NetBSD/sys/dev/usb/if_umb.c

2889 lines
76 KiB
C

/* $NetBSD: if_umb.c,v 1.25 2022/08/20 11:32:08 riastradh Exp $ */
/* $OpenBSD: if_umb.c,v 1.20 2018/09/10 17:00:45 gerhard Exp $ */
/*
* Copyright (c) 2016 genua mbH
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Mobile Broadband Interface Model specification:
* http://www.usb.org/developers/docs/devclass_docs/MBIM10Errata1_073013.zip
* Compliance testing guide
* http://www.usb.org/developers/docs/devclass_docs/MBIM-Compliance-1.0.pdf
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_umb.c,v 1.25 2022/08/20 11:32:08 riastradh Exp $");
#ifdef _KERNEL_OPT
#include "opt_inet.h"
#endif
#include <sys/param.h>
#include <sys/device.h>
#include <sys/endian.h>
#include <sys/kauth.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/mbuf.h>
#include <sys/rndsource.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/systm.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_media.h>
#include <net/if_types.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/usbcdc.h>
#include <dev/usb/mbim.h>
#include <dev/usb/if_umbreg.h>
#ifdef UMB_DEBUG
#define DPRINTF(x...) \
do { if (umb_debug) log(LOG_DEBUG, x); } while (0)
#define DPRINTFN(n, x...) \
do { if (umb_debug >= (n)) log(LOG_DEBUG, x); } while (0)
#define DDUMPN(n, b, l) \
do { \
if (umb_debug >= (n)) \
umb_dump((b), (l)); \
} while (0)
int umb_debug = 0;
Static char *umb_uuid2str(uint8_t [MBIM_UUID_LEN]);
Static void umb_dump(void *, int);
#else
#define DPRINTF(x...) do { } while (0)
#define DPRINTFN(n, x...) do { } while (0)
#define DDUMPN(n, b, l) do { } while (0)
#endif
#define DEVNAM(sc) device_xname((sc)->sc_dev)
/*
* State change timeout
*/
#define UMB_STATE_CHANGE_TIMEOUT 30
/*
* State change flags
*/
#define UMB_NS_DONT_DROP 0x0001 /* do not drop below current state */
#define UMB_NS_DONT_RAISE 0x0002 /* do not raise below current state */
/*
* Diagnostic macros
*/
const struct umb_valdescr umb_regstates[] = MBIM_REGSTATE_DESCRIPTIONS;
const struct umb_valdescr umb_dataclasses[] = MBIM_DATACLASS_DESCRIPTIONS;
const struct umb_valdescr umb_simstate[] = MBIM_SIMSTATE_DESCRIPTIONS;
const struct umb_valdescr umb_messages[] = MBIM_MESSAGES_DESCRIPTIONS;
const struct umb_valdescr umb_status[] = MBIM_STATUS_DESCRIPTIONS;
const struct umb_valdescr umb_cids[] = MBIM_CID_DESCRIPTIONS;
const struct umb_valdescr umb_pktstate[] = MBIM_PKTSRV_STATE_DESCRIPTIONS;
const struct umb_valdescr umb_actstate[] = MBIM_ACTIVATION_STATE_DESCRIPTIONS;
const struct umb_valdescr umb_error[] = MBIM_ERROR_DESCRIPTIONS;
const struct umb_valdescr umb_pintype[] = MBIM_PINTYPE_DESCRIPTIONS;
const struct umb_valdescr umb_istate[] = UMB_INTERNAL_STATE_DESCRIPTIONS;
#define umb_regstate(c) umb_val2descr(umb_regstates, (c))
#define umb_dataclass(c) umb_val2descr(umb_dataclasses, (c))
#define umb_simstate(s) umb_val2descr(umb_simstate, (s))
#define umb_request2str(m) umb_val2descr(umb_messages, (m))
#define umb_status2str(s) umb_val2descr(umb_status, (s))
#define umb_cid2str(c) umb_val2descr(umb_cids, (c))
#define umb_packet_state(s) umb_val2descr(umb_pktstate, (s))
#define umb_activation(s) umb_val2descr(umb_actstate, (s))
#define umb_error2str(e) umb_val2descr(umb_error, (e))
#define umb_pin_type(t) umb_val2descr(umb_pintype, (t))
#define umb_istate(s) umb_val2descr(umb_istate, (s))
Static int umb_match(device_t, cfdata_t, void *);
Static void umb_attach(device_t, device_t, void *);
Static int umb_detach(device_t, int);
Static int umb_activate(device_t, enum devact);
Static void umb_ncm_setup(struct umb_softc *);
Static int umb_alloc_xfers(struct umb_softc *);
Static void umb_free_xfers(struct umb_softc *);
Static int umb_alloc_bulkpipes(struct umb_softc *);
Static void umb_close_bulkpipes(struct umb_softc *);
Static int umb_ioctl(struct ifnet *, u_long, void *);
Static int umb_output(struct ifnet *, struct mbuf *,
const struct sockaddr *, const struct rtentry *);
Static void umb_input(struct ifnet *, struct mbuf *);
Static void umb_start(struct ifnet *);
Static void umb_watchdog(struct ifnet *);
Static void umb_statechg_timeout(void *);
Static int umb_mediachange(struct ifnet *);
Static void umb_mediastatus(struct ifnet *, struct ifmediareq *);
Static void umb_newstate(struct umb_softc *, enum umb_state, int);
Static void umb_state_task(void *);
Static void umb_up(struct umb_softc *);
Static void umb_down(struct umb_softc *, int);
Static void umb_get_response_task(void *);
Static void umb_decode_response(struct umb_softc *, void *, int);
Static void umb_handle_indicate_status_msg(struct umb_softc *, void *,
int);
Static void umb_handle_opendone_msg(struct umb_softc *, void *, int);
Static void umb_handle_closedone_msg(struct umb_softc *, void *, int);
Static int umb_decode_register_state(struct umb_softc *, void *, int);
Static int umb_decode_devices_caps(struct umb_softc *, void *, int);
Static int umb_decode_subscriber_status(struct umb_softc *, void *, int);
Static int umb_decode_radio_state(struct umb_softc *, void *, int);
Static int umb_decode_pin(struct umb_softc *, void *, int);
Static int umb_decode_packet_service(struct umb_softc *, void *, int);
Static int umb_decode_signal_state(struct umb_softc *, void *, int);
Static int umb_decode_connect_info(struct umb_softc *, void *, int);
Static int umb_decode_ip_configuration(struct umb_softc *, void *, int);
Static void umb_rx(struct umb_softc *);
Static void umb_rxeof(struct usbd_xfer *, void *, usbd_status);
Static int umb_encap(struct umb_softc *, struct mbuf *);
Static void umb_txeof(struct usbd_xfer *, void *, usbd_status);
Static void umb_decap(struct umb_softc *, struct usbd_xfer *);
Static usbd_status umb_send_encap_command(struct umb_softc *, void *, int);
Static int umb_get_encap_response(struct umb_softc *, void *, int *);
Static void umb_ctrl_msg(struct umb_softc *, uint32_t, void *, int);
Static void umb_open(struct umb_softc *);
Static void umb_close(struct umb_softc *);
Static int umb_setpin(struct umb_softc *, int, int, void *, int, void *,
int);
Static void umb_setdataclass(struct umb_softc *);
Static void umb_radio(struct umb_softc *, int);
Static void umb_allocate_cid(struct umb_softc *);
Static void umb_send_fcc_auth(struct umb_softc *);
Static void umb_packet_service(struct umb_softc *, int);
Static void umb_connect(struct umb_softc *);
Static void umb_disconnect(struct umb_softc *);
Static void umb_send_connect(struct umb_softc *, int);
Static void umb_qry_ipconfig(struct umb_softc *);
Static void umb_cmd(struct umb_softc *, int, int, const void *, int);
Static void umb_cmd1(struct umb_softc *, int, int, const void *, int, uint8_t *);
Static void umb_command_done(struct umb_softc *, void *, int);
Static void umb_decode_cid(struct umb_softc *, uint32_t, void *, int);
Static void umb_decode_qmi(struct umb_softc *, uint8_t *, int);
Static void umb_intr(struct usbd_xfer *, void *, usbd_status);
Static char *umb_ntop(struct sockaddr *);
Static const char *
inet_ntop(int af, const void *src, char *dst, socklen_t size);
static const char *inet_ntop4(const u_char *src, char *dst, size_t size);
#ifdef INET6
static const char *inet_ntop6(const u_char *src, char *dst, size_t size);
#endif /* INET6 */
Static int umb_xfer_tout = USBD_DEFAULT_TIMEOUT;
Static uint8_t umb_uuid_basic_connect[] = MBIM_UUID_BASIC_CONNECT;
Static uint8_t umb_uuid_context_internet[] = MBIM_UUID_CONTEXT_INTERNET;
Static uint8_t umb_uuid_qmi_mbim[] = MBIM_UUID_QMI_MBIM;
Static uint32_t umb_session_id = 0;
CFATTACH_DECL_NEW(umb, sizeof(struct umb_softc), umb_match, umb_attach,
umb_detach, umb_activate);
const int umb_delay = 4000;
/*
* These devices require an "FCC Authentication" command.
*/
const struct usb_devno umb_fccauth_devs[] = {
{ USB_VENDOR_SIERRA, USB_PRODUCT_SIERRA_EM7455 },
};
Static const uint8_t umb_qmi_alloc_cid[] = {
0x01,
0x0f, 0x00, /* len */
0x00, /* QMUX flags */
0x00, /* service "ctl" */
0x00, /* CID */
0x00, /* QMI flags */
0x01, /* transaction */
0x22, 0x00, /* msg "Allocate CID" */
0x04, 0x00, /* TLV len */
0x01, 0x01, 0x00, 0x02 /* TLV */
};
Static const uint8_t umb_qmi_fcc_auth[] = {
0x01,
0x0c, 0x00, /* len */
0x00, /* QMUX flags */
0x02, /* service "dms" */
#define UMB_QMI_CID_OFFS 5
0x00, /* CID (filled in later) */
0x00, /* QMI flags */
0x01, 0x00, /* transaction */
0x5f, 0x55, /* msg "Send FCC Authentication" */
0x00, 0x00 /* TLV len */
};
Static int
umb_match(device_t parent, cfdata_t match, void *aux)
{
struct usbif_attach_arg *uiaa = aux;
usb_interface_descriptor_t *id;
if (!uiaa->uiaa_iface)
return UMATCH_NONE;
if ((id = usbd_get_interface_descriptor(uiaa->uiaa_iface)) == NULL)
return UMATCH_NONE;
/*
* If this function implements NCM, check if alternate setting
* 1 implements MBIM.
*/
if (id->bInterfaceClass == UICLASS_CDC &&
id->bInterfaceSubClass ==
UISUBCLASS_NETWORK_CONTROL_MODEL)
id = usbd_find_idesc(uiaa->uiaa_device->ud_cdesc, uiaa->uiaa_iface->ui_index, 1);
if (id == NULL)
return UMATCH_NONE;
if (id->bInterfaceClass == UICLASS_CDC &&
id->bInterfaceSubClass ==
UISUBCLASS_MOBILE_BROADBAND_INTERFACE_MODEL &&
id->bInterfaceProtocol == 0)
return UMATCH_IFACECLASS_IFACESUBCLASS_IFACEPROTO;
return UMATCH_NONE;
}
Static void
umb_attach(device_t parent, device_t self, void *aux)
{
struct umb_softc *sc = device_private(self);
struct usbif_attach_arg *uiaa = aux;
char *devinfop;
usbd_status status;
usbd_desc_iter_t iter;
const usb_descriptor_t *desc;
const usb_cdc_descriptor_t *csdesc;
int v;
const usb_cdc_union_descriptor_t *ud;
const struct mbim_descriptor *md;
int i;
int ctrl_ep;
const usb_interface_descriptor_t *id;
usb_config_descriptor_t *cd;
usb_endpoint_descriptor_t *ed;
const usb_interface_assoc_descriptor_t *ad;
int current_ifaceno = -1;
int data_ifaceno = -1;
int altnum;
int s;
struct ifnet *ifp;
sc->sc_dev = self;
sc->sc_udev = uiaa->uiaa_device;
aprint_naive("\n");
aprint_normal("\n");
devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
aprint_normal_dev(self, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
sc->sc_ctrl_ifaceno = uiaa->uiaa_ifaceno;
/*
* Some MBIM hardware does not provide the mandatory CDC Union
* Descriptor, so we also look at matching Interface
* Association Descriptors to find out the MBIM Data Interface
* number.
