NetBSD/sys/dev/isa/aps.c

580 lines
14 KiB
C

/* $NetBSD: aps.c,v 1.18 2022/06/29 15:56:58 mlelstv Exp $ */
/* $OpenBSD: aps.c,v 1.15 2007/05/19 19:14:11 tedu Exp $ */
/* $OpenBSD: aps.c,v 1.17 2008/06/27 06:08:43 canacar Exp $ */
/*
* Copyright (c) 2005 Jonathan Gray <jsg@openbsd.org>
* Copyright (c) 2008 Can Erkin Acar <canacar@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* A driver for the ThinkPad Active Protection System based on notes from
* http://www.almaden.ibm.com/cs/people/marksmith/tpaps.html
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: aps.c,v 1.18 2022/06/29 15:56:58 mlelstv Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/callout.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <dev/sysmon/sysmonvar.h>
#include <dev/isa/isareg.h>
#include <dev/isa/isavar.h>
#if defined(APSDEBUG)
#define DPRINTF(x) do { printf x; } while (0)
#else
#define DPRINTF(x)
#endif
/*
* EC interface on Thinkpad Laptops, from Linux HDAPS driver notes.
* From Renesans H8S/2140B Group Hardware Manual
* http://documentation.renesas.com/eng/products/mpumcu/rej09b0300_2140bhm.pdf
*
* EC uses LPC Channel 3 registers TWR0..15
*/
/* STR3 status register */
#define APS_STR3 0x04
#define APS_STR3_IBF3B 0x80 /* Input buffer full (host->slave) */
#define APS_STR3_OBF3B 0x40 /* Output buffer full (slave->host)*/
#define APS_STR3_MWMF 0x20 /* Master write mode */
#define APS_STR3_SWMF 0x10 /* Slave write mode */
/* Base address of TWR registers */
#define APS_TWR_BASE 0x10
#define APS_TWR_RET 0x1f
/* TWR registers */
#define APS_CMD 0x00
#define APS_ARG1 0x01
#define APS_ARG2 0x02
#define APS_ARG3 0x03
#define APS_RET 0x0f
/* Sensor values */
#define APS_STATE 0x01
#define APS_XACCEL 0x02
#define APS_YACCEL 0x04
#define APS_TEMP 0x06
#define APS_XVAR 0x07
#define APS_YVAR 0x09
#define APS_TEMP2 0x0b
#define APS_UNKNOWN 0x0c
#define APS_INPUT 0x0d
/* write masks for I/O, send command + 0-3 arguments*/
#define APS_WRITE_0 0x0001
#define APS_WRITE_1 0x0003
#define APS_WRITE_2 0x0007
#define APS_WRITE_3 0x000f
/* read masks for I/O, read 0-3 values (skip command byte) */
#define APS_READ_0 0x0000
#define APS_READ_1 0x0002
#define APS_READ_2 0x0006
#define APS_READ_3 0x000e
#define APS_READ_RET 0x8000
#define APS_READ_ALL 0xffff
/* Bit definitions for APS_INPUT value */
#define APS_INPUT_KB (1 << 5)
#define APS_INPUT_MS (1 << 6)
#define APS_INPUT_LIDOPEN (1 << 7)
#define APS_ADDR_SIZE 0x1f
struct sensor_rec {
uint8_t state;
uint16_t x_accel;
uint16_t y_accel;
uint8_t temp1;
uint16_t x_var;
uint16_t y_var;
uint8_t temp2;
uint8_t unk;
uint8_t input;
};
enum aps_sensors {
APS_SENSOR_XACCEL = 0,
APS_SENSOR_YACCEL,
APS_SENSOR_XVAR,
APS_SENSOR_YVAR,
APS_SENSOR_TEMP1,
