un->un_ops->uno_stop)(ifp, disable);
|
|
}
|
|
|
|
static int
|
|
uno_ioctl(struct usbnet *un, struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
|
|
KASSERTMSG(cmd != SIOCADDMULTI, "%s", ifp->if_xname);
|
|
KASSERTMSG(cmd != SIOCDELMULTI, "%s", ifp->if_xname);
|
|
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
|
|
|
|
if (un->un_ops->uno_ioctl)
|
|
return (*un->un_ops->uno_ioctl)(ifp, cmd, data);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
uno_override_ioctl(struct usbnet *un, struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
|
|
switch (cmd) {
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
break;
|
|
default:
|
|
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
|
|
}
|
|
|
|
return (*un->un_ops->uno_override_ioctl)(ifp, cmd, data);
|
|
}
|
|
|
|
static int
|
|
uno_init(struct usbnet *un, struct ifnet *ifp)
|
|
{
|
|
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
|
|
return un->un_ops->uno_init ? (*un->un_ops->uno_init)(ifp) : 0;
|
|
}
|
|
|
|
static int
|
|
uno_read_reg(struct usbnet *un, int phy, int reg, uint16_t *val)
|
|
{
|
|
usbnet_isowned_mii(un);
|
|
return (*un->un_ops->uno_read_reg)(un, phy, reg, val);
|
|
}
|
|
|
|
static int
|
|
uno_write_reg(struct usbnet *un, int phy, int reg, uint16_t val)
|
|
{
|
|
usbnet_isowned_mii(un);
|
|
return (*un->un_ops->uno_write_reg)(un, phy, reg, val);
|
|
}
|
|
|
|
static void
|
|
uno_mii_statchg(struct usbnet *un, struct ifnet *ifp)
|
|
{
|
|
usbnet_isowned_mii(un);
|
|
(*un->un_ops->uno_statchg)(ifp);
|
|
}
|
|
|
|
static unsigned
|
|
uno_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
|
|
{
|
|
usbnet_isowned_tx(un);
|
|
return (*un->un_ops->uno_tx_prepare)(un, m, c);
|
|
}
|
|
|
|
static void
|
|
uno_rx_loop(struct usbnet *un, struct usbnet_chain *c, uint32_t total_len)
|
|
{
|
|
usbnet_isowned_rx(un);
|
|
(*un->un_ops->uno_rx_loop)(un, c, total_len);
|
|
}
|
|
|
|
static void
|
|
uno_tick(struct usbnet *un)
|
|
{
|
|
if (un->un_ops->uno_tick)
|
|
(*un->un_ops->uno_tick)(un);
|
|
}
|
|
|
|
static void
|
|
uno_intr(struct usbnet *un, usbd_status status)
|
|
{
|
|
if (un->un_ops->uno_intr)
|
|
(*un->un_ops->uno_intr)(un, status);
|
|
}
|
|
|
|
/* Interrupt handling. */
|
|
|
|
static struct mbuf *
|
|
usbnet_newbuf(size_t buflen)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
if (buflen > MCLBYTES - ETHER_ALIGN)
|
|
return NULL;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return NULL;
|
|
|
|
if (buflen > MHLEN - ETHER_ALIGN) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if (!(m->m_flags & M_EXT)) {
|
|
m_freem(m);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
m->m_len = m->m_pkthdr.len = ETHER_ALIGN + buflen;
|
|
m_adj(m, ETHER_ALIGN);
|
|
|
|
return m;
|
|
}
|
|
|
|
/*
|
|
* usbnet_rxeof() is designed to be the done callback for rx completion.
|
|
* it provides generic setup and finalisation, calls a different usbnet
|
|
* rx_loop callback in the middle, which can use usbnet_enqueue() to
|
|
* enqueue a packet for higher levels (or usbnet_input() if previously
|
|
* using if_input() path.)
|
|
*/
|
|
void
|
|
usbnet_enqueue(struct usbnet * const un, uint8_t *buf, size_t buflen,
|
|
int csum_flags, uint32_t csum_data, int mbuf_flags)
|
|
{
|
|
USBNETHIST_FUNC();
|
|
struct ifnet * const ifp = usbnet_ifp(un);
|
|
struct usbnet_private * const unp __unused = un->un_pri;
|
|
struct mbuf *m;
|
|
|
|
USBNETHIST_CALLARGSN(5, "%jd: enter: len=%ju csf %#jx mbf %#jx",
|
|
unp->unp_number, buflen, csum_flags, mbuf_flags);
|
|
|
|
usbnet_isowned_rx(un);
|
|
|
|
m = usbnet_newbuf(buflen);
|
|
if (m == NULL) {
|
|
DPRINTF("%jd: no memory", unp->unp_number, 0, 0, 0);
|
|
if_statinc(ifp, if_ierrors);
|
|
return;
|
|
}
|
|
|
|
m_set_rcvif(m, ifp);
|
|
m->m_pkthdr.csum_flags = csum_flags;
|
|
m->m_pkthdr.csum_data = csum_data;
|
|
m->m_flags |= mbuf_flags;
|
|
memcpy(mtod(m, uint8_t *), buf, buflen);
|
|
|
|
/* push the packet up */
|
|
if_percpuq_enqueue(ifp->if_percpuq, m);
|
|
}
|
|
|
|
void
|
|
usbnet_input(struct usbnet * const un, uint8_t *buf, size_t buflen)
|
|
{
|
|
USBNETHIST_FUNC();
|
|
struct ifnet * const ifp = usbnet_ifp(un);
|
|
struct usbnet_private * const unp __unused = un->un_pri;
|
|
struct mbuf *m;
|
|
|
|
USBNETHIST_CALLARGSN(5, "%jd: enter: buf %#jx len %ju",
|
|
unp->unp_number, (uintptr_t)buf, buflen, 0);
|
|
|
|
usbnet_isowned_rx(un);
|
|
|
|
m = usbnet_newbuf(buflen);
|
|
if (m == NULL) {
|
|
if_statinc(ifp, if_ierrors);
|
|
return;
|
|
}
|
|
|
|
m_set_rcvif(m, ifp);
|
|
memcpy(mtod(m, char *), buf, buflen);
|
|
|
|
/* push the packet up */
|
|
if_input(ifp, m);
|
|
}
|
|
|
|
/*
|
|
* A frame has been uploaded: pass the resulting mbuf chain up to
|
|
* the higher level protocols.