*/
sc->sc_ver_maj = sc->sc_ver_min = -1;
sc->sc_maxpktlen = MBIM_MAXSEGSZ_MINVAL;
usb_desc_iter_init(sc->sc_udev, &iter);
while ((desc = usb_desc_iter_next(&iter))) {
if (desc->bDescriptorType == UDESC_INTERFACE_ASSOC) {
if (desc->bLength < sizeof(*ad))
continue;
ad = (const usb_interface_assoc_descriptor_t *)desc;
if (ad->bFirstInterface == uiaa->uiaa_ifaceno &&
ad->bInterfaceCount > 1)
data_ifaceno = uiaa->uiaa_ifaceno + 1;
continue;
}
if (desc->bDescriptorType == UDESC_INTERFACE) {
if (desc->bLength < sizeof(*id))
continue;
id = (const usb_interface_descriptor_t *)desc;
current_ifaceno = id->bInterfaceNumber;
continue;
}
if (current_ifaceno != uiaa->uiaa_ifaceno)
continue;
if (desc->bDescriptorType != UDESC_CS_INTERFACE)
continue;
if (desc->bLength < sizeof(*csdesc))
continue;
csdesc = (const usb_cdc_descriptor_t *)desc;
switch (csdesc->bDescriptorSubtype) {
case UDESCSUB_CDC_UNION:
if (desc->bLength < sizeof(*ud))
continue;
ud = (const usb_cdc_union_descriptor_t *)desc;
data_ifaceno = ud->bSlaveInterface[0];
break;
case UDESCSUB_MBIM:
if (desc->bLength < sizeof(*md))
continue;
md = (const struct mbim_descriptor *)desc;
v = UGETW(md->bcdMBIMVersion);
sc->sc_ver_maj = MBIM_VER_MAJOR(v);
sc->sc_ver_min = MBIM_VER_MINOR(v);
sc->sc_ctrl_len = UGETW(md->wMaxControlMessage);
/* Never trust a USB device! Could try to exploit us */
if (sc->sc_ctrl_len < MBIM_CTRLMSG_MINLEN ||
sc->sc_ctrl_len > MBIM_CTRLMSG_MAXLEN) {
DPRINTF("%s: control message len %d out of "
"bounds [%d .. %d]\n", DEVNAM(sc),
sc->sc_ctrl_len, MBIM_CTRLMSG_MINLEN,
MBIM_CTRLMSG_MAXLEN);
/* cont. anyway */
}
sc->sc_maxpktlen = UGETW(md->wMaxSegmentSize);
DPRINTFN(2, "%s: ctrl_len=%d, maxpktlen=%d, cap=%#x\n",
DEVNAM(sc), sc->sc_ctrl_len, sc->sc_maxpktlen,
md->bmNetworkCapabilities);
break;
default:
break;
}
}
if (sc->sc_ver_maj < 0) {
aprint_error_dev(self, "missing MBIM descriptor\n");
goto fail;
}
aprint_normal_dev(self, "version %d.%d\n", sc->sc_ver_maj,
sc->sc_ver_min);
if (usb_lookup(umb_fccauth_devs, uiaa->uiaa_vendor, uiaa->uiaa_product)) {
sc->sc_flags |= UMBFLG_FCC_AUTH_REQUIRED;
sc->sc_cid = -1;
}
for (i = 0; i < uiaa->uiaa_nifaces; i++) {
id = usbd_get_interface_descriptor(uiaa->uiaa_ifaces[i]);
if (id != NULL && id->bInterfaceNumber == data_ifaceno) {
sc->sc_data_iface = uiaa->uiaa_ifaces[i];
}
}
if (sc->sc_data_iface == NULL) {
aprint_error_dev(self, "no data interface found\n");
goto fail;
}
/*
* If this is a combined NCM/MBIM function, switch to
* alternate setting one to enable MBIM.
*/
id = usbd_get_interface_descriptor(uiaa->uiaa_iface);
if (id->bInterfaceClass == UICLASS_CDC &&
id->bInterfaceSubClass ==
UISUBCLASS_NETWORK_CONTROL_MODEL)
usbd_set_interface(uiaa->uiaa_iface, 1);
id = usbd_get_interface_descriptor(uiaa->uiaa_iface);
ctrl_ep = -1;
for (i = 0; i < id->bNumEndpoints && ctrl_ep == -1; i++) {
ed = usbd_interface2endpoint_descriptor(uiaa->uiaa_iface, i);
if (ed == NULL)
break;
if (UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT &&
UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN)
ctrl_ep = ed->bEndpointAddress;
}
if (ctrl_ep == -1) {
aprint_error_dev(self, "missing interrupt endpoint\n");
goto fail;
}
/*
* For the MBIM Data Interface, select the appropriate
* alternate setting by looking for a matching descriptor that
* has two endpoints.
*/
cd = usbd_get_config_descriptor(sc->sc_udev);
altnum = usbd_get_no_alts(cd, data_ifaceno);
for (i = 0; i < altnum; i++) {
id = usbd_find_idesc(cd, sc->sc_data_iface->ui_index, i);
if (id == NULL)
continue;
if (id->bInterfaceClass == UICLASS_CDC_DATA &&
id->bInterfaceSubClass == UISUBCLASS_DATA &&
id->bInterfaceProtocol == UIPROTO_DATA_MBIM &&
id->bNumEndpoints == 2)
break;
}
if (i == altnum || id == NULL) {
aprint_error_dev(self, "missing alt setting for interface #%d\n",
data_ifaceno);
goto fail;
}
status = usbd_set_interface(sc->sc_data_iface, i);
if (status) {
aprint_error_dev(self, "select alt setting %d for interface #%d "
"failed: %s\n", i, data_ifaceno, usbd_errstr(status));
goto fail;
}
id = usbd_get_interface_descriptor(sc->sc_data_iface);
sc->sc_rx_ep = sc->sc_tx_ep = -1;
for (i = 0; i < id->bNumEndpoints; i++) {
if ((ed = usbd_interface2endpoint_descriptor(sc->sc_data_iface,
i)) == NULL)
break;
if (UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK &&
UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN)
sc->sc_rx_ep = ed->bEndpointAddress;
else if (UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK &&
UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT)
sc->sc_tx_ep = ed->bEndpointAddress;
}
if (sc->sc_rx_ep == -1 || sc->sc_tx_ep == -1) {
aprint_error_dev(self, "missing bulk endpoints\n");
goto fail;
}
DPRINTFN(2, "%s: ctrl-ifno#%d: ep-ctrl=%d, data-ifno#%d: ep-rx=%d, "
"ep-tx=%d\n", DEVNAM(sc), sc->sc_ctrl_ifaceno,
UE_GET_ADDR(ctrl_ep), data_ifaceno,
UE_GET_ADDR(sc->sc_rx_ep), UE_GET_ADDR(sc->sc_tx_ep));
usb_init_task(&sc->sc_umb_task, umb_state_task, sc,
0);
usb_init_task(&sc->sc_get_response_task, umb_get_response_task, sc,
0);
callout_init(&sc->sc_statechg_timer, 0);
callout_setfunc(&sc->sc_statechg_timer, umb_statechg_timeout, sc);
if (usbd_open_pipe_intr(uiaa->uiaa_iface, ctrl_ep, USBD_SHORT_XFER_OK,
&sc->sc_ctrl_pipe, sc, &sc->sc_intr_msg, sizeof(sc->sc_intr_msg),
umb_intr, USBD_DEFAULT_INTERVAL)) {
aprint_error_dev(self, "failed to open control pipe\n");
goto fail;
}
sc->sc_resp_buf = kmem_alloc(sc->sc_ctrl_len, KM_SLEEP);
sc->sc_ctrl_msg = kmem_alloc(sc->sc_ctrl_len, KM_SLEEP);
sc->sc_info.regstate = MBIM_REGSTATE_UNKNOWN;
sc->sc_info.pin_attempts_left = UMB_VALUE_UNKNOWN;
sc->sc_info.rssi = UMB_VALUE_UNKNOWN;
sc->sc_info.ber = UMB_VALUE_UNKNOWN;
umb_ncm_setup(sc);
DPRINTFN(2, "%s: rx/tx size %d/%d\n", DEVNAM(sc),
sc->sc_rx_bufsz, sc->sc_tx_bufsz);
s = splnet();
/* initialize the interface */
ifp = GET_IFP(sc);
ifp->if_softc = sc;
ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_POINTOPOINT;
ifp->if_ioctl = umb_ioctl;
ifp->if_start = umb_start;
ifp->if_watchdog = umb_watchdog;
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
ifp->if_link_state = LINK_STATE_DOWN;
ifmedia_init(&sc->sc_im, 0, umb_mediachange, umb_mediastatus);
ifp->if_type = IFT_MBIM;
ifp->if_addrlen = 0;
ifp->if_hdrlen = sizeof(struct ncm_header16) +
sizeof(struct ncm_pointer16);
ifp->if_mtu = 1500; /* use a common default */
ifp->if_mtu = sc->sc_maxpktlen;
ifp->if_output = umb_output;
ifp->_if_input = umb_input;
IFQ_SET_READY(&ifp->if_snd);
/* attach the interface */
if_initialize(ifp);
if_register(ifp);
if_alloc_sadl(ifp);
bpf_attach(ifp, DLT_RAW, 0);
rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
RND_TYPE_NET, RND_FLAG_DEFAULT);
/*
* Open the device now so that we are able to query device information.
* XXX maybe close when done?
