510 lines
12 KiB
C
510 lines
12 KiB
C
/* $NetBSD: efi.c,v 1.9 2023/05/24 00:02:51 riastradh Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2021 Jared McNeill <jmcneill@invisible.ca>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* This pseudo-driver implements a /dev/efi character device that provides
|
|
* ioctls for using UEFI runtime time and variable services.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: efi.c,v 1.9 2023/05/24 00:02:51 riastradh Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/atomic.h>
|
|
#include <sys/efiio.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <dev/efivar.h>
|
|
#include <dev/mm.h>
|
|
|
|
#include "ioconf.h"
|
|
|
|
/*
|
|
* Maximum length of an EFI variable name. The UEFI spec doesn't specify a
|
|
* constraint, but we want to limit the size to act as a guard rail against
|
|
* allocating too much kernel memory.
|
|
*/
|
|
#define EFI_VARNAME_MAXLENGTH EFI_PAGE_SIZE
|
|
|
|
/*
|
|
* Pointer to arch specific EFI backend.
|
|
*/
|
|
static const struct efi_ops *efi_ops = NULL;
|
|
|
|
/*
|
|
* Only allow one user of /dev/efi at a time. Even though the MD EFI backends
|
|
* should serialize individual UEFI RT calls, the UEFI specification says
|
|
* that a SetVariable() call between calls to GetNextVariableName() may
|
|
* produce unpredictable results, and we want to avoid this.
|
|
*/
|
|
static volatile u_int efi_isopen = 0;
|
|
|
|
static dev_type_open(efi_open);
|
|
static dev_type_close(efi_close);
|
|
static dev_type_ioctl(efi_ioctl);
|
|
|
|
const struct cdevsw efi_cdevsw = {
|
|
.d_open = efi_open,
|
|
.d_close = efi_close,
|
|
.d_ioctl = efi_ioctl,
|
|
.d_read = noread,
|
|
.d_write = nowrite,
|
|
.d_stop = nostop,
|
|
.d_tty = notty,
|
|
.d_poll = nopoll,
|
|
.d_mmap = nommap,
|
|
.d_kqfilter = nokqfilter,
|
|
.d_discard = nodiscard,
|
|
.d_flag = D_OTHER | D_MPSAFE,
|
|
};
|
|
|
|
static int
|
|
efi_open(dev_t dev, int flags, int type, struct lwp *l)
|
|
{
|
|
|
|
if (efi_ops == NULL) {
|
|
return ENXIO;
|
|
}
|
|
if (atomic_swap_uint(&efi_isopen, 1) == 1) {
|
|
return EBUSY;
|
|
}
|
|
membar_acquire();
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
efi_close(dev_t dev, int flags, int type, struct lwp *l)
|
|
{
|
|
|
|
KASSERT(efi_isopen);
|
|
atomic_store_release(&efi_isopen, 0);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
efi_status_to_error(efi_status status)
|
|
{
|
|
switch (status) {
|
|
case EFI_SUCCESS:
|
|
return 0;
|
|
case EFI_INVALID_PARAMETER:
|
|
return EINVAL;
|
|
case EFI_UNSUPPORTED:
|
|
return EOPNOTSUPP;
|
|
case EFI_BUFFER_TOO_SMALL:
|
|
return ERANGE;
|
|
case EFI_DEVICE_ERROR:
|
|
return EIO;
|
|
case EFI_WRITE_PROTECTED:
|
|
return EROFS;
|
|
case EFI_OUT_OF_RESOURCES:
|
|
return ENOMEM;
|
|
case EFI_NOT_FOUND:
|
|
return ENOENT;
|
|
case EFI_SECURITY_VIOLATION:
|
|
return EACCES;
|
|
default:
|
|
return EIO;
|
|
}
|
|
}
|
|
|
|
/* XXX move to efi.h */
|
|
#define EFI_SYSTEM_RESOURCE_TABLE_GUID \
|
|
{0xb122a263,0x3661,0x4f68,0x99,0x29,{0x78,0xf8,0xb0,0xd6,0x21,0x80}}
|
|
#define EFI_PROPERTIES_TABLE \
|
|
{0x880aaca3,0x4adc,0x4a04,0x90,0x79,{0xb7,0x47,0x34,0x08,0x25,0xe5}}
|
|
|
|
#define EFI_SYSTEM_RESOURCE_TABLE_FIRMWARE_RESOURCE_VERSION 1
|
|
|
|
struct EFI_SYSTEM_RESOURCE_ENTRY {
|
|
struct uuid FwClass;
|
|
uint32_t FwType;
|
|
uint32_t FwVersion;
|
|
uint32_t LowestSupportedFwVersion;
|
|
uint32_t CapsuleFlags;
|
|
uint32_t LastAttemptVersion;
|
|
uint32_t LastAttemptStatus;
|
|
};
|
|
|
|
struct EFI_SYSTEM_RESOURCE_TABLE {
|
|
uint32_t FwResourceCount;
|
|
uint32_t FwResourceCountMax;
|
|
uint64_t FwResourceVersion;
|
|
struct EFI_SYSTEM_RESOURCE_ENTRY Entries[];
|
|
};
|
|
|
|
static void *
|
|
efi_map_pa(uint64_t addr, bool *directp)
|
|
{
|
|
paddr_t pa = addr;
|
|
vaddr_t va;
|
|
|
|
/*
|
|
* Verify the address is not truncated by conversion to
|
|
* paddr_t. This might happen with a 64-bit EFI booting a
|
|
* 32-bit OS.
