NetBSD/sbin/nvmectl/logpage.c
nonaka d003492f75 nvmectl(8): sync with FreeBSD HEAD r316105.
- Expand the SMART / Health Information Log Page (Page 02) printout based on
   NVM Express 1.2.1 Standard.
 - Implement Intel-specific log pages.
 - Implement HGST-specific log pages.
 - Implement wdc-specific nvme control options.
 - Add the ability to dump log pages directly in binary to stdout.
2017-04-29 00:06:40 +00:00

1042 lines
29 KiB
C

/* $NetBSD: logpage.c,v 1.4 2017/04/29 00:06:40 nonaka Exp $ */
/*-
* Copyright (c) 2013 EMC Corp.
* All rights reserved.
*
* Copyright (C) 2012-2013 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#ifndef lint
__RCSID("$NetBSD: logpage.c,v 1.4 2017/04/29 00:06:40 nonaka Exp $");
#if 0
__FBSDID("$FreeBSD: head/sbin/nvmecontrol/logpage.c 314230 2017-02-25 00:09:16Z imp $");
#endif
#endif
#include <sys/param.h>
#include <sys/ioccom.h>
#include <sys/endian.h>
#include <ctype.h>
#include <err.h>
#include <fcntl.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "nvmectl.h"
#include "bn.h"
#define DEFAULT_SIZE (4096)
#define MAX_FW_SLOTS (7)
typedef void (*print_fn_t)(void *buf, uint32_t size);
struct kv_name {
uint32_t key;
const char *name;
};
static const char *
kv_lookup(const struct kv_name *kv, size_t kv_count, uint32_t key)
{
static char bad[32];
size_t i;
for (i = 0; i < kv_count; i++, kv++)
if (kv->key == key)
return kv->name;
snprintf(bad, sizeof(bad), "Attribute %#x", key);
return bad;
}
static void
print_bin(void *data, uint32_t length)
{
write(STDOUT_FILENO, data, length);
}
/* "Missing" from endian.h */
static __inline uint64_t
le48dec(const void *pp)
{
uint8_t const *p = (uint8_t const *)pp;
return (((uint64_t)le16dec(p + 4) << 32) | le32dec(p));
}
static void *
get_log_buffer(uint32_t size)
{
void *buf;
if ((buf = malloc(size)) == NULL)
errx(1, "unable to malloc %u bytes", size);
memset(buf, 0, size);
return (buf);
}
void
read_logpage(int fd, uint8_t log_page, int nsid, void *payload,
uint32_t payload_size)
{
struct nvme_pt_command pt;
memset(&pt, 0, sizeof(pt));
pt.cmd.opcode = NVM_ADMIN_GET_LOG_PG;
pt.cmd.nsid = nsid;
pt.cmd.cdw10 = ((payload_size/sizeof(uint32_t)) - 1) << 16;
pt.cmd.cdw10 |= log_page;
pt.buf = payload;
pt.len = payload_size;
pt.is_read = 1;
if (ioctl(fd, NVME_PASSTHROUGH_CMD, &pt) < 0)
err(1, "get log page request failed");
if (nvme_completion_is_error(&pt.cpl))
errx(1, "get log page request returned error");
}
static void
print_log_error(void *buf, uint32_t size)
{
int i, nentries;
struct nvme_error_information_entry *entry = buf;
printf("Error Information Log\n");
printf("=====================\n");
if (entry->error_count == 0) {
printf("No error entries found\n");
return;
}
nentries = size/sizeof(struct nvme_error_information_entry);
for (i = 0; i < nentries; i++, entry++) {
if (entry->error_count == 0)
break;
printf("Entry %02d\n", i + 1);
printf("=========\n");
printf(" Error count: %ju\n", entry->error_count);
printf(" Submission queue ID: %u\n", entry->sqid);
printf(" Command ID: %u\n", entry->cid);
/* TODO: Export nvme_status_string structures from kernel? */
printf(" Status:\n");
printf(" Phase tag: %d\n",
(uint16_t)__SHIFTOUT(entry->status, NVME_CQE_PHASE));
printf(" Status code: %d\n",
