NetBSD/sys/dev/usb/motg.c

2222 lines
59 KiB
C

/* $NetBSD: motg.c,v 1.41 2022/03/09 22:17:41 riastradh Exp $ */
/*
* Copyright (c) 1998, 2004, 2011, 2012, 2014 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (lennart@augustsson.net) at
* Carlstedt Research & Technology, Jared D. McNeill (jmcneill@invisible.ca),
* Matthew R. Green (mrg@eterna.com.au), and Manuel Bouyer (bouyer@netbsd.org).
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This file contains the driver for the Mentor Graphics Inventra USB
* 2.0 High Speed Dual-Role controller.
*
* NOTE: The current implementation only supports Device Side Mode!
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: motg.c,v 1.41 2022/03/09 22:17:41 riastradh Exp $");
#ifdef _KERNEL_OPT
#include "opt_usb.h"
#endif
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/select.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <machine/endian.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usb_mem.h>
#include <dev/usb/usbhist.h>
#include <dev/usb/motgreg.h>
#include <dev/usb/motgvar.h>
#include <dev/usb/usbroothub.h>
#ifdef USB_DEBUG
#ifndef MOTG_DEBUG
#define motgdebug 0
#else
int motgdebug = 0;
SYSCTL_SETUP(sysctl_hw_motg_setup, "sysctl hw.motg setup")
{
int err;
const struct sysctlnode *rnode;
const struct sysctlnode *cnode;
err = sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "motg",
SYSCTL_DESCR("motg global controls"),
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
if (err)
goto fail;
/* control debugging printfs */
err = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
"debug", SYSCTL_DESCR("Enable debugging output"),
NULL, 0, &motgdebug, sizeof(motgdebug), CTL_CREATE, CTL_EOL);
if (err)
goto fail;
return;
fail:
aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
}
#endif /* MOTG_DEBUG */
#endif /* USB_DEBUG */
#define MD_ROOT 0x0002
#define MD_CTRL 0x0004
#define MD_BULK 0x0008
#define DPRINTF(FMT,A,B,C,D) USBHIST_LOGN(motgdebug,1,FMT,A,B,C,D)
#define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGM(motgdebug,N,FMT,A,B,C,D)
#define MOTGHIST_FUNC() USBHIST_FUNC()
#define MOTGHIST_CALLED(name) USBHIST_CALLED(motgdebug)
/* various timeouts, for various speeds */
/* control NAK timeouts */
#define NAK_TO_CTRL 10 /* 1024 frames, about 1s */
#define NAK_TO_CTRL_HIGH 13 /* 8k microframes, about 0.8s */
/* intr/iso polling intervals */
#define POLL_TO 100 /* 100 frames, about 0.1s */
#define POLL_TO_HIGH 10 /* 100 microframes, about 0.12s */
/* bulk NAK timeouts */
#define NAK_TO_BULK 0 /* disabled */
#define NAK_TO_BULK_HIGH 0
static void motg_hub_change(struct motg_softc *);
static usbd_status motg_root_intr_transfer(struct usbd_xfer *);
static usbd_status motg_root_intr_start(struct usbd_xfer *);
static void motg_root_intr_abort(struct usbd_xfer *);
static void motg_root_intr_close(struct usbd_pipe *);
static void motg_root_intr_done(struct usbd_xfer *);
static usbd_status motg_open(struct usbd_pipe *);
static void motg_poll(struct usbd_bus *);
static void motg_softintr(void *);
static struct usbd_xfer *
motg_allocx(struct usbd_bus *, unsigned int);
static void motg_freex(struct usbd_bus *, struct usbd_xfer *);
static bool motg_dying(struct usbd_bus *);
static void motg_get_lock(struct usbd_bus *, kmutex_t **);
static int motg_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
void *, int);
static void motg_noop(struct usbd_pipe *pipe);
static usbd_status motg_portreset(struct motg_softc*);
static usbd_status motg_device_ctrl_transfer(struct usbd_xfer *);
static usbd_status motg_device_ctrl_start(struct usbd_xfer *);
static void motg_device_ctrl_abort(struct usbd_xfer *);
static void motg_device_ctrl_close(struct usbd_pipe *);
static void motg_device_ctrl_done(struct usbd_xfer *);
static usbd_status motg_device_ctrl_start1(struct motg_softc *);
static void motg_device_ctrl_read(struct usbd_xfer *);
static void motg_device_ctrl_intr_rx(struct motg_softc *);
static void motg_device_ctrl_intr_tx(struct motg_softc *);
static usbd_status motg_device_data_transfer(struct usbd_xfer *);
static usbd_status motg_device_data_start(struct usbd_xfer *);
static usbd_status motg_device_data_start1(struct motg_softc *,
struct motg_hw_ep *);
static void motg_device_data_abort(struct usbd_xfer *);
static void motg_device_data_close(struct usbd_pipe *);
static void motg_device_data_done(struct usbd_xfer *);
static void motg_device_intr_rx(struct motg_softc *, int);
static void motg_device_intr_tx(struct motg_softc *, int);
static void motg_device_data_read(struct usbd_xfer *);
static void motg_device_data_write(struct usbd_xfer *);
static void motg_device_clear_toggle(struct usbd_pipe *);
static void motg_abortx(struct usbd_xfer *);
#define UBARR(sc) bus_space_barrier((sc)->sc_iot, (sc)->sc_ioh, 0, (sc)->sc_size, \
BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE)
#define UWRITE1(sc, r, x) \
do { UBARR(sc); bus_space_write_1((sc)->sc_iot, (sc)->sc_ioh, (r), (x)); \
} while (/*CONSTCOND*/0)
#define UWRITE2(sc, r, x) \
do { UBARR(sc); bus_space_write_2((sc)->sc_iot, (sc)->sc_ioh, (r), (x)); \
} while (/*CONSTCOND*/0)
#define UWRITE4(sc, r, x) \
do { UBARR(sc); bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (r), (x)); \
} while (/*CONSTCOND*/0)
static __inline uint32_t
UREAD1(struct motg_softc *sc, bus_size_t r)
{
UBARR(sc);
return bus_space_read_1(sc->sc_iot, sc->sc_ioh, r);
}
static __inline uint32_t
UREAD2(struct motg_softc *sc, bus_size_t r)
{
UBARR(sc);
return bus_space_read_2(sc->sc_iot, sc->sc_ioh, r);
}
#if 0
static __inline uint32_t
UREAD4(struct motg_softc *sc, bus_size_t r)
{
UBARR(sc);
return bus_space_read_4(sc->sc_iot, sc->sc_ioh, r);
}
#endif
static void
musbotg_pull_common(struct motg_softc *sc, uint8_t on)
{
uint8_t val;
val = UREAD1(sc, MUSB2_REG_POWER);
if (on)
val |= MUSB2_MASK_SOFTC;
else
val &= ~MUSB2_MASK_SOFTC;
UWRITE1(sc, MUSB2_REG_POWER, val);
}
const struct usbd_bus_methods motg_bus_methods = {
.ubm_open = motg_open,
.ubm_softint = motg_softintr,
.ubm_dopoll = motg_poll,
.ubm_allocx = motg_allocx,
.ubm_freex = motg_freex,
.ubm_abortx = motg_abortx,
.ubm_dying = motg_dying,
.ubm_getlock = motg_get_lock,
.ubm_rhctrl = motg_roothub_ctrl,
};
const struct usbd_pipe_methods motg_root_intr_methods = {
.upm_transfer = motg_root_intr_transfer,
.upm_start = motg_root_intr_start,
.upm_abort = motg_root_intr_abort,
.upm_close = motg_root_intr_close,
.upm_cleartoggle = motg_noop,
.upm_done = motg_root_intr_done,
};
const struct usbd_pipe_methods motg_device_ctrl_methods = {
.upm_transfer = motg_device_ctrl_transfer,
.upm_start = motg_device_ctrl_start,
.upm_abort = motg_device_ctrl_abort,
.upm_close = motg_device_ctrl_close,
.upm_cleartoggle = motg_noop,
.upm_done = motg_device_ctrl_done,
};
const struct usbd_pipe_methods motg_device_data_methods = {
.upm_transfer = motg_device_data_transfer,
.upm_start = motg_device_data_start,
.upm_abort = motg_device_data_abort,
.upm_close = motg_device_data_close,
.upm_cleartoggle = motg_device_clear_toggle,
.upm_done = motg_device_data_done,
};
int
motg_init(struct motg_softc *sc)
{
uint32_t nrx, ntx, val;
int dynfifo;
int offset, i;
MOTGHIST_FUNC(); MOTGHIST_CALLED();
if (sc->sc_mode == MOTG_MODE_DEVICE)
return ENOTSUP; /* not supported */
/* disable all interrupts */
UWRITE1(sc, MUSB2_REG_INTUSBE, 0);
UWRITE2(sc, MUSB2_REG_INTTXE, 0);