*/
umb_open(sc);
sc->sc_attached = 1;
splx(s);
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
if (!pmf_device_register(self, NULL, NULL))
aprint_error_dev(self, "couldn't establish power handler\n");
return;
fail:
umb_activate(sc->sc_dev, DVACT_DEACTIVATE);
return;
}
Static int
umb_detach(device_t self, int flags)
{
struct umb_softc *sc = device_private(self);
struct ifnet *ifp = GET_IFP(sc);
int s;
pmf_device_deregister(self);
s = splnet();
if (ifp->if_flags & IFF_RUNNING)
umb_down(sc, 1);
umb_close(sc);
usb_rem_task_wait(sc->sc_udev, &sc->sc_get_response_task,
USB_TASKQ_DRIVER, NULL);
sc->sc_nresp = 0;
if (sc->sc_rx_ep != -1 && sc->sc_tx_ep != -1) {
callout_destroy(&sc->sc_statechg_timer);
usb_rem_task_wait(sc->sc_udev, &sc->sc_umb_task,
USB_TASKQ_DRIVER, NULL);
}
if (sc->sc_ctrl_pipe) {
usbd_close_pipe(sc->sc_ctrl_pipe);
sc->sc_ctrl_pipe = NULL;
}
if (sc->sc_ctrl_msg) {
kmem_free(sc->sc_ctrl_msg, sc->sc_ctrl_len);
sc->sc_ctrl_msg = NULL;
}
if (sc->sc_resp_buf) {
kmem_free(sc->sc_resp_buf, sc->sc_ctrl_len);
sc->sc_resp_buf = NULL;
}
if (ifp->if_softc) {
ifmedia_fini(&sc->sc_im);
}
if (sc->sc_attached) {
rnd_detach_source(&sc->sc_rnd_source);
bpf_detach(ifp);
if_detach(ifp);
}
sc->sc_attached = 0;
splx(s);
return 0;
}
Static int
umb_activate(device_t self, enum devact act)
{
struct umb_softc *sc = device_private(self);
switch (act) {
case DVACT_DEACTIVATE:
if_deactivate(GET_IFP(sc));
sc->sc_dying = 1;
return 0;
default:
return EOPNOTSUPP;
}
}
Static void
umb_ncm_setup(struct umb_softc *sc)
{
usb_device_request_t req;
struct ncm_ntb_parameters np;
/* Query NTB tranfers sizes */
req.bmRequestType = UT_READ_CLASS_INTERFACE;
req.bRequest = NCM_GET_NTB_PARAMETERS;
USETW(req.wValue, 0);
USETW(req.wIndex, sc->sc_ctrl_ifaceno);
USETW(req.wLength, sizeof(np));
if (usbd_do_request(sc->sc_udev, &req, &np) == USBD_NORMAL_COMPLETION &&
UGETW(np.wLength) == sizeof(np)) {
sc->sc_rx_bufsz = UGETDW(np.dwNtbInMaxSize);
sc->sc_tx_bufsz = UGETDW(np.dwNtbOutMaxSize);
} else
sc->sc_rx_bufsz = sc->sc_tx_bufsz = 8 * 1024;
}
Static int
umb_alloc_xfers(struct umb_softc *sc)
{
int err = 0;
if (!sc->sc_rx_xfer) {
err |= usbd_create_xfer(sc->sc_rx_pipe,
sc->sc_rx_bufsz,
0, 0, &sc->sc_rx_xfer);
}
if (!sc->sc_tx_xfer) {
err |= usbd_create_xfer(sc->sc_tx_pipe,
sc->sc_tx_bufsz,
0, 0, &sc->sc_tx_xfer);
}
if (err)
return err;
sc->sc_rx_buf = usbd_get_buffer(sc->sc_rx_xfer);
sc->sc_tx_buf = usbd_get_buffer(sc->sc_tx_xfer);
return 0;
}
Static void
umb_free_xfers(struct umb_softc *sc)
{
if (sc->sc_rx_xfer) {
/* implicit usbd_free_buffer() */
usbd_destroy_xfer(sc->sc_rx_xfer);
sc->sc_rx_xfer = NULL;
sc->sc_rx_buf = NULL;
}
if (sc->sc_tx_xfer) {
usbd_destroy_xfer(sc->sc_tx_xfer);
sc->sc_tx_xfer = NULL;
sc->sc_tx_buf = NULL;
}
if (sc->sc_tx_m) {
m_freem(sc->sc_tx_m);
sc->sc_tx_m = NULL;
}
}
Static int
umb_alloc_bulkpipes(struct umb_softc *sc)
{
struct ifnet *ifp = GET_IFP(sc);
int rv;
if (!(ifp->if_flags & IFF_RUNNING)) {
if ((rv = usbd_open_pipe(sc->sc_data_iface, sc->sc_rx_ep,
USBD_EXCLUSIVE_USE, &sc->sc_rx_pipe))) {
DPRINTFN(4, "usbd_open_pipe() failed (RX) %d\n", rv);
return 0;
}
if ((rv = usbd_open_pipe(sc->sc_data_iface, sc->sc_tx_ep,
USBD_EXCLUSIVE_USE, &sc->sc_tx_pipe))) {
DPRINTFN(4, "usbd_open_pipe() failed (TX) %d\n", rv);
return 0;
}
if ((rv = umb_alloc_xfers(sc)) != 0) {
DPRINTFN(4, "umb_alloc_xfers() failed %d\n", rv);
return 0;
}
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
umb_rx(sc);
}
return 1;
}
Static void
umb_close_bulkpipes(struct umb_softc *sc)
{
struct ifnet *ifp = GET_IFP(sc);
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
if (sc->sc_rx_pipe) {
usbd_close_pipe(sc->sc_rx_pipe);
sc->sc_rx_pipe = NULL;
}
if (sc->sc_tx_pipe) {
usbd_close_pipe(sc->sc_tx_pipe);
sc->sc_tx_pipe = NULL;
}
}
Static int
umb_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct umb_softc *sc = ifp->if_softc;
struct ifaddr *ifa = (struct ifaddr *)data;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
struct umb_parameter mp;
if (sc->sc_dying)
return EIO;
s = splnet();
switch (cmd) {
case SIOCINITIFADDR:
ifp->if_flags |= IFF_UP;
usb_add_task(sc->sc_udev, &sc->sc_umb_task, USB_TASKQ_DRIVER);
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
break;
#endif /* INET */
#ifdef INET6
case AF_INET6:
break;
#endif /* INET6 */
default:
error = EAFNOSUPPORT;
break;
}
ifa->ifa_rtrequest = p2p_rtrequest;
break;
case SIOCSIFFLAGS:
error = ifioctl_common(ifp, cmd, data);
if (error)
break;
usb_add_task(sc->sc_udev, &sc->sc_umb_task, USB_TASKQ_DRIVER);
break;
case SIOCGUMBINFO:
error = kauth_authorize_network(kauth_cred_get(),
KAUTH_NETWORK_INTERFACE,
KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
NULL);
if (error)
break;
error = copyout(&sc->sc_info, ifr->ifr_data,
sizeof(sc->sc_info));
break;
case SIOCSUMBPARAM:
error = kauth_authorize_network(kauth_cred_get(),
KAUTH_NETWORK_INTERFACE,
KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
NULL);
if (error)
break;
if ((error = copyin(ifr->ifr_data, &mp, sizeof(mp))) != 0)
break;
if ((error = umb_setpin(sc, mp.op, mp.is_puk, mp.pin, mp.pinlen,
mp.newpin, mp.newpinlen)) != 0)
break;
if (mp.apnlen < 0 || mp.apnlen > sizeof(sc->sc_info.apn)) {
error = EINVAL;
break;
}
sc->sc_roaming = mp.roaming ? 1 : 0;
memset(sc->sc_info.apn, 0, sizeof(sc->sc_info.apn));
memcpy(sc->sc_info.apn, mp.apn, mp.apnlen);
sc->sc_info.apnlen = mp.apnlen;
memset(sc->sc_info.username, 0, sizeof(sc->sc_info.username));
memcpy(sc->sc_info.username, mp.username, mp.usernamelen);
sc->sc_info.usernamelen = mp.usernamelen;
memset(sc->sc_info.password, 0, sizeof(sc->sc_info.password));
memcpy(sc->sc_info.password, mp.password, mp.passwordlen);
sc->sc_info.passwordlen = mp.passwordlen;
sc->sc_info.preferredclasses = mp.preferredclasses;
umb_setdataclass(sc);
break;
case SIOCGUMBPARAM:
memset(&mp, 0, sizeof(mp));
memcpy(mp.apn, sc->sc_info.apn, sc->sc_info.apnlen);
mp.apnlen = sc->sc_info.apnlen;
mp.roaming = sc->sc_roaming;
mp.preferredclasses = sc->sc_info.preferredclasses;
error = copyout(&mp, ifr->ifr_data, sizeof(mp));
break;
case SIOCSIFMTU:
/* Does this include the NCM headers and tail? */
if (ifr->ifr_mtu > ifp->if_mtu) {
error = EINVAL;
break;
}
ifp->if_mtu = ifr->ifr_mtu;
break;
case SIOCSIFADDR:
case SIOCAIFADDR:
case SIOCSIFDSTADDR:
case SIOCADDMULTI:
case SIOCDELMULTI:
break;
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
break;
default:
error = ifioctl_common(ifp, cmd, data);
break;
}
splx(s);
return error;
}
Static int
umb_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
const struct rtentry *rtp)
{
int error;
DPRINTFN(10, "%s: %s: enter\n",
device_xname(((struct umb_softc *)ifp->if_softc)->sc_dev),
__func__);
/*
* if the queueing discipline needs packet classification,
* do it now.
*/
IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
/*
* Queue message on interface, and start output if interface
* not yet active.
*/
error = if_transmit_lock(ifp, m);
return error;
}
Static void
umb_input(struct ifnet *ifp, struct mbuf *m)
{
size_t pktlen = m->m_len;
int s;
if ((ifp->if_flags & IFF_UP) == 0) {
m_freem(m);
return;
}
if (pktlen < sizeof(struct ip)) {
if_statinc(ifp, if_ierrors);
DPRINTFN(4, "%s: dropping short packet (len %zd)\n", __func__,
pktlen);
m_freem(m);
return;
}
s = splnet();
if (__predict_false(!pktq_enqueue(ip_pktq, m, 0))) {
if_statinc(ifp, if_iqdrops);
m_freem(m);
} else {
if_statadd2(ifp, if_ipackets, 1, if_ibytes, pktlen);
}
splx(s);
}
Static void
umb_start(struct ifnet *ifp)
{
struct umb_softc *sc = ifp->if_softc;
struct mbuf *m_head = NULL;
if (sc->sc_dying || (ifp->if_flags & IFF_OACTIVE))
return;
IFQ_POLL(&ifp->if_snd, m_head);
if (m_head == NULL)
return;
if (!umb_encap(sc, m_head)) {
ifp->if_flags |= IFF_OACTIVE;
return;
}
IFQ_DEQUEUE(&ifp->if_snd, m_head);
bpf_mtap(ifp, m_head, BPF_D_OUT);
ifp->if_flags |= IFF_OACTIVE;
ifp->if_timer = (2 * umb_xfer_tout) / 1000;
}
Static void
umb_watchdog(struct ifnet *ifp)
{
struct umb_softc *sc = ifp->if_softc;
if (sc->sc_dying)
return;
if_statinc(ifp, if_oerrors);
printf("%s: watchdog timeout\n", DEVNAM(sc));
usbd_abort_pipe(sc->sc_tx_pipe);
return;
}
Static void
umb_statechg_timeout(void *arg)
{
struct umb_softc *sc = arg;
struct ifnet *ifp = GET_IFP(sc);
if (sc->sc_info.regstate != MBIM_REGSTATE_ROAMING || sc->sc_roaming)
if (ifp->if_flags & IFF_DEBUG)
log(LOG_DEBUG, "%s: state change timeout\n",
DEVNAM(sc));
usb_add_task(sc->sc_udev, &sc->sc_umb_task, USB_TASKQ_DRIVER);
}
Static int
umb_mediachange(struct ifnet * ifp)
{
return 0;
}
Static void
umb_mediastatus(struct ifnet * ifp, struct ifmediareq * imr)
{
switch (ifp->if_link_state) {
case LINK_STATE_UP:
imr->ifm_status = IFM_AVALID | IFM_ACTIVE;
break;
case LINK_STATE_DOWN:
imr->ifm_status = IFM_AVALID;
break;
default:
imr->ifm_status = 0;
break;
}
}
Static void
umb_newstate(struct umb_softc *sc, enum umb_state newstate, int flags)
{
struct ifnet *ifp = GET_IFP(sc);
if (newstate == sc->sc_state)
return;
if (((flags & UMB_NS_DONT_DROP) && newstate < sc->sc_state) ||
((flags & UMB_NS_DONT_RAISE) && newstate > sc->sc_state))
return;
if (ifp->if_flags & IFF_DEBUG)
log(LOG_DEBUG, "%s: state going %s from '%s' to '%s'\n",
DEVNAM(sc), newstate > sc->sc_state ? "up" : "down",
umb_istate(sc->sc_state), umb_istate(newstate));
sc->sc_state = newstate;
usb_add_task(sc->sc_udev, &sc->sc_umb_task, USB_TASKQ_DRIVER);
}
Static void
umb_state_task(void *arg)
{
struct umb_softc *sc = arg;
struct ifnet *ifp = GET_IFP(sc);
struct ifreq ifr;
int s;
int state;
if (sc->sc_info.regstate == MBIM_REGSTATE_ROAMING && !sc->sc_roaming) {
/*
* Query the registration state until we're with the home
* network again.