(uint16_t)__SHIFTOUT(entry->status, NVME_CQE_SC_MASK));
printf(" Status code type: %d\n",
(uint16_t)__SHIFTOUT(entry->status, NVME_CQE_SCT_MASK));
printf(" More: %d\n",
(uint16_t)__SHIFTOUT(entry->status, NVME_CQE_M));
printf(" DNR: %d\n",
(uint16_t)__SHIFTOUT(entry->status, NVME_CQE_DNR));
printf(" Error location: %u\n", entry->error_location);
printf(" LBA: %ju\n", entry->lba);
printf(" Namespace ID: %u\n", entry->nsid);
printf(" Vendor specific info: %u\n", entry->vendor_specific);
printf(" Command specific info: %ju\n",
entry->command_specific);
}
}
#define METRIX_PREFIX_BUFSIZ 17
#define NO_METRIX_PREFIX_BUFSIZ 42
static void
print_bignum(const char *title, uint64_t v[2], const char *suffix)
{
char buf[64];
uint8_t tmp[16];
uint64_t l = le64toh(v[0]);
uint64_t h = le64toh(v[1]);
tmp[ 0] = (h >> 56) & 0xff;
tmp[ 1] = (h >> 48) & 0xff;
tmp[ 2] = (h >> 40) & 0xff;
tmp[ 3] = (h >> 32) & 0xff;
tmp[ 4] = (h >> 24) & 0xff;
tmp[ 5] = (h >> 16) & 0xff;
tmp[ 6] = (h >> 8) & 0xff;
tmp[ 7] = h & 0xff;
tmp[ 8] = (l >> 56) & 0xff;
tmp[ 9] = (l >> 48) & 0xff;
tmp[10] = (l >> 40) & 0xff;
tmp[11] = (l >> 32) & 0xff;
tmp[12] = (l >> 24) & 0xff;
tmp[13] = (l >> 16) & 0xff;
tmp[14] = (l >> 8) & 0xff;
tmp[15] = l & 0xff;
buf[0] = '\0';
BIGNUM *bn = BN_bin2bn(tmp, __arraycount(tmp), NULL);
if (bn != NULL) {
humanize_bignum(buf, METRIX_PREFIX_BUFSIZ + strlen(suffix),
bn, suffix, HN_AUTOSCALE, HN_DECIMAL);
BN_free(bn);
}
if (buf[0] == '\0')
snprintf(buf, sizeof(buf), "0x%016jx%016jx", h, l);
printf("%-31s %s\n", title, buf);
}
static void
print_temp(uint16_t t)
{
printf("%u K, %2.2f C, %3.2f F\n", t, (float)t - 273.15,
(float)t * 9 / 5 - 459.67);
}
static void
print_log_health(void *buf, uint32_t size __unused)
{
struct nvme_health_information_page *health = buf;
int i;
printf("SMART/Health Information Log\n");
printf("============================\n");
printf("Critical Warning State: 0x%02x\n",
health->critical_warning);
printf(" Available spare: %d\n",
(uint8_t)__SHIFTOUT(health->critical_warning,
NVME_HEALTH_PAGE_CW_AVAIL_SPARE));
printf(" Temperature: %d\n",
(uint8_t)__SHIFTOUT(health->critical_warning,
NVME_HEALTH_PAGE_CW_TEMPERTURE));
printf(" Device reliability: %d\n",
(uint8_t)__SHIFTOUT(health->critical_warning,
NVME_HEALTH_PAGE_CW_DEVICE_RELIABLITY));
printf(" Read only: %d\n",
(uint8_t)__SHIFTOUT(health->critical_warning,
NVME_HEALTH_PAGE_CW_READ_ONLY));
printf(" Volatile memory backup: %d\n",
(uint8_t)__SHIFTOUT(health->critical_warning,
NVME_HEALTH_PAGE_CW_VOLATILE_MEMORY_BACKUP));
printf("Temperature: ");
print_temp(health->composite_temperature);
printf("Available spare: %u\n",
health->available_spare);
printf("Available spare threshold: %u\n",
health->available_spare_threshold);
printf("Percentage used: %u\n",
health->percentage_used);
print_bignum("Data units (512 byte) read:", health->data_units_read, "");
print_bignum("Data units (512 byte) written:", health->data_units_written,
"");
print_bignum("Host read commands:", health->host_read_commands, "");
print_bignum("Host write commands:", health->host_write_commands, "");
print_bignum("Controller busy time (minutes):", health->controller_busy_time,
"");
print_bignum("Power cycles:", health->power_cycles, "");