UWRITE2(sc, MUSB2_REG_INTRXE, 0);
/* disable pullup */
musbotg_pull_common(sc, 0);
#ifdef MUSB2_REG_RXDBDIS
/* disable double packet buffering XXX what's this ? */
UWRITE2(sc, MUSB2_REG_RXDBDIS, 0xFFFF);
UWRITE2(sc, MUSB2_REG_TXDBDIS, 0xFFFF);
#endif
/* enable HighSpeed and ISO Update flags */
UWRITE1(sc, MUSB2_REG_POWER,
MUSB2_MASK_HSENAB | MUSB2_MASK_ISOUPD);
if (sc->sc_mode == MOTG_MODE_DEVICE) {
/* clear Session bit, if set */
val = UREAD1(sc, MUSB2_REG_DEVCTL);
val &= ~MUSB2_MASK_SESS;
UWRITE1(sc, MUSB2_REG_DEVCTL, val);
} else {
/* Enter session for Host mode */
val = UREAD1(sc, MUSB2_REG_DEVCTL);
val |= MUSB2_MASK_SESS;
UWRITE1(sc, MUSB2_REG_DEVCTL, val);
}
delay(1000);
DPRINTF("DEVCTL %#jx", UREAD1(sc, MUSB2_REG_DEVCTL), 0, 0, 0);
/* disable testmode */
UWRITE1(sc, MUSB2_REG_TESTMODE, 0);
#ifdef MUSB2_REG_MISC
/* set default value */
UWRITE1(sc, MUSB2_REG_MISC, 0);
#endif
/* select endpoint index 0 */
UWRITE1(sc, MUSB2_REG_EPINDEX, 0);
if (sc->sc_ep_max == 0) {
/* read out number of endpoints */
nrx = (UREAD1(sc, MUSB2_REG_EPINFO) / 16);
ntx = (UREAD1(sc, MUSB2_REG_EPINFO) % 16);
/* these numbers exclude the control endpoint */
DPRINTFN(1,"RX/TX endpoints: %ju/%ju", nrx, ntx, 0, 0);
sc->sc_ep_max = MAX(nrx, ntx);
} else {
nrx = ntx = sc->sc_ep_max;
}
if (sc->sc_ep_max == 0) {
aprint_error_dev(sc->sc_dev, " no endpoints\n");
return -1;
}
KASSERT(sc->sc_ep_max <= MOTG_MAX_HW_EP);
/* read out configuration data */
val = UREAD1(sc, MUSB2_REG_CONFDATA);
DPRINTF("Config Data: 0x%02jx", val, 0, 0, 0);
dynfifo = (val & MUSB2_MASK_CD_DYNFIFOSZ) ? 1 : 0;
if (dynfifo) {
aprint_normal_dev(sc->sc_dev, "Dynamic FIFO sizing detected, "
"assuming 16Kbytes of FIFO RAM\n");
}
DPRINTF("HW version: 0x%04jx\n", UREAD1(sc, MUSB2_REG_HWVERS), 0, 0, 0);
/* initialise endpoint profiles */
sc->sc_in_ep[0].ep_fifo_size = 64;
sc->sc_out_ep[0].ep_fifo_size = 0; /* not used */
sc->sc_out_ep[0].ep_number = sc->sc_in_ep[0].ep_number = 0;
SIMPLEQ_INIT(&sc->sc_in_ep[0].ep_pipes);
offset = 64;
for (i = 1; i <= sc->sc_ep_max; i++) {
int fiforx_size, fifotx_size, fifo_size;
/* select endpoint */
UWRITE1(sc, MUSB2_REG_EPINDEX, i);
if (sc->sc_ep_fifosize) {
fiforx_size = fifotx_size = sc->sc_ep_fifosize;
} else {
val = UREAD1(sc, MUSB2_REG_FSIZE);
fiforx_size = (val & MUSB2_MASK_RX_FSIZE) >> 4;
fifotx_size = (val & MUSB2_MASK_TX_FSIZE);
}
DPRINTF("Endpoint %ju FIFO size: IN=%ju, OUT=%ju, DYN=%jd",
i, fifotx_size, fiforx_size, dynfifo);
if (dynfifo) {
if (sc->sc_ep_fifosize) {
fifo_size = ffs(sc->sc_ep_fifosize) - 1;
} else {
if (i < 3) {
fifo_size = 12; /* 4K */
} else if (i < 10) {
fifo_size = 10; /* 1K */
} else {
fifo_size = 7; /* 128 bytes */
}
}
if (fiforx_size && (i <= nrx)) {
fiforx_size = fifo_size;
if (fifo_size > 7) {
#if 0
UWRITE1(sc, MUSB2_REG_RXFIFOSZ,
MUSB2_VAL_FIFOSZ(fifo_size) |
MUSB2_MASK_FIFODB);
#else
UWRITE1(sc, MUSB2_REG_RXFIFOSZ,
MUSB2_VAL_FIFOSZ(fifo_size));
#endif
} else {
UWRITE1(sc, MUSB2_REG_RXFIFOSZ,
MUSB2_VAL_FIFOSZ(fifo_size));
}
UWRITE2(sc, MUSB2_REG_RXFIFOADD,
offset >> 3);
offset += (1 << fiforx_size);
}
if (fifotx_size && (i <= ntx)) {
fifotx_size = fifo_size;
if (fifo_size > 7) {
#if 0
UWRITE1(sc, MUSB2_REG_TXFIFOSZ,
MUSB2_VAL_FIFOSZ(fifo_size) |
MUSB2_MASK_FIFODB);
#else
UWRITE1(sc, MUSB2_REG_TXFIFOSZ,
MUSB2_VAL_FIFOSZ(fifo_size));
#endif
} else {
UWRITE1(sc, MUSB2_REG_TXFIFOSZ,
MUSB2_VAL_FIFOSZ(fifo_size));
}
UWRITE2(sc, MUSB2_REG_TXFIFOADD,
offset >> 3);
offset += (1 << fifotx_size);
}
}
if (fiforx_size && (i <= nrx)) {
sc->sc_in_ep[i].ep_fifo_size = (1 << fiforx_size);
SIMPLEQ_INIT(&sc->sc_in_ep[i].ep_pipes);
}
if (fifotx_size && (i <= ntx)) {
sc->sc_out_ep[i].ep_fifo_size = (1 << fifotx_size);
SIMPLEQ_INIT(&sc->sc_out_ep[i].ep_pipes);
}
sc->sc_out_ep[i].ep_number = sc->sc_in_ep[i].ep_number = i;
}
DPRINTF("Dynamic FIFO size = %jd bytes", offset, 0, 0, 0);
/* turn on default interrupts */
if (sc->sc_mode == MOTG_MODE_HOST) {
UWRITE1(sc, MUSB2_REG_INTUSBE, 0xff);
UWRITE2(sc, MUSB2_REG_INTTXE, 0xffff);
UWRITE2(sc, MUSB2_REG_INTRXE, 0xffff);
} else
UWRITE1(sc, MUSB2_REG_INTUSBE, MUSB2_MASK_IRESET);
sc->sc_xferpool = pool_cache_init(sizeof(struct motg_xfer), 0, 0, 0,
"motgxfer", NULL, IPL_USB, NULL, NULL, NULL);
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB);
/* Set up the bus struct. */
sc->sc_bus.ub_methods = &motg_bus_methods;
sc->sc_bus.ub_pipesize= sizeof(struct motg_pipe);
sc->sc_bus.ub_revision = USBREV_2_0;
sc->sc_bus.ub_usedma = false;
sc->sc_bus.ub_hcpriv = sc;
sc->sc_child = config_found(sc->sc_dev, &sc->sc_bus, usbctlprint,
CFARGS_NONE);
return 0;
}
static int
motg_select_ep(struct motg_softc *sc, struct usbd_pipe *pipe)
{
struct motg_pipe *otgpipe = MOTG_PIPE2MPIPE(pipe);
usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc;
struct motg_hw_ep *ep;
int i, size;
MOTGHIST_FUNC(); MOTGHIST_CALLED();
ep = (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN) ?
sc->sc_in_ep : sc->sc_out_ep;
size = UE_GET_SIZE(UGETW(pipe->up_endpoint->ue_edesc->wMaxPacketSize));
for (i = sc->sc_ep_max; i >= 1; i--) {
DPRINTF(UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN ?
"in_ep[%jd].ep_fifo_size %jd size %jd ref %jd" :
"out_ep[%jd].ep_fifo_size %jd size %jd ref %jd", i,
ep[i].ep_fifo_size, size, ep[i].refcount);
if (ep[i].ep_fifo_size >= size) {
/* found a suitable endpoint */
otgpipe->hw_ep = &ep[i];
mutex_enter(&sc->sc_lock);
if (otgpipe->hw_ep->refcount > 0) {
/* no luck, try next */
mutex_exit(&sc->sc_lock);
otgpipe->hw_ep = NULL;
} else {
otgpipe->hw_ep->refcount++;
SIMPLEQ_INSERT_TAIL(&otgpipe->hw_ep->ep_pipes,
otgpipe, ep_pipe_list);
mutex_exit(&sc->sc_lock);
return 0;
}
}
}
return -1;
}
/* Open a new pipe. */
usbd_status
motg_open(struct usbd_pipe *pipe)
{
struct motg_softc *sc = MOTG_PIPE2SC(pipe);
struct motg_pipe *otgpipe = MOTG_PIPE2MPIPE(pipe);
usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc;
uint8_t rhaddr = pipe->up_dev->ud_bus->ub_rhaddr;
MOTGHIST_FUNC(); MOTGHIST_CALLED();
DPRINTF("pipe=%#jx, addr=%jd, endpt=%jd (%jd)", (uintptr_t)pipe,
pipe->up_dev->ud_addr, ed->bEndpointAddress, rhaddr);
if (sc->sc_dying)
return USBD_IOERROR;
/* toggle state needed for bulk endpoints */
otgpipe->nexttoggle = pipe->up_endpoint->ue_toggle;
if (pipe->up_dev->ud_addr == rhaddr) {
switch (ed->bEndpointAddress) {
case USB_CONTROL_ENDPOINT:
pipe->up_methods = &roothub_ctrl_methods;
break;
case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
pipe->up_methods = &motg_root_intr_methods;
break;
default:
return USBD_INVAL;
}
} else {
switch (ed->bmAttributes & UE_XFERTYPE) {
case UE_CONTROL:
pipe->up_methods = &motg_device_ctrl_methods;
/* always use sc_in_ep[0] for in and out */
otgpipe->hw_ep = &sc->sc_in_ep[0];
mutex_enter(&sc->sc_lock);
otgpipe->hw_ep->refcount++;
SIMPLEQ_INSERT_TAIL(&otgpipe->hw_ep->ep_pipes,
otgpipe, ep_pipe_list);
mutex_exit(&sc->sc_lock);
break;
case UE_BULK:
case UE_INTERRUPT:
DPRINTFN(MD_BULK,
"type %jd dir %jd pipe wMaxPacketSize %jd",
UE_GET_XFERTYPE(ed->bmAttributes),
UE_GET_DIR(pipe->up_endpoint->ue_edesc->bEndpointAddress),
UGETW(pipe->up_endpoint->ue_edesc->wMaxPacketSize), 0);
if (motg_select_ep(sc, pipe) != 0)
goto bad;
KASSERT(otgpipe->hw_ep != NULL);
pipe->up_methods = &motg_device_data_methods;
otgpipe->nexttoggle = pipe->up_endpoint->ue_toggle;
break;
default:
goto bad;
#ifdef notyet
case UE_ISOCHRONOUS:
...