|
|
*/
|
|
static void
|
|
usbnet_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
|
|
{
|
|
USBNETHIST_FUNC();
|
|
struct usbnet_chain * const c = priv;
|
|
struct usbnet * const un = c->unc_un;
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
uint32_t total_len;
|
|
|
|
USBNETHIST_CALLARGSN(5, "%jd: enter: status %#jx xfer %#jx",
|
|
unp->unp_number, status, (uintptr_t)xfer, 0);
|
|
|
|
mutex_enter(&unp->unp_rxlock);
|
|
|
|
if (usbnet_isdying(un) || unp->unp_rxstopped ||
|
|
status == USBD_INVAL || status == USBD_NOT_STARTED ||
|
|
status == USBD_CANCELLED)
|
|
goto out;
|
|
|
|
if (status != USBD_NORMAL_COMPLETION) {
|
|
if (usbd_ratecheck(&unp->unp_rx_notice))
|
|
device_printf(un->un_dev, "usb errors on rx: %s\n",
|
|
usbd_errstr(status));
|
|
if (status == USBD_STALLED)
|
|
usbd_clear_endpoint_stall_async(unp->unp_ep[USBNET_ENDPT_RX]);
|
|
goto done;
|
|
}
|
|
|
|
usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL);
|
|
|
|
if (total_len > un->un_rx_bufsz) {
|
|
aprint_error_dev(un->un_dev,
|
|
"rxeof: too large transfer (%u > %u)\n",
|
|
total_len, un->un_rx_bufsz);
|
|
goto done;
|
|
}
|
|
|
|
uno_rx_loop(un, c, total_len);
|
|
usbnet_isowned_rx(un);
|
|
|
|
done:
|
|
if (usbnet_isdying(un) || unp->unp_rxstopped)
|
|
goto out;
|
|
|
|
mutex_exit(&unp->unp_rxlock);
|
|
|
|
/* Setup new transfer. */
|
|
usbd_setup_xfer(xfer, c, c->unc_buf, un->un_rx_bufsz,
|
|
un->un_rx_xfer_flags, USBD_NO_TIMEOUT, usbnet_rxeof);
|
|
usbd_transfer(xfer);
|
|
return;
|
|
|
|
out:
|
|
mutex_exit(&unp->unp_rxlock);
|
|
}
|
|
|
|
static void
|
|
usbnet_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
|
|
{
|
|
USBNETHIST_FUNC(); USBNETHIST_CALLED();
|
|
struct usbnet_chain * const c = priv;
|
|
struct usbnet * const un = c->unc_un;
|
|
struct usbnet_cdata * const cd = un_cdata(un);
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
struct ifnet * const ifp = usbnet_ifp(un);
|
|
|
|
USBNETHIST_CALLARGSN(5, "%jd: enter: status %#jx xfer %#jx",
|
|
unp->unp_number, status, (uintptr_t)xfer, 0);
|
|
|
|
mutex_enter(&unp->unp_txlock);
|
|
if (unp->unp_txstopped || usbnet_isdying(un)) {
|
|
mutex_exit(&unp->unp_txlock);
|
|
return;
|
|
}
|
|
|
|
KASSERT(cd->uncd_tx_cnt > 0);
|
|
cd->uncd_tx_cnt--;
|
|
|
|
unp->unp_timer = 0;
|
|
|
|
switch (status) {
|
|
case USBD_NOT_STARTED:
|
|
case USBD_CANCELLED:
|
|
break;
|
|
|
|
case USBD_NORMAL_COMPLETION:
|
|
if_statinc(ifp, if_opackets);
|
|
break;
|
|
|
|
default:
|
|
|
|
if_statinc(ifp, if_oerrors);
|
|
if (usbd_ratecheck(&unp->unp_tx_notice))
|
|
device_printf(un->un_dev, "usb error on tx: %s\n",
|
|
usbd_errstr(status));
|
|
if (status == USBD_STALLED)
|
|
usbd_clear_endpoint_stall_async(unp->unp_ep[USBNET_ENDPT_TX]);
|
|
break;
|
|
}
|
|
|
|
mutex_exit(&unp->unp_txlock);
|
|
|
|
if (status == USBD_NORMAL_COMPLETION && !IFQ_IS_EMPTY(&ifp->if_snd))
|
|
(*ifp->if_start)(ifp);
|
|
}
|
|
|
|
static void
|
|
usbnet_pipe_intr(struct usbd_xfer *xfer, void *priv, usbd_status status)
|
|
{
|
|
USBNETHIST_FUNC();
|
|
struct usbnet * const un = priv;
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
struct usbnet_intr * const uni __unused = un->un_intr;
|
|
|
|
if (usbnet_isdying(un) ||
|
|
status == USBD_INVAL || status == USBD_NOT_STARTED ||
|
|
status == USBD_CANCELLED) {
|
|
USBNETHIST_CALLARGS("%jd: uni %#jx dying %#jx status %#jx",
|
|
unp->unp_number, (uintptr_t)uni,
|
|
usbnet_isdying(un), status);
|
|
return;
|
|
}
|
|
|
|
if (status != USBD_NORMAL_COMPLETION) {
|
|
if (usbd_ratecheck(&unp->unp_intr_notice)) {
|
|
aprint_error_dev(un->un_dev, "usb error on intr: %s\n",
|
|
usbd_errstr(status));
|
|
}
|
|
if (status == USBD_STALLED)
|
|
usbd_clear_endpoint_stall_async(unp->unp_ep[USBNET_ENDPT_INTR]);
|
|
USBNETHIST_CALLARGS("%jd: not normal status %#jx",
|
|
unp->unp_number, status, 0, 0);
|
|
return;
|
|
}
|
|
|
|
uno_intr(un, status);
|
|
}
|
|
|
|
static void
|
|
usbnet_start_locked(struct ifnet *ifp)
|
|
{
|
|
USBNETHIST_FUNC();
|
|
struct usbnet * const un = ifp->if_softc;
|
|
struct usbnet_cdata * const cd = un_cdata(un);
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
struct mbuf *m;
|
|
unsigned length;
|
|
bool done_transmit = false;
|
|
int idx, count;
|
|
|
|
USBNETHIST_CALLARGS("%jd: tx_cnt %jd list_cnt %jd link %jd",
|
|
unp->unp_number, cd->uncd_tx_cnt, un->un_tx_list_cnt,
|
|
unp->unp_link);
|
|
|
|
usbnet_isowned_tx(un);
|
|
KASSERT(cd->uncd_tx_cnt <= un->un_tx_list_cnt);
|
|
KASSERT(!unp->unp_txstopped);
|
|
|
|
if (!unp->unp_link) {
|
|
DPRINTF("start called no link (%jx)",
|
|
unp->unp_link, 0, 0, 0);
|
|
return;
|
|
}
|
|
|
|
if (cd->uncd_tx_cnt == un->un_tx_list_cnt) {
|
|
DPRINTF("start called, tx busy (%#jx == %#jx)",
|
|
cd->uncd_tx_cnt, un->un_tx_list_cnt, 0, 0);
|
|
return;
|
|
}
|
|
|
|
idx = cd->uncd_tx_prod;
|
|
count = 0;
|
|
while (cd->uncd_tx_cnt < un->un_tx_list_cnt) {
|
|
IFQ_POLL(&ifp->if_snd, m);
|
|
if (m == NULL) {
|
|
DPRINTF("start called, queue empty", 0, 0, 0, 0);
|
|
break;
|
|
}
|
|
KASSERT(m->m_pkthdr.len <= un->un_tx_bufsz);
|
|
|
|
struct usbnet_chain *c = &cd->uncd_tx_chain[idx];
|
|
|
|
length = uno_tx_prepare(un, m, c);
|
|
if (length == 0) {
|
|
DPRINTF("uno_tx_prepare gave zero length", 0, 0, 0, 0);
|
|
if_statinc(ifp, if_oerrors);
|
|
break;
|
|
}
|
|
|
|
if (__predict_false(c->unc_xfer == NULL)) {
|
|
DPRINTF("unc_xfer is NULL", 0, 0, 0, 0);
|
|
if_statinc(ifp, if_oerrors);
|
|
break;
|
|
}
|
|
|
|
usbd_setup_xfer(c->unc_xfer, c, c->unc_buf, length,
|
|
un->un_tx_xfer_flags, 10000, usbnet_txeof);
|
|
|
|
/* Transmit */
|
|
usbd_status err = usbd_transfer(c->unc_xfer);
|
|
if (err != USBD_IN_PROGRESS) {
|
|
DPRINTF("usbd_transfer on %#jx for %ju bytes: %jd",
|
|
(uintptr_t)c->unc_buf, length, err, 0);
|
|
if_statinc(ifp, if_oerrors);
|
|
break;
|
|
}
|
|
done_transmit = true;
|
|
|
|
IFQ_DEQUEUE(&ifp->if_snd, m);
|
|
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
bpf_mtap(ifp, m, BPF_D_OUT);
|
|
m_freem(m);
|
|
|
|
idx = (idx + 1) % un->un_tx_list_cnt;
|
|
cd->uncd_tx_cnt++;
|
|
count++;
|
|
}
|
|
cd->uncd_tx_prod = idx;
|
|
|
|
DPRINTF("finished with start; tx_cnt %jd list_cnt %jd link %jd",
|
|
cd->uncd_tx_cnt, un->un_tx_list_cnt, unp->unp_link, 0);
|
|
|
|
/*
|
|
* Set a timeout in case the chip goes out to lunch.