print_bignum("Power on hours:", health->power_on_hours, "");
print_bignum("Unsafe shutdowns:", health->unsafe_shutdowns, "");
print_bignum("Media errors:", health->media_errors, "");
print_bignum("No. error info log entries:",
health->num_error_info_log_entries, "");
printf("Warning Temp Composite Time: %d\n", health->warning_temp_time);
printf("Error Temp Composite Time: %d\n", health->error_temp_time);
for (i = 0; i < 7; i++) {
if (health->temp_sensor[i] == 0)
continue;
printf("Temperature Sensor %d: ", i + 1);
print_temp(health->temp_sensor[i]);
}
}
static void
print_log_firmware(void *buf, uint32_t size __unused)
{
u_int i;
const char *status;
struct nvme_firmware_page *fw = buf;
printf("Firmware Slot Log\n");
printf("=================\n");
for (i = 0; i < MAX_FW_SLOTS; i++) {
printf("Slot %d: ", i + 1);
if (__SHIFTOUT(fw->afi, NVME_FW_PAGE_AFI_SLOT) == i + 1)
status = " Active";
else
status = "Inactive";
if (fw->revision[i] == 0LLU)
printf("Empty\n");
else
if (isprint(*(uint8_t *)&fw->revision[i]))
printf("[%s] %.8s\n", status,
(char *)&fw->revision[i]);
else
printf("[%s] %016jx\n", status,
fw->revision[i]);
}
}
/*
* Intel specific log pages from
* http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ssd-dc-p3700-spec.pdf
*
* Though the version as of this date has a typo for the size of log page 0xca,
* offset 147: it is only 1 byte, not 6.
*/
static void
print_intel_temp_stats(void *buf, uint32_t size __unused)
{
struct intel_log_temp_stats *temp = buf;
printf("Intel Temperature Log\n");
printf("=====================\n");
printf("Current: ");
print_temp(temp->current);
printf("Overtemp Last Flags %#jx\n",
(uintmax_t)temp->overtemp_flag_last);
printf("Overtemp Lifetime Flags %#jx\n",
(uintmax_t)temp->overtemp_flag_life);
printf("Max Temperature ");
print_temp(temp->max_temp);
printf("Min Temperature ");
print_temp(temp->min_temp);
printf("Max Operating Temperature ");
print_temp(temp->max_oper_temp);
printf("Min Operating Temperature ");
print_temp(temp->min_oper_temp);
printf("Estimated Temperature Offset: %ju C/K\n",
(uintmax_t)temp->est_offset);
}
/*
* Format from Table 22, section 5.7 IO Command Latency Statistics.
* Read and write stats pages have identical encoding.
*/
static void
print_intel_read_write_lat_log(void *buf, uint32_t size __unused)
{
const char *walker = buf;
int i;
printf("Major: %d\n", le16dec(walker + 0));
printf("Minor: %d\n", le16dec(walker + 2));
for (i = 0; i < 32; i++)
printf("%4dus-%4dus: %ju\n", i * 32, (i + 1) * 32,
(uintmax_t)le32dec(walker + 4 + i * 4));
for (i = 1; i < 32; i++)
printf("%4dms-%4dms: %ju\n", i, i + 1,
(uintmax_t)le32dec(walker + 132 + i * 4));
for (i = 1; i < 32; i++)
printf("%4dms-%4dms: %ju\n", i * 32, (i + 1) * 32,
(uintmax_t)le32dec(walker + 256 + i * 4));
}
static void
print_intel_read_lat_log(void *buf, uint32_t size)
{
printf("Intel Read Latency Log\n");
printf("======================\n");
print_intel_read_write_lat_log(buf, size);
}
static void
print_intel_write_lat_log(void *buf, uint32_t size)
{
printf("Intel Write Latency Log\n");
printf("=======================\n");
print_intel_read_write_lat_log(buf, size);
}
/*
* Table 19. 5.4 SMART Attributes.
* Samsung also implements this and some extra data not documented.