*/
umb_cmd(sc, MBIM_CID_REGISTER_STATE, MBIM_CMDOP_QRY, NULL, 0);
return;
}
s = splnet();
if (ifp->if_flags & IFF_UP)
umb_up(sc);
else
umb_down(sc, 0);
state = sc->sc_state == UMB_S_UP ? LINK_STATE_UP : LINK_STATE_DOWN;
if (ifp->if_link_state != state) {
if (ifp->if_flags & IFF_DEBUG)
log(LOG_DEBUG, "%s: link state changed from %s to %s\n",
DEVNAM(sc),
(ifp->if_link_state == LINK_STATE_UP)
? "up" : "down",
(state == LINK_STATE_UP) ? "up" : "down");
ifp->if_link_state = state;
if (state != LINK_STATE_UP) {
/*
* Purge any existing addresses
*/
memset(sc->sc_info.ipv4dns, 0,
sizeof(sc->sc_info.ipv4dns));
if (in_control(NULL, SIOCGIFADDR, &ifr, ifp) == 0 &&
satosin(&ifr.ifr_addr)->sin_addr.s_addr !=
INADDR_ANY) {
in_control(NULL, SIOCDIFADDR, &ifr, ifp);
}
}
if_link_state_change(ifp, state);
}
splx(s);
}
Static void
umb_up(struct umb_softc *sc)
{
switch (sc->sc_state) {
case UMB_S_DOWN:
DPRINTF("%s: init: opening ...\n", DEVNAM(sc));
umb_open(sc);
break;
case UMB_S_OPEN:
if (sc->sc_flags & UMBFLG_FCC_AUTH_REQUIRED) {
if (sc->sc_cid == -1) {
DPRINTF("%s: init: allocating CID ...\n",
DEVNAM(sc));
umb_allocate_cid(sc);
break;
} else
umb_newstate(sc, UMB_S_CID, UMB_NS_DONT_DROP);
} else {
DPRINTF("%s: init: turning radio on ...\n", DEVNAM(sc));
umb_radio(sc, 1);
break;
}
/*FALLTHROUGH*/
case UMB_S_CID:
DPRINTF("%s: init: sending FCC auth ...\n", DEVNAM(sc));
umb_send_fcc_auth(sc);
break;
case UMB_S_RADIO:
DPRINTF("%s: init: checking SIM state ...\n", DEVNAM(sc));
umb_cmd(sc, MBIM_CID_SUBSCRIBER_READY_STATUS, MBIM_CMDOP_QRY,
NULL, 0);
break;
case UMB_S_SIMREADY:
DPRINTF("%s: init: attaching ...\n", DEVNAM(sc));
umb_packet_service(sc, 1);
break;
case UMB_S_ATTACHED:
sc->sc_tx_seq = 0;
DPRINTF("%s: init: connecting ...\n", DEVNAM(sc));
umb_connect(sc);
break;
case UMB_S_CONNECTED:
DPRINTF("%s: init: getting IP config ...\n", DEVNAM(sc));
umb_qry_ipconfig(sc);
break;
case UMB_S_UP:
DPRINTF("%s: init: reached state UP\n", DEVNAM(sc));
if (!umb_alloc_bulkpipes(sc)) {
printf("%s: opening bulk pipes failed\n", DEVNAM(sc));
umb_down(sc, 1);
}
break;
}
if (sc->sc_state < UMB_S_UP)
callout_schedule(&sc->sc_statechg_timer,
UMB_STATE_CHANGE_TIMEOUT * hz);
else
callout_stop(&sc->sc_statechg_timer);
return;
}
Static void
umb_down(struct umb_softc *sc, int force)
{
umb_close_bulkpipes(sc);
if (sc->sc_state < UMB_S_CONNECTED)
umb_free_xfers(sc);
switch (sc->sc_state) {
case UMB_S_UP:
case UMB_S_CONNECTED:
DPRINTF("%s: stop: disconnecting ...\n", DEVNAM(sc));
umb_disconnect(sc);
if (!force)
break;
/*FALLTHROUGH*/
case UMB_S_ATTACHED:
DPRINTF("%s: stop: detaching ...\n", DEVNAM(sc));
umb_packet_service(sc, 0);
if (!force)
break;
/*FALLTHROUGH*/
case UMB_S_SIMREADY:
case UMB_S_RADIO:
DPRINTF("%s: stop: turning radio off ...\n", DEVNAM(sc));
umb_radio(sc, 0);
if (!force)
break;
/*FALLTHROUGH*/
case UMB_S_CID:
case UMB_S_OPEN:
case UMB_S_DOWN:
/* Do not close the device */
DPRINTF("%s: stop: reached state DOWN\n", DEVNAM(sc));
break;
}
if (force)
sc->sc_state = UMB_S_OPEN;
if (sc->sc_state > UMB_S_OPEN)
callout_schedule(&sc->sc_statechg_timer,
UMB_STATE_CHANGE_TIMEOUT * hz);
else
callout_stop(&sc->sc_statechg_timer);
}
Static void
umb_get_response_task(void *arg)
{
struct umb_softc *sc = arg;
int len;
int s;
/*
* Function is required to send on RESPONSE_AVAILABLE notification for
* each encapsulated response that is to be processed by the host.
* But of course, we can receive multiple notifications before the
* response task is run.
*/
s = splusb();
while (sc->sc_nresp > 0) {
--sc->sc_nresp;
len = sc->sc_ctrl_len;
if (umb_get_encap_response(sc, sc->sc_resp_buf, &len))
umb_decode_response(sc, sc->sc_resp_buf, len);
}
splx(s);
}
Static void
umb_decode_response(struct umb_softc *sc, void *response, int len)
{
struct mbim_msghdr *hdr = response;
struct mbim_fragmented_msg_hdr *fraghdr;
uint32_t type;
DPRINTFN(3, "%s: got response: len %d\n", DEVNAM(sc), len);
DDUMPN(4, response, len);
if (len < sizeof(*hdr) || le32toh(hdr->len) != len) {
/*
* We should probably cancel a transaction, but since the
* message is too short, we cannot decode the transaction
* id (tid) and hence don't know, whom to cancel. Must wait
* for the timeout.
*/
DPRINTF("%s: received short response (len %d)\n",
DEVNAM(sc), len);
return;
}
/*
* XXX FIXME: if message is fragmented, store it until last frag
* is received and then re-assemble all fragments.
*/
type = le32toh(hdr->type);
switch (type) {
case MBIM_INDICATE_STATUS_MSG:
case MBIM_COMMAND_DONE:
fraghdr = response;
if (le32toh(fraghdr->frag.nfrag) != 1) {
DPRINTF("%s: discarding fragmented messages\n",
DEVNAM(sc));
return;
}
break;
default:
break;
}
DPRINTF("%s: <- rcv %s (tid %u)\n", DEVNAM(sc), umb_request2str(type),
le32toh(hdr->tid));
switch (type) {
case MBIM_FUNCTION_ERROR_MSG:
case MBIM_HOST_ERROR_MSG:
{
struct mbim_f2h_hosterr *e;
int err;
if (len >= sizeof(*e)) {
e = response;
err = le32toh(e->err);
DPRINTF("%s: %s message, error %s (tid %u)\n",
DEVNAM(sc), umb_request2str(type),
umb_error2str(err), le32toh(hdr->tid));
if (err == MBIM_ERROR_NOT_OPENED)
umb_newstate(sc, UMB_S_DOWN, 0);
}
break;
}
case MBIM_INDICATE_STATUS_MSG:
umb_handle_indicate_status_msg(sc, response, len);
break;
case MBIM_OPEN_DONE:
umb_handle_opendone_msg(sc, response, len);
break;
case MBIM_CLOSE_DONE:
umb_handle_closedone_msg(sc, response, len);
break;
case MBIM_COMMAND_DONE:
umb_command_done(sc, response, len);
break;
default:
DPRINTF("%s: discard message %s\n", DEVNAM(sc),
umb_request2str(type));
break;
}
}
Static void
umb_handle_indicate_status_msg(struct umb_softc *sc, void *data, int len)
{
struct mbim_f2h_indicate_status *m = data;
uint32_t infolen;
uint32_t cid;
if (len < sizeof(*m)) {
DPRINTF("%s: discard short %s message\n", DEVNAM(sc),
umb_request2str(le32toh(m->hdr.type)));
return;
}
if (memcmp(m->devid, umb_uuid_basic_connect, sizeof(m->devid))) {
DPRINTF("%s: discard %s message for other UUID '%s'\n",
DEVNAM(sc), umb_request2str(le32toh(m->hdr.type)),
umb_uuid2str(m->devid));
return;
}
infolen = le32toh(m->infolen);
if (len < sizeof(*m) + infolen) {
DPRINTF("%s: discard truncated %s message (want %d, got %d)\n",
DEVNAM(sc), umb_request2str(le32toh(m->hdr.type)),
(int)sizeof(*m) + infolen, len);
return;
}
cid = le32toh(m->cid);
DPRINTF("%s: indicate %s status\n", DEVNAM(sc), umb_cid2str(cid));
umb_decode_cid(sc, cid, m->info, infolen);
}
Static void
umb_handle_opendone_msg(struct umb_softc *sc, void *data, int len)
{
struct mbim_f2h_openclosedone *resp = data;
struct ifnet *ifp = GET_IFP(sc);
uint32_t status;
status = le32toh(resp->status);
if (status == MBIM_STATUS_SUCCESS) {
if (sc->sc_maxsessions == 0) {
umb_cmd(sc, MBIM_CID_DEVICE_CAPS, MBIM_CMDOP_QRY, NULL,
0);
umb_cmd(sc, MBIM_CID_PIN, MBIM_CMDOP_QRY, NULL, 0);
umb_cmd(sc, MBIM_CID_REGISTER_STATE, MBIM_CMDOP_QRY,
NULL, 0);
}
umb_newstate(sc, UMB_S_OPEN, UMB_NS_DONT_DROP);
} else if (ifp->if_flags & IFF_DEBUG)
log(LOG_ERR, "%s: open error: %s\n", DEVNAM(sc),
umb_status2str(status));
return;
}
Static void
umb_handle_closedone_msg(struct umb_softc *sc, void *data, int len)
{
struct mbim_f2h_openclosedone *resp = data;
uint32_t status;
status = le32toh(resp->status);
if (status == MBIM_STATUS_SUCCESS)
umb_newstate(sc, UMB_S_DOWN, 0);
else
DPRINTF("%s: close error: %s\n", DEVNAM(sc),
umb_status2str(status));
return;
}
static inline void
umb_getinfobuf(char *in, int inlen, uint32_t offs, uint32_t sz,
void *out, size_t outlen)
{
offs = le32toh(offs);
sz = le32toh(sz);
if (inlen >= offs + sz) {
memset(out, 0, outlen);
memcpy(out, in + offs, MIN(sz, outlen));
}
}
static inline int
umb_padding(void *data, int len, size_t sz)
{
char *p = data;
int np = 0;
while (len < sz && (len % 4) != 0) {
*p++ = '\0';
len++;
np++;
}
return np;
}
static inline int
umb_addstr(void *buf, size_t bufsz, int *offs, void *str, int slen,
uint32_t *offsmember, uint32_t *sizemember)
{
if (*offs + slen > bufsz)
return 0;
*sizemember = htole32((uint32_t)slen);
if (slen && str) {
*offsmember = htole32((uint32_t)*offs);
memcpy((char *)buf + *offs, str, slen);
*offs += slen;
*offs += umb_padding(buf, *offs, bufsz);
} else
*offsmember = htole32(0);
return 1;
}
static void
umb_in_len2mask(struct in_addr *mask, int len)
{
int i;
u_char *p;
p = (u_char *)mask;
memset(mask, 0, sizeof(*mask));
for (i = 0; i < len / 8; i++)
p[i] = 0xff;
if (len % 8)
p[i] = (0xff00 >> (len % 8)) & 0xff;
}
Static int
umb_decode_register_state(struct umb_softc *sc, void *data, int len)
{
struct mbim_cid_registration_state_info *rs = data;
struct ifnet *ifp = GET_IFP(sc);
if (len < sizeof(*rs))
return 0;
sc->sc_info.nwerror = le32toh(rs->nwerror);
sc->sc_info.regstate = le32toh(rs->regstate);
sc->sc_info.regmode = le32toh(rs->regmode);
sc->sc_info.cellclass = le32toh(rs->curcellclass);
/* XXX should we remember the provider_id? */
umb_getinfobuf(data, len, rs->provname_offs, rs->provname_size,
sc->sc_info.provider, sizeof(sc->sc_info.provider));
umb_getinfobuf(data, len, rs->roamingtxt_offs, rs->roamingtxt_size,
sc->sc_info.roamingtxt, sizeof(sc->sc_info.roamingtxt));
DPRINTFN(2, "%s: %s, availclass %#x, class %#x, regmode %d\n",
DEVNAM(sc), umb_regstate(sc->sc_info.regstate),
le32toh(rs->availclasses), sc->sc_info.cellclass,
sc->sc_info.regmode);
if (sc->sc_info.regstate == MBIM_REGSTATE_ROAMING &&
!sc->sc_roaming &&
sc->sc_info.activation == MBIM_ACTIVATION_STATE_ACTIVATED) {
if (ifp->if_flags & IFF_DEBUG)
log(LOG_INFO,
"%s: disconnecting from roaming network\n",
DEVNAM(sc));
umb_disconnect(sc);
}
return 1;
}
Static int
umb_decode_devices_caps(struct umb_softc *sc, void *data, int len)
{
struct mbim_cid_device_caps *dc = data;
if (len < sizeof(*dc))
return 0;
sc->sc_maxsessions = le32toh(dc->max_sessions);
sc->sc_info.supportedclasses = le32toh(dc->dataclass);
umb_getinfobuf(data, len, dc->devid_offs, dc->devid_size,
sc->sc_info.devid, sizeof(sc->sc_info.devid));
umb_getinfobuf(data, len, dc->fwinfo_offs, dc->fwinfo_size,
sc->sc_info.fwinfo, sizeof(sc->sc_info.fwinfo));
umb_getinfobuf(data, len, dc->hwinfo_offs, dc->hwinfo_size,
sc->sc_info.hwinfo, sizeof(sc->sc_info.hwinfo));
DPRINTFN(2, "%s: max sessions %d, supported classes %#x\n",
DEVNAM(sc), sc->sc_maxsessions, sc->sc_info.supportedclasses);
return 1;
}
Static int
umb_decode_subscriber_status(struct umb_softc *sc, void *data, int len)
{
struct mbim_cid_subscriber_ready_info *si = data;
struct ifnet *ifp = GET_IFP(sc);
int npn;
if (len < sizeof(*si))
return 0;
sc->sc_info.sim_state = le32toh(si->ready);
umb_getinfobuf(data, len, si->sid_offs, si->sid_size,
sc->sc_info.sid, sizeof(sc->sc_info.sid));
umb_getinfobuf(data, len, si->icc_offs, si->icc_size,
sc->sc_info.iccid, sizeof(sc->sc_info.iccid));
npn = le32toh(si->no_pn);
if (npn > 0)
umb_getinfobuf(data, len, si->pn[0].offs, si->pn[0].size,
sc->sc_info.pn, sizeof(sc->sc_info.pn));
else
memset(sc->sc_info.pn, 0, sizeof(sc->sc_info.pn));
if (sc->sc_info.sim_state == MBIM_SIMSTATE_LOCKED)
sc->sc_info.pin_state = UMB_PUK_REQUIRED;
if (ifp->if_flags & IFF_DEBUG)
log(LOG_INFO, "%s: SIM %s\n", DEVNAM(sc),
umb_simstate(sc->sc_info.sim_state));
if (sc->sc_info.sim_state == MBIM_SIMSTATE_INITIALIZED)
umb_newstate(sc, UMB_S_SIMREADY, UMB_NS_DONT_DROP);
return 1;
}
Static int
umb_decode_radio_state(struct umb_softc *sc, void *data, int len)
{
struct mbim_cid_radio_state_info *rs = data;
struct ifnet *ifp = GET_IFP(sc);
if (len < sizeof(*rs))
return 0;
sc->sc_info.hw_radio_on =
(le32toh(rs->hw_state) == MBIM_RADIO_STATE_ON) ? 1 : 0;
sc->sc_info.sw_radio_on =
(le32toh(rs->sw_state) == MBIM_RADIO_STATE_ON) ? 1 : 0;
if (!sc->sc_info.hw_radio_on) {
printf("%s: radio is disabled by hardware switch\n",
DEVNAM(sc));
/*
* XXX do we need a time to poll the state of the rfkill switch
* or will the device send an unsolicited notification
* in case the state changes?