break;
#endif /* notyet */
}
}
return USBD_NORMAL_COMPLETION;
bad:
return USBD_NOMEM;
}
void
motg_softintr(void *v)
{
struct usbd_bus *bus = v;
struct motg_softc *sc = MOTG_BUS2SC(bus);
uint16_t rx_status, tx_status;
uint8_t ctrl_status;
uint32_t val;
int i;
MOTGHIST_FUNC(); MOTGHIST_CALLED();
KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
DPRINTFN(MD_ROOT | MD_CTRL, "sc %#jx", (uintptr_t)sc, 0 ,0 ,0);
mutex_spin_enter(&sc->sc_intr_lock);
rx_status = sc->sc_intr_rx_ep;
sc->sc_intr_rx_ep = 0;
tx_status = sc->sc_intr_tx_ep;
sc->sc_intr_tx_ep = 0;
ctrl_status = sc->sc_intr_ctrl;
sc->sc_intr_ctrl = 0;
mutex_spin_exit(&sc->sc_intr_lock);
ctrl_status |= UREAD1(sc, MUSB2_REG_INTUSB);
if (ctrl_status & (MUSB2_MASK_IRESET |
MUSB2_MASK_IRESUME | MUSB2_MASK_ISUSP |
MUSB2_MASK_ICONN | MUSB2_MASK_IDISC)) {
DPRINTFN(MD_ROOT | MD_CTRL, "bus %#jx", ctrl_status, 0, 0, 0);
if (ctrl_status & MUSB2_MASK_IRESET) {
sc->sc_isreset = 1;
sc->sc_port_suspended = 0;
sc->sc_port_suspended_change = 1;
sc->sc_connected_changed = 1;
sc->sc_port_enabled = 1;
val = UREAD1(sc, MUSB2_REG_POWER);
if (val & MUSB2_MASK_HSMODE)
sc->sc_high_speed = 1;
else
sc->sc_high_speed = 0;
DPRINTFN(MD_ROOT | MD_CTRL, "speed %jd", sc->sc_high_speed,
0, 0, 0);
/* turn off interrupts */
val = MUSB2_MASK_IRESET;
val &= ~MUSB2_MASK_IRESUME;
val |= MUSB2_MASK_ISUSP;
UWRITE1(sc, MUSB2_REG_INTUSBE, val);
UWRITE2(sc, MUSB2_REG_INTTXE, 0);
UWRITE2(sc, MUSB2_REG_INTRXE, 0);
}
if (ctrl_status & MUSB2_MASK_IRESUME) {
if (sc->sc_port_suspended) {
sc->sc_port_suspended = 0;
sc->sc_port_suspended_change = 1;
val = UREAD1(sc, MUSB2_REG_INTUSBE);
/* disable resume interrupt */
val &= ~MUSB2_MASK_IRESUME;
/* enable suspend interrupt */
val |= MUSB2_MASK_ISUSP;
UWRITE1(sc, MUSB2_REG_INTUSBE, val);
}
} else if (ctrl_status & MUSB2_MASK_ISUSP) {
if (!sc->sc_port_suspended) {
sc->sc_port_suspended = 1;
sc->sc_port_suspended_change = 1;
val = UREAD1(sc, MUSB2_REG_INTUSBE);
/* disable suspend interrupt */
val &= ~MUSB2_MASK_ISUSP;
/* enable resume interrupt */
val |= MUSB2_MASK_IRESUME;
UWRITE1(sc, MUSB2_REG_INTUSBE, val);
}
}
if (ctrl_status & MUSB2_MASK_ICONN) {
sc->sc_connected = 1;
sc->sc_connected_changed = 1;
sc->sc_isreset = 1;
sc->sc_port_enabled = 1;
} else if (ctrl_status & MUSB2_MASK_IDISC) {
sc->sc_connected = 0;
sc->sc_connected_changed = 1;
sc->sc_isreset = 0;
sc->sc_port_enabled = 0;
}
/* complete root HUB interrupt endpoint */
motg_hub_change(sc);
}
/*
* read in interrupt status and mix with the status we
* got from the wrapper
*/
rx_status |= UREAD2(sc, MUSB2_REG_INTRX);
tx_status |= UREAD2(sc, MUSB2_REG_INTTX);
KASSERTMSG((rx_status & 0x01) == 0, "ctrl_rx %08x", rx_status);
if (tx_status & 0x01)
motg_device_ctrl_intr_tx(sc);
for (i = 1; i <= sc->sc_ep_max; i++) {
if (rx_status & (0x01 << i))
motg_device_intr_rx(sc, i);
if (tx_status & (0x01 << i))
motg_device_intr_tx(sc, i);
}
return;
}
void
motg_poll(struct usbd_bus *bus)
{
struct motg_softc *sc = MOTG_BUS2SC(bus);
sc->sc_intr_poll(sc->sc_intr_poll_arg);
mutex_enter(&sc->sc_lock);
motg_softintr(bus);
mutex_exit(&sc->sc_lock);
}
int
motg_intr(struct motg_softc *sc, uint16_t rx_ep, uint16_t tx_ep,
uint8_t ctrl)
{
KASSERT(mutex_owned(&sc->sc_intr_lock));
sc->sc_intr_tx_ep = tx_ep;
sc->sc_intr_rx_ep = rx_ep;
sc->sc_intr_ctrl = ctrl;
if (!sc->sc_bus.ub_usepolling) {
usb_schedsoftintr(&sc->sc_bus);
}
return 1;
}
int
motg_intr_vbus(struct motg_softc *sc, int vbus)
{
uint8_t val;
MOTGHIST_FUNC(); MOTGHIST_CALLED();
if (sc->sc_mode == MOTG_MODE_HOST && vbus == 0) {
DPRINTF("vbus down, try to re-enable", 0, 0, 0, 0);
/* try to re-enter session for Host mode */
val = UREAD1(sc, MUSB2_REG_DEVCTL);
val |= MUSB2_MASK_SESS;
UWRITE1(sc, MUSB2_REG_DEVCTL, val);
}
return 1;
}
struct usbd_xfer *
motg_allocx(struct usbd_bus *bus, unsigned int nframes)
{
struct motg_softc *sc = MOTG_BUS2SC(bus);
struct usbd_xfer *xfer;
xfer = pool_cache_get(sc->sc_xferpool, PR_WAITOK);
if (xfer != NULL) {
memset(xfer, 0, sizeof(struct motg_xfer));
#ifdef DIAGNOSTIC
xfer->ux_state = XFER_BUSY;
#endif
}
return xfer;
}
void
motg_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
{
struct motg_softc *sc = MOTG_BUS2SC(bus);
#ifdef DIAGNOSTIC
if (xfer->ux_state != XFER_BUSY &&
xfer->ux_status != USBD_NOT_STARTED) {
printf("motg_freex: xfer=%p not busy, 0x%08x\n", xfer,
xfer->ux_state);
}
xfer->ux_state = XFER_FREE;
#endif
pool_cache_put(sc->sc_xferpool, xfer);
}
static bool
motg_dying(struct usbd_bus *bus)
{
struct motg_softc *sc = MOTG_BUS2SC(bus);
return sc->sc_dying;
}
static void
motg_get_lock(struct usbd_bus *bus, kmutex_t **lock)
{
struct motg_softc *sc = MOTG_BUS2SC(bus);
*lock = &sc->sc_lock;
}
/*
* Routines to emulate the root hub.