*/
static void
print_intel_add_smart(void *buf, uint32_t size __unused)
{
uint8_t *walker = buf;
uint8_t *end = walker + 150;
const char *name;
uint64_t raw;
uint8_t normalized;
static struct kv_name kv[] = {
{ 0xab, "Program Fail Count" },
{ 0xac, "Erase Fail Count" },
{ 0xad, "Wear Leveling Count" },
{ 0xb8, "End to End Error Count" },
{ 0xc7, "CRC Error Count" },
{ 0xe2, "Timed: Media Wear" },
{ 0xe3, "Timed: Host Read %" },
{ 0xe4, "Timed: Elapsed Time" },
{ 0xea, "Thermal Throttle Status" },
{ 0xf0, "Retry Buffer Overflows" },
{ 0xf3, "PLL Lock Loss Count" },
{ 0xf4, "NAND Bytes Written" },
{ 0xf5, "Host Bytes Written" },
};
printf("Additional SMART Data Log\n");
printf("=========================\n");
/*
* walker[0] = Key
* walker[1,2] = reserved
* walker[3] = Normalized Value
* walker[4] = reserved
* walker[5..10] = Little Endian Raw value
* (or other represenations)
* walker[11] = reserved
*/
while (walker < end) {
name = kv_lookup(kv, __arraycount(kv), *walker);
normalized = walker[3];
raw = le48dec(walker + 5);
switch (*walker){
case 0:
break;
case 0xad:
printf("%-32s: %3d min: %u max: %u ave: %u\n", name,
normalized, le16dec(walker + 5), le16dec(walker + 7),
le16dec(walker + 9));
break;
case 0xe2:
printf("%-32s: %3d %.3f%%\n", name, normalized, raw / 1024.0);
break;
case 0xea:
printf("%-32s: %3d %d%% %d times\n", name, normalized,
walker[5], le32dec(walker+6));
break;
default:
printf("%-32s: %3d %ju\n", name, normalized, (uintmax_t)raw);
break;
}
walker += 12;
}
}
/*
* HGST's 0xc1 page. This is a grab bag of additional data. Please see
* https://www.hgst.com/sites/default/files/resources/US_SN150_ProdManual.pdf
* https://www.hgst.com/sites/default/files/resources/US_SN100_ProdManual.pdf
* Appendix A for details
*/
typedef void (*subprint_fn_t)(void *buf, uint16_t subtype, uint8_t res, uint32_t size);
struct subpage_print {
uint16_t key;
subprint_fn_t fn;
};
static void print_hgst_info_write_errors(void *, uint16_t, uint8_t, uint32_t);
static void print_hgst_info_read_errors(void *, uint16_t, uint8_t, uint32_t);
static void print_hgst_info_verify_errors(void *, uint16_t, uint8_t, uint32_t);
static void print_hgst_info_self_test(void *, uint16_t, uint8_t, uint32_t);
static void print_hgst_info_background_scan(void *, uint16_t, uint8_t, uint32_t);
static void print_hgst_info_erase_errors(void *, uint16_t, uint8_t, uint32_t);
static void print_hgst_info_erase_counts(void *, uint16_t, uint8_t, uint32_t);
static void print_hgst_info_temp_history(void *, uint16_t, uint8_t, uint32_t);
static void print_hgst_info_ssd_perf(void *, uint16_t, uint8_t, uint32_t);
static void print_hgst_info_firmware_load(void *, uint16_t, uint8_t, uint32_t);
static struct subpage_print hgst_subpage[] = {
{ 0x02, print_hgst_info_write_errors },
{ 0x03, print_hgst_info_read_errors },
{ 0x05, print_hgst_info_verify_errors },
{ 0x10, print_hgst_info_self_test },
{ 0x15, print_hgst_info_background_scan },
{ 0x30, print_hgst_info_erase_errors },
{ 0x31, print_hgst_info_erase_counts },
{ 0x32, print_hgst_info_temp_history },
{ 0x37, print_hgst_info_ssd_perf },
{ 0x38, print_hgst_info_firmware_load },
};
/* Print a subpage that is basically just key value pairs */
static void
print_hgst_info_subpage_gen(void *buf, uint16_t subtype __unused, uint32_t size,
const struct kv_name *kv, size_t kv_count)
{
uint8_t *wsp, *esp;
uint16_t ptype;
uint8_t plen;
uint64_t param;
int i;
wsp = buf;
esp = wsp + size;
while (wsp < esp) {
ptype = le16dec(wsp);
wsp += 2;
wsp++; /* Flags, just ignore */
plen = *wsp++;
param = 0;
for (i = 0; i < plen; i++)
param |= (uint64_t)*wsp++ << (i * 8);
printf(" %-30s: %jd\n", kv_lookup(kv, kv_count, ptype),
(uintmax_t)param);
}
}
static void
print_hgst_info_write_errors(void *buf, uint16_t subtype, uint8_t res __unused,
uint32_t size)
{
static const struct kv_name kv[] = {
{ 0x0000, "Corrected Without Delay" },
{ 0x0001, "Corrected Maybe Delayed" },
{ 0x0002, "Re-Writes" },
{ 0x0003, "Errors Corrected" },
{ 0x0004, "Correct Algorithm Used" },
