NetBSD/sys/dev/efi.c

510 lines
12 KiB
C

/* $NetBSD: efi.c,v 1.9 2023/05/24 00:02:51 riastradh Exp $ */
/*-
* Copyright (c) 2021 Jared McNeill <jmcneill@invisible.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* This pseudo-driver implements a /dev/efi character device that provides
* ioctls for using UEFI runtime time and variable services.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: efi.c,v 1.9 2023/05/24 00:02:51 riastradh Exp $");
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/kmem.h>
#include <sys/atomic.h>
#include <sys/efiio.h>
#include <uvm/uvm_extern.h>
#include <dev/efivar.h>
#include <dev/mm.h>
#include "ioconf.h"
/*
* Maximum length of an EFI variable name. The UEFI spec doesn't specify a
* constraint, but we want to limit the size to act as a guard rail against
* allocating too much kernel memory.
*/
#define EFI_VARNAME_MAXLENGTH EFI_PAGE_SIZE
/*
* Pointer to arch specific EFI backend.
*/
static const struct efi_ops *efi_ops = NULL;
/*
* Only allow one user of /dev/efi at a time. Even though the MD EFI backends
* should serialize individual UEFI RT calls, the UEFI specification says
* that a SetVariable() call between calls to GetNextVariableName() may
* produce unpredictable results, and we want to avoid this.
*/
static volatile u_int efi_isopen = 0;
static dev_type_open(efi_open);
static dev_type_close(efi_close);
static dev_type_ioctl(efi_ioctl);
const struct cdevsw efi_cdevsw = {
.d_open = efi_open,
.d_close = efi_close,
.d_ioctl = efi_ioctl,
.d_read = noread,
.d_write = nowrite,
.d_stop = nostop,
.d_tty = notty,
.d_poll = nopoll,
.d_mmap = nommap,
.d_kqfilter = nokqfilter,
.d_discard = nodiscard,
.d_flag = D_OTHER | D_MPSAFE,
};
static int
efi_open(dev_t dev, int flags, int type, struct lwp *l)
{
if (efi_ops == NULL) {
return ENXIO;
}
if (atomic_swap_uint(&efi_isopen, 1) == 1) {
return EBUSY;
}
membar_acquire();
return 0;
}
static int
efi_close(dev_t dev, int flags, int type, struct lwp *l)
{
KASSERT(efi_isopen);
atomic_store_release(&efi_isopen, 0);
return 0;
}
static int
efi_status_to_error(efi_status status)
{
switch (status) {
case EFI_SUCCESS:
return 0;
case EFI_INVALID_PARAMETER:
return EINVAL;
case EFI_UNSUPPORTED:
return EOPNOTSUPP;
case EFI_BUFFER_TOO_SMALL:
return ERANGE;
case EFI_DEVICE_ERROR:
return EIO;
case EFI_WRITE_PROTECTED:
return EROFS;
case EFI_OUT_OF_RESOURCES:
return ENOMEM;
case EFI_NOT_FOUND:
return ENOENT;
case EFI_SECURITY_VIOLATION:
return EACCES;
default:
return EIO;
}
}
/* XXX move to efi.h */
#define EFI_SYSTEM_RESOURCE_TABLE_GUID \
{0xb122a263,0x3661,0x4f68,0x99,0x29,{0x78,0xf8,0xb0,0xd6,0x21,0x80}}
#define EFI_PROPERTIES_TABLE \
{0x880aaca3,0x4adc,0x4a04,0x90,0x79,{0xb7,0x47,0x34,0x08,0x25,0xe5}}
#define EFI_SYSTEM_RESOURCE_TABLE_FIRMWARE_RESOURCE_VERSION 1
struct EFI_SYSTEM_RESOURCE_ENTRY {
struct uuid FwClass;
uint32_t FwType;
uint32_t FwVersion;
uint32_t LowestSupportedFwVersion;
uint32_t CapsuleFlags;
uint32_t LastAttemptVersion;
uint32_t LastAttemptStatus;
};
struct EFI_SYSTEM_RESOURCE_TABLE {
uint32_t FwResourceCount;
uint32_t FwResourceCountMax;
uint64_t FwResourceVersion;
struct EFI_SYSTEM_RESOURCE_ENTRY Entries[];
};
static void *
efi_map_pa(uint64_t addr, bool *directp)
{
paddr_t pa = addr;
vaddr_t va;
/*
* Verify the address is not truncated by conversion to
* paddr_t. This might happen with a 64-bit EFI booting a
* 32-bit OS.