*/
Static int
motg_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
void *buf, int buflen)
{
struct motg_softc *sc = MOTG_BUS2SC(bus);
int status, change, totlen = 0;
uint16_t len, value, index;
usb_port_status_t ps;
usbd_status err;
uint32_t val;
MOTGHIST_FUNC(); MOTGHIST_CALLED();
if (sc->sc_dying)
return -1;
DPRINTFN(MD_ROOT, "type=0x%02jx request=%02jx", req->bmRequestType,
req->bRequest, 0, 0);
len = UGETW(req->wLength);
value = UGETW(req->wValue);
index = UGETW(req->wIndex);
#define C(x,y) ((x) | ((y) << 8))
switch (C(req->bRequest, req->bmRequestType)) {
case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
DPRINTFN(MD_ROOT, "wValue=0x%04jx", value, 0, 0, 0);
switch (value) {
#define sd ((usb_string_descriptor_t *)buf)
case C(2, UDESC_STRING):
/* Product */
totlen = usb_makestrdesc(sd, len, "MOTG root hub");
break;
#undef sd
default:
/* default from usbroothub */
return buflen;
}
break;
/* Hub requests */
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER):
DPRINTFN(MD_ROOT,
"UR_CLEAR_PORT_FEATURE port=%jd feature=%jd", index, value,
0, 0);
if (index != 1) {
return -1;
}
switch (value) {
case UHF_PORT_ENABLE:
sc->sc_port_enabled = 0;
break;
case UHF_PORT_SUSPEND:
if (sc->sc_port_suspended != 0) {
val = UREAD1(sc, MUSB2_REG_POWER);
val &= ~MUSB2_MASK_SUSPMODE;
val |= MUSB2_MASK_RESUME;
UWRITE1(sc, MUSB2_REG_POWER, val);
/* wait 20 milliseconds */
usb_delay_ms(&sc->sc_bus, 20);
val = UREAD1(sc, MUSB2_REG_POWER);
val &= ~MUSB2_MASK_RESUME;
UWRITE1(sc, MUSB2_REG_POWER, val);
sc->sc_port_suspended = 0;
sc->sc_port_suspended_change = 1;
}
break;
case UHF_PORT_RESET:
break;
case UHF_C_PORT_CONNECTION:
break;
case UHF_C_PORT_ENABLE:
break;
case UHF_C_PORT_OVER_CURRENT:
break;
case UHF_C_PORT_RESET:
sc->sc_isreset = 0;
break;
case UHF_PORT_POWER:
/* XXX todo */
break;
case UHF_PORT_CONNECTION:
case UHF_PORT_OVER_CURRENT:
case UHF_PORT_LOW_SPEED:
case UHF_C_PORT_SUSPEND:
default:
return -1;
}
break;
case C(UR_GET_BUS_STATE, UT_READ_CLASS_OTHER):
return -1;
case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
if (len == 0)
break;
if ((value & 0xff) != 0) {
return -1;
}
totlen = buflen;
break;
case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
if (len != 4) {
return -1;
}
memset(buf, 0, len);
totlen = len;
break;
case C(UR_GET_STATUS, UT_READ_CLASS_OTHER):
if (index != 1) {
return -1;
}
if (len != 4) {
return -1;
}
status = change = 0;
if (sc->sc_connected)
status |= UPS_CURRENT_CONNECT_STATUS;
if (sc->sc_connected_changed) {
change |= UPS_C_CONNECT_STATUS;
sc->sc_connected_changed = 0;
}
if (sc->sc_port_enabled)
status |= UPS_PORT_ENABLED;
if (sc->sc_port_enabled_changed) {
change |= UPS_C_PORT_ENABLED;
sc->sc_port_enabled_changed = 0;
}
if (sc->sc_port_suspended)
status |= UPS_SUSPEND;
if (sc->sc_high_speed)
status |= UPS_HIGH_SPEED;
status |= UPS_PORT_POWER; /* XXX */
if (sc->sc_isreset)
change |= UPS_C_PORT_RESET;
USETW(ps.wPortStatus, status);
USETW(ps.wPortChange, change);
totlen = uimin(len, sizeof(ps));
memcpy(buf, &ps, totlen);
break;
case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
return -1;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER):
if (index != 1) {
return -1;
}
switch(value) {
case UHF_PORT_ENABLE:
sc->sc_port_enabled = 1;
break;
case UHF_PORT_SUSPEND:
if (sc->sc_port_suspended == 0) {
val = UREAD1(sc, MUSB2_REG_POWER);
val |= MUSB2_MASK_SUSPMODE;
UWRITE1(sc, MUSB2_REG_POWER, val);
/* wait 20 milliseconds */
usb_delay_ms(&sc->sc_bus, 20);
sc->sc_port_suspended = 1;
sc->sc_port_suspended_change = 1;
}
break;
case UHF_PORT_RESET:
err = motg_portreset(sc);
if (err != USBD_NORMAL_COMPLETION)
return -1;
return 0;
case UHF_PORT_POWER:
/* XXX todo */
return 0;
case UHF_C_PORT_CONNECTION:
case UHF_C_PORT_ENABLE:
case UHF_C_PORT_OVER_CURRENT:
case UHF_PORT_CONNECTION:
case UHF_PORT_OVER_CURRENT:
case UHF_PORT_LOW_SPEED:
case UHF_C_PORT_SUSPEND:
case UHF_C_PORT_RESET:
default:
return -1;
}
break;
default:
/* default from usbroothub */
return buflen;
}
return totlen;
}
/* Abort a root interrupt request. */
void
motg_root_intr_abort(struct usbd_xfer *xfer)
{
struct motg_softc *sc = MOTG_XFER2SC(xfer);
KASSERT(mutex_owned(&sc->sc_lock));
KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
/* If xfer has already completed, nothing to do here. */
if (sc->sc_intr_xfer == NULL)
return;
/*
* Otherwise, sc->sc_intr_xfer had better be this transfer.
* Cancel it.
*/
KASSERT(sc->sc_intr_xfer == xfer);
KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
xfer->ux_status = USBD_CANCELLED;
usb_transfer_complete(xfer);
}
usbd_status
motg_root_intr_transfer(struct usbd_xfer *xfer)
{
/* Pipe isn't running, start first */
return motg_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}
/* Start a transfer on the root interrupt pipe */
usbd_status
motg_root_intr_start(struct usbd_xfer *xfer)
{
struct usbd_pipe *pipe = xfer->ux_pipe;
struct motg_softc *sc = MOTG_PIPE2SC(pipe);
MOTGHIST_FUNC(); MOTGHIST_CALLED();
DPRINTFN(MD_ROOT, "xfer=%#jx len=%jd flags=%jd", (uintptr_t)xfer,
xfer->ux_length, xfer->ux_flags, 0);
KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
if (sc->sc_dying)
return USBD_IOERROR;
KASSERT(sc->sc_intr_xfer == NULL);
sc->sc_intr_xfer = xfer;
xfer->ux_status = USBD_IN_PROGRESS;
return USBD_IN_PROGRESS;
}
/* Close the root interrupt pipe. */
void
motg_root_intr_close(struct usbd_pipe *pipe)
{
struct motg_softc *sc __diagused = MOTG_PIPE2SC(pipe);
MOTGHIST_FUNC(); MOTGHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_lock));
/*
* Caller must guarantee the xfer has completed first, by
* closing the pipe only after normal completion or an abort.
*/
KASSERT(sc->sc_intr_xfer == NULL);
}
void
motg_root_intr_done(struct usbd_xfer *xfer)
{
struct motg_softc *sc = MOTG_XFER2SC(xfer);
MOTGHIST_FUNC(); MOTGHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_lock));
/* Claim the xfer so it doesn't get completed again. */
KASSERT(sc->sc_intr_xfer == xfer);
KASSERT(xfer->ux_status != USBD_IN_PROGRESS);
sc->sc_intr_xfer = NULL;
}
void
motg_noop(struct usbd_pipe *pipe)
{
}
static usbd_status
motg_portreset(struct motg_softc *sc)
{
uint32_t val;
MOTGHIST_FUNC(); MOTGHIST_CALLED();
val = UREAD1(sc, MUSB2_REG_POWER);
val |= MUSB2_MASK_RESET;
UWRITE1(sc, MUSB2_REG_POWER, val);
/* Wait for 20 msec */
usb_delay_ms(&sc->sc_bus, 20);
val = UREAD1(sc, MUSB2_REG_POWER);
val &= ~MUSB2_MASK_RESET;
UWRITE1(sc, MUSB2_REG_POWER, val);
/* determine line speed */
val = UREAD1(sc, MUSB2_REG_POWER);
if (val & MUSB2_MASK_HSMODE)
sc->sc_high_speed = 1;
else
sc->sc_high_speed = 0;
DPRINTFN(MD_ROOT | MD_CTRL, "speed %jd", sc->sc_high_speed, 0, 0, 0);
sc->sc_isreset = 1;
sc->sc_port_enabled = 1;
return USBD_NORMAL_COMPLETION;
}
/*
* This routine is executed when an interrupt on the root hub is detected
*/
static void
motg_hub_change(struct motg_softc *sc)
{
struct usbd_xfer *xfer = sc->sc_intr_xfer;
struct usbd_pipe *pipe;
u_char *p;
MOTGHIST_FUNC(); MOTGHIST_CALLED();
if (xfer == NULL)
return; /* the interrupt pipe is not open */
KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
pipe = xfer->ux_pipe;
if (pipe->up_dev == NULL || pipe->up_dev->ud_bus == NULL)
return; /* device has detached */
p = xfer->ux_buf;
p[0] = 1<<1;
xfer->ux_actlen = 1;
xfer->ux_status = USBD_NORMAL_COMPLETION;
usb_transfer_complete(xfer);
}
static uint8_t
motg_speed(uint8_t speed)
{
switch(speed) {
case USB_SPEED_LOW:
return MUSB2_MASK_TI_SPEED_LO;
case USB_SPEED_FULL:
return MUSB2_MASK_TI_SPEED_FS;
case USB_SPEED_HIGH:
return MUSB2_MASK_TI_SPEED_HS;
default:
panic("motg: unknown speed %d", speed);
/* NOTREACHED */
}
}
static uint8_t
motg_type(uint8_t type)
{
switch(type) {
case UE_CONTROL:
return MUSB2_MASK_TI_PROTO_CTRL;
case UE_ISOCHRONOUS:
return MUSB2_MASK_TI_PROTO_ISOC;
case UE_BULK:
return MUSB2_MASK_TI_PROTO_BULK;
case UE_INTERRUPT:
return MUSB2_MASK_TI_PROTO_INTR;
default:
panic("motg: unknown type %d", type);
/* NOTREACHED */
}
}
static void
motg_setup_endpoint_tx(struct usbd_xfer *xfer)
{
struct motg_softc *sc = MOTG_XFER2SC(xfer);
struct motg_pipe *otgpipe = MOTG_PIPE2MPIPE(xfer->ux_pipe);
struct usbd_device *dev = otgpipe->pipe.up_dev;
int epnumber = otgpipe->hw_ep->ep_number;
UWRITE1(sc, MUSB2_REG_TXFADDR(epnumber), dev->ud_addr);
if (dev->ud_myhsport) {
UWRITE1(sc, MUSB2_REG_TXHADDR(epnumber),
dev->ud_myhsport->up_parent->ud_addr);
UWRITE1(sc, MUSB2_REG_TXHUBPORT(epnumber),
dev->ud_myhsport->up_portno);
} else {
UWRITE1(sc, MUSB2_REG_TXHADDR(epnumber), 0);