|
|
*/
|
|
if (done_transmit)
|
|
unp->unp_timer = 5;
|
|
|
|
if (count != 0)
|
|
rnd_add_uint32(&unp->unp_rndsrc, count);
|
|
}
|
|
|
|
static void
|
|
usbnet_if_start(struct ifnet *ifp)
|
|
{
|
|
struct usbnet * const un = ifp->if_softc;
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
|
|
USBNETHIST_FUNC();
|
|
USBNETHIST_CALLARGS("%jd: txstopped %jd",
|
|
unp->unp_number, unp->unp_txstopped, 0, 0);
|
|
|
|
mutex_enter(&unp->unp_txlock);
|
|
if (!unp->unp_txstopped)
|
|
usbnet_start_locked(ifp);
|
|
mutex_exit(&unp->unp_txlock);
|
|
}
|
|
|
|
/*
|
|
* Chain management.
|
|
*
|
|
* RX and TX are identical. Keep them that way.
|
|
*/
|
|
|
|
/* Start of common RX functions */
|
|
|
|
static size_t
|
|
usbnet_rx_list_size(struct usbnet_cdata * const cd, struct usbnet * const un)
|
|
{
|
|
return sizeof(*cd->uncd_rx_chain) * un->un_rx_list_cnt;
|
|
}
|
|
|
|
static void
|
|
usbnet_rx_list_alloc(struct usbnet * const un)
|
|
{
|
|
struct usbnet_cdata * const cd = un_cdata(un);
|
|
|
|
cd->uncd_rx_chain = kmem_zalloc(usbnet_rx_list_size(cd, un), KM_SLEEP);
|
|
}
|
|
|
|
static void
|
|
usbnet_rx_list_free(struct usbnet * const un)
|
|
{
|
|
struct usbnet_cdata * const cd = un_cdata(un);
|
|
|
|
if (cd->uncd_rx_chain) {
|
|
kmem_free(cd->uncd_rx_chain, usbnet_rx_list_size(cd, un));
|
|
cd->uncd_rx_chain = NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
usbnet_rx_list_init(struct usbnet * const un)
|
|
{
|
|
struct usbnet_cdata * const cd = un_cdata(un);
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
|
|
for (size_t i = 0; i < un->un_rx_list_cnt; i++) {
|
|
struct usbnet_chain *c = &cd->uncd_rx_chain[i];
|
|
|
|
c->unc_un = un;
|
|
if (c->unc_xfer == NULL) {
|
|
int err = usbd_create_xfer(unp->unp_ep[USBNET_ENDPT_RX],
|
|
un->un_rx_bufsz, un->un_rx_xfer_flags, 0,
|
|
&c->unc_xfer);
|
|
if (err)
|
|
return err;
|
|
c->unc_buf = usbd_get_buffer(c->unc_xfer);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
usbnet_rx_list_fini(struct usbnet * const un)
|
|
{
|
|
struct usbnet_cdata * const cd = un_cdata(un);
|
|
|
|
for (size_t i = 0; i < un->un_rx_list_cnt; i++) {
|
|
struct usbnet_chain *c = &cd->uncd_rx_chain[i];
|
|
|
|
if (c->unc_xfer != NULL) {
|
|
usbd_destroy_xfer(c->unc_xfer);
|
|
c->unc_xfer = NULL;
|
|
c->unc_buf = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* End of common RX functions */
|
|
|
|
static void
|
|
usbnet_rx_start_pipes(struct usbnet * const un)
|
|
{
|
|
struct usbnet_cdata * const cd = un_cdata(un);
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
|
|
mutex_enter(&unp->unp_rxlock);
|
|
KASSERT(unp->unp_rxstopped);
|
|
unp->unp_rxstopped = false;
|
|
|
|
for (size_t i = 0; i < un->un_rx_list_cnt; i++) {
|
|
struct usbnet_chain *c = &cd->uncd_rx_chain[i];
|
|
|
|
usbd_setup_xfer(c->unc_xfer, c, c->unc_buf, un->un_rx_bufsz,
|
|
un->un_rx_xfer_flags, USBD_NO_TIMEOUT, usbnet_rxeof);
|
|
usbd_transfer(c->unc_xfer);
|
|
}
|
|
|
|
mutex_exit(&unp->unp_rxlock);
|
|
}
|
|
|
|
/* Start of common TX functions */
|
|
|
|
static size_t
|
|
usbnet_tx_list_size(struct usbnet_cdata * const cd, struct usbnet * const un)
|
|
{
|
|
return sizeof(*cd->uncd_tx_chain) * un->un_tx_list_cnt;
|
|
}
|
|
|
|
static void
|
|
usbnet_tx_list_alloc(struct usbnet * const un)
|
|
{
|
|
struct usbnet_cdata * const cd = un_cdata(un);
|
|
|
|
cd->uncd_tx_chain = kmem_zalloc(usbnet_tx_list_size(cd, un), KM_SLEEP);
|
|
}
|
|
|
|
static void
|
|
usbnet_tx_list_free(struct usbnet * const un)
|
|
{
|
|
struct usbnet_cdata * const cd = un_cdata(un);
|
|
|
|
if (cd->uncd_tx_chain) {
|
|
kmem_free(cd->uncd_tx_chain, usbnet_tx_list_size(cd, un));
|
|
cd->uncd_tx_chain = NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
usbnet_tx_list_init(struct usbnet * const un)
|
|
{
|
|
struct usbnet_cdata * const cd = un_cdata(un);
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
|
|
for (size_t i = 0; i < un->un_tx_list_cnt; i++) {
|
|
struct usbnet_chain *c = &cd->uncd_tx_chain[i];
|
|
|
|
c->unc_un = un;
|
|
if (c->unc_xfer == NULL) {
|
|
int err = usbd_create_xfer(unp->unp_ep[USBNET_ENDPT_TX],
|
|
un->un_tx_bufsz, un->un_tx_xfer_flags, 0,
|
