1247 lines
34 KiB
C
1247 lines
34 KiB
C
/* $NetBSD: if_kse.c,v 1.7 2007/10/14 12:06:17 nisimura Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2006 Tohru Nishimura
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Tohru Nishimura.
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.7 2007/10/14 12:06:17 nisimura Exp $");
|
|
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/device.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <machine/endian.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/intr.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_ether.h>
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcidevs.h>
|
|
|
|
#define CSR_READ_4(sc, off) \
|
|
bus_space_read_4(sc->sc_st, sc->sc_sh, off)
|
|
#define CSR_WRITE_4(sc, off, val) \
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
|
|
#define CSR_READ_2(sc, off) \
|
|
bus_space_read_2(sc->sc_st, sc->sc_sh, off)
|
|
#define CSR_WRITE_2(sc, off, val) \
|
|
bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
|
|
|
|
#define MDTXC 0x000 /* DMA transmit control */
|
|
#define MDRXC 0x004 /* DMA receive control */
|
|
#define MDTSC 0x008 /* DMA transmit start */
|
|
#define MDRSC 0x00c /* DMA receive start */
|
|
#define TDLB 0x010 /* transmit descriptor list base */
|
|
#define RDLB 0x014 /* receive descriptor list base */
|
|
#define MTR0 0x020 /* multicast table 31:0 */
|
|
#define MTR1 0x024 /* multicast table 63:32 */
|
|
#define INTEN 0x028 /* interrupt enable */
|
|
#define INTST 0x02c /* interrupt status */
|
|
#define MARL 0x200 /* MAC address low */
|
|
#define MARM 0x202 /* MAC address middle */
|
|
#define MARH 0x204 /* MAC address high */
|
|
#define GRR 0x216 /* global reset */
|
|
#define CIDR 0x400 /* chip ID and enable */
|
|
#define CGCR 0x40a /* chip global control */
|
|
#define P1CR4 0x512 /* port 1 control 4 */
|
|
#define P1SR 0x514 /* port 1 status */
|
|
|
|
#define TXC_BS_MSK 0x3f000000 /* burst size */
|
|
#define TXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
|
|
#define TXC_UCG (1U<<18) /* generate UDP checksum */
|
|
#define TXC_TCG (1U<<17) /* generate TCP checksum */
|
|
#define TXC_ICG (1U<<16) /* generate IP checksum */
|
|
#define TXC_FCE (1U<<9) /* enable flowcontrol */
|
|
#define TXC_EP (1U<<2) /* enable automatic padding */
|
|
#define TXC_AC (1U<<1) /* add CRC to frame */
|
|
#define TXC_TEN (1) /* enable DMA to run */
|
|
|
|
#define RXC_BS_MSK 0x3f000000 /* burst size */
|
|
#define RXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
|
|
#define RXC_IHAE (1U<<19) /* IP header alignment enable */
|
|
#define RXC_UCC (1U<<18) /* run UDP checksum */
|
|
#define RXC_TCC (1U<<17) /* run TDP checksum */
|
|
#define RXC_ICC (1U<<16) /* run IP checksum */
|
|
#define RXC_FCE (1U<<9) /* enable flowcontrol */
|
|
#define RXC_RB (1U<<6) /* receive broadcast frame */
|
|
#define RXC_RM (1U<<5) /* receive multicast frame */
|
|
#define RXC_RU (1U<<4) /* receive unicast frame */
|
|
#define RXC_RE (1U<<3) /* accept error frame */
|
|
#define RXC_RA (1U<<2) /* receive all frame */
|
|
#define RXC_MHTE (1U<<1) /* use multicast hash table */
|
|
#define RXC_REN (1) /* enable DMA to run */
|
|
|
|
#define INT_DMLCS (1U<<31) /* link status change */
|
|
#define INT_DMTS (1U<<30) /* sending desc. has posted Tx done */
|
|
#define INT_DMRS (1U<<29) /* frame was received */
|
|
#define INT_DMRBUS (1U<<27) /* Rx descriptor pool is full */
|
|
|
|
#define T0_OWN (1U<<31) /* desc is ready to Tx */
|
|
|
|
#define R0_OWN (1U<<31) /* desc is empty */
|
|
#define R0_FS (1U<<30) /* first segment of frame */
|
|
#define R0_LS (1U<<29) /* last segment of frame */
|
|
#define R0_IPE (1U<<28) /* IP checksum error */
|
|
#define R0_TCPE (1U<<27) /* TCP checksum error */
|
|
#define R0_UDPE (1U<<26) /* UDP checksum error */
|
|
#define R0_ES (1U<<25) /* error summary */
|
|
#define R0_MF (1U<<24) /* multicast frame */
|
|
#define R0_SPN 0x00300000 /* 21:20 switch port 1/2 */
|
|
#define R0_ALIGN 0x00300000 /* 21:20 (KSZ8692P) Rx align amount */
|
|
#define R0_RE (1U<<19) /* MII reported error */