{ 0x0005, "Bytes Processed" },
{ 0x0006, "Uncorrected Errors" },
{ 0x8000, "Flash Write Commands" },
{ 0x8001, "HGST Special" },
};
printf("Write Errors Subpage:\n");
print_hgst_info_subpage_gen(buf, subtype, size, kv, __arraycount(kv));
}
static void
print_hgst_info_read_errors(void *buf, uint16_t subtype, uint8_t res __unused,
uint32_t size)
{
static const struct kv_name kv[] = {
{ 0x0000, "Corrected Without Delay" },
{ 0x0001, "Corrected Maybe Delayed" },
{ 0x0002, "Re-Reads" },
{ 0x0003, "Errors Corrected" },
{ 0x0004, "Correct Algorithm Used" },
{ 0x0005, "Bytes Processed" },
{ 0x0006, "Uncorrected Errors" },
{ 0x8000, "Flash Read Commands" },
{ 0x8001, "XOR Recovered" },
{ 0x8002, "Total Corrected Bits" },
};
printf("Read Errors Subpage:\n");
print_hgst_info_subpage_gen(buf, subtype, size, kv, __arraycount(kv));
}
static void
print_hgst_info_verify_errors(void *buf, uint16_t subtype, uint8_t res __unused,
uint32_t size)
{
static const struct kv_name kv[] = {
{ 0x0000, "Corrected Without Delay" },
{ 0x0001, "Corrected Maybe Delayed" },
{ 0x0002, "Re-Reads" },
{ 0x0003, "Errors Corrected" },
{ 0x0004, "Correct Algorithm Used" },
{ 0x0005, "Bytes Processed" },
{ 0x0006, "Uncorrected Errors" },
{ 0x8000, "Commands Processed" },
};
printf("Verify Errors Subpage:\n");
print_hgst_info_subpage_gen(buf, subtype, size, kv, __arraycount(kv));
}
static void
print_hgst_info_self_test(void *buf, uint16_t subtype __unused, uint8_t res __unused,
uint32_t size)
{
size_t i;
uint8_t *walker = buf;
uint16_t code, hrs;
uint32_t lba;
printf("Self Test Subpage:\n");
for (i = 0; i < size / 20; i++) { /* Each entry is 20 bytes */
code = le16dec(walker);
walker += 2;
walker++; /* Ignore fixed flags */
if (*walker == 0) /* Last entry is zero length */
break;
if (*walker++ != 0x10) {
printf("Bad length for self test report\n");
return;
}
printf(" %-30s: %d\n", "Recent Test", code);
printf(" %-28s: %#x\n", "Self-Test Results", *walker & 0xf);
printf(" %-28s: %#x\n", "Self-Test Code", (*walker >> 5) & 0x7);
walker++;
printf(" %-28s: %#x\n", "Self-Test Number", *walker++);
hrs = le16dec(walker);
walker += 2;
lba = le32dec(walker);
walker += 4;
printf(" %-28s: %u\n", "Total Power On Hrs", hrs);
printf(" %-28s: %#jx (%jd)\n", "LBA", (uintmax_t)lba,
(uintmax_t)lba);
printf(" %-28s: %#x\n", "Sense Key", *walker++ & 0xf);
printf(" %-28s: %#x\n", "Additional Sense Code", *walker++);
printf(" %-28s: %#x\n", "Additional Sense Qualifier", *walker++);
printf(" %-28s: %#x\n", "Vendor Specific Detail", *walker++);
}
}
static void
print_hgst_info_background_scan(void *buf, uint16_t subtype __unused,
uint8_t res __unused, uint32_t size)
{
uint8_t *walker = buf;
uint8_t status;
uint16_t code, nscan, progress;
uint32_t pom, nand;
printf("Background Media Scan Subpage:\n");
/* Decode the header */
code = le16dec(walker);
walker += 2;
walker++; /* Ignore fixed flags */
if (*walker++ != 0x10) {
printf("Bad length for background scan header\n");
return;
}
if (code != 0) {
printf("Expceted code 0, found code %#x\n", code);
return;
}
pom = le32dec(walker);
walker += 4;
walker++; /* Reserved */
status = *walker++;
nscan = le16dec(walker);
walker += 2;
progress = le16dec(walker);
walker += 2;
walker += 6; /* Reserved */
printf(" %-30s: %d\n", "Power On Minutes", pom);
printf(" %-30s: %x (%s)\n", "BMS Status", status,
status == 0 ? "idle" : (status == 1 ? "active" :
(status == 8 ? "suspended" : "unknown")));
printf(" %-30s: %d\n", "Number of BMS", nscan);
printf(" %-30s: %d\n", "Progress Current BMS", progress);
/* Report retirements */
if (walker - (uint8_t *)buf != 20) {
printf("Coding error, offset not 20\n");
return;
}
size -= 20;
printf(" %-30s: %d\n", "BMS retirements", size / 0x18);
while (size > 0) {
code = le16dec(walker);
walker += 2;
walker++;
if (*walker++ != 0x14) {
printf("Bad length parameter\n");
return;
}
pom = le32dec(walker);
walker += 4;
/*
* Spec sheet says the following are hard coded, if true, just
* print the NAND retirement.