UWRITE1(sc, MUSB2_REG_TXHUBPORT(epnumber), 0);
}
UWRITE1(sc, MUSB2_REG_TXTI,
motg_speed(dev->ud_speed) |
UE_GET_ADDR(xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress) |
motg_type(UE_GET_XFERTYPE(xfer->ux_pipe->up_endpoint->ue_edesc->bmAttributes))
);
if (epnumber == 0) {
if (sc->sc_high_speed) {
UWRITE1(sc, MUSB2_REG_TXNAKLIMIT,
NAK_TO_CTRL_HIGH);
} else {
UWRITE1(sc, MUSB2_REG_TXNAKLIMIT, NAK_TO_CTRL);
}
} else {
if ((xfer->ux_pipe->up_endpoint->ue_edesc->bmAttributes & UE_XFERTYPE)
== UE_BULK) {
if (sc->sc_high_speed) {
UWRITE1(sc, MUSB2_REG_TXNAKLIMIT,
NAK_TO_BULK_HIGH);
} else {
UWRITE1(sc, MUSB2_REG_TXNAKLIMIT, NAK_TO_BULK);
}
} else {
if (sc->sc_high_speed) {
UWRITE1(sc, MUSB2_REG_TXNAKLIMIT, POLL_TO_HIGH);
} else {
UWRITE1(sc, MUSB2_REG_TXNAKLIMIT, POLL_TO);
}
}
}
}
static void
motg_setup_endpoint_rx(struct usbd_xfer *xfer)
{
struct motg_softc *sc = MOTG_XFER2SC(xfer);
struct usbd_device *dev = xfer->ux_pipe->up_dev;
struct motg_pipe *otgpipe = MOTG_PIPE2MPIPE(xfer->ux_pipe);
int epnumber = otgpipe->hw_ep->ep_number;
UWRITE1(sc, MUSB2_REG_RXFADDR(epnumber), dev->ud_addr);
if (dev->ud_myhsport) {
UWRITE1(sc, MUSB2_REG_RXHADDR(epnumber),
dev->ud_myhsport->up_parent->ud_addr);
UWRITE1(sc, MUSB2_REG_RXHUBPORT(epnumber),
dev->ud_myhsport->up_portno);
} else {
UWRITE1(sc, MUSB2_REG_RXHADDR(epnumber), 0);
UWRITE1(sc, MUSB2_REG_RXHUBPORT(epnumber), 0);
}
UWRITE1(sc, MUSB2_REG_RXTI,
motg_speed(dev->ud_speed) |
UE_GET_ADDR(xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress) |
motg_type(UE_GET_XFERTYPE(xfer->ux_pipe->up_endpoint->ue_edesc->bmAttributes))
);
if (epnumber == 0) {
if (sc->sc_high_speed) {
UWRITE1(sc, MUSB2_REG_RXNAKLIMIT,
NAK_TO_CTRL_HIGH);
} else {
UWRITE1(sc, MUSB2_REG_RXNAKLIMIT, NAK_TO_CTRL);
}
} else {
if ((xfer->ux_pipe->up_endpoint->ue_edesc->bmAttributes & UE_XFERTYPE)
== UE_BULK) {
if (sc->sc_high_speed) {
UWRITE1(sc, MUSB2_REG_RXNAKLIMIT,
NAK_TO_BULK_HIGH);
} else {
UWRITE1(sc, MUSB2_REG_RXNAKLIMIT, NAK_TO_BULK);
}
} else {
if (sc->sc_high_speed) {
UWRITE1(sc, MUSB2_REG_RXNAKLIMIT, POLL_TO_HIGH);
} else {
UWRITE1(sc, MUSB2_REG_RXNAKLIMIT, POLL_TO);
}
}
}
}
static usbd_status
motg_device_ctrl_transfer(struct usbd_xfer *xfer)
{
/* Pipe isn't running, so start it first. */
return motg_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}
static usbd_status
motg_device_ctrl_start(struct usbd_xfer *xfer)
{
struct motg_softc *sc = MOTG_XFER2SC(xfer);
KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
return motg_device_ctrl_start1(sc);
}
static usbd_status
motg_device_ctrl_start1(struct motg_softc *sc)
{
struct motg_hw_ep *ep = &sc->sc_in_ep[0];
struct usbd_xfer *xfer = NULL;
struct motg_pipe *otgpipe;
usbd_status err = 0;
MOTGHIST_FUNC(); MOTGHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_lock));
if (sc->sc_dying)
return USBD_IOERROR;
if (!sc->sc_connected)
return USBD_IOERROR;
if (ep->xfer != NULL) {
err = USBD_IN_PROGRESS;
goto end;
}
/* locate the first pipe with work to do */
SIMPLEQ_FOREACH(otgpipe, &ep->ep_pipes, ep_pipe_list) {
xfer = SIMPLEQ_FIRST(&otgpipe->pipe.up_queue);
DPRINTFN(MD_CTRL, "pipe %#jx xfer %#jx status %jd",
(uintptr_t)otgpipe, (uintptr_t)xfer,
(xfer != NULL) ? xfer->ux_status : 0, 0);
if (xfer != NULL) {
/* move this pipe to the end of the list */
SIMPLEQ_REMOVE(&ep->ep_pipes, otgpipe,
motg_pipe, ep_pipe_list);
SIMPLEQ_INSERT_TAIL(&ep->ep_pipes,
otgpipe, ep_pipe_list);
break;
}
}
if (xfer == NULL) {
err = USBD_NOT_STARTED;
goto end;
}
if (xfer->ux_status == USBD_NOT_STARTED) {
usbd_xfer_schedule_timeout(xfer);
xfer->ux_status = USBD_IN_PROGRESS;
} else {
KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
}
KASSERT(otgpipe == MOTG_PIPE2MPIPE(xfer->ux_pipe));
KASSERT(otgpipe->hw_ep == ep);
KASSERT(xfer->ux_rqflags & URQ_REQUEST);
// KASSERT(xfer->ux_actlen == 0);
xfer->ux_actlen = 0;
ep->xfer = xfer;
ep->datalen = xfer->ux_length;
if (ep->datalen > 0)
ep->data = xfer->ux_buf;
else
ep->data = NULL;
if ((xfer->ux_flags & USBD_FORCE_SHORT_XFER) &&
(ep->datalen % 64) == 0)
ep->need_short_xfer = 1;
else
ep->need_short_xfer = 0;
/* now we need send this request */
DPRINTFN(MD_CTRL,
"xfer %#jx send data %#jx len %jd short %jd",
(uintptr_t)xfer, (uintptr_t)ep->data, ep->datalen,
ep->need_short_xfer);
DPRINTFN(MD_CTRL,
"xfer %#jx ... speed %jd to %jd", (uintptr_t)xfer,
xfer->ux_pipe->up_dev->ud_speed,
xfer->ux_pipe->up_dev->ud_addr, 0);
KASSERT(ep->phase == IDLE);
ep->phase = SETUP;
/* select endpoint 0 */
UWRITE1(sc, MUSB2_REG_EPINDEX, 0);
/* fifo should be empty at this point */
KASSERT((UREAD1(sc, MUSB2_REG_TXCSRL) & MUSB2_MASK_CSR0L_TXPKTRDY) == 0);
/* send data */
// KASSERT(((vaddr_t)(&xfer->ux_request) & 3) == 0);
KASSERT(sizeof(xfer->ux_request) == 8);
bus_space_write_multi_1(sc->sc_iot, sc->sc_ioh, MUSB2_REG_EPFIFO(0),
(void *)&xfer->ux_request, sizeof(xfer->ux_request));
motg_setup_endpoint_tx(xfer);
/* start transaction */
UWRITE1(sc, MUSB2_REG_TXCSRL,
MUSB2_MASK_CSR0L_TXPKTRDY | MUSB2_MASK_CSR0L_SETUPPKT);
end:
if (err)
return err;
return USBD_IN_PROGRESS;
}
static void
motg_device_ctrl_read(struct usbd_xfer *xfer)
{
struct motg_softc *sc = MOTG_XFER2SC(xfer);
struct motg_pipe *otgpipe = MOTG_PIPE2MPIPE(xfer->ux_pipe);
/* assume endpoint already selected */
motg_setup_endpoint_rx(xfer);
/* start transaction */
UWRITE1(sc, MUSB2_REG_TXCSRL, MUSB2_MASK_CSR0L_REQPKT);
otgpipe->hw_ep->phase = DATA_IN;
}
static void
motg_device_ctrl_intr_rx(struct motg_softc *sc)
{
struct motg_hw_ep *ep = &sc->sc_in_ep[0];
struct usbd_xfer *xfer = ep->xfer;
uint8_t csr;
int datalen, max_datalen;
char *data;
bool got_short;
usbd_status new_status = USBD_IN_PROGRESS;
MOTGHIST_FUNC(); MOTGHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_lock));
KASSERT(ep->phase == DATA_IN || ep->phase == STATUS_IN);
/* select endpoint 0 */
UWRITE1(sc, MUSB2_REG_EPINDEX, 0);
/* read out FIFO status */
csr = UREAD1(sc, MUSB2_REG_TXCSRL);
DPRINTFN(MD_CTRL, "phase %jd csr %#jx xfer %#jx status %jd",
ep->phase, csr, (uintptr_t)xfer,
(xfer != NULL) ? xfer->ux_status : 0);
if (csr & MUSB2_MASK_CSR0L_NAKTIMO) {
csr &= ~MUSB2_MASK_CSR0L_REQPKT;
UWRITE1(sc, MUSB2_REG_TXCSRL, csr);
csr &= ~MUSB2_MASK_CSR0L_NAKTIMO;
UWRITE1(sc, MUSB2_REG_TXCSRL, csr);
new_status = USBD_TIMEOUT; /* XXX */
goto complete;
}
if (csr & (MUSB2_MASK_CSR0L_RXSTALL | MUSB2_MASK_CSR0L_ERROR)) {
if (csr & MUSB2_MASK_CSR0L_RXSTALL)
new_status = USBD_STALLED;
else
new_status = USBD_IOERROR;
/* clear status */
UWRITE1(sc, MUSB2_REG_TXCSRL, 0);
goto complete;
}
if ((csr & MUSB2_MASK_CSR0L_RXPKTRDY) == 0)
return; /* no data yet */
if (xfer == NULL || xfer->ux_status != USBD_IN_PROGRESS)
goto complete;
if (ep->phase == STATUS_IN) {
new_status = USBD_NORMAL_COMPLETION;
UWRITE1(sc, MUSB2_REG_TXCSRL, 0);
goto complete;
}
datalen = UREAD2(sc, MUSB2_REG_RXCOUNT);
DPRINTFN(MD_CTRL, "phase %jd datalen %jd", ep->phase, datalen, 0, 0);
KASSERT(UGETW(xfer->ux_pipe->up_endpoint->ue_edesc->wMaxPacketSize) > 0);
max_datalen = uimin(UGETW(xfer->ux_pipe->up_endpoint->ue_edesc->wMaxPacketSize),
ep->datalen);
if (datalen > max_datalen) {
new_status = USBD_IOERROR;
UWRITE1(sc, MUSB2_REG_TXCSRL, 0);
goto complete;
}
got_short = (datalen < max_datalen);
if (datalen > 0) {
KASSERT(ep->phase == DATA_IN);
data = ep->data;
ep->data += datalen;
ep->datalen -= datalen;
xfer->ux_actlen += datalen;
if (((vaddr_t)data & 0x3) == 0 &&
(datalen >> 2) > 0) {
DPRINTFN(MD_CTRL, "r4 data %#jx len %jd",
(uintptr_t)data, datalen, 0, 0);
bus_space_read_multi_4(sc->sc_iot, sc->sc_ioh,
MUSB2_REG_EPFIFO(0), (void *)data, datalen >> 2);
data += (datalen & ~0x3);
datalen -= (datalen & ~0x3);
}
DPRINTFN(MD_CTRL, "r1 data %#jx len %jd", (uintptr_t)data,
datalen, 0, 0);
if (datalen) {
bus_space_read_multi_1(sc->sc_iot, sc->sc_ioh,
MUSB2_REG_EPFIFO(0), data, datalen);
}
}
UWRITE1(sc, MUSB2_REG_TXCSRL, csr & ~MUSB2_MASK_CSR0L_RXPKTRDY);
KASSERT(ep->phase == DATA_IN);
if (got_short || (ep->datalen == 0)) {
if (ep->need_short_xfer == 0) {
ep->phase = STATUS_OUT;
UWRITE1(sc, MUSB2_REG_TXCSRH,
UREAD1(sc, MUSB2_REG_TXCSRH) |
MUSB2_MASK_CSR0H_PING_DIS);
motg_setup_endpoint_tx(xfer);
UWRITE1(sc, MUSB2_REG_TXCSRL,
MUSB2_MASK_CSR0L_STATUSPKT |
MUSB2_MASK_CSR0L_TXPKTRDY);
return;
}
ep->need_short_xfer = 0;
}
motg_device_ctrl_read(xfer);
return;
complete:
ep->phase = IDLE;
ep->xfer = NULL;
/*
* Try to claim this xfer for completion. If it has already
* completed or aborted, drop it on the floor.