|
|
#define R0_TL (1U<<18) /* frame too long, beyond 1518 */
|
|
#define R0_RF (1U<<17) /* damaged runt frame */
|
|
#define R0_CE (1U<<16) /* CRC error */
|
|
#define R0_FT (1U<<15) /* frame type */
|
|
#define R0_FL_MASK 0x7ff /* frame length 10:0 */
|
|
|
|
#define T1_IC (1U<<31) /* post interrupt on complete */
|
|
#define T1_FS (1U<<30) /* first segment of frame */
|
|
#define T1_LS (1U<<29) /* last segment of frame */
|
|
#define T1_IPCKG (1U<<28) /* generate IP checksum */
|
|
#define T1_TCPCKG (1U<<27) /* generate TCP checksum */
|
|
#define T1_UDPCKG (1U<<26) /* generate UDP checksum */
|
|
#define T1_TER (1U<<25) /* end of ring */
|
|
#define T1_SPN 0x00300000 /* 21:20 switch port 1/2 */
|
|
#define T1_TBS_MASK 0x7ff /* segment size 10:0 */
|
|
|
|
#define R1_RER (1U<<25) /* end of ring */
|
|
#define R1_RBS_MASK 0x7fd /* segment size 10:0 */
|
|
|
|
#define KSE_NTXSEGS 16
|
|
#define KSE_TXQUEUELEN 64
|
|
#define KSE_TXQUEUELEN_MASK (KSE_TXQUEUELEN - 1)
|
|
#define KSE_TXQUEUE_GC (KSE_TXQUEUELEN / 4)
|
|
#define KSE_NTXDESC 256
|
|
#define KSE_NTXDESC_MASK (KSE_NTXDESC - 1)
|
|
#define KSE_NEXTTX(x) (((x) + 1) & KSE_NTXDESC_MASK)
|
|
#define KSE_NEXTTXS(x) (((x) + 1) & KSE_TXQUEUELEN_MASK)
|
|
|
|
#define KSE_NRXDESC 64
|
|
#define KSE_NRXDESC_MASK (KSE_NRXDESC - 1)
|
|
#define KSE_NEXTRX(x) (((x) + 1) & KSE_NRXDESC_MASK)
|
|
|
|
struct tdes {
|
|
uint32_t t0, t1, t2, t3;
|
|
};
|
|
|
|
struct rdes {
|
|
uint32_t r0, r1, r2, r3;
|
|
};
|
|
|
|
struct kse_control_data {
|
|
struct tdes kcd_txdescs[KSE_NTXDESC];
|
|
struct rdes kcd_rxdescs[KSE_NRXDESC];
|
|
};
|
|
#define KSE_CDOFF(x) offsetof(struct kse_control_data, x)
|
|
#define KSE_CDTXOFF(x) KSE_CDOFF(kcd_txdescs[(x)])
|
|
#define KSE_CDRXOFF(x) KSE_CDOFF(kcd_rxdescs[(x)])
|
|
|
|
struct kse_txsoft {
|
|
struct mbuf *txs_mbuf; /* head of our mbuf chain */
|
|
bus_dmamap_t txs_dmamap; /* our DMA map */
|
|
int txs_firstdesc; /* first descriptor in packet */
|
|
int txs_lastdesc; /* last descriptor in packet */
|
|
int txs_ndesc; /* # of descriptors used */
|
|
};
|
|
|
|
struct kse_rxsoft {
|
|
struct mbuf *rxs_mbuf; /* head of our mbuf chain */
|
|
bus_dmamap_t rxs_dmamap; /* our DMA map */
|
|
};
|
|
|
|
struct kse_softc {
|
|
struct device sc_dev; /* generic device information */
|
|
bus_space_tag_t sc_st; /* bus space tag */
|
|
bus_space_handle_t sc_sh; /* bus space handle */
|
|
bus_dma_tag_t sc_dmat; /* bus DMA tag */
|
|
struct ethercom sc_ethercom; /* Ethernet common data */
|
|
void *sc_ih; /* interrupt cookie */
|
|
|
|
struct ifmedia sc_media; /* ifmedia information */
|
|
int sc_media_status; /* PHY */
|
|
int sc_media_active; /* PHY */
|
|
callout_t sc_callout; /* tick callout */
|
|
|
|
bus_dmamap_t sc_cddmamap; /* control data DMA map */
|
|
#define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
|
|
|
|
struct kse_control_data *sc_control_data;
|
|
#define sc_txdescs sc_control_data->kcd_txdescs
|
|
#define sc_rxdescs sc_control_data->kcd_rxdescs
|
|
|
|
struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
|
|
struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
|
|
int sc_txfree; /* number of free Tx descriptors */
|
|
int sc_txnext; /* next ready Tx descriptor */
|
|
int sc_txsfree; /* number of free Tx jobs */
|
|
int sc_txsnext; /* next ready Tx job */
|
|
int sc_txsdirty; /* dirty Tx jobs */
|
|
int sc_rxptr; /* next ready Rx descriptor/descsoft */
|
|
|
|
uint32_t sc_txc, sc_rxc;
|
|
uint32_t sc_t1csum;
|
|
int sc_mcsum;
|
|
uint32_t sc_chip;
|
|
};
|
|
|
|
#define KSE_CDTXADDR(sc, x) ((sc)->sc_cddma + KSE_CDTXOFF((x)))
|
|
#define KSE_CDRXADDR(sc, x) ((sc)->sc_cddma + KSE_CDRXOFF((x)))
|
|
|
|
#define KSE_CDTXSYNC(sc, x, n, ops) \
|
|
do { \
|
|
int __x, __n; \
|
|
\
|
|
__x = (x); \
|
|
__n = (n); \
|
|
\
|
|
/* If it will wrap around, sync to the end of the ring. */ \
|
|
if ((__x + __n) > KSE_NTXDESC) { \
|
|
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
|
|
KSE_CDTXOFF(__x), sizeof(struct tdes) * \
|
|
(KSE_NTXDESC - __x), (ops)); \
|
|
__n -= (KSE_NTXDESC - __x); \
|
|
__x = 0; \
|