|
&c->unc_xfer);
|
|
if (err)
|
|
return err;
|
|
c->unc_buf = usbd_get_buffer(c->unc_xfer);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
usbnet_tx_list_fini(struct usbnet * const un)
|
|
{
|
|
struct usbnet_cdata * const cd = un_cdata(un);
|
|
|
|
for (size_t i = 0; i < un->un_tx_list_cnt; i++) {
|
|
struct usbnet_chain *c = &cd->uncd_tx_chain[i];
|
|
|
|
if (c->unc_xfer != NULL) {
|
|
usbd_destroy_xfer(c->unc_xfer);
|
|
c->unc_xfer = NULL;
|
|
c->unc_buf = NULL;
|
|
}
|
|
}
|
|
cd->uncd_tx_prod = cd->uncd_tx_cnt = 0;
|
|
}
|
|
|
|
/* End of common TX functions */
|
|
|
|
/* Endpoint pipe management. */
|
|
|
|
static void
|
|
usbnet_ep_close_pipes(struct usbnet * const un)
|
|
{
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
|
|
for (size_t i = 0; i < __arraycount(unp->unp_ep); i++) {
|
|
if (unp->unp_ep[i] == NULL)
|
|
continue;
|
|
usbd_close_pipe(unp->unp_ep[i]);
|
|
unp->unp_ep[i] = NULL;
|
|
}
|
|
}
|
|
|
|
static usbd_status
|
|
usbnet_ep_open_pipes(struct usbnet * const un)
|
|
{
|
|
struct usbnet_intr * const uni = un->un_intr;
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
|
|
for (size_t i = 0; i < __arraycount(unp->unp_ep); i++) {
|
|
usbd_status err;
|
|
|
|
if (un->un_ed[i] == 0)
|
|
continue;
|
|
|
|
if (i == USBNET_ENDPT_INTR && uni) {
|
|
err = usbd_open_pipe_intr(un->un_iface, un->un_ed[i],
|
|
USBD_EXCLUSIVE_USE | USBD_MPSAFE, &unp->unp_ep[i], un,
|
|
uni->uni_buf, uni->uni_bufsz, usbnet_pipe_intr,
|
|
uni->uni_interval);
|
|
} else {
|
|
err = usbd_open_pipe(un->un_iface, un->un_ed[i],
|
|
USBD_EXCLUSIVE_USE | USBD_MPSAFE, &unp->unp_ep[i]);
|
|
}
|
|
if (err) {
|
|
usbnet_ep_close_pipes(un);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
return USBD_NORMAL_COMPLETION;
|
|
}
|
|
|
|
static void
|
|
usbnet_ep_stop_pipes(struct usbnet * const un)
|
|
{
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
|
|
for (size_t i = 0; i < __arraycount(unp->unp_ep); i++) {
|
|
if (unp->unp_ep[i] == NULL)
|
|
continue;
|
|
usbd_abort_pipe(unp->unp_ep[i]);
|
|
}
|
|
}
|
|
|
|
static int
|
|
usbnet_init_rx_tx(struct usbnet * const un)
|
|
{
|
|
USBNETHIST_FUNC(); USBNETHIST_CALLED();
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
struct ifnet * const ifp = usbnet_ifp(un);
|
|
usbd_status err;
|
|
int error = 0;
|
|
|
|
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
|
|
|
|
if (usbnet_isdying(un)) {
|
|
return EIO;
|
|
}
|
|
|
|
/* Open RX and TX pipes. */
|
|
err = usbnet_ep_open_pipes(un);
|
|
if (err) {
|
|
aprint_error_dev(un->un_dev, "open rx/tx pipes failed: %s\n",
|
|
usbd_errstr(err));
|
|
error = EIO;
|
|
goto out;
|
|
}
|
|
|
|
/* Init RX ring. */
|
|
if (usbnet_rx_list_init(un)) {
|
|
aprint_error_dev(un->un_dev, "rx list init failed\n");
|
|
error = ENOBUFS;
|
|
goto out;
|
|
}
|
|
|
|
/* Init TX ring. */
|
|
if (usbnet_tx_list_init(un)) {
|
|
aprint_error_dev(un->un_dev, "tx list init failed\n");
|
|
error = ENOBUFS;
|
|
goto out;
|
|
}
|
|
|
|
/* Indicate we are up and running. */
|
|
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
|
|
/*
|
|
* If the hardware has a multicast filter, program it and then
|
|
* allow updates to it while we're running.
|
|
*/
|
|
if (un->un_ops->uno_mcast) {
|
|
mutex_enter(&unp->unp_mcastlock);
|
|
KASSERTMSG(!unp->unp_mcastactive, "%s", ifp->if_xname);
|
|
unp->unp_if_flags = ifp->if_flags;
|
|
(*un->un_ops->uno_mcast)(ifp);
|
|
unp->unp_mcastactive = true;
|
|
mutex_exit(&unp->unp_mcastlock);
|
|
}
|
|
|
|
/* Allow transmit. */
|
|
mutex_enter(&unp->unp_txlock);
|
|
KASSERT(unp->unp_txstopped);
|
|
unp->unp_txstopped = false;
|
|
mutex_exit(&unp->unp_txlock);
|
|
|
|
/* Start up the receive pipe(s). */
|
|
usbnet_rx_start_pipes(un);
|
|
|
|
/* Kick off the watchdog/stats/mii tick. */
|
|
mutex_enter(&unp->unp_miilock);
|
|
unp->unp_stopped = false;
|
|
callout_schedule(&unp->unp_stat_ch, hz);
|
|
mutex_exit(&unp->unp_miilock);
|
|
|
|
out:
|
|
if (error) {
|
|
usbnet_rx_list_fini(un);
|
|
usbnet_tx_list_fini(un);
|
|
usbnet_ep_close_pipes(un);
|
|
}
|
|
|
|
/*
|
|
* For devices without any media autodetection, treat success
|
|
* here as an active link.