*/
if (walker[0] == 0x41 &&
walker[1] == 0x0b &&
walker[2] == 0x01 &&
walker[3] == 0x00 &&
walker[4] == 0x00 &&
walker[5] == 0x00 &&
walker[6] == 0x00 &&
walker[7] == 0x00) {
walker += 8;
walker += 4; /* Skip reserved */
nand = le32dec(walker);
walker += 4;
printf(" %-30s: %d\n", "Retirement number", code);
printf(" %-28s: %#x\n", "NAND (C/T)BBBPPP", nand);
} else {
printf("Parameter %#x entry corrupt\n", code);
walker += 16;
}
}
}
static void
print_hgst_info_erase_errors(void *buf, uint16_t subtype __unused,
uint8_t res __unused, uint32_t size)
{
static const struct kv_name kv[] = {
{ 0x0000, "Corrected Without Delay" },
{ 0x0001, "Corrected Maybe Delayed" },
{ 0x0002, "Re-Erase" },
{ 0x0003, "Errors Corrected" },
{ 0x0004, "Correct Algorithm Used" },
{ 0x0005, "Bytes Processed" },
{ 0x0006, "Uncorrected Errors" },
{ 0x8000, "Flash Erase Commands" },
{ 0x8001, "Mfg Defect Count" },
{ 0x8002, "Grown Defect Count" },
{ 0x8003, "Erase Count -- User" },
{ 0x8004, "Erase Count -- System" },
};
printf("Erase Errors Subpage:\n");
print_hgst_info_subpage_gen(buf, subtype, size, kv, __arraycount(kv));
}
static void
print_hgst_info_erase_counts(void *buf, uint16_t subtype, uint8_t res __unused,
uint32_t size)
{
/* My drive doesn't export this -- so not coding up */
printf("XXX: Erase counts subpage: %p, %#x %d\n", buf, subtype, size);
}
static void
print_hgst_info_temp_history(void *buf, uint16_t subtype __unused,
uint8_t res __unused, uint32_t size __unused)
{
uint8_t *walker = buf;
uint32_t min;
printf("Temperature History:\n");
printf(" %-30s: %d C\n", "Current Temperature", *walker++);
printf(" %-30s: %d C\n", "Reference Temperature", *walker++);
printf(" %-30s: %d C\n", "Maximum Temperature", *walker++);
printf(" %-30s: %d C\n", "Minimum Temperature", *walker++);
min = le32dec(walker);
walker += 4;
printf(" %-30s: %d:%02d:00\n", "Max Temperature Time", min / 60, min % 60);
min = le32dec(walker);
walker += 4;
printf(" %-30s: %d:%02d:00\n", "Over Temperature Duration", min / 60,
min % 60);
min = le32dec(walker);
walker += 4;
printf(" %-30s: %d:%02d:00\n", "Min Temperature Time", min / 60, min % 60);
}
static void
print_hgst_info_ssd_perf(void *buf, uint16_t subtype __unused, uint8_t res,
uint32_t size __unused)
{
uint8_t *walker = buf;
uint64_t val;
printf("SSD Performance Subpage Type %d:\n", res);
val = le64dec(walker);
walker += 8;
printf(" %-30s: %ju\n", "Host Read Commands", val);
val = le64dec(walker);
walker += 8;
printf(" %-30s: %ju\n", "Host Read Blocks", val);
val = le64dec(walker);
walker += 8;
printf(" %-30s: %ju\n", "Host Cache Read Hits Commands", val);