|
} \
|
|
\
|
|
/* Now sync whatever is left. */ \
|
|
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
|
|
KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
#define KSE_CDRXSYNC(sc, x, ops) \
|
|
do { \
|
|
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
|
|
KSE_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
#define KSE_INIT_RXDESC(sc, x) \
|
|
do { \
|
|
struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
|
|
struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
|
|
struct mbuf *__m = __rxs->rxs_mbuf; \
|
|
\
|
|
__m->m_data = __m->m_ext.ext_buf; \
|
|
__rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \
|
|
__rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */; \
|
|
__rxd->r0 = R0_OWN; \
|
|
KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
u_int kse_burstsize = 16; /* DMA burst length tuning knob */
|
|
|
|
#ifdef KSEDIAGNOSTIC
|
|
u_int kse_monitor_rxintr; /* fragmented UDP csum HW bug hook */
|
|
#endif
|
|
|
|
static int kse_match(struct device *, struct cfdata *, void *);
|
|
static void kse_attach(struct device *, struct device *, void *);
|
|
|
|
CFATTACH_DECL(kse, sizeof(struct kse_softc),
|
|
kse_match, kse_attach, NULL, NULL);
|
|
|
|
static int kse_ioctl(struct ifnet *, u_long, void *);
|
|
static void kse_start(struct ifnet *);
|
|
static void kse_watchdog(struct ifnet *);
|
|
static int kse_init(struct ifnet *);
|
|
static void kse_stop(struct ifnet *, int);
|
|
static void kse_reset(struct kse_softc *);
|
|
static void kse_set_filter(struct kse_softc *);
|
|
static int add_rxbuf(struct kse_softc *, int);
|
|
static void rxdrain(struct kse_softc *);
|
|
static int kse_intr(void *);
|
|
static void rxintr(struct kse_softc *);
|
|
static void txreap(struct kse_softc *);
|
|
static void lnkchg(struct kse_softc *);
|
|
static int ifmedia_upd(struct ifnet *);
|
|
static void ifmedia_sts(struct ifnet *, struct ifmediareq *);
|
|
static void phy_tick(void *);
|
|
|
|
static int
|
|
kse_match(struct device *parent, struct cfdata *match, void *aux)
|
|
{
|
|
struct pci_attach_args *pa = (struct pci_attach_args *)aux;
|
|
|
|
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
|
|
(PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
|
|
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
|
|
PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
kse_attach(struct device *parent, struct device *self, void *aux)
|
|
{
|
|
struct kse_softc *sc = (struct kse_softc *)self;
|
|
struct pci_attach_args *pa = aux;
|
|
pci_chipset_tag_t pc = pa->pa_pc;
|
|
pci_intr_handle_t ih;
|
|
const char *intrstr;
|
|
struct ifnet *ifp;
|
|
uint8_t enaddr[ETHER_ADDR_LEN];
|
|
bus_dma_segment_t seg;
|
|
int error, i, nseg;
|
|
pcireg_t pmode;
|
|
int pmreg;
|
|
|
|
if (pci_mapreg_map(pa, 0x10,
|
|
PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
|
|
0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
|
|
printf(": unable to map device registers\n");
|
|
return;
|
|
}
|
|
|
|
sc->sc_dmat = pa->pa_dmat;
|
|
|
|
/* Make sure bus mastering is enabled. */
|
|
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
|
|
pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
|
|
PCI_COMMAND_MASTER_ENABLE);
|
|
|
|
/* Get it out of power save mode, if needed. */
|
|
if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
|
|
pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
|
|
PCI_PMCSR_STATE_MASK;
|
|
if (pmode == PCI_PMCSR_STATE_D3) {
|
|
/*
|
|
* The card has lost all configuration data in
|
|
* this state, so punt.
|
|
*/
|
|
printf("%s: unable to wake from power state D3\n",
|
|
sc->sc_dev.dv_xname);
|
|
return;
|
|
}
|
|
if (pmode != PCI_PMCSR_STATE_D0) {
|
|
printf("%s: waking up from power date D%d\n",
|
|
sc->sc_dev.dv_xname, pmode);
|
|
pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
|
|
PCI_PMCSR_STATE_D0);
|
|
}
|
|
}
|
|
|
|
sc->sc_chip = PCI_PRODUCT(pa->pa_id);
|
|
printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
|
|
sc->sc_chip, PCI_REVISION(pa->pa_class));
|
|
|
|
/*
|
|
* Read the Ethernet address from the EEPROM.