*/
umb_newstate(sc, UMB_S_OPEN, 0);
} else if (!sc->sc_info.sw_radio_on) {
if (ifp->if_flags & IFF_DEBUG)
log(LOG_INFO, "%s: radio is off\n", DEVNAM(sc));
umb_newstate(sc, UMB_S_OPEN, 0);
} else
umb_newstate(sc, UMB_S_RADIO, UMB_NS_DONT_DROP);
return 1;
}
Static int
umb_decode_pin(struct umb_softc *sc, void *data, int len)
{
struct mbim_cid_pin_info *pi = data;
struct ifnet *ifp = GET_IFP(sc);
uint32_t attempts_left;
if (len < sizeof(*pi))
return 0;
attempts_left = le32toh(pi->remaining_attempts);
if (attempts_left != 0xffffffff)
sc->sc_info.pin_attempts_left = attempts_left;
switch (le32toh(pi->state)) {
case MBIM_PIN_STATE_UNLOCKED:
sc->sc_info.pin_state = UMB_PIN_UNLOCKED;
break;
case MBIM_PIN_STATE_LOCKED:
switch (le32toh(pi->type)) {
case MBIM_PIN_TYPE_PIN1:
sc->sc_info.pin_state = UMB_PIN_REQUIRED;
break;
case MBIM_PIN_TYPE_PUK1:
sc->sc_info.pin_state = UMB_PUK_REQUIRED;
break;
case MBIM_PIN_TYPE_PIN2:
case MBIM_PIN_TYPE_PUK2:
/* Assume that PIN1 was accepted */
sc->sc_info.pin_state = UMB_PIN_UNLOCKED;
break;
}
break;
}
if (ifp->if_flags & IFF_DEBUG)
log(LOG_INFO, "%s: %s state %s (%d attempts left)\n",
DEVNAM(sc), umb_pin_type(le32toh(pi->type)),
(le32toh(pi->state) == MBIM_PIN_STATE_UNLOCKED) ?
"unlocked" : "locked",
le32toh(pi->remaining_attempts));
/*
* In case the PIN was set after IFF_UP, retrigger the state machine
*/
usb_add_task(sc->sc_udev, &sc->sc_umb_task, USB_TASKQ_DRIVER);
return 1;
}
Static int
umb_decode_packet_service(struct umb_softc *sc, void *data, int len)
{
struct mbim_cid_packet_service_info *psi = data;
int state, highestclass;
uint64_t up_speed, down_speed;
struct ifnet *ifp = GET_IFP(sc);
if (len < sizeof(*psi))
return 0;
sc->sc_info.nwerror = le32toh(psi->nwerror);
state = le32toh(psi->state);
highestclass = le32toh(psi->highest_dataclass);
up_speed = le64toh(psi->uplink_speed);
down_speed = le64toh(psi->downlink_speed);
if (sc->sc_info.packetstate != state ||
sc->sc_info.uplink_speed != up_speed ||
sc->sc_info.downlink_speed != down_speed) {
if (ifp->if_flags & IFF_DEBUG) {
log(LOG_INFO, "%s: packet service ", DEVNAM(sc));
if (sc->sc_info.packetstate != state)
addlog("changed from %s to ",
umb_packet_state(sc->sc_info.packetstate));
addlog("%s, class %s, speed: %" PRIu64 " up / %" PRIu64 " down\n",
umb_packet_state(state),
umb_dataclass(highestclass), up_speed, down_speed);
}
}
sc->sc_info.packetstate = state;
sc->sc_info.highestclass = highestclass;
sc->sc_info.uplink_speed = up_speed;
sc->sc_info.downlink_speed = down_speed;
if (sc->sc_info.regmode == MBIM_REGMODE_AUTOMATIC) {
/*
* For devices using automatic registration mode, just proceed,
* once registration has completed.
*/
if (ifp->if_flags & IFF_UP) {
switch (sc->sc_info.regstate) {
case MBIM_REGSTATE_HOME:
case MBIM_REGSTATE_ROAMING:
case MBIM_REGSTATE_PARTNER:
umb_newstate(sc, UMB_S_ATTACHED,
UMB_NS_DONT_DROP);
break;
default:
break;
}
} else
umb_newstate(sc, UMB_S_SIMREADY, UMB_NS_DONT_RAISE);
} else switch (sc->sc_info.packetstate) {
case MBIM_PKTSERVICE_STATE_ATTACHED:
umb_newstate(sc, UMB_S_ATTACHED, UMB_NS_DONT_DROP);
break;
case MBIM_PKTSERVICE_STATE_DETACHED:
umb_newstate(sc, UMB_S_SIMREADY, UMB_NS_DONT_RAISE);
break;
}
return 1;
}
Static int
umb_decode_signal_state(struct umb_softc *sc, void *data, int len)
{
struct mbim_cid_signal_state *ss = data;
struct ifnet *ifp = GET_IFP(sc);
int rssi;
if (len < sizeof(*ss))
return 0;
if (le32toh(ss->rssi) == 99)
rssi = UMB_VALUE_UNKNOWN;
else {
rssi = -113 + 2 * le32toh(ss->rssi);
if ((ifp->if_flags & IFF_DEBUG) && sc->sc_info.rssi != rssi &&
sc->sc_state >= UMB_S_CONNECTED)
log(LOG_INFO, "%s: rssi %d dBm\n", DEVNAM(sc), rssi);
}
sc->sc_info.rssi = rssi;
sc->sc_info.ber = le32toh(ss->err_rate);
if (sc->sc_info.ber == -99)
sc->sc_info.ber = UMB_VALUE_UNKNOWN;
return 1;
}
Static int
umb_decode_connect_info(struct umb_softc *sc, void *data, int len)
{
struct mbim_cid_connect_info *ci = data;
struct ifnet *ifp = GET_IFP(sc);
int act;
if (len < sizeof(*ci))
return 0;
if (le32toh(ci->sessionid) != umb_session_id) {
DPRINTF("%s: discard connection info for session %u\n",
DEVNAM(sc), le32toh(ci->sessionid));
return 1;
}
if (memcmp(ci->context, umb_uuid_context_internet,
sizeof(ci->context))) {
DPRINTF("%s: discard connection info for other context\n",
DEVNAM(sc));
return 1;
}
act = le32toh(ci->activation);
if (sc->sc_info.activation != act) {
if (ifp->if_flags & IFF_DEBUG)
log(LOG_INFO, "%s: connection %s\n", DEVNAM(sc),
umb_activation(act));
if ((ifp->if_flags & IFF_DEBUG) &&
le32toh(ci->iptype) != MBIM_CONTEXT_IPTYPE_DEFAULT &&
le32toh(ci->iptype) != MBIM_CONTEXT_IPTYPE_IPV4)
log(LOG_DEBUG, "%s: got iptype %d connection\n",
DEVNAM(sc), le32toh(ci->iptype));
sc->sc_info.activation = act;
sc->sc_info.nwerror = le32toh(ci->nwerror);
if (sc->sc_info.activation == MBIM_ACTIVATION_STATE_ACTIVATED)
umb_newstate(sc, UMB_S_CONNECTED, UMB_NS_DONT_DROP);
else if (sc->sc_info.activation ==
MBIM_ACTIVATION_STATE_DEACTIVATED)
umb_newstate(sc, UMB_S_ATTACHED, 0);
/* else: other states are purely transitional */
}
return 1;
}
Static int
umb_decode_ip_configuration(struct umb_softc *sc, void *data, int len)
{
struct mbim_cid_ip_configuration_info *ic = data;
struct ifnet *ifp = GET_IFP(sc);
int s;
uint32_t avail;
uint32_t val;
int n, i;
int off;
struct mbim_cid_ipv4_element ipv4elem;
struct in_aliasreq ifra;
struct sockaddr_in *sin;
int state = -1;
int rv;
if (len < sizeof(*ic))
return 0;
if (le32toh(ic->sessionid) != umb_session_id) {
DPRINTF("%s: ignore IP configuration for session id %d\n",
DEVNAM(sc), le32toh(ic->sessionid));
return 0;
}
s = splnet();
/*
* IPv4 configuration
*/
avail = le32toh(ic->ipv4_available);
if ((avail & (MBIM_IPCONF_HAS_ADDRINFO | MBIM_IPCONF_HAS_GWINFO)) ==
(MBIM_IPCONF_HAS_ADDRINFO | MBIM_IPCONF_HAS_GWINFO)) {
n = le32toh(ic->ipv4_naddr);
off = le32toh(ic->ipv4_addroffs);
if (n == 0 || off + sizeof(ipv4elem) > len)
goto done;
/* Only pick the first one */
memcpy(&ipv4elem, (char *)data + off, sizeof(ipv4elem));
ipv4elem.prefixlen = le32toh(ipv4elem.prefixlen);
memset(&ifra, 0, sizeof(ifra));
sin = (struct sockaddr_in *)&ifra.ifra_addr;
sin->sin_family = AF_INET;
sin->sin_len = sizeof(ifra.ifra_addr);
sin->sin_addr.s_addr = ipv4elem.addr;
sin = (struct sockaddr_in *)&ifra.ifra_dstaddr;
sin->sin_family = AF_INET;
sin->sin_len = sizeof(ifra.ifra_dstaddr);
off = le32toh(ic->ipv4_gwoffs);
memcpy(&sin->sin_addr.s_addr, (const char *)data + off,
sizeof(sin->sin_addr.s_addr));
sin = (struct sockaddr_in *)&ifra.ifra_mask;
sin->sin_family = AF_INET;
sin->sin_len = sizeof(ifra.ifra_mask);
umb_in_len2mask(&sin->sin_addr, ipv4elem.prefixlen);
rv = in_control(NULL, SIOCAIFADDR, &ifra, ifp);
if (rv == 0) {
if (ifp->if_flags & IFF_DEBUG)
log(LOG_INFO, "%s: IPv4 addr %s, mask %s, "
"gateway %s\n", device_xname(sc->sc_dev),
umb_ntop(sintosa(&ifra.ifra_addr)),
umb_ntop(sintosa(&ifra.ifra_mask)),
umb_ntop(sintosa(&ifra.ifra_dstaddr)));
state = UMB_S_UP;
} else
printf("%s: unable to set IPv4 address, error %d\n",
device_xname(sc->sc_dev), rv);
}
memset(sc->sc_info.ipv4dns, 0, sizeof(sc->sc_info.ipv4dns));
if (avail & MBIM_IPCONF_HAS_DNSINFO) {
n = le32toh(ic->ipv4_ndnssrv);
off = le32toh(ic->ipv4_dnssrvoffs);
i = 0;
while (n-- > 0) {
if (off + sizeof(uint32_t) > len)
break;
memcpy(&val, (const char *)data + off, sizeof(val));
if (i < UMB_MAX_DNSSRV)
sc->sc_info.ipv4dns[i++] = val;
off += sizeof(uint32_t);
}
}
if ((avail & MBIM_IPCONF_HAS_MTUINFO)) {
val = le32toh(ic->ipv4_mtu);
if (ifp->if_mtu != val && val <= sc->sc_maxpktlen) {
ifp->if_mtu = val;
if (ifp->if_mtu > val)
ifp->if_mtu = val;
if (ifp->if_flags & IFF_DEBUG)
log(LOG_INFO, "%s: MTU %d\n", DEVNAM(sc), val);
}
}
avail = le32toh(ic->ipv6_available);
if ((ifp->if_flags & IFF_DEBUG) && avail & MBIM_IPCONF_HAS_ADDRINFO) {
/* XXX FIXME: IPv6 configuration missing */
log(LOG_INFO, "%s: ignoring IPv6 configuration\n", DEVNAM(sc));
}
if (state != -1)
umb_newstate(sc, state, 0);
done:
splx(s);
return 1;
}
Static void
umb_rx(struct umb_softc *sc)
{
usbd_setup_xfer(sc->sc_rx_xfer, sc, sc->sc_rx_buf,
sc->sc_rx_bufsz, USBD_SHORT_XFER_OK,