*/
if (pa != addr)
return NULL;
/*
* Try direct-map if we have it. If it works, note that it was
* direct-mapped for efi_unmap.
*/
#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
if (mm_md_direct_mapped_phys(pa, &va)) {
*directp = true;
return (void *)va;
}
#endif
/*
* No direct map. Reserve a page of kernel virtual address
* space, with no backing, to map to the physical address.
*/
va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
UVM_KMF_VAONLY|UVM_KMF_WAITVA);
KASSERT(va != 0);
/*
* Map the kva page to the physical address and update the
* kernel pmap so we can use it.
*/
pmap_kenter_pa(va, pa, VM_PROT_READ, 0);
pmap_update(pmap_kernel());
/*
* Success! Return the VA and note that it was not
* direct-mapped for efi_unmap.
*/
*directp = false;
return (void *)va;
}
static void
efi_unmap(void *ptr, bool direct)
{
vaddr_t va = (vaddr_t)ptr;
/*
* If it was direct-mapped, nothing to do here.
*/
if (direct)
return;
/*
* First remove the mapping from the kernel pmap so that it can
* be reused, before we free the kva and let anyone else reuse
* it.
*/
pmap_kremove(va, PAGE_SIZE);
pmap_update(pmap_kernel());
/*
* Next free the kva so it can be reused by someone else.
*/
uvm_km_free(kernel_map, va, PAGE_SIZE, UVM_KMF_VAONLY);
}
static int
efi_ioctl_got_table(struct efi_get_table_ioc *ioc, void *ptr, size_t len)
{
/*
* Return the actual table length.
*/
ioc->table_len = len;
/*
* Copy out as much as we can into the user's allocated buffer.
*/
return copyout(ptr, ioc->buf, MIN(ioc->buf_len, len));
}
static int
efi_ioctl_get_esrt(struct efi_get_table_ioc *ioc,
struct EFI_SYSTEM_RESOURCE_TABLE *tab)
{
/*
* Verify the firmware resource version is one we understand.
*/
if (tab->FwResourceVersion !=
EFI_SYSTEM_RESOURCE_TABLE_FIRMWARE_RESOURCE_VERSION)
return ENOENT;
/*
* Verify the resource count fits within the single page we
* have mapped.
*
* XXX What happens if it doesn't? Are we expected to map more
* than one page, according to the table header? The UEFI spec
* is unclear on this.
*/
const size_t entry_space = PAGE_SIZE -
offsetof(struct EFI_SYSTEM_RESOURCE_TABLE, Entries);
if (tab->FwResourceCount > entry_space/sizeof(tab->Entries[0]))
return ENOENT;
/*
* Success! Return everything through the last table entry.
*/
const size_t len = offsetof(struct EFI_SYSTEM_RESOURCE_TABLE,
Entries[tab->FwResourceCount]);
return efi_ioctl_got_table(ioc, tab, len);
}
static int
efi_ioctl_get_table(struct efi_get_table_ioc *ioc)
{
uint64_t addr;
bool direct;
efi_status status;
int error;
/*
* If the platform doesn't support it yet, fail now.
*/
if (efi_ops->efi_gettab == NULL)
return ENODEV;
/*
* Get the address of the requested table out of the EFI
* configuration table.
*/
status = efi_ops->efi_gettab(&ioc->uuid, &addr);
if (status != EFI_SUCCESS)
return efi_status_to_error(status);
/*
* UEFI provides no generic way to identify the size of the
* table, so we have to bake knowledge of every vendor GUID
* into this code to safely expose the right amount of data to
* userland.
*
* We even have to bake knowledge of which ones are physically
* addressed and which ones might be virtually addressed
* according to the vendor GUID into this code, although for
* the moment we never use RT->SetVirtualAddressMap so we only
* ever have to deal with physical addressing.