|
|
*/
|
|
i = CSR_READ_2(sc, MARL);
|
|
enaddr[5] = i; enaddr[4] = i >> 8;
|
|
i = CSR_READ_2(sc, MARM);
|
|
enaddr[3] = i; enaddr[2] = i >> 8;
|
|
i = CSR_READ_2(sc, MARH);
|
|
enaddr[1] = i; enaddr[0] = i >> 8;
|
|
printf("%s: Ethernet address: %s\n",
|
|
sc->sc_dev.dv_xname, ether_sprintf(enaddr));
|
|
|
|
/*
|
|
* Enable chip function.
|
|
*/
|
|
CSR_WRITE_2(sc, CIDR, 1);
|
|
|
|
/*
|
|
* Map and establish our interrupt.
|
|
*/
|
|
if (pci_intr_map(pa, &ih)) {
|
|
printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
|
|
return;
|
|
}
|
|
intrstr = pci_intr_string(pc, ih);
|
|
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, kse_intr, sc);
|
|
if (sc->sc_ih == NULL) {
|
|
printf("%s: unable to establish interrupt",
|
|
sc->sc_dev.dv_xname);
|
|
if (intrstr != NULL)
|
|
printf(" at %s", intrstr);
|
|
printf("\n");
|
|
return;
|
|
}
|
|
printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
|
|
|
|
/*
|
|
* Allocate the control data structures, and create and load the
|
|
* DMA map for it.
|
|
*/
|
|
error = bus_dmamem_alloc(sc->sc_dmat,
|
|
sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
|
|
if (error != 0) {
|
|
printf("%s: unable to allocate control data, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail_0;
|
|
}
|
|
error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
|
|
sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
|
|
BUS_DMA_COHERENT);
|
|
if (error != 0) {
|
|
printf("%s: unable to map control data, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail_1;
|
|
}
|
|
error = bus_dmamap_create(sc->sc_dmat,
|
|
sizeof(struct kse_control_data), 1,
|
|
sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
|
|
if (error != 0) {
|
|
printf("%s: unable to create control data DMA map, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, error);
|
|
goto fail_2;
|
|
}
|
|
error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
|
|
sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
|
|
if (error != 0) {
|
|
printf("%s: unable to load control data DMA map, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail_3;
|
|
}
|
|
for (i = 0; i < KSE_TXQUEUELEN; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
|
|
KSE_NTXSEGS, MCLBYTES, 0, 0,
|
|
&sc->sc_txsoft[i].txs_dmamap)) != 0) {
|
|
printf("%s: unable to create tx DMA map %d, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, i, error);
|
|
goto fail_4;
|
|
}
|
|
}
|
|
for (i = 0; i < KSE_NRXDESC; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
|
|
1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
|
|
printf("%s: unable to create rx DMA map %d, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, i, error);
|
|
goto fail_5;
|
|
}
|
|
sc->sc_rxsoft[i].rxs_mbuf = NULL;
|
|
}
|
|
|
|
callout_init(&sc->sc_callout, 0);
|
|
|
|
ifmedia_init(&sc->sc_media, 0, ifmedia_upd, ifmedia_sts);
|
|
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T, 0, NULL);
|
|
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
|
|
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX, 0, NULL);
|
|
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
|
|
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_AUTO, 0, NULL);
|
|
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
|
|
|
|
printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
|
|
sc->sc_dev.dv_xname);
|
|
|
|
ifp = &sc->sc_ethercom.ec_if;
|
|
strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = kse_ioctl;
|
|
ifp->if_start = kse_start;
|
|
ifp->if_watchdog = kse_watchdog;
|
|
ifp->if_init = kse_init;
|
|
ifp->if_stop = kse_stop;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/*
|
|
* KSZ8842 can handle 802.1Q VLAN-sized frames,
|
|
* can do IPv4, TCPv4, and UDPv4 checksums in hardware.
|
|
*/
|
|
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
|
|
ifp->if_capabilities |=
|
|
IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
|
|
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
|
|
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
|
|
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp, enaddr);
|
|
return;
|
|
|
|
fail_5:
|
|
for (i = 0; i < KSE_NRXDESC; i++) {
|
|
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
sc->sc_rxsoft[i].rxs_dmamap);
|
|
}
|
|
fail_4:
|
|
for (i = 0; i < KSE_TXQUEUELEN; i++) {
|
|
if (sc->sc_txsoft[i].txs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
sc->sc_txsoft[i].txs_dmamap);
|
|
}
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
|
|
fail_3:
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
|
|
fail_2:
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
|
|
sizeof(struct kse_control_data));
|
|
fail_1:
|
|
bus_dmamem_free(sc->sc_dmat, &seg, nseg);
|
|
fail_0:
|
|
return;
|
|
}
|
|
|
|
static int
|
|
kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
struct kse_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int s, error;
|
|
|
|
s = splnet();
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
|
|
break;
|
|
|
|
default:
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
if (cmd == ENETRESET) {
|
|
/*
|
|
* Multicast list has changed; set the hardware filter
|
|
* accordingly.