|
|
*/
|
|
if (pa != addr)
|
|
return NULL;
|
|
|
|
/*
|
|
* Try direct-map if we have it. If it works, note that it was
|
|
* direct-mapped for efi_unmap.
|
|
*/
|
|
#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
|
|
if (mm_md_direct_mapped_phys(pa, &va)) {
|
|
*directp = true;
|
|
return (void *)va;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* No direct map. Reserve a page of kernel virtual address
|
|
* space, with no backing, to map to the physical address.
|
|
*/
|
|
va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
|
|
UVM_KMF_VAONLY|UVM_KMF_WAITVA);
|
|
KASSERT(va != 0);
|
|
|
|
/*
|
|
* Map the kva page to the physical address and update the
|
|
* kernel pmap so we can use it.
|
|
*/
|
|
pmap_kenter_pa(va, pa, VM_PROT_READ, 0);
|
|
pmap_update(pmap_kernel());
|
|
|
|
/*
|
|
* Success! Return the VA and note that it was not
|
|
* direct-mapped for efi_unmap.
|
|
*/
|
|
*directp = false;
|
|
return (void *)va;
|
|
}
|
|
|
|
static void
|
|
efi_unmap(void *ptr, bool direct)
|
|
{
|
|
vaddr_t va = (vaddr_t)ptr;
|
|
|
|
/*
|
|
* If it was direct-mapped, nothing to do here.
|
|
*/
|
|
if (direct)
|
|
return;
|
|
|
|
/*
|
|
* First remove the mapping from the kernel pmap so that it can
|
|
* be reused, before we free the kva and let anyone else reuse
|
|
* it.
|
|
*/
|
|
pmap_kremove(va, PAGE_SIZE);
|
|
pmap_update(pmap_kernel());
|
|
|
|
/*
|
|
* Next free the kva so it can be reused by someone else.
|
|
*/
|
|
uvm_km_free(kernel_map, va, PAGE_SIZE, UVM_KMF_VAONLY);
|
|
}
|
|
|
|
static int
|
|
efi_ioctl_got_table(struct efi_get_table_ioc *ioc, void *ptr, size_t len)
|
|
{
|
|
|
|
/*
|
|
* Return the actual table length.
|
|
*/
|
|
ioc->table_len = len;
|
|
|
|
/*
|
|
* Copy out as much as we can into the user's allocated buffer.
|
|
*/
|
|
return copyout(ptr, ioc->buf, MIN(ioc->buf_len, len));
|
|
}
|
|
|
|
static int
|
|
efi_ioctl_get_esrt(struct efi_get_table_ioc *ioc,
|
|
struct EFI_SYSTEM_RESOURCE_TABLE *tab)
|
|
{
|
|
|
|
/*
|
|
* Verify the firmware resource version is one we understand.
|
|
*/
|
|
if (tab->FwResourceVersion !=
|
|
EFI_SYSTEM_RESOURCE_TABLE_FIRMWARE_RESOURCE_VERSION)
|
|
return ENOENT;
|
|
|
|
/*
|
|
* Verify the resource count fits within the single page we
|
|
* have mapped.