APS_SENSOR_TEMP2,
APS_SENSOR_KBACT,
APS_SENSOR_MSACT,
APS_SENSOR_LIDOPEN,
APS_NUM_SENSORS
};
struct aps_softc {
bus_space_tag_t sc_iot;
bus_space_handle_t sc_ioh;
bool sc_bus_space_valid;
struct sysmon_envsys *sc_sme;
envsys_data_t sc_sensor[APS_NUM_SENSORS];
struct callout sc_callout;
struct sensor_rec aps_data;
};
static int aps_match(device_t, cfdata_t, void *);
static void aps_attach(device_t, device_t, void *);
static int aps_detach(device_t, int);
static int aps_init(struct aps_softc *);
static int aps_read_data(struct aps_softc *);
static void aps_refresh_sensor_data(struct aps_softc *);
static void aps_refresh(void *);
static int aps_do_io(bus_space_tag_t, bus_space_handle_t,
unsigned char *, int, int);
static bool aps_suspend(device_t, const pmf_qual_t *);
static bool aps_resume(device_t, const pmf_qual_t *);
CFATTACH_DECL_NEW(aps, sizeof(struct aps_softc),
aps_match, aps_attach, aps_detach, NULL);
/* properly communicate with the controller, writing a set of memory
* locations and reading back another set */
static int
aps_do_io(bus_space_tag_t iot, bus_space_handle_t ioh,
unsigned char *buf, int wmask, int rmask)
{
int bp, stat, n;
DPRINTF(("aps_do_io: CMD: 0x%02x, wmask: 0x%04x, rmask: 0x%04x\n",
buf[0], wmask, rmask));
/* write init byte using arbitration */
for (n = 0; n < 100; n++) {
stat = bus_space_read_1(iot, ioh, APS_STR3);
if (stat & (APS_STR3_OBF3B | APS_STR3_SWMF)) {
bus_space_read_1(iot, ioh, APS_TWR_RET);
continue;
}
bus_space_write_1(iot, ioh, APS_TWR_BASE, buf[0]);
stat = bus_space_read_1(iot, ioh, APS_STR3);
if (stat & (APS_STR3_MWMF))
break;
delay(1);
}
if (n == 100) {
DPRINTF(("aps_do_io: Failed to get bus\n"));
return 1;
}
/* write data bytes, init already sent */
/* make sure last bye is always written as this will trigger slave */
wmask |= APS_READ_RET;
buf[APS_RET] = 0x01;
for (n = 1, bp = 2; n < 16; bp <<= 1, n++) {
if (wmask & bp) {
bus_space_write_1(iot, ioh, APS_TWR_BASE + n, buf[n]);
DPRINTF(("aps_do_io: write %2d 0x%02x\n", n, buf[n]));
}
}
for (n = 0; n < 100; n++) {
stat = bus_space_read_1(iot, ioh, APS_STR3);
if (stat & (APS_STR3_OBF3B))
break;
delay(5 * 100);
}
if (n == 100) {
DPRINTF(("aps_do_io: timeout waiting response\n"));
return 1;
}
/* wait for data available */
/* make sure to read the final byte to clear status */
rmask |= APS_READ_RET;
/* read cmd and data bytes */
for (n = 0, bp = 1; n < 16; bp <<= 1, n++) {
if (rmask & bp) {
buf[n] = bus_space_read_1(iot, ioh, APS_TWR_BASE + n);
DPRINTF(("aps_do_io: read %2d 0x%02x\n", n, buf[n]));
}
}
return 0;
}
static int
aps_match(device_t parent, cfdata_t match, void *aux)
{
struct isa_attach_args *ia = aux;
bus_space_tag_t iot = ia->ia_iot;
bus_space_handle_t ioh;