|
|
*/
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
kse_set_filter(sc);
|
|
error = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
kse_start(ifp);
|
|
|
|
splx(s);
|
|
return error;
|
|
}
|
|
|
|
#define KSE_INTRS (INT_DMLCS|INT_DMTS|INT_DMRS|INT_DMRBUS)
|
|
|
|
static int
|
|
kse_init(struct ifnet *ifp)
|
|
{
|
|
struct kse_softc *sc = ifp->if_softc;
|
|
uint32_t paddr;
|
|
int i, error = 0;
|
|
|
|
/* cancel pending I/O */
|
|
kse_stop(ifp, 0);
|
|
|
|
/* reset all registers but PCI configuration */
|
|
kse_reset(sc);
|
|
|
|
/* craft Tx descriptor ring */
|
|
memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
|
|
for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
|
|
sc->sc_txdescs[i].t3 = paddr;
|
|
paddr += sizeof(struct tdes);
|
|
}
|
|
sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
|
|
KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
sc->sc_txfree = KSE_NTXDESC;
|
|
sc->sc_txnext = 0;
|
|
|
|
for (i = 0; i < KSE_TXQUEUELEN; i++)
|
|
sc->sc_txsoft[i].txs_mbuf = NULL;
|
|
sc->sc_txsfree = KSE_TXQUEUELEN;
|
|
sc->sc_txsnext = 0;
|
|
sc->sc_txsdirty = 0;
|
|
|
|
/* craft Rx descriptor ring */
|
|
memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
|
|
for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
|
|
sc->sc_rxdescs[i].r3 = paddr;
|
|
paddr += sizeof(struct rdes);
|
|
}
|
|
sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
|
|
for (i = 0; i < KSE_NRXDESC; i++) {
|
|
if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
|
|
if ((error = add_rxbuf(sc, i)) != 0) {
|
|
printf("%s: unable to allocate or map rx "
|
|
"buffer %d, error = %d\n",
|
|
sc->sc_dev.dv_xname, i, error);
|
|
rxdrain(sc);
|
|
goto out;
|
|
}
|
|
}
|
|
else
|
|
KSE_INIT_RXDESC(sc, i);
|
|
}
|
|
sc->sc_rxptr = 0;
|
|
|
|
/* hand Tx/Rx rings to HW */
|
|
CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
|
|
CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
|
|
|
|
sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
|
|
sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
sc->sc_rxc |= RXC_RA;
|
|
if (ifp->if_flags & IFF_BROADCAST)
|
|
sc->sc_rxc |= RXC_RB;
|
|
sc->sc_t1csum = sc->sc_mcsum = 0;
|
|
if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
|
|
sc->sc_rxc |= RXC_ICC;
|
|
sc->sc_mcsum |= M_CSUM_IPv4;
|
|
}
|
|
if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
|
|
sc->sc_txc |= TXC_ICG;
|
|
sc->sc_t1csum |= T1_IPCKG;
|
|
}
|
|
if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
|
|
sc->sc_rxc |= RXC_TCC;
|
|
sc->sc_mcsum |= M_CSUM_TCPv4;
|
|
}
|
|
if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
|
|
sc->sc_txc |= TXC_TCG;
|
|
sc->sc_t1csum |= T1_TCPCKG;
|
|
}
|
|
if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
|
|
sc->sc_rxc |= RXC_UCC;
|
|
sc->sc_mcsum |= M_CSUM_UDPv4;
|
|
}
|
|
if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
|
|
sc->sc_txc |= TXC_UCG;
|
|
sc->sc_t1csum |= T1_UDPCKG;
|
|
}
|
|
sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
|
|
sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
|
|
|
|
/* build multicast hash filter if necessary */
|
|
kse_set_filter(sc);
|
|
|
|
/* set current media */
|
|
(void)ifmedia_upd(ifp);
|
|
|
|
/* enable transmitter and receiver */
|
|
CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
|
|
CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
|
|
CSR_WRITE_4(sc, MDRSC, 1);
|
|
|
|
/* enable interrupts */
|
|
CSR_WRITE_4(sc, INTST, ~0);
|
|
CSR_WRITE_4(sc, INTEN, KSE_INTRS);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
/* start one second timer */
|
|
callout_reset(&sc->sc_callout, hz, phy_tick, sc);
|
|
|
|
out:
|
|
if (error) {
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
ifp->if_timer = 0;
|
|
printf("%s: interface not running\n", sc->sc_dev.dv_xname);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
kse_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct kse_softc *sc = ifp->if_softc;
|
|
struct kse_txsoft *txs;
|
|
int i;
|
|
|
|
callout_stop(&sc->sc_callout);
|
|
|
|
sc->sc_txc &= ~TXC_TEN;
|
|
sc->sc_rxc &= ~RXC_REN;
|
|
CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
|
|
CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
|
|
|
|
for (i = 0; i < KSE_TXQUEUELEN; i++) {
|
|
txs = &sc->sc_txsoft[i];
|
|
if (txs->txs_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
if (disable)
|
|
rxdrain(sc);
|
|
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
ifp->if_timer = 0;
|
|
}
|
|
|
|
static void
|
|
kse_reset(struct kse_softc *sc)
|
|
{
|
|
|
|
CSR_WRITE_2(sc, GRR, 1);
|
|
delay(1000); /* PDF does not mention the delay amount */
|
|
CSR_WRITE_2(sc, GRR, 0);
|
|
|
|
CSR_WRITE_2(sc, CIDR, 1);
|
|
}
|
|
|
|
static void
|
|
kse_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct kse_softc *sc = ifp->if_softc;
|
|
|
|
/*
|
|
* Since we're not interrupting every packet, sweep
|
|
* up before we report an error.