USBD_NO_TIMEOUT, umb_rxeof);
usbd_transfer(sc->sc_rx_xfer);
}
Static void
umb_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
struct umb_softc *sc = priv;
struct ifnet *ifp = GET_IFP(sc);
if (sc->sc_dying || !(ifp->if_flags & IFF_RUNNING))
return;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
DPRINTF("%s: rx error: %s\n", DEVNAM(sc), usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->sc_rx_pipe);
if (++sc->sc_rx_nerr > 100) {
log(LOG_ERR, "%s: too many rx errors, disabling\n",
DEVNAM(sc));
umb_activate(sc->sc_dev, DVACT_DEACTIVATE);
}
} else {
sc->sc_rx_nerr = 0;
umb_decap(sc, xfer);
}
umb_rx(sc);
return;
}
Static int
umb_encap(struct umb_softc *sc, struct mbuf *m)
{
struct ncm_header16 *hdr;
struct ncm_pointer16 *ptr;
usbd_status err;
int len;
/* All size constraints have been validated by the caller! */
hdr = (struct ncm_header16 *)sc->sc_tx_buf;
ptr = (struct ncm_pointer16 *)(hdr + 1);
USETDW(hdr->dwSignature, NCM_HDR16_SIG);
USETW(hdr->wHeaderLength, sizeof(*hdr));
USETW(hdr->wSequence, sc->sc_tx_seq);
sc->sc_tx_seq++;
len = m->m_pkthdr.len;
USETDW(ptr->dwSignature, MBIM_NCM_NTH16_SIG(umb_session_id));
USETW(ptr->wLength, sizeof(*ptr));
USETW(ptr->wNextNdpIndex, 0);
USETW(ptr->dgram[0].wDatagramIndex, MBIM_HDR16_LEN);
USETW(ptr->dgram[0].wDatagramLen, len);
USETW(ptr->dgram[1].wDatagramIndex, 0);
USETW(ptr->dgram[1].wDatagramLen, 0);
KASSERT(len <= sc->sc_tx_bufsz - sizeof(*hdr) - sizeof(*ptr));
m_copydata(m, 0, len, ptr + 1);
sc->sc_tx_m = m;
len += MBIM_HDR16_LEN;
USETW(hdr->wBlockLength, len);
DPRINTFN(3, "%s: encap %d bytes\n", DEVNAM(sc), len);
DDUMPN(5, sc->sc_tx_buf, len);
usbd_setup_xfer(sc->sc_tx_xfer, sc, sc->sc_tx_buf, len,
USBD_FORCE_SHORT_XFER, umb_xfer_tout, umb_txeof);
err = usbd_transfer(sc->sc_tx_xfer);
if (err != USBD_IN_PROGRESS) {
DPRINTF("%s: start tx error: %s\n", DEVNAM(sc),
usbd_errstr(err));
return 0;
}
return 1;
}
Static void
umb_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
struct umb_softc *sc = priv;
struct ifnet *ifp = GET_IFP(sc);
int s;
s = splnet();
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_timer = 0;
m_freem(sc->sc_tx_m);
sc->sc_tx_m = NULL;
if (status != USBD_NORMAL_COMPLETION) {
if (status != USBD_NOT_STARTED && status != USBD_CANCELLED) {
if_statinc(ifp, if_oerrors);
DPRINTF("%s: tx error: %s\n", DEVNAM(sc),
usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->sc_tx_pipe);
}
}
if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
umb_start(ifp);
splx(s);
}
Static void
umb_decap(struct umb_softc *sc, struct usbd_xfer *xfer)
{
struct ifnet *ifp = GET_IFP(sc);
int s;
char *buf;
uint32_t len;
char *dp;
struct ncm_header16 *hdr16;
struct ncm_header32 *hdr32;
struct ncm_pointer16 *ptr16;
struct ncm_pointer16_dgram *dgram16;
struct ncm_pointer32_dgram *dgram32;
uint32_t hsig, psig;
int hlen, blen;
int ptrlen, ptroff, dgentryoff;
uint32_t doff, dlen;
struct mbuf *m;
usbd_get_xfer_status(xfer, NULL, (void **)&buf, &len, NULL);
DPRINTFN(4, "%s: recv %d bytes\n", DEVNAM(sc), len);
DDUMPN(5, buf, len);
s = splnet();
if (len < sizeof(*hdr16))
goto toosmall;
hdr16 = (struct ncm_header16 *)buf;
hsig = UGETDW(hdr16->dwSignature);
hlen = UGETW(hdr16->wHeaderLength);
if (len < hlen)
goto toosmall;
if (len > sc->sc_rx_bufsz) {
DPRINTF("%s: packet too large (%d)\n", DEVNAM(sc), len);
goto fail;
}
switch (hsig) {
case NCM_HDR16_SIG:
blen = UGETW(hdr16->wBlockLength);
ptroff = UGETW(hdr16->wNdpIndex);
if (hlen != sizeof(*hdr16)) {
DPRINTF("%s: bad header len %d for NTH16 (exp %zu)\n",
DEVNAM(sc), hlen, sizeof(*hdr16));
goto fail;
}
break;
case NCM_HDR32_SIG:
hdr32 = (struct ncm_header32 *)hdr16;
blen = UGETDW(hdr32->dwBlockLength);
ptroff = UGETDW(hdr32->dwNdpIndex);
if (hlen != sizeof(*hdr32)) {
DPRINTF("%s: bad header len %d for NTH32 (exp %zu)\n",
DEVNAM(sc), hlen, sizeof(*hdr32));
goto fail;
}
break;
default:
DPRINTF("%s: unsupported NCM header signature (0x%08x)\n",
DEVNAM(sc), hsig);
goto fail;
}
if (len < blen) {
DPRINTF("%s: bad NTB len (%d) for %d bytes of data\n",
DEVNAM(sc), blen, len);
goto fail;
}
ptr16 = (struct ncm_pointer16 *)(buf + ptroff);
psig = UGETDW(ptr16->dwSignature);
ptrlen = UGETW(ptr16->wLength);
if (len < ptrlen + ptroff)
goto toosmall;
if (!MBIM_NCM_NTH16_ISISG(psig) && !MBIM_NCM_NTH32_ISISG(psig)) {
DPRINTF("%s: unsupported NCM pointer signature (0x%08x)\n",
DEVNAM(sc), psig);
goto fail;
}
switch (hsig) {
case NCM_HDR16_SIG:
dgentryoff = offsetof(struct ncm_pointer16, dgram);
break;
case NCM_HDR32_SIG:
dgentryoff = offsetof(struct ncm_pointer32, dgram);
break;
default:
goto fail;
}
while (dgentryoff < ptrlen) {
switch (hsig) {
case NCM_HDR16_SIG:
if (ptroff + dgentryoff < sizeof(*dgram16))
goto done;
dgram16 = (struct ncm_pointer16_dgram *)
(buf + ptroff + dgentryoff);
dgentryoff += sizeof(*dgram16);
dlen = UGETW(dgram16->wDatagramLen);
doff = UGETW(dgram16->wDatagramIndex);
break;
case NCM_HDR32_SIG:
if (ptroff + dgentryoff < sizeof(*dgram32))
goto done;
dgram32 = (struct ncm_pointer32_dgram *)
(buf + ptroff + dgentryoff);
dgentryoff += sizeof(*dgram32);
dlen = UGETDW(dgram32->dwDatagramLen);
doff = UGETDW(dgram32->dwDatagramIndex);
break;
default:
if_statinc(ifp, if_ierrors);
goto done;
}
/* Terminating zero entry */
if (dlen == 0 || doff == 0)
break;
if (len < dlen + doff) {
/* Skip giant datagram but continue processing */
DPRINTF("%s: datagram too large (%d @ off %d)\n",
DEVNAM(sc), dlen, doff);
continue;
}
dp = buf + doff;
DPRINTFN(3, "%s: decap %d bytes\n", DEVNAM(sc), dlen);
m = m_devget(dp, dlen, 0, ifp);
if (m == NULL) {
if_statinc(ifp, if_iqdrops);
continue;
}
if_percpuq_enqueue((ifp)->if_percpuq, (m));
}
done:
splx(s);
return;
toosmall:
DPRINTF("%s: packet too small (%d)\n", DEVNAM(sc), len);
fail:
if_statinc(ifp, if_ierrors);
splx(s);
}
Static usbd_status
umb_send_encap_command(struct umb_softc *sc, void *data, int len)
{
usb_device_request_t req;
if (len > sc->sc_ctrl_len)
return USBD_INVAL;
/* XXX FIXME: if (total len > sc->sc_ctrl_len) => must fragment */
req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
req.bRequest = UCDC_SEND_ENCAPSULATED_COMMAND;
USETW(req.wValue, 0);
USETW(req.wIndex, sc->sc_ctrl_ifaceno);
USETW(req.wLength, len);
DELAY(umb_delay);
return usbd_do_request(sc->sc_udev, &req, data);
}
Static int
umb_get_encap_response(struct umb_softc *sc, void *buf, int *len)
{
usb_device_request_t req;
usbd_status err;
req.bmRequestType = UT_READ_CLASS_INTERFACE;
req.bRequest = UCDC_GET_ENCAPSULATED_RESPONSE;
USETW(req.wValue, 0);
USETW(req.wIndex, sc->sc_ctrl_ifaceno);
USETW(req.wLength, *len);
/* XXX FIXME: re-assemble fragments */
DELAY(umb_delay);
err = usbd_do_request_flags(sc->sc_udev, &req, buf, USBD_SHORT_XFER_OK,
len, umb_xfer_tout);
if (err == USBD_NORMAL_COMPLETION)
return 1;
DPRINTF("%s: ctrl recv: %s\n", DEVNAM(sc), usbd_errstr(err));
return 0;
}
Static void
umb_ctrl_msg(struct umb_softc *sc, uint32_t req, void *data, int len)
{
struct ifnet *ifp = GET_IFP(sc);
uint32_t tid;
struct mbim_msghdr *hdr = data;
usbd_status err;
int s;
if (sc->sc_dying)
return;
if (len < sizeof(*hdr))
return;
tid = ++sc->sc_tid;
hdr->type = htole32(req);
hdr->len = htole32(len);
hdr->tid = htole32(tid);
#ifdef UMB_DEBUG
if (umb_debug) {
const char *op, *str;
if (req == MBIM_COMMAND_MSG) {
struct mbim_h2f_cmd *c = data;
if (le32toh(c->op) == MBIM_CMDOP_SET)
op = "set";
else
op = "qry";
str = umb_cid2str(le32toh(c->cid));
} else {
op = "snd";
str = umb_request2str(req);
}
DPRINTF("%s: -> %s %s (tid %u)\n", DEVNAM(sc), op, str, tid);
}
#endif
s = splusb();
err = umb_send_encap_command(sc, data, len);
splx(s);
if (err != USBD_NORMAL_COMPLETION) {
if (ifp->if_flags & IFF_DEBUG)
log(LOG_ERR, "%s: send %s msg (tid %u) failed: %s\n",
DEVNAM(sc), umb_request2str(req), tid,
usbd_errstr(err));
/* will affect other transactions, too */
usbd_abort_pipe(sc->sc_udev->ud_pipe0);
} else {
DPRINTFN(2, "%s: sent %s (tid %u)\n", DEVNAM(sc),
umb_request2str(req), tid);
DDUMPN(3, data, len);
}
return;
}
Static void
umb_open(struct umb_softc *sc)
{
struct mbim_h2f_openmsg msg;
memset(&msg, 0, sizeof(msg));
msg.maxlen = htole32(sc->sc_ctrl_len);