*/
if (xfer && usbd_xfer_trycomplete(xfer)) {
KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
KASSERT(new_status != USBD_IN_PROGRESS);
xfer->ux_status = new_status;
usb_transfer_complete(xfer);
}
motg_device_ctrl_start1(sc);
}
static void
motg_device_ctrl_intr_tx(struct motg_softc *sc)
{
struct motg_hw_ep *ep = &sc->sc_in_ep[0];
struct usbd_xfer *xfer = ep->xfer;
uint8_t csr;
int datalen;
char *data;
usbd_status new_status = USBD_IN_PROGRESS;
MOTGHIST_FUNC(); MOTGHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_lock));
if (ep->phase == DATA_IN || ep->phase == STATUS_IN) {
motg_device_ctrl_intr_rx(sc);
return;
}
KASSERT(ep->phase == SETUP || ep->phase == DATA_OUT ||
ep->phase == STATUS_OUT);
/* select endpoint 0 */
UWRITE1(sc, MUSB2_REG_EPINDEX, 0);
csr = UREAD1(sc, MUSB2_REG_TXCSRL);
DPRINTFN(MD_CTRL, "phase %jd csr %#jx xfer %#jx status %jd",
ep->phase, csr, (uintptr_t)xfer,
(xfer != NULL) ? xfer->ux_status : 0);
if (csr & MUSB2_MASK_CSR0L_RXSTALL) {
/* command not accepted */
new_status = USBD_STALLED;
/* clear status */
UWRITE1(sc, MUSB2_REG_TXCSRL, 0);
goto complete;
}
if (csr & MUSB2_MASK_CSR0L_NAKTIMO) {
new_status = USBD_TIMEOUT; /* XXX */
/* flush fifo */
while (csr & MUSB2_MASK_CSR0L_TXFIFONEMPTY) {
UWRITE1(sc, MUSB2_REG_TXCSRH,
UREAD1(sc, MUSB2_REG_TXCSRH) |
MUSB2_MASK_CSR0H_FFLUSH);
csr = UREAD1(sc, MUSB2_REG_TXCSRL);
}
csr &= ~MUSB2_MASK_CSR0L_NAKTIMO;
UWRITE1(sc, MUSB2_REG_TXCSRL, csr);
goto complete;
}
if (csr & MUSB2_MASK_CSR0L_ERROR) {
new_status = USBD_IOERROR;
/* clear status */
UWRITE1(sc, MUSB2_REG_TXCSRL, 0);
goto complete;
}
if (csr & MUSB2_MASK_CSR0L_TXFIFONEMPTY) {
/* data still not sent */
return;
}
if (xfer == NULL || xfer->ux_status != USBD_IN_PROGRESS)
goto complete;
if (ep->phase == STATUS_OUT) {
/*
* we have sent status and got no error;
* declare transfer complete
*/
DPRINTFN(MD_CTRL, "xfer %#jx status %jd complete",
(uintptr_t)xfer, xfer->ux_status, 0, 0);
new_status = USBD_NORMAL_COMPLETION;
goto complete;
}
if (ep->datalen == 0) {
if (ep->need_short_xfer) {
ep->need_short_xfer = 0;
/* one more data phase */
if (xfer->ux_request.bmRequestType & UT_READ) {
DPRINTFN(MD_CTRL, "xfer %#jx to DATA_IN",
(uintptr_t)xfer, 0, 0, 0);
motg_device_ctrl_read(xfer);
return;
} /* else fall back to DATA_OUT */
} else {
DPRINTFN(MD_CTRL, "xfer %#jx to STATUS_IN, csrh %#jx",
(uintptr_t)xfer, UREAD1(sc, MUSB2_REG_TXCSRH),
0, 0);
ep->phase = STATUS_IN;
UWRITE1(sc, MUSB2_REG_RXCSRH,
UREAD1(sc, MUSB2_REG_RXCSRH) |
MUSB2_MASK_CSR0H_PING_DIS);
motg_setup_endpoint_rx(xfer);
UWRITE1(sc, MUSB2_REG_TXCSRL,
MUSB2_MASK_CSR0L_STATUSPKT |
MUSB2_MASK_CSR0L_REQPKT);
return;
}
}
if (xfer->ux_request.bmRequestType & UT_READ) {
motg_device_ctrl_read(xfer);
return;
}
/* setup a dataout phase */
datalen = uimin(ep->datalen,
UGETW(xfer->ux_pipe->up_endpoint->ue_edesc->wMaxPacketSize));
ep->phase = DATA_OUT;
DPRINTFN(MD_CTRL, "xfer %#jx to DATA_OUT, csrh %#jx", (uintptr_t)xfer,
UREAD1(sc, MUSB2_REG_TXCSRH), 0, 0);
if (datalen) {
data = ep->data;
ep->data += datalen;
ep->datalen -= datalen;
xfer->ux_actlen += datalen;
if (((vaddr_t)data & 0x3) == 0 &&
(datalen >> 2) > 0) {
bus_space_write_multi_4(sc->sc_iot, sc->sc_ioh,
MUSB2_REG_EPFIFO(0), (void *)data, datalen >> 2);
data += (datalen & ~0x3);
datalen -= (datalen & ~0x3);
}
if (datalen) {
bus_space_write_multi_1(sc->sc_iot, sc->sc_ioh,
MUSB2_REG_EPFIFO(0), data, datalen);
}
}
/* send data */
motg_setup_endpoint_tx(xfer);
UWRITE1(sc, MUSB2_REG_TXCSRL, MUSB2_MASK_CSR0L_TXPKTRDY);
return;
complete:
ep->phase = IDLE;
ep->xfer = NULL;
/*
* Try to claim this xfer for completion. If it has already
* completed or aborted, drop it on the floor.
*/
if (xfer && usbd_xfer_trycomplete(xfer)) {
KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
KASSERT(new_status != USBD_IN_PROGRESS);
xfer->ux_status = new_status;
usb_transfer_complete(xfer);
}
motg_device_ctrl_start1(sc);
}
/* Abort a device control request. */
void
motg_device_ctrl_abort(struct usbd_xfer *xfer)
{
MOTGHIST_FUNC(); MOTGHIST_CALLED();
usbd_xfer_abort(xfer);
}
/* Close a device control pipe */
void
motg_device_ctrl_close(struct usbd_pipe *pipe)
{
struct motg_softc *sc __diagused = MOTG_PIPE2SC(pipe);
struct motg_pipe *otgpipe = MOTG_PIPE2MPIPE(pipe);
struct motg_pipe *otgpipeiter;
MOTGHIST_FUNC(); MOTGHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_lock));
KASSERT(otgpipe->hw_ep->xfer == NULL ||
otgpipe->hw_ep->xfer->ux_pipe != pipe);
SIMPLEQ_FOREACH(otgpipeiter, &otgpipe->hw_ep->ep_pipes, ep_pipe_list) {
if (otgpipeiter == otgpipe) {
/* remove from list */
SIMPLEQ_REMOVE(&otgpipe->hw_ep->ep_pipes, otgpipe,
motg_pipe, ep_pipe_list);
otgpipe->hw_ep->refcount--;
/* we're done */
return;
}
}
panic("motg_device_ctrl_close: not found");
}
void
motg_device_ctrl_done(struct usbd_xfer *xfer)
{
struct motg_pipe *otgpipe __diagused = MOTG_PIPE2MPIPE(xfer->ux_pipe);
MOTGHIST_FUNC(); MOTGHIST_CALLED();
KASSERT(otgpipe->hw_ep->xfer != xfer);
}
static usbd_status
motg_device_data_transfer(struct usbd_xfer *xfer)
{
MOTGHIST_FUNC(); MOTGHIST_CALLED();
/* Pipe isn't running, so start it first. */
return motg_device_data_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}
static usbd_status
motg_device_data_start(struct usbd_xfer *xfer)
{
struct motg_softc *sc = MOTG_XFER2SC(xfer);
struct motg_pipe *otgpipe = MOTG_PIPE2MPIPE(xfer->ux_pipe);
MOTGHIST_FUNC(); MOTGHIST_CALLED();
DPRINTF("xfer %#jx status %jd", (uintptr_t)xfer, xfer->ux_status, 0, 0);
KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
return motg_device_data_start1(sc, otgpipe->hw_ep);
}
static usbd_status
motg_device_data_start1(struct motg_softc *sc, struct motg_hw_ep *ep)
{
struct usbd_xfer *xfer = NULL;
struct motg_pipe *otgpipe;
usbd_status err = 0;
uint32_t val __diagused;
MOTGHIST_FUNC(); MOTGHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_lock));
if (sc->sc_dying)
return USBD_IOERROR;
if (!sc->sc_connected)
return USBD_IOERROR;
if (ep->xfer != NULL) {
err = USBD_IN_PROGRESS;
goto end;
}
/* locate the first pipe with work to do */
SIMPLEQ_FOREACH(otgpipe, &ep->ep_pipes, ep_pipe_list) {
xfer = SIMPLEQ_FIRST(&otgpipe->pipe.up_queue);
DPRINTFN(MD_BULK, "pipe %#jx xfer %#jx status %jd",
(uintptr_t)otgpipe, (uintptr_t)xfer,
(xfer != NULL) ? xfer->ux_status : 0, 0);
if (xfer != NULL) {
/* move this pipe to the end of the list */
SIMPLEQ_REMOVE(&ep->ep_pipes, otgpipe,
motg_pipe, ep_pipe_list);
SIMPLEQ_INSERT_TAIL(&ep->ep_pipes,
otgpipe, ep_pipe_list);
break;
}
}
if (xfer == NULL) {
err = USBD_NOT_STARTED;
goto end;
}
if (xfer->ux_status == USBD_NOT_STARTED) {
usbd_xfer_schedule_timeout(xfer);
xfer->ux_status = USBD_IN_PROGRESS;
} else {
KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
}
KASSERT(otgpipe == MOTG_PIPE2MPIPE(xfer->ux_pipe));
KASSERT(otgpipe->hw_ep == ep);
KASSERT(!(xfer->ux_rqflags & URQ_REQUEST));
// KASSERT(xfer->ux_actlen == 0);
xfer->ux_actlen = 0;
ep->xfer = xfer;
ep->datalen = xfer->ux_length;
KASSERT(ep->datalen > 0);
ep->data = xfer->ux_buf;
if ((xfer->ux_flags & USBD_FORCE_SHORT_XFER) &&
(ep->datalen % 64) == 0)
ep->need_short_xfer = 1;
else
ep->need_short_xfer = 0;
/* now we need send this request */
DPRINTFN(MD_BULK,
UE_GET_DIR(xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress) == UE_DIR_IN ?