val = le64dec(walker);
walker += 8;
printf(" %-30s: %ju\n", "Host Cache Read Hits Blocks", val);
val = le64dec(walker);
walker += 8;
printf(" %-30s: %ju\n", "Host Read Commands Stalled", val);
val = le64dec(walker);
walker += 8;
printf(" %-30s: %ju\n", "Host Write Commands", val);
val = le64dec(walker);
walker += 8;
printf(" %-30s: %ju\n", "Host Write Blocks", val);
val = le64dec(walker);
walker += 8;
printf(" %-30s: %ju\n", "Host Write Odd Start Commands", val);
val = le64dec(walker);
walker += 8;
printf(" %-30s: %ju\n", "Host Write Odd End Commands", val);
val = le64dec(walker);
walker += 8;
printf(" %-30s: %ju\n", "Host Write Commands Stalled", val);
val = le64dec(walker);
walker += 8;
printf(" %-30s: %ju\n", "NAND Read Commands", val);
val = le64dec(walker);
walker += 8;
printf(" %-30s: %ju\n", "NAND Read Blocks", val);
val = le64dec(walker);
walker += 8;
printf(" %-30s: %ju\n", "NAND Write Commands", val);
val = le64dec(walker);
walker += 8;
printf(" %-30s: %ju\n", "NAND Write Blocks", val);
val = le64dec(walker);
walker += 8;
printf(" %-30s: %ju\n", "NAND Read Before Writes", val);
}
static void
print_hgst_info_firmware_load(void *buf, uint16_t subtype __unused,
uint8_t res __unused, uint32_t size __unused)
{
uint8_t *walker = buf;
printf("Firmware Load Subpage:\n");
printf(" %-30s: %d\n", "Firmware Downloads", le32dec(walker));
}
static void
kv_indirect(void *buf, uint32_t subtype, uint8_t res, uint32_t size,
struct subpage_print *sp, size_t nsp)
{
size_t i;
for (i = 0; i < nsp; i++, sp++) {
if (sp->key == subtype) {
sp->fn(buf, subtype, res, size);
return;
}
}
printf("No handler for page type %x\n", subtype);
}
static void
print_hgst_info_log(void *buf, uint32_t size __unused)
{
uint8_t *walker, *end, *subpage;
int pages __unused;
uint16_t len;
uint8_t subtype, res;
printf("HGST Extra Info Log\n");
printf("===================\n");
walker = buf;
pages = *walker++;
walker++;
len = le16dec(walker);
walker += 2;
end = walker + len; /* Length is exclusive of this header */
while (walker < end) {
subpage = walker + 4;
subtype = *walker++ & 0x3f; /* subtype */
res = *walker++; /* Reserved */
len = le16dec(walker);
walker += len + 2; /* Length, not incl header */
if (walker > end) {
printf("Ooops! Off the end of the list\n");
break;
}
kv_indirect(subpage, subtype, res, len, hgst_subpage,
__arraycount(hgst_subpage));
}
}
/*
* Table of log page printer / sizing.
*
* This includes Intel specific pages that are widely implemented.
* Make sure you keep all the pages of one vendor together so -v help
* lists all the vendors pages.