|
|
*
|
|
* XXX What happens if it doesn't? Are we expected to map more
|
|
* than one page, according to the table header? The UEFI spec
|
|
* is unclear on this.
|
|
*/
|
|
const size_t entry_space = PAGE_SIZE -
|
|
offsetof(struct EFI_SYSTEM_RESOURCE_TABLE, Entries);
|
|
if (tab->FwResourceCount > entry_space/sizeof(tab->Entries[0]))
|
|
return ENOENT;
|
|
|
|
/*
|
|
* Success! Return everything through the last table entry.
|
|
*/
|
|
const size_t len = offsetof(struct EFI_SYSTEM_RESOURCE_TABLE,
|
|
Entries[tab->FwResourceCount]);
|
|
return efi_ioctl_got_table(ioc, tab, len);
|
|
}
|
|
|
|
static int
|
|
efi_ioctl_get_table(struct efi_get_table_ioc *ioc)
|
|
{
|
|
uint64_t addr;
|
|
bool direct;
|
|
efi_status status;
|
|
int error;
|
|
|
|
/*
|
|
* If the platform doesn't support it yet, fail now.
|
|
*/
|
|
if (efi_ops->efi_gettab == NULL)
|
|
return ENODEV;
|
|
|
|
/*
|
|
* Get the address of the requested table out of the EFI
|
|
* configuration table.
|
|
*/
|
|
status = efi_ops->efi_gettab(&ioc->uuid, &addr);
|
|
if (status != EFI_SUCCESS)
|
|
return efi_status_to_error(status);
|
|
|
|
/*
|
|
* UEFI provides no generic way to identify the size of the
|
|
* table, so we have to bake knowledge of every vendor GUID
|
|
* into this code to safely expose the right amount of data to
|
|
* userland.
|
|
*
|
|
* We even have to bake knowledge of which ones are physically
|
|
* addressed and which ones might be virtually addressed
|
|
* according to the vendor GUID into this code, although for
|
|
* the moment we never use RT->SetVirtualAddressMap so we only
|
|
* ever have to deal with physical addressing.
|
|
*/
|
|
if (memcmp(&ioc->uuid, &(struct uuid)EFI_SYSTEM_RESOURCE_TABLE_GUID,
|
|
sizeof(ioc->uuid)) == 0) {
|
|
struct EFI_SYSTEM_RESOURCE_TABLE *tab;
|
|
|
|
if ((tab = efi_map_pa(addr, &direct)) == NULL)
|
|
return ENOENT;
|
|
error = efi_ioctl_get_esrt(ioc, tab);
|
|
efi_unmap(tab, direct);
|
|
} else {
|
|
error = ENOENT;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
efi_ioctl_var_get(struct efi_var_ioc *var)
|
|
{
|
|
uint16_t *namebuf;
|
|
void *databuf = NULL;
|
|
size_t databufsize;
|
|
unsigned long datasize;
|
|
efi_status status;
|
|
int error;
|
|
|
|
if (var->name == NULL || var->namesize == 0 ||
|
|
(var->data != NULL && var->datasize == 0)) {
|
|
return EINVAL;
|
|
}
|
|
if (var->namesize > EFI_VARNAME_MAXLENGTH) {
|
|
return ENOMEM;
|
|
}
|
|
if (var->datasize > ULONG_MAX) { /* XXX stricter limit */
|
|
return ENOMEM;
|
|
}
|
|
|
|
namebuf = kmem_alloc(var->namesize, KM_SLEEP);
|
|
error = copyin(var->name, namebuf, var->namesize);
|
|
if (error != 0) {
|
|
goto done;
|
|
}
|
|
if (namebuf[var->namesize / 2 - 1] != '\0') {
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
databufsize = var->datasize;
|
|
if (databufsize != 0) {
|
|
databuf = kmem_alloc(databufsize, KM_SLEEP);
|
|
error = copyin(var->data, databuf, databufsize);
|
|
if (error != 0) {
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
datasize = databufsize;
|
|
status = efi_ops->efi_getvar(namebuf, &var->vendor, &var->attrib,
|
|
&datasize, databuf);
|
|