"xfer %#jx in data %#jx len %jd short %jd" :
"xfer %#jx out data %#jx len %jd short %jd",
(uintptr_t)xfer, (uintptr_t)ep->data, ep->datalen,
ep->need_short_xfer);
DPRINTFN(MD_BULK, "... speed %jd to %jd",
xfer->ux_pipe->up_dev->ud_speed,
xfer->ux_pipe->up_dev->ud_addr, 0, 0);
KASSERT(ep->phase == IDLE);
/* select endpoint */
UWRITE1(sc, MUSB2_REG_EPINDEX, ep->ep_number);
if (UE_GET_DIR(xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress)
== UE_DIR_IN) {
val = UREAD1(sc, MUSB2_REG_RXCSRL);
KASSERT((val & MUSB2_MASK_CSRL_RXPKTRDY) == 0);
motg_device_data_read(xfer);
} else {
ep->phase = DATA_OUT;
val = UREAD1(sc, MUSB2_REG_TXCSRL);
KASSERT((val & MUSB2_MASK_CSRL_TXPKTRDY) == 0);
motg_device_data_write(xfer);
}
end:
if (err)
return err;
return USBD_IN_PROGRESS;
}
static void
motg_device_data_read(struct usbd_xfer *xfer)
{
struct motg_softc *sc = MOTG_XFER2SC(xfer);
struct motg_pipe *otgpipe = MOTG_PIPE2MPIPE(xfer->ux_pipe);
uint32_t val;
MOTGHIST_FUNC(); MOTGHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_lock));
/* assume endpoint already selected */
motg_setup_endpoint_rx(xfer);
/* Max packet size */
UWRITE2(sc, MUSB2_REG_RXMAXP,
UGETW(xfer->ux_pipe->up_endpoint->ue_edesc->wMaxPacketSize));
/* Data Toggle */
val = UREAD1(sc, MUSB2_REG_RXCSRH);
val |= MUSB2_MASK_CSRH_RXDT_WREN;
if (otgpipe->nexttoggle)
val |= MUSB2_MASK_CSRH_RXDT_VAL;
else
val &= ~MUSB2_MASK_CSRH_RXDT_VAL;
UWRITE1(sc, MUSB2_REG_RXCSRH, val);
DPRINTFN(MD_BULK, "%#jx to DATA_IN on ep %jd, csrh %#jx",
(uintptr_t)xfer, otgpipe->hw_ep->ep_number,
UREAD1(sc, MUSB2_REG_RXCSRH), 0);
/* start transaction */
UWRITE1(sc, MUSB2_REG_RXCSRL, MUSB2_MASK_CSRL_RXREQPKT);
otgpipe->hw_ep->phase = DATA_IN;
}
static void
motg_device_data_write(struct usbd_xfer *xfer)
{
struct motg_softc *sc = MOTG_XFER2SC(xfer);
struct motg_pipe *otgpipe = MOTG_PIPE2MPIPE(xfer->ux_pipe);
struct motg_hw_ep *ep = otgpipe->hw_ep;
int datalen;
char *data;
uint32_t val;
MOTGHIST_FUNC(); MOTGHIST_CALLED();
KASSERT(xfer!=NULL);
KASSERT(mutex_owned(&sc->sc_lock));
datalen = uimin(ep->datalen,
UGETW(xfer->ux_pipe->up_endpoint->ue_edesc->wMaxPacketSize));
ep->phase = DATA_OUT;
DPRINTFN(MD_BULK, "%#jx to DATA_OUT on ep %jd, len %jd csrh %#jx",
(uintptr_t)xfer, ep->ep_number, datalen,
UREAD1(sc, MUSB2_REG_TXCSRH));
/* assume endpoint already selected */
/* write data to fifo */
data = ep->data;
ep->data += datalen;
ep->datalen -= datalen;
xfer->ux_actlen += datalen;
if (((vaddr_t)data & 0x3) == 0 &&
(datalen >> 2) > 0) {
bus_space_write_multi_4(sc->sc_iot, sc->sc_ioh,
MUSB2_REG_EPFIFO(ep->ep_number),
(void *)data, datalen >> 2);
data += (datalen & ~0x3);
datalen -= (datalen & ~0x3);
}
if (datalen) {
bus_space_write_multi_1(sc->sc_iot, sc->sc_ioh,
MUSB2_REG_EPFIFO(ep->ep_number), data, datalen);
}
motg_setup_endpoint_tx(xfer);
/* Max packet size */
UWRITE2(sc, MUSB2_REG_TXMAXP,
UGETW(xfer->ux_pipe->up_endpoint->ue_edesc->wMaxPacketSize));
/* Data Toggle */
val = UREAD1(sc, MUSB2_REG_TXCSRH);
val |= MUSB2_MASK_CSRH_TXDT_WREN;
if (otgpipe->nexttoggle)
val |= MUSB2_MASK_CSRH_TXDT_VAL;
else
val &= ~MUSB2_MASK_CSRH_TXDT_VAL;
UWRITE1(sc, MUSB2_REG_TXCSRH, val);
/* start transaction */
UWRITE1(sc, MUSB2_REG_TXCSRL, MUSB2_MASK_CSRL_TXPKTRDY);
}
static void
motg_device_intr_rx(struct motg_softc *sc, int epnumber)
{
struct motg_hw_ep *ep = &sc->sc_in_ep[epnumber];
struct usbd_xfer *xfer = ep->xfer;
uint8_t csr;
int datalen, max_datalen;
char *data;
bool got_short;
usbd_status new_status = USBD_IN_PROGRESS;
MOTGHIST_FUNC(); MOTGHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_lock));
KASSERT(ep->ep_number == epnumber);
DPRINTFN(MD_BULK, "on ep %jd", epnumber, 0, 0, 0);
/* select endpoint */
UWRITE1(sc, MUSB2_REG_EPINDEX, epnumber);
/* read out FIFO status */
csr = UREAD1(sc, MUSB2_REG_RXCSRL);
DPRINTFN(MD_BULK, "phase %jd csr %#jx", ep->phase, csr ,0 ,0);
if ((csr & (MUSB2_MASK_CSRL_RXNAKTO | MUSB2_MASK_CSRL_RXSTALL |
MUSB2_MASK_CSRL_RXERROR | MUSB2_MASK_CSRL_RXPKTRDY)) == 0)
return;
KASSERTMSG(ep->phase == DATA_IN, "phase %d", ep->phase);
if (csr & MUSB2_MASK_CSRL_RXNAKTO) {
csr &= ~MUSB2_MASK_CSRL_RXREQPKT;
UWRITE1(sc, MUSB2_REG_RXCSRL, csr);
csr &= ~MUSB2_MASK_CSRL_RXNAKTO;
UWRITE1(sc, MUSB2_REG_RXCSRL, csr);
new_status = USBD_TIMEOUT; /* XXX */
goto complete;
}
if (csr & (MUSB2_MASK_CSRL_RXSTALL | MUSB2_MASK_CSRL_RXERROR)) {
if (csr & MUSB2_MASK_CSRL_RXSTALL)
new_status = USBD_STALLED;
else
new_status = USBD_IOERROR;
/* clear status */
UWRITE1(sc, MUSB2_REG_RXCSRL, 0);
goto complete;
}
KASSERT(csr & MUSB2_MASK_CSRL_RXPKTRDY);
if (xfer == NULL || xfer->ux_status != USBD_IN_PROGRESS) {
UWRITE1(sc, MUSB2_REG_RXCSRL, 0);
goto complete;
}
struct motg_pipe *otgpipe = MOTG_PIPE2MPIPE(xfer->ux_pipe);
otgpipe->nexttoggle = otgpipe->nexttoggle ^ 1;
datalen = UREAD2(sc, MUSB2_REG_RXCOUNT);
DPRINTFN(MD_BULK, "phase %jd datalen %jd", ep->phase, datalen ,0 ,0);
KASSERT(UE_GET_SIZE(UGETW(xfer->ux_pipe->up_endpoint->ue_edesc->wMaxPacketSize)) > 0);
max_datalen = uimin(
UE_GET_SIZE(UGETW(xfer->ux_pipe->up_endpoint->ue_edesc->wMaxPacketSize)),
ep->datalen);
if (datalen > max_datalen) {
new_status = USBD_IOERROR;
UWRITE1(sc, MUSB2_REG_RXCSRL, 0);
goto complete;
}
got_short = (datalen < max_datalen);
if (datalen > 0) {
KASSERT(ep->phase == DATA_IN);
data = ep->data;
ep->data += datalen;
ep->datalen -= datalen;
xfer->ux_actlen += datalen;
if (((vaddr_t)data & 0x3) == 0 &&
(datalen >> 2) > 0) {
DPRINTFN(MD_BULK, "r4 data %#jx len %jd",
(uintptr_t)data, datalen, 0, 0);
bus_space_read_multi_4(sc->sc_iot, sc->sc_ioh,
MUSB2_REG_EPFIFO(ep->ep_number),
(void *)data, datalen >> 2);
data += (datalen & ~0x3);
datalen -= (datalen & ~0x3);
}
DPRINTFN(MD_BULK, "r1 data %#jx len %jd", (uintptr_t)data,
datalen ,0 ,0);
if (datalen) {
bus_space_read_multi_1(sc->sc_iot, sc->sc_ioh,
MUSB2_REG_EPFIFO(ep->ep_number), data, datalen);
}
}
UWRITE1(sc, MUSB2_REG_RXCSRL, 0);
KASSERT(ep->phase == DATA_IN);
if (got_short || (ep->datalen == 0)) {
if (ep->need_short_xfer == 0) {
new_status = USBD_NORMAL_COMPLETION;
goto complete;
}
ep->need_short_xfer = 0;
}
motg_device_data_read(xfer);
return;
complete:
DPRINTFN(MD_BULK, "xfer %#jx complete, status %jd", (uintptr_t)xfer,
(xfer != NULL) ? xfer->ux_status : 0, 0, 0);
ep->phase = IDLE;
ep->xfer = NULL;
/*
* Try to claim this xfer for completion. If it has already
* completed or aborted, drop it on the floor.