*/
static struct logpage_function {
uint8_t log_page;
const char *vendor;
const char *name;
print_fn_t print_fn;
size_t size;
} logfuncs[] = {
{NVME_LOG_ERROR, NULL, "Drive Error Log",
print_log_error, 0},
{NVME_LOG_HEALTH_INFORMATION, NULL, "Health/SMART Data",
print_log_health, sizeof(struct nvme_health_information_page)},
{NVME_LOG_FIRMWARE_SLOT, NULL, "Firmware Information",
print_log_firmware, sizeof(struct nvme_firmware_page)},
{HGST_INFO_LOG, "hgst", "Detailed Health/SMART",
print_hgst_info_log, DEFAULT_SIZE},
{HGST_INFO_LOG, "wds", "Detailed Health/SMART",
print_hgst_info_log, DEFAULT_SIZE},
{INTEL_LOG_TEMP_STATS, "intel", "Temperature Stats",
print_intel_temp_stats, sizeof(struct intel_log_temp_stats)},
{INTEL_LOG_READ_LAT_LOG, "intel", "Read Latencies",
print_intel_read_lat_log, DEFAULT_SIZE},
{INTEL_LOG_WRITE_LAT_LOG, "intel", "Write Latencies",
print_intel_write_lat_log, DEFAULT_SIZE},
{INTEL_LOG_ADD_SMART, "intel", "Extra Health/SMART Data",
print_intel_add_smart, DEFAULT_SIZE},
{INTEL_LOG_ADD_SMART, "samsung", "Extra Health/SMART Data",
print_intel_add_smart, DEFAULT_SIZE},
{0, NULL, NULL, NULL, 0},
};
__dead static void
logpage_usage(void)
{
fprintf(stderr, "usage:\n");
fprintf(stderr, LOGPAGE_USAGE);
exit(1);
}
__dead static void
logpage_help(void)
{
struct logpage_function *f;
const char *v;
fprintf(stderr, "\n");
fprintf(stderr, "%-8s %-10s %s\n", "Page", "Vendor","Page Name");
fprintf(stderr, "-------- ---------- ----------\n");
for (f = logfuncs; f->log_page > 0; f++) {
v = f->vendor == NULL ? "-" : f->vendor;
fprintf(stderr, "0x%02x %-10s %s\n", f->log_page, v, f->name);
}
exit(1);
}
void
logpage(int argc, char *argv[])
{
int fd, nsid;
int log_page = 0, pageflag = false;
int binflag = false, hexflag = false, ns_specified;
int ch;
char *p;
char cname[64];
uint32_t size;
void *buf;
const char *vendor = NULL;
struct logpage_function *f;
struct nvm_identify_controller cdata;
print_fn_t print_fn;
while ((ch = getopt(argc, argv, "bp:xv:")) != -1) {
switch (ch) {
case 'b':
binflag = true;
break;
case 'p':
if (strcmp(optarg, "help") == 0)
logpage_help();
/* TODO: Add human-readable ASCII page IDs */
log_page = strtol(optarg, &p, 0);
if (p != NULL && *p != '\0') {
fprintf(stderr,
"\"%s\" not valid log page id.\n",
optarg);
logpage_usage();
}
pageflag = true;
break;
case 'x':
hexflag = true;
break;
case 'v':
if (strcmp(optarg, "help") == 0)
logpage_help();
vendor = optarg;
break;
}
}
if (!pageflag) {
printf("Missing page_id (-p).\n");
logpage_usage();
}
/* Check that a controller and/or namespace was specified. */
if (optind >= argc)
logpage_usage();
if (strstr(argv[optind], NVME_NS_PREFIX) != NULL) {
ns_specified = true;
parse_ns_str(argv[optind], cname, &nsid);
open_dev(cname, &fd, 1, 1);
} else {
ns_specified = false;
nsid = 0xffffffff;
open_dev(argv[optind], &fd, 1, 1);
}
read_controller_data(fd, &cdata);
/*
* The log page attribtues indicate whether or not the controller
* supports the SMART/Health information log page on a per
* namespace basis.
*/
if (ns_specified) {
if (log_page != NVME_LOG_HEALTH_INFORMATION)
errx(1, "log page %d valid only at controller level",
log_page);
if (!(cdata.lpa & NVME_ID_CTRLR_LPA_NS_SMART))
errx(1,
"controller does not support per namespace "
"smart/health information");
}
print_fn = print_hex;
size = DEFAULT_SIZE;
if (binflag)
print_fn = print_bin;
if (!binflag && !hexflag) {
/*
* See if there is a pretty print function for the specified log
* page. If one isn't found, we just revert to the default
* (print_hex). If there was a vendor specified bt the user, and
* the page is vendor specific, don't match the print function
* unless the vendors match.
*/
for (f = logfuncs; f->log_page > 0; f++) {
if (f->vendor != NULL && vendor != NULL &&
strcmp(f->vendor, vendor) != 0)
continue;
if (log_page != f->log_page)
continue;
print_fn = f->print_fn;
size = f->size;
break;
}
}
if (log_page == NVME_LOG_ERROR) {
size = sizeof(struct nvme_error_information_entry);
size *= (cdata.elpe + 1);
}
/* Read the log page */
buf = get_log_buffer(size);
read_logpage(fd, log_page, nsid, buf, size);
print_fn(buf, size);
close(fd);
exit(0);
}