|
|
*/
|
|
txreap(sc);
|
|
|
|
if (sc->sc_txfree != KSE_NTXDESC) {
|
|
printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
|
|
sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
|
|
sc->sc_txnext);
|
|
ifp->if_oerrors++;
|
|
|
|
/* Reset the interface. */
|
|
kse_init(ifp);
|
|
}
|
|
else if (ifp->if_flags & IFF_DEBUG)
|
|
printf("%s: recovered from device timeout\n",
|
|
sc->sc_dev.dv_xname);
|
|
|
|
/* Try to get more packets going. */
|
|
kse_start(ifp);
|
|
}
|
|
|
|
static void
|
|
kse_start(struct ifnet *ifp)
|
|
{
|
|
struct kse_softc *sc = ifp->if_softc;
|
|
struct mbuf *m0;
|
|
struct kse_txsoft *txs;
|
|
bus_dmamap_t dmamap;
|
|
int error, nexttx, lasttx, ofree, seg;
|
|
uint32_t tdes0;
|
|
|
|
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
|
|
return;
|
|
|
|
/*
|
|
* Remember the previous number of free descriptors.
|
|
*/
|
|
ofree = sc->sc_txfree;
|
|
|
|
/*
|
|
* Loop through the send queue, setting up transmit descriptors
|
|
* until we drain the queue, or use up all available transmit
|
|
* descriptors.
|
|
*/
|
|
for (;;) {
|
|
IFQ_POLL(&ifp->if_snd, m0);
|
|
if (m0 == NULL)
|
|
break;
|
|
|
|
if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
|
|
txreap(sc);
|
|
if (sc->sc_txsfree == 0)
|
|
break;
|
|
}
|
|
txs = &sc->sc_txsoft[sc->sc_txsnext];
|
|
dmamap = txs->txs_dmamap;
|
|
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
|
|
BUS_DMA_WRITE|BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
if (error == EFBIG) {
|
|
printf("%s: Tx packet consumes too many "
|
|
"DMA segments, dropping...\n",
|
|
sc->sc_dev.dv_xname);
|
|
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
|
m_freem(m0);
|
|
continue;
|
|
}
|
|
/* Short on resources, just stop for now. */
|
|
break;
|
|
}
|
|
|
|
if (dmamap->dm_nsegs > sc->sc_txfree) {
|
|
/*
|
|
* Not enough free descriptors to transmit this
|
|
* packet. We haven't committed anything yet,
|
|
* so just unload the DMA map, put the packet
|
|
* back on the queue, and punt. Notify the upper
|
|
* layer that there are not more slots left.
|
|
*/
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
bus_dmamap_unload(sc->sc_dmat, dmamap);
|
|
break;
|
|
}
|
|
|
|
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
|
|
|
/*
|
|
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
|
|
*/
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
lasttx = -1; tdes0 = 0;
|
|
for (nexttx = sc->sc_txnext, seg = 0;
|
|
seg < dmamap->dm_nsegs;
|
|
seg++, nexttx = KSE_NEXTTX(nexttx)) {
|
|
struct tdes *tdes = &sc->sc_txdescs[nexttx];
|
|
/*
|
|
* If this is the first descriptor we're
|
|
* enqueueing, don't set the OWN bit just
|
|
* yet. That could cause a race condition.
|
|
* We'll do it below.
|
|
*/
|
|
tdes->t2 = dmamap->dm_segs[seg].ds_addr;
|
|
tdes->t1 = sc->sc_t1csum
|
|
| (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
|
|
tdes->t0 = tdes0;
|
|
tdes0 |= T0_OWN;
|
|
lasttx = nexttx;
|
|
}
|
|
#if 0
|
|
/*
|
|
* T1_IC bit could schedule Tx frame done interrupt here,
|
|
* but this driver takes a "shoot away" Tx strategy.
|
|
*/
|
|
#else
|
|
{
|
|
/*
|
|
* Outgoing NFS mbuf must be unloaded when Tx completed.
|
|
* Without T1_IC NFS mbuf is left unack'ed for excessive
|
|
* time and NFS stops to proceed until kse_watchdog()
|
|
* calls txreap() to reclaim the unack'ed mbuf.
|
|
* It's painful to traverse every mbuf chain to determine
|
|
* whether someone is waiting for Tx completion.
|
|
*/
|
|
struct mbuf *m = m0;
|
|
do {
|
|
if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
|
|
sc->sc_txdescs[lasttx].t1 |= T1_IC;
|
|
break;
|
|
}
|
|
} while ((m = m->m_next) != NULL);
|
|
}
|
|
#endif
|
|
|
|
/* write last T0_OWN bit of the 1st segment */
|
|
sc->sc_txdescs[lasttx].t1 |= T1_LS;
|
|
sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
|
|
sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
|
|
KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/* tell DMA start transmit */
|
|
CSR_WRITE_4(sc, MDTSC, 1);
|
|
|
|
txs->txs_mbuf = m0;
|
|
txs->txs_firstdesc = sc->sc_txnext;
|
|
txs->txs_lastdesc = lasttx;
|
|
txs->txs_ndesc = dmamap->dm_nsegs;
|
|
|
|
sc->sc_txfree -= txs->txs_ndesc;
|
|
sc->sc_txnext = nexttx;
|
|
sc->sc_txsfree--;
|
|
sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Pass the packet to any BPF listeners.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m0);
|
|
#endif /* NBPFILTER > 0 */
|
|
}
|
|
|
|
if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
|
|
/* No more slots left; notify upper layer. */
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
}
|
|
if (sc->sc_txfree != ofree) {
|
|
/* Set a watchdog timer in case the chip flakes out. */
|
|
ifp->if_timer = 5;
|
|
}
|
|
}
|
|
|
|
static void
|
|
kse_set_filter(struct kse_softc *sc)
|
|
{
|
|
struct ether_multistep step;
|
|
struct ether_multi *enm;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
uint32_t h, hashes[2];
|
|
|
|
sc->sc_rxc &= ~(RXC_MHTE | RXC_RM);
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
return;
|
|
|
|
ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
|
|
if (enm == NULL)
|
|
return;
|
|
hashes[0] = hashes[1] = 0;
|
|
do {
|
|
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
|
|
/*
|
|
* We must listen to a range of multicast addresses.