unsigned char iobuf[16];
int iobase;
uint8_t cr;
/* Must supply an address */
if (ia->ia_nio < 1)
return 0;
if (ISA_DIRECT_CONFIG(ia))
return 0;
if (ia->ia_io[0].ir_addr == ISA_UNKNOWN_PORT)
return 0;
iobase = ia->ia_io[0].ir_addr;
if (bus_space_map(iot, iobase, APS_ADDR_SIZE, 0, &ioh)) {
aprint_error("aps: can't map i/o space\n");
return 0;
}
/* See if this machine has APS */
/* get APS mode */
iobuf[APS_CMD] = 0x13;
if (aps_do_io(iot, ioh, iobuf, APS_WRITE_0, APS_READ_1)) {
bus_space_unmap(iot, ioh, APS_ADDR_SIZE);
return 0;
}
/*
* Observed values from Linux driver:
* 0x01: T42
* 0x02: chip already initialised
* 0x03: T41
* 0x05: T61
*/
cr = iobuf[APS_ARG1];
bus_space_unmap(iot, ioh, APS_ADDR_SIZE);
DPRINTF(("aps: state register 0x%x\n", cr));
if (iobuf[APS_RET] != 0 || cr < 1 || cr > 5) {
DPRINTF(("aps0: unsupported state %d\n", cr));
return 0;
}
ia->ia_nio = 1;
ia->ia_io[0].ir_size = APS_ADDR_SIZE;
ia->ia_niomem = 0;
ia->ia_nirq = 0;
ia->ia_ndrq = 0;
return 1;
}
static void
aps_attach(device_t parent, device_t self, void *aux)
{
struct aps_softc *sc = device_private(self);
struct isa_attach_args *ia = aux;
int iobase, i;
sc->sc_iot = ia->ia_iot;
iobase = ia->ia_io[0].ir_addr;
callout_init(&sc->sc_callout, 0);
callout_setfunc(&sc->sc_callout, aps_refresh, sc);
if (bus_space_map(sc->sc_iot, iobase, APS_ADDR_SIZE, 0, &sc->sc_ioh)) {
aprint_error(": can't map i/o space\n");
return;
}
sc->sc_bus_space_valid = true;
aprint_naive("\n");
aprint_normal(": Thinkpad Active Protection System\n");
if (aps_init(sc)) {
aprint_error_dev(self, "failed to initialize\n");
goto out;
}
/* Initialize sensors */
#define INITDATA(idx, unit, string) \
sc->sc_sensor[idx].units = unit; \
strlcpy(sc->sc_sensor[idx].desc, string, \
sizeof(sc->sc_sensor[idx].desc));
INITDATA(APS_SENSOR_XACCEL, ENVSYS_INTEGER, "x-acceleration");
INITDATA(APS_SENSOR_YACCEL, ENVSYS_INTEGER, "y-acceleration");
INITDATA(APS_SENSOR_TEMP1, ENVSYS_STEMP, "temperature 1");
INITDATA(APS_SENSOR_TEMP2, ENVSYS_STEMP, "temperature 2");
INITDATA(APS_SENSOR_XVAR, ENVSYS_INTEGER, "x-variable");
INITDATA(APS_SENSOR_YVAR, ENVSYS_INTEGER, "y-variable");
INITDATA(APS_SENSOR_KBACT, ENVSYS_INDICATOR, "keyboard active");
INITDATA(APS_SENSOR_MSACT, ENVSYS_INDICATOR, "mouse active");
INITDATA(APS_SENSOR_LIDOPEN, ENVSYS_INDICATOR, "lid open");
sc->sc_sme = sysmon_envsys_create();
for (i = 0; i < APS_NUM_SENSORS; i++) {
sc->sc_sensor[i].state = ENVSYS_SVALID;
if (sc->sc_sensor[i].units == ENVSYS_INTEGER)
sc->sc_sensor[i].flags = ENVSYS_FHAS_ENTROPY;
if (sysmon_envsys_sensor_attach(sc->sc_sme,
&sc->sc_sensor[i])) {
sysmon_envsys_destroy(sc->sc_sme);
sc->sc_sme = NULL;
goto out;
}
}
/*
* Register with the sysmon_envsys(9) framework.