*/
if (xfer && usbd_xfer_trycomplete(xfer)) {
KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
KASSERT(new_status != USBD_IN_PROGRESS);
xfer->ux_status = new_status;
usb_transfer_complete(xfer);
}
motg_device_data_start1(sc, ep);
}
static void
motg_device_intr_tx(struct motg_softc *sc, int epnumber)
{
struct motg_hw_ep *ep = &sc->sc_out_ep[epnumber];
struct usbd_xfer *xfer = ep->xfer;
uint8_t csr;
struct motg_pipe *otgpipe;
usbd_status new_status = USBD_IN_PROGRESS;
MOTGHIST_FUNC(); MOTGHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_lock));
KASSERT(ep->ep_number == epnumber);
DPRINTFN(MD_BULK, " on ep %jd", epnumber, 0, 0, 0);
/* select endpoint */
UWRITE1(sc, MUSB2_REG_EPINDEX, epnumber);
csr = UREAD1(sc, MUSB2_REG_TXCSRL);
DPRINTFN(MD_BULK, "phase %jd csr %#jx", ep->phase, csr, 0, 0);
if (csr & (MUSB2_MASK_CSRL_TXSTALLED|MUSB2_MASK_CSRL_TXERROR)) {
/* command not accepted */
if (csr & MUSB2_MASK_CSRL_TXSTALLED)
new_status = USBD_STALLED;
else
new_status = USBD_IOERROR;
/* clear status */
UWRITE1(sc, MUSB2_REG_TXCSRL, 0);
goto complete;
}
if (csr & MUSB2_MASK_CSRL_TXNAKTO) {
new_status = USBD_TIMEOUT; /* XXX */
csr &= ~MUSB2_MASK_CSRL_TXNAKTO;
UWRITE1(sc, MUSB2_REG_TXCSRL, csr);
/* flush fifo */
while (csr & MUSB2_MASK_CSRL_TXFIFONEMPTY) {
csr |= MUSB2_MASK_CSRL_TXFFLUSH;
csr &= ~MUSB2_MASK_CSRL_TXNAKTO;
UWRITE1(sc, MUSB2_REG_TXCSRL, csr);
delay(1000);
csr = UREAD1(sc, MUSB2_REG_TXCSRL);
DPRINTFN(MD_BULK, "TX fifo flush ep %jd CSR %#jx",
epnumber, csr, 0, 0);
}
goto complete;
}
if (csr & (MUSB2_MASK_CSRL_TXFIFONEMPTY|MUSB2_MASK_CSRL_TXPKTRDY)) {
/* data still not sent */
return;
}
if (xfer == NULL || xfer->ux_status != USBD_IN_PROGRESS)
goto complete;
KASSERT(ep->phase == DATA_OUT);
otgpipe = MOTG_PIPE2MPIPE(xfer->ux_pipe);
otgpipe->nexttoggle = otgpipe->nexttoggle ^ 1;
if (ep->datalen == 0) {
if (ep->need_short_xfer) {
ep->need_short_xfer = 0;
/* one more data phase */
} else {
new_status = USBD_NORMAL_COMPLETION;
goto complete;
}
}
motg_device_data_write(xfer);
return;
complete:
DPRINTFN(MD_BULK, "xfer %#jx complete, status %jd", (uintptr_t)xfer,
(xfer != NULL) ? xfer->ux_status : 0, 0, 0);
ep->phase = IDLE;
ep->xfer = NULL;
/*
* Try to claim this xfer for completion. If it has already
* completed or aborted, drop it on the floor.
*/
if (xfer && usbd_xfer_trycomplete(xfer)) {
KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
KASSERT(new_status != USBD_IN_PROGRESS);
xfer->ux_status = new_status;
usb_transfer_complete(xfer);
}
motg_device_data_start1(sc, ep);
}
/* Abort a device control request. */
void
motg_device_data_abort(struct usbd_xfer *xfer)
{
struct motg_softc __diagused *sc = MOTG_XFER2SC(xfer);
KASSERT(mutex_owned(&sc->sc_lock));
MOTGHIST_FUNC(); MOTGHIST_CALLED();
usbd_xfer_abort(xfer);
}
/* Close a device control pipe */
void
motg_device_data_close(struct usbd_pipe *pipe)
{
struct motg_softc *sc __diagused = MOTG_PIPE2SC(pipe);
struct motg_pipe *otgpipe = MOTG_PIPE2MPIPE(pipe);
struct motg_pipe *otgpipeiter;
MOTGHIST_FUNC(); MOTGHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_lock));
KASSERT(otgpipe->hw_ep->xfer == NULL ||
otgpipe->hw_ep->xfer->ux_pipe != pipe);
pipe->up_endpoint->ue_toggle = otgpipe->nexttoggle;
SIMPLEQ_FOREACH(otgpipeiter, &otgpipe->hw_ep->ep_pipes, ep_pipe_list) {
if (otgpipeiter == otgpipe) {
/* remove from list */
SIMPLEQ_REMOVE(&otgpipe->hw_ep->ep_pipes, otgpipe,
motg_pipe, ep_pipe_list);
otgpipe->hw_ep->refcount--;
/* we're done */
return;
}
}
panic("motg_device_data_close: not found");
}
void
motg_device_data_done(struct usbd_xfer *xfer)
{
struct motg_pipe *otgpipe __diagused = MOTG_PIPE2MPIPE(xfer->ux_pipe);
MOTGHIST_FUNC(); MOTGHIST_CALLED();
KASSERT(otgpipe->hw_ep->xfer != xfer);
}
void
motg_device_clear_toggle(struct usbd_pipe *pipe)
{
struct motg_pipe *otgpipe = MOTG_PIPE2MPIPE(pipe);
otgpipe->nexttoggle = 0;
}
/* Abort a device control request. */
static void
motg_abortx(struct usbd_xfer *xfer)
{
MOTGHIST_FUNC(); MOTGHIST_CALLED();
uint8_t csr;
struct motg_softc *sc = MOTG_XFER2SC(xfer);
struct motg_pipe *otgpipe = MOTG_PIPE2MPIPE(xfer->ux_pipe);
KASSERT(mutex_owned(&sc->sc_lock));
ASSERT_SLEEPABLE();
/*
* If we're dying, skip the hardware action and just notify the
* software that we're done.
*/
if (sc->sc_dying) {
goto dying;
}
if (otgpipe->hw_ep->xfer == xfer) {
otgpipe->hw_ep->xfer = NULL;
if (otgpipe->hw_ep->ep_number > 0) {
/* select endpoint */
UWRITE1(sc, MUSB2_REG_EPINDEX,
otgpipe->hw_ep->ep_number);
if (otgpipe->hw_ep->phase == DATA_OUT) {
csr = UREAD1(sc, MUSB2_REG_TXCSRL);
while (csr & MUSB2_MASK_CSRL_TXFIFONEMPTY) {
csr |= MUSB2_MASK_CSRL_TXFFLUSH;
UWRITE1(sc, MUSB2_REG_TXCSRL, csr);
csr = UREAD1(sc, MUSB2_REG_TXCSRL);
}
UWRITE1(sc, MUSB2_REG_TXCSRL, 0);
} else if (otgpipe->hw_ep->phase == DATA_IN) {
csr = UREAD1(sc, MUSB2_REG_RXCSRL);
while (csr & MUSB2_MASK_CSRL_RXPKTRDY) {
csr |= MUSB2_MASK_CSRL_RXFFLUSH;
UWRITE1(sc, MUSB2_REG_RXCSRL, csr);
csr = UREAD1(sc, MUSB2_REG_RXCSRL);
}
UWRITE1(sc, MUSB2_REG_RXCSRL, 0);
}
otgpipe->hw_ep->phase = IDLE;
}
}
dying:
KASSERT(mutex_owned(&sc->sc_lock));
}