*/
if (memcmp(&ioc->uuid, &(struct uuid)EFI_SYSTEM_RESOURCE_TABLE_GUID,
sizeof(ioc->uuid)) == 0) {
struct EFI_SYSTEM_RESOURCE_TABLE *tab;
if ((tab = efi_map_pa(addr, &direct)) == NULL)
return ENOENT;
error = efi_ioctl_get_esrt(ioc, tab);
efi_unmap(tab, direct);
} else {
error = ENOENT;
}
return error;
}
static int
efi_ioctl_var_get(struct efi_var_ioc *var)
{
uint16_t *namebuf;
void *databuf = NULL;
size_t databufsize;
unsigned long datasize;
efi_status status;
int error;
if (var->name == NULL || var->namesize == 0 ||
(var->data != NULL && var->datasize == 0)) {
return EINVAL;
}
if (var->namesize > EFI_VARNAME_MAXLENGTH) {
return ENOMEM;
}
if (var->datasize > ULONG_MAX) { /* XXX stricter limit */
return ENOMEM;
}
namebuf = kmem_alloc(var->namesize, KM_SLEEP);
error = copyin(var->name, namebuf, var->namesize);
if (error != 0) {
goto done;
}
if (namebuf[var->namesize / 2 - 1] != '\0') {
error = EINVAL;
goto done;
}
databufsize = var->datasize;
if (databufsize != 0) {
databuf = kmem_alloc(databufsize, KM_SLEEP);
error = copyin(var->data, databuf, databufsize);
if (error != 0) {
goto done;
}
}
datasize = databufsize;
status = efi_ops->efi_getvar(namebuf, &var->vendor, &var->attrib,
&datasize, databuf);
if (status != EFI_SUCCESS && status != EFI_BUFFER_TOO_SMALL) {
error = efi_status_to_error(status);
goto done;
}
var->datasize = datasize;
if (status == EFI_SUCCESS && databufsize != 0) {
error = copyout(databuf, var->data,
MIN(datasize, databufsize));
} else {
var->data = NULL;
}
done:
kmem_free(namebuf, var->namesize);
if (databuf != NULL) {
kmem_free(databuf, databufsize);
}
return error;
}
static int
efi_ioctl_var_next(struct efi_var_ioc *var)
{
efi_status status;
uint16_t *namebuf;
size_t namebufsize;
unsigned long namesize;
int error;
if (var->name == NULL || var->namesize == 0) {
return EINVAL;
}
if (var->namesize > EFI_VARNAME_MAXLENGTH) {
return ENOMEM;
}
namebufsize = var->namesize;
namebuf = kmem_alloc(namebufsize, KM_SLEEP);
error = copyin(var->name, namebuf, namebufsize);
if (error != 0) {
goto done;
}
CTASSERT(EFI_VARNAME_MAXLENGTH <= ULONG_MAX);
namesize = namebufsize;
status = efi_ops->efi_nextvar(&namesize, namebuf, &var->vendor);
if (status != EFI_SUCCESS && status != EFI_BUFFER_TOO_SMALL) {
error = efi_status_to_error(status);
goto done;
}
var->namesize = namesize;
if (status == EFI_SUCCESS) {
error = copyout(namebuf, var->name,
MIN(namesize, namebufsize));
} else {
var->name = NULL;
}
done:
kmem_free(namebuf, namebufsize);
return error;
}
static int
efi_ioctl_var_set(struct efi_var_ioc *var)
{
efi_status status;
uint16_t *namebuf;
uint16_t *databuf = NULL;
int error;
if (var->name == NULL || var->namesize == 0) {
return EINVAL;
}
namebuf = kmem_alloc(var->namesize, KM_SLEEP);
error = copyin(var->name, namebuf, var->namesize);
if (error != 0) {
goto done;
}
if (namebuf[var->namesize / 2 - 1] != '\0') {
error = EINVAL;
goto done;
}
if (var->datasize != 0) {
databuf = kmem_alloc(var->datasize, KM_SLEEP);
error = copyin(var->data, databuf, var->datasize);
if (error != 0) {
goto done;
}
}
status = efi_ops->efi_setvar(namebuf, &var->vendor, var->attrib,
var->datasize, databuf);
error = efi_status_to_error(status);
done:
kmem_free(namebuf, var->namesize);
if (databuf != NULL) {
kmem_free(databuf, var->datasize);
}
return error;
}
static int
efi_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
{
KASSERT(efi_ops != NULL);
switch (cmd) {
case EFIIOC_GET_TABLE:
return efi_ioctl_get_table(data);
case EFIIOC_VAR_GET:
return efi_ioctl_var_get(data);
case EFIIOC_VAR_NEXT:
return efi_ioctl_var_next(data);
case EFIIOC_VAR_SET:
return efi_ioctl_var_set(data);
}
return ENOTTY;
}
void
efi_register_ops(const struct efi_ops *ops)
{
KASSERT(efi_ops == NULL);
efi_ops = ops;
}
void
efiattach(int count)
{
}