|
|
*/
|
|
if (un->un_ops->uno_statchg == NULL) {
|
|
mutex_enter(&unp->unp_miilock);
|
|
usbnet_set_link(un, error == 0);
|
|
mutex_exit(&unp->unp_miilock);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/* MII management. */
|
|
|
|
static int
|
|
usbnet_mii_readreg(device_t dev, int phy, int reg, uint16_t *val)
|
|
{
|
|
USBNETHIST_FUNC();
|
|
struct usbnet * const un = device_private(dev);
|
|
int err;
|
|
|
|
/* MII layer ensures miilock is held. */
|
|
usbnet_isowned_mii(un);
|
|
|
|
if (usbnet_isdying(un)) {
|
|
return EIO;
|
|
}
|
|
|
|
err = uno_read_reg(un, phy, reg, val);
|
|
if (err) {
|
|
USBNETHIST_CALLARGS("%jd: read PHY failed: %jd",
|
|
un->un_pri->unp_number, err, 0, 0);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
usbnet_mii_writereg(device_t dev, int phy, int reg, uint16_t val)
|
|
{
|
|
USBNETHIST_FUNC();
|
|
struct usbnet * const un = device_private(dev);
|
|
int err;
|
|
|
|
/* MII layer ensures miilock is held. */
|
|
usbnet_isowned_mii(un);
|
|
|
|
if (usbnet_isdying(un)) {
|
|
return EIO;
|
|
}
|
|
|
|
err = uno_write_reg(un, phy, reg, val);
|
|
if (err) {
|
|
USBNETHIST_CALLARGS("%jd: write PHY failed: %jd",
|
|
un->un_pri->unp_number, err, 0, 0);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
usbnet_mii_statchg(struct ifnet *ifp)
|
|
{
|
|
USBNETHIST_FUNC(); USBNETHIST_CALLED();
|
|
struct usbnet * const un = ifp->if_softc;
|
|
|
|
/* MII layer ensures miilock is held. */
|
|
usbnet_isowned_mii(un);
|
|
|
|
uno_mii_statchg(un, ifp);
|
|
}
|
|
|
|
static int
|
|
usbnet_media_upd(struct ifnet *ifp)
|
|
{
|
|
USBNETHIST_FUNC(); USBNETHIST_CALLED();
|
|
struct usbnet * const un = ifp->if_softc;
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
struct mii_data * const mii = usbnet_mii(un);
|
|
|
|
/* ifmedia layer ensures miilock is held. */
|
|
usbnet_isowned_mii(un);
|
|
|
|
/* ifmedia changes only with IFNET_LOCK held. */
|
|
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
|
|
|
|
if (usbnet_isdying(un))
|
|
return EIO;
|
|
|
|
unp->unp_link = false;
|
|
|
|
if (mii->mii_instance) {
|
|
struct mii_softc *miisc;
|
|
|
|
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
|
|
mii_phy_reset(miisc);
|
|
}
|
|
|
|
return ether_mediachange(ifp);
|
|
}
|
|
|
|
/* ioctl */
|
|
|
|
/*
|
|
* usbnet_ifflags_cb(ec)
|
|
*
|
|
* Called by if_ethersubr when interface flags change
|
|
* (SIOCSIFFLAGS), or ethernet capabilities change
|
|
* (SIOCSETHERCAP), on a running interface.
|
|
*/
|
|
static int
|
|
usbnet_ifflags_cb(struct ethercom *ec)
|
|
{
|
|
USBNETHIST_FUNC(); USBNETHIST_CALLED();
|
|
struct ifnet *ifp = &ec->ec_if;
|
|
struct usbnet *un = ifp->if_softc;
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
|
|
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
|
|
|
|
const u_short changed = ifp->if_flags ^ unp->unp_if_flags;
|
|
|
|
/*
|
|
* If any user-settable flags have changed other than
|
|
* IFF_DEBUG, just reset the interface.
|
|
*/
|
|
if ((changed & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
|
|
return ENETRESET;
|
|
|
|
/*
|
|
* Otherwise, cache the flags change so we can read the flags
|
|
* under unp_mcastlock for multicast updates in SIOCADDMULTI or
|
|
* SIOCDELMULTI without IFNET_LOCK.
|
|
*/
|
|
mutex_enter(&unp->unp_mcastlock);
|
|
unp->unp_if_flags = ifp->if_flags;
|
|
mutex_exit(&unp->unp_mcastlock);
|
|
|
|
/*
|
|
* If we're switching on or off promiscuous mode, reprogram the
|
|
* hardware multicast filter now.
|
|
*
|
|
* XXX Actually, reset the interface, because some usbnet
|
|
* drivers (e.g., aue(4)) initialize the hardware differently
|
|
* in uno_init depending on IFF_PROMISC. But some (again,
|
|
* aue(4)) _also_ need to know whether IFF_PROMISC is set in
|
|
* uno_mcast and do something different with it there. Maybe
|
|
* the logic can be unified, but it will require an audit and
|
|
* testing of all the usbnet drivers.
|
|
*/
|
|
if (changed & IFF_PROMISC)
|
|
return ENETRESET;
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool
|
|
usbnet_ispromisc(struct usbnet *un)
|
|
{
|
|
struct ifnet * const ifp = usbnet_ifp(un);
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
|
|
KASSERTMSG(mutex_owned(&unp->unp_mcastlock) || IFNET_LOCKED(ifp),
|
|
"%s", ifp->if_xname);
|
|
|
|
return unp->unp_if_flags & IFF_PROMISC;
|
|
}
|
|
|
|
static int
|
|
usbnet_if_ioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
USBNETHIST_FUNC();
|
|
struct usbnet * const un = ifp->if_softc;
|
|
struct usbnet_private * const unp __unused = un->un_pri;
|
|
int error;
|
|
|
|
USBNETHIST_CALLARGSN(11, "%jd: enter %#jx data %#jx",
|
|
unp->unp_number, cmd, (uintptr_t)data, 0);
|
|
|
|
if (un->un_ops->uno_override_ioctl)
|
|
return uno_override_ioctl(un, ifp, cmd, data);
|
|
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
if (error == ENETRESET) {
|
|
switch (cmd) {
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
/*
|
|
* If there's a hardware multicast filter, and
|
|
* it has been programmed by usbnet_init_rx_tx
|
|
* and is active, update it now. Otherwise,
|
|
* drop the update on the floor -- it will be
|
|
* observed by usbnet_init_rx_tx next time we
|
|
* bring the interface up.
|
|
*/
|
|
if (un->un_ops->uno_mcast) {
|
|
mutex_enter(&unp->unp_mcastlock);
|
|
if (unp->unp_mcastactive)
|
|
(*un->un_ops->uno_mcast)(ifp);
|
|
mutex_exit(&unp->unp_mcastlock);
|
|
}
|
|
error = 0;
|
|
break;
|
|
default:
|
|
error = uno_ioctl(un, ifp, cmd, data);
|
|
}
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Generic stop network function:
|
|
* - mark as stopping
|
|
* - call DD routine to stop the device
|
|
* - turn off running, timer, statchg callout, link
|
|
* - stop transfers
|
|
* - free RX and TX resources
|
|
* - close pipes
|
|
*
|
|
* usbnet_if_stop() is for the if_stop handler.
|
|
*/
|
|
static void
|
|
usbnet_stop(struct usbnet *un, struct ifnet *ifp, int disable)
|
|
{
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
struct mii_data * const mii = usbnet_mii(un);
|
|
|
|
USBNETHIST_FUNC(); USBNETHIST_CALLED();
|
|
|
|
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
|
|
KASSERTMSG(ifp->if_flags & IFF_RUNNING, "%s", ifp->if_xname);
|
|
|
|
/*
|
|
* For drivers with hardware multicast filter update callbacks:
|
|
* Prevent concurrent access to the hardware registers by
|
|
* multicast filter updates, which happens without IFNET_LOCK.
|
|
*/
|
|
if (un->un_ops->uno_mcast) {
|
|
mutex_enter(&unp->unp_mcastlock);
|
|
KASSERTMSG(unp->unp_mcastactive, "%p", ifp->if_xname);
|
|
unp->unp_mcastactive = false;
|
|
unp->unp_if_flags = 0;
|
|
mutex_exit(&unp->unp_mcastlock);
|
|
}
|
|
|
|
/*
|
|
* Prevent new activity (rescheduling ticks, xfers, &c.) and
|
|
* clear the watchdog timer.