|
|
* For now, just accept all multicasts, rather than
|
|
* trying to set only those filter bits needed to match
|
|
* the range. (At this time, the only use of address
|
|
* ranges is for IP multicast routing, for which the
|
|
* range is big enough to require all bits set.)
|
|
*/
|
|
goto allmulti;
|
|
}
|
|
h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
|
|
hashes[h >> 5] |= 1 << (h & 0x1f);
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
} while (enm != NULL);
|
|
sc->sc_rxc |= RXC_MHTE;
|
|
CSR_WRITE_4(sc, MTR0, hashes[0]);
|
|
CSR_WRITE_4(sc, MTR1, hashes[1]);
|
|
return;
|
|
allmulti:
|
|
sc->sc_rxc |= RXC_RM;
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
}
|
|
|
|
static int
|
|
add_rxbuf(struct kse_softc *sc, int idx)
|
|
{
|
|
struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return ENOBUFS;
|
|
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
if (rxs->rxs_mbuf != NULL)
|
|
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
|
|
|
|
rxs->rxs_mbuf = m;
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
|
|
m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
printf("%s: can't load rx DMA map %d, error = %d\n",
|
|
sc->sc_dev.dv_xname, idx, error);
|
|
panic("kse_add_rxbuf");
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
|
|
KSE_INIT_RXDESC(sc, idx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
rxdrain(struct kse_softc *sc)
|
|
{
|
|
struct kse_rxsoft *rxs;
|
|
int i;
|
|
|
|
for (i = 0; i < KSE_NRXDESC; i++) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
if (rxs->rxs_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
|
|
m_freem(rxs->rxs_mbuf);
|
|
rxs->rxs_mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
kse_intr(void *arg)
|
|
{
|
|
struct kse_softc *sc = arg;
|
|
uint32_t isr;
|
|
|
|
if ((isr = CSR_READ_4(sc, INTST)) == 0)
|
|
return 0;
|
|
|
|
if (isr & INT_DMRS)
|
|
rxintr(sc);
|
|
if (isr & INT_DMTS)
|
|
txreap(sc);
|
|
if (isr & INT_DMLCS)
|
|
lnkchg(sc);
|
|
if (isr & INT_DMRBUS)
|
|
printf("%s: Rx descriptor full\n", sc->sc_dev.dv_xname);
|
|
|
|
CSR_WRITE_4(sc, INTST, isr);
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
rxintr(struct kse_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct kse_rxsoft *rxs;
|
|
struct mbuf *m;
|
|
uint32_t rxstat;
|
|
int i, len;
|
|
|
|
for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
|
|
KSE_CDRXSYNC(sc, i,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
rxstat = sc->sc_rxdescs[i].r0;
|
|
|
|
if (rxstat & R0_OWN) /* desc is left empty */
|
|
break;
|
|
|
|
/* R0_FS|R0_LS must have been marked for this desc */
|
|
|
|
if (rxstat & R0_ES) {
|
|
ifp->if_ierrors++;
|
|
#define PRINTERR(bit, str) \
|
|
if (rxstat & (bit)) \
|
|
printf("%s: receive error: %s\n", \
|
|
sc->sc_dev.dv_xname, str)
|
|
PRINTERR(R0_TL, "frame too long");
|
|
PRINTERR(R0_RF, "runt frame");
|
|
PRINTERR(R0_CE, "bad FCS");
|
|
#undef PRINTERR
|
|
KSE_INIT_RXDESC(sc, i);
|
|
continue;
|
|
}
|
|
|
|
/* HW errata; frame might be too small or too large */
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
|
|
len = rxstat & R0_FL_MASK;
|
|
len -= ETHER_CRC_LEN; /* trim CRC off */
|
|
m = rxs->rxs_mbuf;
|
|
|
|
if (add_rxbuf(sc, i) != 0) {
|
|
ifp->if_ierrors++;
|
|
KSE_INIT_RXDESC(sc, i);
|
|
bus_dmamap_sync(sc->sc_dmat,
|
|
rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREREAD);
|
|
continue;
|
|
}
|
|
|
|
ifp->if_ipackets++;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
|
|
if (sc->sc_mcsum) {
|
|
m->m_pkthdr.csum_flags |= sc->sc_mcsum;
|
|
if (rxstat & R0_IPE)
|
|
m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
|
|
if (rxstat & (R0_TCPE | R0_UDPE))
|
|
m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
|
|
}
|
|
#if NBPFILTER > 0
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m);
|
|
#endif /* NBPFILTER > 0 */
|
|