*/
sc->sc_sme->sme_name = device_xname(self);
sc->sc_sme->sme_flags = SME_DISABLE_REFRESH;
if ((i = sysmon_envsys_register(sc->sc_sme))) {
aprint_error_dev(self,
"unable to register with sysmon (%d)\n", i);
sysmon_envsys_destroy(sc->sc_sme);
sc->sc_sme = NULL;
goto out;
}
if (!pmf_device_register(self, aps_suspend, aps_resume))
aprint_error_dev(self, "couldn't establish power handler\n");
/* Refresh sensor data every 0.5 seconds */
callout_schedule(&sc->sc_callout, (hz) / 2);
return;
out:
bus_space_unmap(sc->sc_iot, sc->sc_ioh, APS_ADDR_SIZE);
}
static int
aps_init(struct aps_softc *sc)
{
unsigned char iobuf[16];
/* command 0x17/0x81: check EC */
iobuf[APS_CMD] = 0x17;
iobuf[APS_ARG1] = 0x81;
if (aps_do_io(sc->sc_iot, sc->sc_ioh, iobuf, APS_WRITE_1, APS_READ_3))
return 1;
if (iobuf[APS_RET] != 0 ||iobuf[APS_ARG3] != 0)
return 1;
/* Test values from the Linux driver */
if ((iobuf[APS_ARG1] != 0 || iobuf[APS_ARG2] != 0x60) &&
(iobuf[APS_ARG1] != 1 || iobuf[APS_ARG2] != 0))
return 1;
/* command 0x14: set power */
iobuf[APS_CMD] = 0x14;
iobuf[APS_ARG1] = 0x01;
if (aps_do_io(sc->sc_iot, sc->sc_ioh, iobuf, APS_WRITE_1, APS_READ_0))
return 1;
if (iobuf[APS_RET] != 0)
return 1;
/* command 0x10: set config (sample rate and order) */
iobuf[APS_CMD] = 0x10;
iobuf[APS_ARG1] = 0xc8;
iobuf[APS_ARG2] = 0x00;
iobuf[APS_ARG3] = 0x02;
if (aps_do_io(sc->sc_iot, sc->sc_ioh, iobuf, APS_WRITE_3, APS_READ_0))
return 1;
/* command 0x11: refresh data */
iobuf[APS_CMD] = 0x11;
if (aps_do_io(sc->sc_iot, sc->sc_ioh, iobuf, APS_WRITE_0, APS_READ_1))
return 1;
if (iobuf[APS_ARG1] != 0)
return 1;
return 0;
}
static int
aps_detach(device_t self, int flags)
{
struct aps_softc *sc = device_private(self);
callout_halt(&sc->sc_callout, NULL);
callout_destroy(&sc->sc_callout);
if (sc->sc_sme)
sysmon_envsys_unregister(sc->sc_sme);
if (sc->sc_bus_space_valid == true)
bus_space_unmap(sc->sc_iot, sc->sc_ioh, APS_ADDR_SIZE);
return 0;
}
static int
aps_read_data(struct aps_softc *sc)
{
unsigned char iobuf[16];
iobuf[APS_CMD] = 0x11;
if (aps_do_io(sc->sc_iot, sc->sc_ioh, iobuf, APS_WRITE_0, APS_READ_ALL))
return 1;
sc->aps_data.state = iobuf[APS_STATE];
sc->aps_data.x_accel = iobuf[APS_XACCEL] + 256 * iobuf[APS_XACCEL + 1];
sc->aps_data.y_accel = iobuf[APS_YACCEL] + 256 * iobuf[APS_YACCEL + 1];
sc->aps_data.temp1 = iobuf[APS_TEMP];
sc->aps_data.x_var = iobuf[APS_XVAR] + 256 * iobuf[APS_XVAR + 1];
sc->aps_data.y_var = iobuf[APS_YVAR] + 256 * iobuf[APS_YVAR + 1];
sc->aps_data.temp2 = iobuf[APS_TEMP2];
sc->aps_data.input = iobuf[APS_INPUT];
return 0;
}