|
|
*/
|
|
mutex_enter(&unp->unp_miilock);
|
|
unp->unp_stopped = true;
|
|
mutex_exit(&unp->unp_miilock);
|
|
|
|
mutex_enter(&unp->unp_rxlock);
|
|
unp->unp_rxstopped = true;
|
|
mutex_exit(&unp->unp_rxlock);
|
|
|
|
mutex_enter(&unp->unp_txlock);
|
|
unp->unp_txstopped = true;
|
|
unp->unp_timer = 0;
|
|
mutex_exit(&unp->unp_txlock);
|
|
|
|
/*
|
|
* Stop the timer first, then the task -- if the timer was
|
|
* already firing, we stop the task or wait for it complete
|
|
* only after it last fired. Setting unp_stopped prevents the
|
|
* timer task from being scheduled again.
|
|
*/
|
|
callout_halt(&unp->unp_stat_ch, NULL);
|
|
usb_rem_task_wait(un->un_udev, &unp->unp_ticktask, USB_TASKQ_DRIVER,
|
|
NULL);
|
|
|
|
/*
|
|
* Now that we have stopped calling mii_tick, bring the MII
|
|
* state machine down.
|
|
*/
|
|
if (mii) {
|
|
mutex_enter(&unp->unp_miilock);
|
|
mii_down(mii);
|
|
mutex_exit(&unp->unp_miilock);
|
|
}
|
|
|
|
/* Stop transfers. */
|
|
usbnet_ep_stop_pipes(un);
|
|
|
|
/*
|
|
* Now that the software is quiescent, ask the driver to stop
|
|
* the hardware. The driver's uno_stop routine now has
|
|
* exclusive access to any registers that might previously have
|
|
* been used by to ifmedia, mii, or ioctl callbacks.
|
|
*
|
|
* Don't bother if the device is being detached, though -- if
|
|
* it's been unplugged then there's no point in trying to touch
|
|
* the registers.
|
|
*/
|
|
if (!usbnet_isdying(un))
|
|
uno_stop(un, ifp, disable);
|
|
|
|
/* Free RX/TX resources. */
|
|
usbnet_rx_list_fini(un);
|
|
usbnet_tx_list_fini(un);
|
|
|
|
/* Close pipes. */
|
|
usbnet_ep_close_pipes(un);
|
|
|
|
/* Everything is quesced now. */
|
|
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
}
|
|
|
|
static void
|
|
usbnet_if_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct usbnet * const un = ifp->if_softc;
|
|
|
|
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
|
|
|
|
/*
|
|
* If we're already stopped, nothing to do.
|
|
*
|
|
* XXX This should be an assertion, but it may require some
|
|
* analysis -- and possibly some tweaking -- of sys/net to
|
|
* ensure.
|
|
*/
|
|
if ((ifp->if_flags & IFF_RUNNING) == 0)
|
|
return;
|
|
|
|
usbnet_stop(un, ifp, disable);
|
|
}
|
|
|
|
/*
|
|
* Generic tick task function.
|
|
*
|
|
* usbnet_tick() is triggered from a callout, and triggers a call to
|
|
* usbnet_tick_task() from the usb_task subsystem.
|
|
*/
|
|
static void
|
|
usbnet_tick(void *arg)
|
|
{
|
|
USBNETHIST_FUNC();
|
|
struct usbnet * const un = arg;
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
|
|
USBNETHIST_CALLARGSN(10, "%jd: enter", unp->unp_number, 0, 0, 0);
|
|
|
|
/* Perform periodic stuff in process context */
|
|
usb_add_task(un->un_udev, &unp->unp_ticktask, USB_TASKQ_DRIVER);
|
|
}
|
|
|
|
static void
|
|
usbnet_watchdog(struct ifnet *ifp)
|
|
{
|
|
USBNETHIST_FUNC(); USBNETHIST_CALLED();
|
|
struct usbnet * const un = ifp->if_softc;
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
struct usbnet_cdata * const cd = un_cdata(un);
|
|
|
|
if_statinc(ifp, if_oerrors);
|
|
device_printf(un->un_dev, "watchdog timeout\n");
|
|
|
|
if (cd->uncd_tx_cnt > 0) {
|
|
DPRINTF("uncd_tx_cnt=%ju non zero, aborting pipe", 0, 0, 0, 0);
|
|
usbd_abort_pipe(unp->unp_ep[USBNET_ENDPT_TX]);
|
|
if (cd->uncd_tx_cnt != 0)
|
|
DPRINTF("uncd_tx_cnt now %ju", cd->uncd_tx_cnt, 0, 0, 0);
|
|
}
|
|
|
|
if (!IFQ_IS_EMPTY(&ifp->if_snd))
|
|
(*ifp->if_start)(ifp);
|
|
}
|
|
|
|
static void
|
|
usbnet_tick_task(void *arg)
|
|
{
|
|
USBNETHIST_FUNC();
|
|
struct usbnet * const un = arg;
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
struct ifnet * const ifp = usbnet_ifp(un);
|
|
struct mii_data * const mii = usbnet_mii(un);
|
|
|
|
USBNETHIST_CALLARGSN(8, "%jd: enter", unp->unp_number, 0, 0, 0);
|
|
|
|
mutex_enter(&unp->unp_txlock);
|
|
const bool timeout = unp->unp_timer != 0 && --unp->unp_timer == 0;
|
|
mutex_exit(&unp->unp_txlock);
|
|
if (timeout)
|
|
usbnet_watchdog(ifp);
|
|
|
|
/* Call driver if requested. */
|
|
uno_tick(un);
|
|
|
|
mutex_enter(&unp->unp_miilock);
|
|
DPRINTFN(8, "mii %#jx ifp %#jx", (uintptr_t)mii, (uintptr_t)ifp, 0, 0);
|
|
if (mii) {
|
|
mii_tick(mii);
|
|
if (!unp->unp_link)
|
|
(*mii->mii_statchg)(ifp);
|
|
}
|
|
|
|
if (!unp->unp_stopped && !usbnet_isdying(un))
|
|
callout_schedule(&unp->unp_stat_ch, hz);
|
|
mutex_exit(&unp->unp_miilock);
|
|
}
|
|
|
|
static int
|
|
usbnet_if_init(struct ifnet *ifp)
|
|
{
|
|
USBNETHIST_FUNC(); USBNETHIST_CALLED();
|
|
struct usbnet * const un = ifp->if_softc;
|
|
int error;
|
|
|
|
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
|
|
|
|
/*
|
|
* Prevent anyone from bringing the interface back up once
|
|
* we're detaching.
|
|
*/
|
|
if (usbnet_isdying(un))
|
|
return EIO;
|
|
|
|
/*
|
|
* If we're already running, stop the interface first -- we're
|
|
* reinitializing it.
|
|
*
|
|
* XXX Grody for sys/net to call if_init to reinitialize. This
|
|
* should be an assertion, not a branch, but it will require
|
|
* some tweaking of sys/net to avoid. See also the comment in
|
|
* usbnet_ifflags_cb about if_init vs uno_mcast on reinitalize.