(*ifp->if_input)(ifp, m);
|
|
#ifdef KSEDIAGNOSTIC
|
|
if (kse_monitor_rxintr > 0) {
|
|
printf("m stat %x data %p len %d\n",
|
|
rxstat, m->m_data, m->m_len);
|
|
}
|
|
#endif
|
|
}
|
|
sc->sc_rxptr = i;
|
|
}
|
|
|
|
static void
|
|
txreap(struct kse_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct kse_txsoft *txs;
|
|
uint32_t txstat;
|
|
int i;
|
|
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
|
|
i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
|
|
txs = &sc->sc_txsoft[i];
|
|
|
|
KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
|
|
|
|
if (txstat & T0_OWN) /* desc is still in use */
|
|
break;
|
|
|
|
/* there is no way to tell transmission status per frame */
|
|
|
|
ifp->if_opackets++;
|
|
|
|
sc->sc_txfree += txs->txs_ndesc;
|
|
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
|
|
0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
}
|
|
sc->sc_txsdirty = i;
|
|
if (sc->sc_txsfree == KSE_TXQUEUELEN)
|
|
ifp->if_timer = 0;
|
|
}
|
|
|
|
static void
|
|
lnkchg(struct kse_softc *sc)
|
|
{
|
|
struct ifmediareq ifmr;
|
|
|
|
#if 0 /* rambling link status */
|
|
printf("%s: link %s\n", sc->sc_dev.dv_xname,
|
|
(CSR_READ_2(sc, P1SR) & (1U << 5)) ? "up" : "down");
|
|
#endif
|
|
ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
|
|
}
|
|
|
|
static int
|
|
ifmedia_upd(struct ifnet *ifp)
|
|
{
|
|
struct kse_softc *sc = ifp->if_softc;
|
|
struct ifmedia *ifm = &sc->sc_media;
|
|
uint16_t ctl;
|
|
|
|
ctl = 0;
|
|
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
|
|
ctl |= (1U << 13); /* restart AN */
|
|
ctl |= (1U << 7); /* enable AN */
|
|
ctl |= (1U << 4); /* advertise flow control pause */
|
|
ctl |= (1U << 3) | (1U << 2) | (1U << 1) | (1U << 0);
|
|
}
|
|
else {
|
|
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
|
|
ctl |= (1U << 6);
|
|
if (ifm->ifm_media & IFM_FDX)
|
|
ctl |= (1U << 5);
|
|
}
|
|
CSR_WRITE_2(sc, P1CR4, ctl);
|
|
|
|
sc->sc_media_active = IFM_NONE;
|
|
sc->sc_media_status = IFM_AVALID;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct kse_softc *sc = ifp->if_softc;
|
|
struct ifmedia *ifm = &sc->sc_media;
|
|
uint16_t ctl, sts, result;
|
|
|
|
ifmr->ifm_status = IFM_AVALID;
|
|
ifmr->ifm_active = IFM_ETHER;
|
|
|
|
ctl = CSR_READ_2(sc, P1CR4);
|
|
sts = CSR_READ_2(sc, P1SR);
|
|
if ((sts & (1U << 5)) == 0) {
|
|
ifmr->ifm_active |= IFM_NONE;
|
|
goto out; /* link is down */
|
|
}
|
|
ifmr->ifm_status |= IFM_ACTIVE;
|
|
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
|
|
if ((sts & (1U << 6)) == 0) {
|
|
ifmr->ifm_active |= IFM_NONE;
|
|
goto out; /* negotiation in progress */
|
|
}
|
|
result = ctl & sts & 017;
|
|
if (result & (1U << 3))
|
|
ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
|
|
else if (result & (1U << 2))
|
|
ifmr->ifm_active |= IFM_100_TX;
|
|
else if (result & (1U << 1))
|
|
ifmr->ifm_active |= IFM_10_T|IFM_FDX;
|
|
else if (result & (1U << 0))
|
|
ifmr->ifm_active |= IFM_10_T;
|
|
else
|
|
ifmr->ifm_active |= IFM_NONE;
|
|
if (ctl & (1U << 4))
|
|
ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
|
|
if (sts & (1U << 4))
|
|
ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
|
|
}
|
|
else {
|
|
ifmr->ifm_active |= (sts & (1U << 10)) ? IFM_100_TX : IFM_10_T;
|
|
if (sts & (1U << 9))
|
|
ifmr->ifm_active |= IFM_FDX;
|
|
if (sts & (1U << 12))
|
|
ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
|
|
if (sts & (1U << 11))
|
|
ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
|
|
}
|
|
|
|
out:
|
|
sc->sc_media_status = ifmr->ifm_status;
|
|
sc->sc_media_active = ifmr->ifm_active;
|
|
}
|
|
|
|
static void
|
|
phy_tick(void *arg)
|
|
{
|
|
struct kse_softc *sc = arg;
|
|
struct ifmediareq ifmr;
|
|
int s;
|
|
|
|
s = splnet();
|
|
ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
|
|
splx(s);
|
|
|
|
callout_reset(&sc->sc_callout, hz, phy_tick, sc);
|
|
}
|