static void
aps_refresh_sensor_data(struct aps_softc *sc)
{
int64_t temp;
if (aps_read_data(sc)) {
printf("aps0: read data failed\n");
return;
}
sc->sc_sensor[APS_SENSOR_XACCEL].value_cur = sc->aps_data.x_accel;
sc->sc_sensor[APS_SENSOR_YACCEL].value_cur = sc->aps_data.y_accel;
if (sc->aps_data.temp1 == 0xff)
sc->sc_sensor[APS_SENSOR_TEMP1].state = ENVSYS_SINVALID;
else {
/* convert to micro (mu) degrees */
temp = sc->aps_data.temp1 * 1000000;
/* convert to kelvin */
temp += 273150000;
sc->sc_sensor[APS_SENSOR_TEMP1].value_cur = temp;
sc->sc_sensor[APS_SENSOR_TEMP1].state = ENVSYS_SVALID;
}
if (sc->aps_data.temp2 == 0xff)
sc->sc_sensor[APS_SENSOR_TEMP2].state = ENVSYS_SINVALID;
else {
/* convert to micro (mu) degrees */
temp = sc->aps_data.temp2 * 1000000;
/* convert to kelvin */
temp += 273150000;
sc->sc_sensor[APS_SENSOR_TEMP2].value_cur = temp;
sc->sc_sensor[APS_SENSOR_TEMP2].state = ENVSYS_SVALID;
}
sc->sc_sensor[APS_SENSOR_XVAR].value_cur = sc->aps_data.x_var;
sc->sc_sensor[APS_SENSOR_YVAR].value_cur = sc->aps_data.y_var;
sc->sc_sensor[APS_SENSOR_KBACT].value_cur =
(sc->aps_data.input & APS_INPUT_KB) ? 1 : 0;
sc->sc_sensor[APS_SENSOR_MSACT].value_cur =
(sc->aps_data.input & APS_INPUT_MS) ? 1 : 0;
sc->sc_sensor[APS_SENSOR_LIDOPEN].value_cur =
(sc->aps_data.input & APS_INPUT_LIDOPEN) ? 1 : 0;
}
static void
aps_refresh(void *arg)
{
struct aps_softc *sc = arg;
aps_refresh_sensor_data(sc);
callout_schedule(&sc->sc_callout, (hz) / 2);
}
static bool
aps_suspend(device_t dv, const pmf_qual_t *qual)
{
struct aps_softc *sc = device_private(dv);
callout_stop(&sc->sc_callout);
return true;
}
static bool
aps_resume(device_t dv, const pmf_qual_t *qual)
{
struct aps_softc *sc = device_private(dv);
unsigned char iobuf[16];
/*
* Redo the init sequence on resume, because APS is
* as forgetful as it is deaf.
*/
/* get APS mode */
iobuf[APS_CMD] = 0x13;
if (aps_do_io(sc->sc_iot, sc->sc_ioh, iobuf, APS_WRITE_0, APS_READ_1)
|| aps_init(sc))
aprint_error_dev(dv, "failed to wake up\n");
else
callout_schedule(&sc->sc_callout, (hz) / 2);
return true;
}
MODULE(MODULE_CLASS_DRIVER, aps, "sysmon_envsys");
#ifdef _MODULE
#include "ioconf.c"
#endif
static int
aps_modcmd(modcmd_t cmd, void *opaque)
{
switch (cmd) {
case MODULE_CMD_INIT:
#ifdef _MODULE
return config_init_component(cfdriver_ioconf_aps,
cfattach_ioconf_aps, cfdata_ioconf_aps);
#else
return 0;
#endif
case MODULE_CMD_FINI:
#ifdef _MODULE
return config_fini_component(cfdriver_ioconf_aps,
cfattach_ioconf_aps, cfdata_ioconf_aps);
#else
return 0;
#endif
default:
return ENOTTY;
}
}