|
|
*/
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
usbnet_stop(un, ifp, /*disable*/1/*XXX???*/);
|
|
KASSERTMSG((ifp->if_flags & IFF_RUNNING) == 0, "%s", ifp->if_xname);
|
|
|
|
error = uno_init(un, ifp);
|
|
if (error)
|
|
return error;
|
|
error = usbnet_init_rx_tx(un);
|
|
if (error)
|
|
return error;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Various accessors. */
|
|
|
|
void
|
|
usbnet_set_link(struct usbnet *un, bool link)
|
|
{
|
|
usbnet_isowned_mii(un);
|
|
un->un_pri->unp_link = link;
|
|
}
|
|
|
|
struct ifnet *
|
|
usbnet_ifp(struct usbnet *un)
|
|
{
|
|
return &un->un_pri->unp_ec.ec_if;
|
|
}
|
|
|
|
struct ethercom *
|
|
usbnet_ec(struct usbnet *un)
|
|
{
|
|
return &un->un_pri->unp_ec;
|
|
}
|
|
|
|
struct mii_data *
|
|
usbnet_mii(struct usbnet *un)
|
|
{
|
|
return un->un_pri->unp_ec.ec_mii;
|
|
}
|
|
|
|
krndsource_t *
|
|
usbnet_rndsrc(struct usbnet *un)
|
|
{
|
|
return &un->un_pri->unp_rndsrc;
|
|
}
|
|
|
|
void *
|
|
usbnet_softc(struct usbnet *un)
|
|
{
|
|
return un->un_sc;
|
|
}
|
|
|
|
bool
|
|
usbnet_havelink(struct usbnet *un)
|
|
{
|
|
return un->un_pri->unp_link;
|
|
}
|
|
|
|
bool
|
|
usbnet_isdying(struct usbnet *un)
|
|
{
|
|
return atomic_load_relaxed(&un->un_pri->unp_dying);
|
|
}
|
|
|
|
|
|
/* Locking. */
|
|
|
|
static void
|
|
usbnet_isowned_rx(struct usbnet *un)
|
|
{
|
|
KASSERT(mutex_owned(&un->un_pri->unp_rxlock));
|
|
}
|
|
|
|
static void
|
|
usbnet_isowned_tx(struct usbnet *un)
|
|
{
|
|
KASSERT(mutex_owned(&un->un_pri->unp_txlock));
|
|
}
|
|
|
|
/* Autoconf management. */
|
|
|
|
static bool
|
|
usbnet_empty_eaddr(struct usbnet * const un)
|
|
{
|
|
return (un->un_eaddr[0] == 0 && un->un_eaddr[1] == 0 &&
|
|
un->un_eaddr[2] == 0 && un->un_eaddr[3] == 0 &&
|
|
un->un_eaddr[4] == 0 && un->un_eaddr[5] == 0);
|
|
}
|
|
|
|
/*
|
|
* usbnet_attach() and usbnet_attach_ifp() perform setup of the relevant
|
|
* 'usbnet'. The first is enough to enable device access (eg, endpoints
|
|
* are connected and commands can be sent), and the second connects the
|
|
* device to the system networking.
|
|
*
|
|
* Always call usbnet_detach(), even if usbnet_attach_ifp() is skipped.
|
|
* Also usable as driver detach directly.
|
|
*
|
|
* To skip ethernet configuration (eg, point-to-point), make sure that
|
|
* the un_eaddr[] is fully zero.
|
|
*/
|
|
|
|
void
|
|
usbnet_attach(struct usbnet *un)
|
|
{
|
|
USBNETHIST_FUNC(); USBNETHIST_CALLED();
|
|
|
|
/* Required inputs. */
|
|
KASSERT(un->un_ops->uno_tx_prepare);
|
|
KASSERT(un->un_ops->uno_rx_loop);
|
|
KASSERT(un->un_rx_bufsz);
|
|
KASSERT(un->un_tx_bufsz);
|
|
KASSERT(un->un_rx_list_cnt);
|
|
KASSERT(un->un_tx_list_cnt);
|
|
|
|
/* Unfortunate fact. */
|
|
KASSERT(un == device_private(un->un_dev));
|
|
|
|
un->un_pri = kmem_zalloc(sizeof(*un->un_pri), KM_SLEEP);
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
|
|
usb_init_task(&unp->unp_ticktask, usbnet_tick_task, un,
|
|
USB_TASKQ_MPSAFE);
|
|
callout_init(&unp->unp_stat_ch, CALLOUT_MPSAFE);
|
|
callout_setfunc(&unp->unp_stat_ch, usbnet_tick, un);
|
|
|
|
mutex_init(&unp->unp_txlock, MUTEX_DEFAULT, IPL_SOFTUSB);
|
|
mutex_init(&unp->unp_rxlock, MUTEX_DEFAULT, IPL_SOFTUSB);
|
|
mutex_init(&unp->unp_miilock, MUTEX_DEFAULT, IPL_NONE);
|
|
mutex_init(&unp->unp_mcastlock, MUTEX_DEFAULT, IPL_SOFTCLOCK);
|
|
|
|
rnd_attach_source(&unp->unp_rndsrc, device_xname(un->un_dev),
|
|
RND_TYPE_NET, RND_FLAG_DEFAULT);
|
|
|
|
usbnet_rx_list_alloc(un);
|
|
usbnet_tx_list_alloc(un);
|
|
|
|
unp->unp_number = atomic_inc_uint_nv(&usbnet_number);
|
|
|
|
unp->unp_stopped = true;
|
|
unp->unp_rxstopped = true;
|
|
unp->unp_txstopped = true;
|
|
unp->unp_attached = true;
|
|
}
|
|
|
|
static void
|
|
usbnet_attach_mii(struct usbnet *un, const struct usbnet_mii *unm)
|
|
{
|
|
USBNETHIST_FUNC(); USBNETHIST_CALLED();
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
struct mii_data * const mii = &unp->unp_mii;
|
|
struct ifnet * const ifp = usbnet_ifp(un);
|
|
|
|
KASSERT(un->un_ops->uno_read_reg);
|
|
KASSERT(un->un_ops->uno_write_reg);
|
|
KASSERT(un->un_ops->uno_statchg);
|
|
|
|
mii->mii_ifp = ifp;
|
|
mii->mii_readreg = usbnet_mii_readreg;
|
|
mii->mii_writereg = usbnet_mii_writereg;
|
|
mii->mii_statchg = usbnet_mii_statchg;
|
|
mii->mii_flags = MIIF_AUTOTSLEEP;
|
|
|
|
usbnet_ec(un)->ec_mii = mii;
|
|
ifmedia_init_with_lock(&mii->mii_media, 0,
|
|
usbnet_media_upd, ether_mediastatus, &unp->unp_miilock);
|
|
mii_attach(un->un_dev, mii, unm->un_mii_capmask, unm->un_mii_phyloc,
|
|
unm->un_mii_offset, unm->un_mii_flags);
|
|
|
|
if (LIST_FIRST(&mii->mii_phys) == NULL) {
|
|
ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
|
|
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
|
|
} else
|
|
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
|
|
}
|
|
|
|
void
|
|
usbnet_attach_ifp(struct usbnet *un,
|
|
unsigned if_flags, /* additional if_flags */
|
|
unsigned if_extflags, /* additional if_extflags */
|
|
const struct usbnet_mii *unm) /* additional mii_attach flags */
|
|
{
|
|
USBNETHIST_FUNC(); USBNETHIST_CALLED();
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
struct ifnet * const ifp = usbnet_ifp(un);
|
|
|
|
KASSERT(unp->unp_attached);
|
|
KASSERT(!unp->unp_ifp_attached);
|
|
|
|
ifp->if_softc = un;
|
|
strlcpy(ifp->if_xname, device_xname(un->un_dev), IFNAMSIZ);
|
|
ifp->if_flags = if_flags;
|
|
ifp->if_extflags = IFEF_MPSAFE | if_extflags;
|
|
ifp->if_ioctl = usbnet_if_ioctl;
|
|
ifp->if_start = usbnet_if_start;
|
|
ifp->if_init = usbnet_if_init;
|
|
ifp->if_stop = usbnet_if_stop;
|
|
|
|
if (unm)
|
|
usbnet_attach_mii(un, unm);
|
|
else
|
|
unp->unp_link = true;
|
|
|
|
/* Attach the interface. */
|
|
if_initialize(ifp);
|
|
if (ifp->_if_input == NULL)
|
|
ifp->if_percpuq = if_percpuq_create(ifp);
|
|
if_register(ifp);
|
|
unp->unp_ifp_attached = true;
|
|
|
|
/*
|
|
* If ethernet address is all zero, skip ether_ifattach() and
|
|
* instead attach bpf here..