umb_ctrl_msg(sc, MBIM_OPEN_MSG, &msg, sizeof(msg));
return;
}
Static void
umb_close(struct umb_softc *sc)
{
struct mbim_h2f_closemsg msg;
memset(&msg, 0, sizeof(msg));
umb_ctrl_msg(sc, MBIM_CLOSE_MSG, &msg, sizeof(msg));
}
Static int
umb_setpin(struct umb_softc *sc, int op, int is_puk, void *pin, int pinlen,
void *newpin, int newpinlen)
{
struct mbim_cid_pin cp;
int off;
if (pinlen == 0)
return 0;
if (pinlen < 0 || pinlen > MBIM_PIN_MAXLEN ||
newpinlen < 0 || newpinlen > MBIM_PIN_MAXLEN ||
op < 0 || op > MBIM_PIN_OP_CHANGE ||
(is_puk && op != MBIM_PIN_OP_ENTER))
return EINVAL;
memset(&cp, 0, sizeof(cp));
cp.type = htole32(is_puk ? MBIM_PIN_TYPE_PUK1 : MBIM_PIN_TYPE_PIN1);
off = offsetof(struct mbim_cid_pin, data);
if (!umb_addstr(&cp, sizeof(cp), &off, pin, pinlen,
&cp.pin_offs, &cp.pin_size))
return EINVAL;
cp.op = htole32(op);
if (newpinlen) {
if (!umb_addstr(&cp, sizeof(cp), &off, newpin, newpinlen,
&cp.newpin_offs, &cp.newpin_size))
return EINVAL;
} else {
if ((op == MBIM_PIN_OP_CHANGE) || is_puk)
return EINVAL;
if (!umb_addstr(&cp, sizeof(cp), &off, NULL, 0,
&cp.newpin_offs, &cp.newpin_size))
return EINVAL;
}
umb_cmd(sc, MBIM_CID_PIN, MBIM_CMDOP_SET, &cp, off);
return 0;
}
Static void
umb_setdataclass(struct umb_softc *sc)
{
struct mbim_cid_registration_state rs;
uint32_t classes;
if (sc->sc_info.supportedclasses == MBIM_DATACLASS_NONE)
return;
memset(&rs, 0, sizeof(rs));
rs.regaction = htole32(MBIM_REGACTION_AUTOMATIC);
classes = sc->sc_info.supportedclasses;
if (sc->sc_info.preferredclasses != MBIM_DATACLASS_NONE)
classes &= sc->sc_info.preferredclasses;
rs.data_class = htole32(classes);
umb_cmd(sc, MBIM_CID_REGISTER_STATE, MBIM_CMDOP_SET, &rs, sizeof(rs));
}
Static void
umb_radio(struct umb_softc *sc, int on)
{
struct mbim_cid_radio_state s;
DPRINTF("%s: set radio %s\n", DEVNAM(sc), on ? "on" : "off");
memset(&s, 0, sizeof(s));
s.state = htole32(on ? MBIM_RADIO_STATE_ON : MBIM_RADIO_STATE_OFF);
umb_cmd(sc, MBIM_CID_RADIO_STATE, MBIM_CMDOP_SET, &s, sizeof(s));
}
Static void
umb_allocate_cid(struct umb_softc *sc)
{
umb_cmd1(sc, MBIM_CID_DEVICE_CAPS, MBIM_CMDOP_SET,
umb_qmi_alloc_cid, sizeof(umb_qmi_alloc_cid), umb_uuid_qmi_mbim);
}
Static void
umb_send_fcc_auth(struct umb_softc *sc)
{
uint8_t fccauth[sizeof(umb_qmi_fcc_auth)];
if (sc->sc_cid == -1) {
DPRINTF("%s: missing CID, cannot send FCC auth\n", DEVNAM(sc));
umb_allocate_cid(sc);
return;
}
memcpy(fccauth, umb_qmi_fcc_auth, sizeof(fccauth));
fccauth[UMB_QMI_CID_OFFS] = sc->sc_cid;
umb_cmd1(sc, MBIM_CID_DEVICE_CAPS, MBIM_CMDOP_SET,
fccauth, sizeof(fccauth), umb_uuid_qmi_mbim);
}
Static void
umb_packet_service(struct umb_softc *sc, int attach)
{
struct mbim_cid_packet_service s;
DPRINTF("%s: %s packet service\n", DEVNAM(sc),
attach ? "attach" : "detach");
memset(&s, 0, sizeof(s));
s.action = htole32(attach ?
MBIM_PKTSERVICE_ACTION_ATTACH : MBIM_PKTSERVICE_ACTION_DETACH);
umb_cmd(sc, MBIM_CID_PACKET_SERVICE, MBIM_CMDOP_SET, &s, sizeof(s));
}
Static void
umb_connect(struct umb_softc *sc)
{
struct ifnet *ifp = GET_IFP(sc);
if (sc->sc_info.regstate == MBIM_REGSTATE_ROAMING && !sc->sc_roaming) {
log(LOG_INFO, "%s: connection disabled in roaming network\n",
DEVNAM(sc));
return;
}
if (ifp->if_flags & IFF_DEBUG)
log(LOG_DEBUG, "%s: connecting ...\n", DEVNAM(sc));
umb_send_connect(sc, MBIM_CONNECT_ACTIVATE);
}
Static void
umb_disconnect(struct umb_softc *sc)
{
struct ifnet *ifp = GET_IFP(sc);
if (ifp->if_flags & IFF_DEBUG)
log(LOG_DEBUG, "%s: disconnecting ...\n", DEVNAM(sc));
umb_send_connect(sc, MBIM_CONNECT_DEACTIVATE);
}
Static void
umb_send_connect(struct umb_softc *sc, int command)
{
struct mbim_cid_connect *c;
int off;
/* Too large or the stack */
c = kmem_zalloc(sizeof(*c), KM_SLEEP);
c->sessionid = htole32(umb_session_id);
c->command = htole32(command);
off = offsetof(struct mbim_cid_connect, data);
if (!umb_addstr(c, sizeof(*c), &off, sc->sc_info.apn,
sc->sc_info.apnlen, &c->access_offs, &c->access_size))
goto done;
if (!umb_addstr(c, sizeof(*c), &off, sc->sc_info.username,
sc->sc_info.usernamelen, &c->user_offs, &c->user_size))
goto done;
if (!umb_addstr(c, sizeof(*c), &off, sc->sc_info.password,
sc->sc_info.passwordlen, &c->passwd_offs, &c->passwd_size))
goto done;
c->authprot = htole32(MBIM_AUTHPROT_NONE);
c->compression = htole32(MBIM_COMPRESSION_NONE);
c->iptype = htole32(MBIM_CONTEXT_IPTYPE_IPV4);
memcpy(c->context, umb_uuid_context_internet, sizeof(c->context));
umb_cmd(sc, MBIM_CID_CONNECT, MBIM_CMDOP_SET, c, off);
done:
kmem_free(c, sizeof(*c));
return;
}
Static void
umb_qry_ipconfig(struct umb_softc *sc)
{
struct mbim_cid_ip_configuration_info ipc;
memset(&ipc, 0, sizeof(ipc));
ipc.sessionid = htole32(umb_session_id);
umb_cmd(sc, MBIM_CID_IP_CONFIGURATION, MBIM_CMDOP_QRY,
&ipc, sizeof(ipc));
}
Static void
umb_cmd(struct umb_softc *sc, int cid, int op, const void *data, int len)
{
umb_cmd1(sc, cid, op, data, len, umb_uuid_basic_connect);
}
Static void
umb_cmd1(struct umb_softc *sc, int cid, int op, const void *data, int len,
uint8_t *uuid)
{
struct mbim_h2f_cmd *cmd;
int totlen;
/* XXX FIXME support sending fragments */
if (sizeof(*cmd) + len > sc->sc_ctrl_len) {
DPRINTF("%s: set %s msg too long: cannot send\n",
DEVNAM(sc), umb_cid2str(cid));
return;
}
cmd = sc->sc_ctrl_msg;
memset(cmd, 0, sizeof(*cmd));
cmd->frag.nfrag = htole32(1);
memcpy(cmd->devid, uuid, sizeof(cmd->devid));
cmd->cid = htole32(cid);
cmd->op = htole32(op);
cmd->infolen = htole32(len);
totlen = sizeof(*cmd);
if (len > 0) {
memcpy(cmd + 1, data, len);
totlen += len;
}
umb_ctrl_msg(sc, MBIM_COMMAND_MSG, cmd, totlen);
}
Static void
umb_command_done(struct umb_softc *sc, void *data, int len)
{
struct mbim_f2h_cmddone *cmd = data;
struct ifnet *ifp = GET_IFP(sc);
uint32_t status;
uint32_t cid;
uint32_t infolen;
int qmimsg = 0;
if (len < sizeof(*cmd)) {
DPRINTF("%s: discard short %s message\n", DEVNAM(sc),
umb_request2str(le32toh(cmd->hdr.type)));
return;
}
cid = le32toh(cmd->cid);
if (memcmp(cmd->devid, umb_uuid_basic_connect, sizeof(cmd->devid))) {
if (memcmp(cmd->devid, umb_uuid_qmi_mbim,
sizeof(cmd->devid))) {
DPRINTF("%s: discard %s message for other UUID '%s'\n",
DEVNAM(sc), umb_request2str(le32toh(cmd->hdr.type)),
umb_uuid2str(cmd->devid));
return;
} else
qmimsg = 1;
}
status = le32toh(cmd->status);
switch (status) {
case MBIM_STATUS_SUCCESS:
break;
case MBIM_STATUS_NOT_INITIALIZED:
if (ifp->if_flags & IFF_DEBUG)
log(LOG_ERR, "%s: SIM not initialized (PIN missing)\n",
DEVNAM(sc));
return;
case MBIM_STATUS_PIN_REQUIRED:
sc->sc_info.pin_state = UMB_PIN_REQUIRED;
/*FALLTHROUGH*/
default:
if (ifp->if_flags & IFF_DEBUG)
log(LOG_ERR, "%s: set/qry %s failed: %s\n", DEVNAM(sc),
umb_cid2str(cid), umb_status2str(status));
return;
}
infolen = le32toh(cmd->infolen);
if (len < sizeof(*cmd) + infolen) {
DPRINTF("%s: discard truncated %s message (want %d, got %d)\n",
DEVNAM(sc), umb_cid2str(cid),
(int)sizeof(*cmd) + infolen, len);
return;
}
if (qmimsg) {
if (sc->sc_flags & UMBFLG_FCC_AUTH_REQUIRED)
umb_decode_qmi(sc, cmd->info, infolen);
} else {
DPRINTFN(2, "%s: set/qry %s done\n", DEVNAM(sc),
umb_cid2str(cid));
umb_decode_cid(sc, cid, cmd->info, infolen);
}
}
Static void
umb_decode_cid(struct umb_softc *sc, uint32_t cid, void *data, int len)
{
int ok = 1;
switch (cid) {
case MBIM_CID_DEVICE_CAPS:
ok = umb_decode_devices_caps(sc, data, len);
break;
case MBIM_CID_SUBSCRIBER_READY_STATUS:
ok = umb_decode_subscriber_status(sc, data, len);
break;
case MBIM_CID_RADIO_STATE:
ok = umb_decode_radio_state(sc, data, len);
break;
case MBIM_CID_PIN:
ok = umb_decode_pin(sc, data, len);
break;
case MBIM_CID_REGISTER_STATE:
ok = umb_decode_register_state(sc, data, len);
break;
case MBIM_CID_PACKET_SERVICE:
ok = umb_decode_packet_service(sc, data, len);
break;
case MBIM_CID_SIGNAL_STATE:
ok = umb_decode_signal_state(sc, data, len);
break;
case MBIM_CID_CONNECT:
ok = umb_decode_connect_info(sc, data, len);
break;
case MBIM_CID_IP_CONFIGURATION:
ok = umb_decode_ip_configuration(sc, data, len);
break;
default:
/*
* Note: the above list is incomplete and only contains
* mandatory CIDs from the BASIC_CONNECT set.