if (status != EFI_SUCCESS && status != EFI_BUFFER_TOO_SMALL) {
|
|
error = efi_status_to_error(status);
|
|
goto done;
|
|
}
|
|
var->datasize = datasize;
|
|
if (status == EFI_SUCCESS && databufsize != 0) {
|
|
error = copyout(databuf, var->data,
|
|
MIN(datasize, databufsize));
|
|
} else {
|
|
var->data = NULL;
|
|
}
|
|
|
|
done:
|
|
kmem_free(namebuf, var->namesize);
|
|
if (databuf != NULL) {
|
|
kmem_free(databuf, databufsize);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
efi_ioctl_var_next(struct efi_var_ioc *var)
|
|
{
|
|
efi_status status;
|
|
uint16_t *namebuf;
|
|
size_t namebufsize;
|
|
unsigned long namesize;
|
|
int error;
|
|
|
|
if (var->name == NULL || var->namesize == 0) {
|
|
return EINVAL;
|
|
}
|
|
if (var->namesize > EFI_VARNAME_MAXLENGTH) {
|
|
return ENOMEM;
|
|
}
|
|
|
|
namebufsize = var->namesize;
|
|
namebuf = kmem_alloc(namebufsize, KM_SLEEP);
|
|
error = copyin(var->name, namebuf, namebufsize);
|
|
if (error != 0) {
|
|
goto done;
|
|
}
|
|
|
|
CTASSERT(EFI_VARNAME_MAXLENGTH <= ULONG_MAX);
|
|
namesize = namebufsize;
|
|
status = efi_ops->efi_nextvar(&namesize, namebuf, &var->vendor);
|
|
if (status != EFI_SUCCESS && status != EFI_BUFFER_TOO_SMALL) {
|
|
error = efi_status_to_error(status);
|
|
goto done;
|
|
}
|
|
var->namesize = namesize;
|
|
if (status == EFI_SUCCESS) {
|
|
error = copyout(namebuf, var->name,
|
|
MIN(namesize, namebufsize));
|
|
} else {
|
|
var->name = NULL;
|
|
}
|
|
|
|
done:
|
|
kmem_free(namebuf, namebufsize);
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
efi_ioctl_var_set(struct efi_var_ioc *var)
|
|
{
|
|
efi_status status;
|
|
uint16_t *namebuf;
|
|
uint16_t *databuf = NULL;
|
|
int error;
|
|
|
|
if (var->name == NULL || var->namesize == 0) {
|
|
return EINVAL;
|
|
}
|
|
|
|
namebuf = kmem_alloc(var->namesize, KM_SLEEP);
|
|
error = copyin(var->name, namebuf, var->namesize);
|
|
if (error != 0) {
|
|
goto done;
|
|
}
|
|
if (namebuf[var->namesize / 2 - 1] != '\0') {
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
if (var->datasize != 0) {
|
|
databuf = kmem_alloc(var->datasize, KM_SLEEP);
|
|
error = copyin(var->data, databuf, var->datasize);
|
|
if (error != 0) {
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
status = efi_ops->efi_setvar(namebuf, &var->vendor, var->attrib,
|
|
var->datasize, databuf);
|
|
error = efi_status_to_error(status);
|
|
|
|
done:
|
|
kmem_free(namebuf, var->namesize);
|
|
if (databuf != NULL) {
|
|
kmem_free(databuf, var->datasize);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
efi_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
|
|
{
|
|
KASSERT(efi_ops != NULL);
|
|
|
|
switch (cmd) {
|
|
case EFIIOC_GET_TABLE:
|
|
return efi_ioctl_get_table(data);
|
|
case EFIIOC_VAR_GET:
|
|
return efi_ioctl_var_get(data);
|
|
case EFIIOC_VAR_NEXT:
|
|
return efi_ioctl_var_next(data);
|
|
case EFIIOC_VAR_SET:
|
|
return efi_ioctl_var_set(data);
|
|
}
|
|
|
|
return ENOTTY;
|
|
}
|
|
|
|
void
|
|
efi_register_ops(const struct efi_ops *ops)
|
|
{
|
|
KASSERT(efi_ops == NULL);
|
|
efi_ops = ops;
|
|
}
|
|
|
|
void
|
|
efiattach(int count)
|
|
{
|
|
}
|