|
|
*/
|
|
if (!usbnet_empty_eaddr(un)) {
|
|
ether_set_ifflags_cb(&unp->unp_ec, usbnet_ifflags_cb);
|
|
aprint_normal_dev(un->un_dev, "Ethernet address %s\n",
|
|
ether_sprintf(un->un_eaddr));
|
|
ether_ifattach(ifp, un->un_eaddr);
|
|
} else {
|
|
if_alloc_sadl(ifp);
|
|
bpf_attach(ifp, DLT_RAW, 0);
|
|
}
|
|
|
|
/* Now ready, and attached. */
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, un->un_udev, un->un_dev);
|
|
|
|
if (!pmf_device_register(un->un_dev, NULL, NULL))
|
|
aprint_error_dev(un->un_dev, "couldn't establish power handler\n");
|
|
}
|
|
|
|
int
|
|
usbnet_detach(device_t self, int flags)
|
|
{
|
|
USBNETHIST_FUNC(); USBNETHIST_CALLED();
|
|
struct usbnet * const un = device_private(self);
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
|
|
/* Detached before attached finished, so just bail out. */
|
|
if (unp == NULL || !unp->unp_attached)
|
|
return 0;
|
|
|
|
struct ifnet * const ifp = usbnet_ifp(un);
|
|
struct mii_data * const mii = usbnet_mii(un);
|
|
|
|
/*
|
|
* Prevent new activity. After we stop the interface, it
|
|
* cannot be brought back up.
|
|
*/
|
|
atomic_store_relaxed(&unp->unp_dying, true);
|
|
|
|
/*
|
|
* If we're still running on the network, stop and wait for all
|
|
* asynchronous activity to finish.
|
|
*
|
|
* If usbnet_attach_ifp never ran, IFNET_LOCK won't work, but
|
|
* no activity is possible, so just skip this part.
|
|
*/
|
|
if (unp->unp_ifp_attached) {
|
|
IFNET_LOCK(ifp);
|
|
if (ifp->if_flags & IFF_RUNNING) {
|
|
usbnet_if_stop(ifp, 1);
|
|
}
|
|
IFNET_UNLOCK(ifp);
|
|
}
|
|
|
|
/*
|
|
* The callout and tick task can't be scheduled anew at this
|
|
* point, and usbnet_if_stop has waited for them to complete.
|
|
*/
|
|
KASSERT(!callout_pending(&unp->unp_stat_ch));
|
|
KASSERT(!usb_task_pending(un->un_udev, &unp->unp_ticktask));
|
|
|
|
if (mii) {
|
|
mii_detach(mii, MII_PHY_ANY, MII_OFFSET_ANY);
|
|
ifmedia_fini(&mii->mii_media);
|
|
}
|
|
if (unp->unp_ifp_attached) {
|
|
if (!usbnet_empty_eaddr(un))
|
|
ether_ifdetach(ifp);
|
|
else
|
|
bpf_detach(ifp);
|
|
if_detach(ifp);
|
|
}
|
|
usbnet_ec(un)->ec_mii = NULL;
|
|
|
|
usbnet_rx_list_free(un);
|
|
usbnet_tx_list_free(un);
|
|
|
|
rnd_detach_source(&unp->unp_rndsrc);
|
|
|
|
mutex_destroy(&unp->unp_mcastlock);
|
|
mutex_destroy(&unp->unp_miilock);
|
|
mutex_destroy(&unp->unp_rxlock);
|
|
mutex_destroy(&unp->unp_txlock);
|
|
|
|
callout_destroy(&unp->unp_stat_ch);
|
|
|
|
pmf_device_deregister(un->un_dev);
|
|
|
|
/*
|
|
* Notify userland that we're going away, if we arrived in the
|
|
* first place.
|
|
*/
|
|
if (unp->unp_ifp_attached) {
|
|
usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, un->un_udev,
|
|
un->un_dev);
|
|
}
|
|
|
|
kmem_free(unp, sizeof(*unp));
|
|
un->un_pri = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
usbnet_activate(device_t self, devact_t act)
|
|
{
|
|
USBNETHIST_FUNC(); USBNETHIST_CALLED();
|
|
struct usbnet * const un = device_private(self);
|
|
struct usbnet_private * const unp = un->un_pri;
|
|
struct ifnet * const ifp = usbnet_ifp(un);
|
|
|
|
switch (act) {
|
|
case DVACT_DEACTIVATE:
|
|
if_deactivate(ifp);
|
|
|
|
atomic_store_relaxed(&unp->unp_dying, true);
|
|
|
|
mutex_enter(&unp->unp_miilock);
|
|
unp->unp_stopped = true;
|
|
mutex_exit(&unp->unp_miilock);
|
|
|
|
mutex_enter(&unp->unp_rxlock);
|
|
unp->unp_rxstopped = true;
|
|
mutex_exit(&unp->unp_rxlock);
|
|
|
|
mutex_enter(&unp->unp_txlock);
|
|
unp->unp_txstopped = true;
|
|
mutex_exit(&unp->unp_txlock);
|
|
|
|
return 0;
|
|
default:
|
|
return EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
MODULE(MODULE_CLASS_MISC, usbnet, NULL);
|
|
|
|
static int
|
|
usbnet_modcmd(modcmd_t cmd, void *arg)
|
|
{
|
|
switch (cmd) {
|
|
case MODULE_CMD_INIT:
|
|
return 0;
|
|
case MODULE_CMD_FINI:
|
|
return 0;
|
|
case MODULE_CMD_STAT:
|
|
case MODULE_CMD_AUTOUNLOAD:
|
|
default:
|
|
return ENOTTY;
|
|
}
|
|
}
|