* So alternate values are not unusual.
*/
DPRINTFN(4, "%s: ignore %s\n", DEVNAM(sc), umb_cid2str(cid));
break;
}
if (!ok)
DPRINTF("%s: discard %s with bad info length %d\n",
DEVNAM(sc), umb_cid2str(cid), len);
return;
}
Static void
umb_decode_qmi(struct umb_softc *sc, uint8_t *data, int len)
{
uint8_t srv;
uint16_t msg, tlvlen;
uint32_t val;
#define UMB_QMI_QMUXLEN 6
if (len < UMB_QMI_QMUXLEN)
goto tooshort;
srv = data[4];
data += UMB_QMI_QMUXLEN;
len -= UMB_QMI_QMUXLEN;
#define UMB_GET16(p) ((uint16_t)*p | (uint16_t)*(p + 1) << 8)
#define UMB_GET32(p) ((uint32_t)*p | (uint32_t)*(p + 1) << 8 | \
(uint32_t)*(p + 2) << 16 |(uint32_t)*(p + 3) << 24)
switch (srv) {
case 0: /* ctl */
#define UMB_QMI_CTLLEN 6
if (len < UMB_QMI_CTLLEN)
goto tooshort;
msg = UMB_GET16(&data[2]);
tlvlen = UMB_GET16(&data[4]);
data += UMB_QMI_CTLLEN;
len -= UMB_QMI_CTLLEN;
break;
case 2: /* dms */
#define UMB_QMI_DMSLEN 7
if (len < UMB_QMI_DMSLEN)
goto tooshort;
msg = UMB_GET16(&data[3]);
tlvlen = UMB_GET16(&data[5]);
data += UMB_QMI_DMSLEN;
len -= UMB_QMI_DMSLEN;
break;
default:
DPRINTF("%s: discard QMI message for unknown service type %d\n",
DEVNAM(sc), srv);
return;
}
if (len < tlvlen)
goto tooshort;
#define UMB_QMI_TLVLEN 3
while (len > 0) {
if (len < UMB_QMI_TLVLEN)
goto tooshort;
tlvlen = UMB_GET16(&data[1]);
if (len < UMB_QMI_TLVLEN + tlvlen)
goto tooshort;
switch (data[0]) {
case 1: /* allocation info */
if (msg == 0x0022) { /* Allocate CID */
if (tlvlen != 2 || data[3] != 2) /* dms */
break;
sc->sc_cid = data[4];
DPRINTF("%s: QMI CID %d allocated\n",
DEVNAM(sc), sc->sc_cid);
umb_newstate(sc, UMB_S_CID, UMB_NS_DONT_DROP);
}
break;
case 2: /* response */
if (tlvlen != sizeof(val))
break;
val = UMB_GET32(&data[3]);
switch (msg) {
case 0x0022: /* Allocate CID */
if (val != 0) {
log(LOG_ERR, "%s: allocation of QMI CID"
" failed, error %#x\n", DEVNAM(sc),
val);
/* XXX how to proceed? */
return;
}
break;
case 0x555f: /* Send FCC Authentication */
if (val == 0)
DPRINTF("%s: send FCC "
"Authentication succeeded\n",
DEVNAM(sc));
else if (val == 0x001a0001)
DPRINTF("%s: FCC Authentication "
"not required\n", DEVNAM(sc));
else
log(LOG_INFO, "%s: send FCC "
"Authentication failed, "
"error %#x\n", DEVNAM(sc), val);
/* FCC Auth is needed only once after power-on*/
sc->sc_flags &= ~UMBFLG_FCC_AUTH_REQUIRED;
/* Try to proceed anyway */
DPRINTF("%s: init: turning radio on ...\n",
DEVNAM(sc));
umb_radio(sc, 1);
break;
default:
break;
}
break;
default:
break;
}
data += UMB_QMI_TLVLEN + tlvlen;
len -= UMB_QMI_TLVLEN + tlvlen;
}
return;
tooshort:
DPRINTF("%s: discard short QMI message\n", DEVNAM(sc));
return;
}
Static void
umb_intr(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
struct umb_softc *sc = priv;
struct ifnet *ifp = GET_IFP(sc);
int total_len;
if (status != USBD_NORMAL_COMPLETION) {
DPRINTF("%s: notification error: %s\n", DEVNAM(sc),
usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->sc_ctrl_pipe);
return;
}
usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL);
if (total_len < UCDC_NOTIFICATION_LENGTH) {
DPRINTF("%s: short notification (%d<%d)\n", DEVNAM(sc),
total_len, UCDC_NOTIFICATION_LENGTH);
return;
}
if (sc->sc_intr_msg.bmRequestType != UCDC_NOTIFICATION) {
DPRINTF("%s: unexpected notification (type=0x%02x)\n",
DEVNAM(sc), sc->sc_intr_msg.bmRequestType);
return;
}
switch (sc->sc_intr_msg.bNotification) {
case UCDC_N_NETWORK_CONNECTION:
if (ifp->if_flags & IFF_DEBUG)
log(LOG_DEBUG, "%s: network %sconnected\n", DEVNAM(sc),
UGETW(sc->sc_intr_msg.wValue) ? "" : "dis");
break;
case UCDC_N_RESPONSE_AVAILABLE:
DPRINTFN(2, "%s: umb_intr: response available\n", DEVNAM(sc));
++sc->sc_nresp;
usb_add_task(sc->sc_udev, &sc->sc_get_response_task, USB_TASKQ_DRIVER);
break;
case UCDC_N_CONNECTION_SPEED_CHANGE:
DPRINTFN(2, "%s: umb_intr: connection speed changed\n",
DEVNAM(sc));
break;
default:
DPRINTF("%s: unexpected notification (0x%02x)\n",
DEVNAM(sc), sc->sc_intr_msg.bNotification);
break;
}
}
/*
* Diagnostic routines
*/
Static char *
umb_ntop(struct sockaddr *sa)
{
#define NUMBUFS 4
static char astr[NUMBUFS][INET_ADDRSTRLEN];
static unsigned nbuf = 0;
char *s;
s = astr[nbuf++];
if (nbuf >= NUMBUFS)
nbuf = 0;
switch (sa->sa_family) {
case AF_INET:
default:
inet_ntop(AF_INET, &satosin(sa)->sin_addr, s, sizeof(astr[0]));
break;
case AF_INET6:
inet_ntop(AF_INET6, &satosin6(sa)->sin6_addr, s,
sizeof(astr[0]));
break;
}
return s;
}
#ifdef UMB_DEBUG
Static char *
umb_uuid2str(uint8_t uuid[MBIM_UUID_LEN])
{
static char uuidstr[2 * MBIM_UUID_LEN + 5];
#define UUID_BFMT "%02X"
#define UUID_SEP "-"
snprintf(uuidstr, sizeof(uuidstr),
UUID_BFMT UUID_BFMT UUID_BFMT UUID_BFMT UUID_SEP
UUID_BFMT UUID_BFMT UUID_SEP
UUID_BFMT UUID_BFMT UUID_SEP
UUID_BFMT UUID_BFMT UUID_SEP
UUID_BFMT UUID_BFMT UUID_BFMT UUID_BFMT UUID_BFMT UUID_BFMT,
uuid[0], uuid[1], uuid[2], uuid[3], uuid[4], uuid[5],
uuid[6], uuid[7], uuid[8], uuid[9], uuid[10], uuid[11],
uuid[12], uuid[13], uuid[14], uuid[15]);
return uuidstr;
}
Static void
umb_dump(void *buf, int len)
{
int i = 0;
uint8_t *c = buf;
if (len == 0)
return;
while (i < len) {
if ((i % 16) == 0) {
if (i > 0)
addlog("\n");
log(LOG_DEBUG, "%4d: ", i);
}
addlog(" %02x", *c);
c++;
i++;
}
addlog("\n");
}
#endif /* UMB_DEBUG */
/* char *
* inet_ntop(af, src, dst, size)
* convert a network format address to presentation format.
* return:
* pointer to presentation format address (`dst'), or NULL (see errno).
* author:
* Paul Vixie, 1996.
*/
Static const char *
inet_ntop(int af, const void *src, char *dst, socklen_t size)
{
switch (af) {
case AF_INET:
return inet_ntop4(src, dst, (size_t)size);
#ifdef INET6
case AF_INET6:
return inet_ntop6(src, dst, (size_t)size);
#endif /* INET6 */
default:
return NULL;
}
/* NOTREACHED */
}
/* const char *
* inet_ntop4(src, dst, size)
* format an IPv4 address, more or less like inet_ntoa()
* return:
* `dst' (as a const)
* notes:
* (1) uses no statics
* (2) takes a u_char* not an in_addr as input
* author:
* Paul Vixie, 1996.
*/
Static const char *
inet_ntop4(const u_char *src, char *dst, size_t size)
{
char tmp[sizeof("255.255.255.255")];
int l;
l = snprintf(tmp, sizeof(tmp), "%u.%u.%u.%u",
src[0], src[1], src[2], src[3]);
if (l <= 0 || l >= size) {
return NULL;
}
strlcpy(dst, tmp, size);
return dst;
}
#ifdef INET6
/* const char *
* inet_ntop6(src, dst, size)
* convert IPv6 binary address into presentation (printable) format
* author:
* Paul Vixie, 1996.
*/
Static const char *
inet_ntop6(const u_char *src, char *dst, size_t size)
{
/*
* Note that int32_t and int16_t need only be "at least" large enough
* to contain a value of the specified size. On some systems, like
* Crays, there is no such thing as an integer variable with 16 bits.
* Keep this in mind if you think this function should have been coded
* to use pointer overlays. All the world's not a VAX.
*/
char tmp[sizeof("ffff:ffff:ffff:ffff:ffff:ffff:255.255.255.255")];
char *tp, *ep;
struct { int base, len; } best, cur;
#define IN6ADDRSZ 16
#define INT16SZ 2
u_int words[IN6ADDRSZ / INT16SZ];
int i;
int advance;
/*
* Preprocess:
* Copy the input (bytewise) array into a wordwise array.
* Find the longest run of 0x00's in src[] for :: shorthanding.
*/
memset(words, '\0', sizeof(words));
for (i = 0; i < IN6ADDRSZ; i++)
words[i / 2] |= (src[i] << ((1 - (i % 2)) << 3));
best.base = -1;
best.len = 0;
cur.base = -1;
cur.len = 0;
for (i = 0; i < (IN6ADDRSZ / INT16SZ); i++) {
if (words[i] == 0) {
if (cur.base == -1)
cur.base = i, cur.len = 1;
else
cur.len++;
} else {
if (cur.base != -1) {
if (best.base == -1 || cur.len > best.len)
best = cur;
cur.base = -1;
}
}
}
if (cur.base != -1) {
if (best.base == -1 || cur.len > best.len)
best = cur;
}
if (best.base != -1 && best.len < 2)
best.base = -1;
/*
* Format the result.
*/
tp = tmp;
ep = tmp + sizeof(tmp);
for (i = 0; i < (IN6ADDRSZ / INT16SZ) && tp < ep; i++) {
/* Are we inside the best run of 0x00's? */
if (best.base != -1 && i >= best.base &&
i < (best.base + best.len)) {
if (i == best.base) {
if (tp + 1 >= ep)
return NULL;
*tp++ = ':';
}
continue;
}
/* Are we following an initial run of 0x00s or any real hex? */
if (i != 0) {
if (tp + 1 >= ep)
return NULL;
*tp++ = ':';
}
/* Is this address an encapsulated IPv4? */
if (i == 6 && best.base == 0 &&
(best.len == 6 || (best.len == 5 && words[5] == 0xffff))) {
if (!inet_ntop4(src+12, tp, (size_t)(ep - tp)))
return NULL;
tp += strlen(tp);
break;
}
advance = snprintf(tp, ep - tp, "%x", words[i]);
if (advance <= 0 || advance >= ep - tp)
return NULL;
tp += advance;
}
/* Was it a trailing run of 0x00's? */
if (best.base != -1 && (best.base + best.len) == (IN6ADDRSZ / INT16SZ)) {
if (tp + 1 >= ep)
return NULL;
*tp++ = ':';
}
if (tp + 1 >= ep)
return NULL;
*tp++ = '\0';
/*
* Check for overflow, copy, and we're done.
*/
if ((size_t)(tp - tmp) > size) {
return NULL;
}
strlcpy(dst, tmp, size);
return dst;
}
#endif /* INET6 */