NetBSD/sys/arch/arm32/footbridge/footbridge_com.c
thorpej b667a5a357 New callout mechanism with two major improvements over the old
timeout()/untimeout() API:
- Clients supply callout handle storage, thus eliminating problems of
  resource allocation.
- Insertion and removal of callouts is constant time, important as
  this facility is used quite a lot in the kernel.

The old timeout()/untimeout() API has been removed from the kernel.
2000-03-23 06:30:07 +00:00

829 lines
18 KiB
C

/* $NetBSD: footbridge_com.c,v 1.5 2000/03/23 06:35:15 thorpej Exp $ */
/*-
* Copyright (c) 1997 Mark Brinicombe
* Copyright (c) 1997 Causality Limited
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* for the NetBSD Project.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* COM driver, using the footbridge UART
*/
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ioctl.h>
#include <sys/select.h>
#include <sys/tty.h>
#include <sys/proc.h>
#include <sys/conf.h>
#include <sys/syslog.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/termios.h>
#include <machine/bus.h>
#include <machine/irqhandler.h>
#include <arm32/footbridge/dc21285mem.h>
#include <arm32/footbridge/dc21285reg.h>
#include <arm32/footbridge/footbridgevar.h>
#include <dev/cons.h>
#include "fcom.h"
extern u_int dc21285_fclk;
#ifdef DDB
/*
* Define the keycode recognised as a request to call the debugger
* A value of 0 disables the feature when DDB is built in
*/
#ifndef DDB_KEYCODE
#define DDB_KEYCODE 0
#endif /* DDB_KEYCODE */
#endif /* DDB */
struct fcom_softc {
struct device sc_dev;
bus_space_tag_t sc_iot;
bus_space_handle_t sc_ioh;
void *sc_ih;
struct callout sc_softintr_ch;
int sc_rx_irq;
int sc_tx_irq;
int sc_hwflags;
#define HW_FLAG_CONSOLE 0x01
int sc_swflags;
int sc_l_ubrlcr;
int sc_m_ubrlcr;
int sc_h_ubrlcr;
char *sc_rxbuffer[2];
char *sc_rxbuf;
int sc_rxpos;
int sc_rxcur;
struct tty *sc_tty;
};
#define RX_BUFFER_SIZE 0x100
/* Macros to clear/set/test flags. */
#define SET(t, f) (t) |= (f)
#define CLR(t, f) (t) &= ~(f)
#define ISSET(t, f) ((t) & (f))
static int fcom_probe __P((struct device *, struct cfdata *, void *));
static void fcom_attach __P((struct device *, struct device *, void *));
int fcomopen __P((dev_t dev, int flag, int mode, struct proc *p));
static int fcom_rxintr __P((void *));
/*static int fcom_txintr __P((void *));*/
/*struct consdev;*/
/*void fcomcnprobe __P((struct consdev *));
void fcomcninit __P((struct consdev *));*/
int fcomcngetc __P((dev_t));
void fcomcnputc __P((dev_t, int));
void fcomcnpollc __P((dev_t, int));
struct cfattach fcom_ca = {
sizeof(struct fcom_softc), fcom_probe, fcom_attach
};
extern struct cfdriver fcom_cd;
void fcominit __P((bus_space_tag_t, bus_space_handle_t, int, int));
void fcominitcons __P((bus_space_tag_t, bus_space_handle_t));
bus_space_tag_t fcomconstag;
bus_space_handle_t fcomconsioh;
extern int comcnmode;
extern int comcnspeed;
#define COMUNIT(x) (minor(x))
#ifndef CONUNIT
#define CONUNIT 0
#endif
/*
* The console is set up at init time, well in advance of the reset of the
* system and thus we have a private bus space tag for the console.
*
* The tag is provided by fcom_io.c and fcom_io_asm.S
*/
extern struct bus_space fcomcons_bs_tag;
/*
* int fcom_probe(struct device *parent, struct cfdata *cf, void *aux)
*
* Make sure we are trying to attach a com device and then
* probe for one.
*/
static int
fcom_probe(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
union footbridge_attach_args *fba = aux;
if (strcmp(fba->fba_name, "fcom") == 0)
return(1);
return(0);
}
/*
* void fcom_attach(struct device *parent, struct device *self, void *aux)
*
* attach the com device
*/
static void
fcom_attach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
union footbridge_attach_args *fba = aux;
struct fcom_softc *sc = (struct fcom_softc *)self;
/* Set up the softc */
sc->sc_iot = fba->fba_fca.fca_iot;
sc->sc_ioh = fba->fba_fca.fca_ioh;
callout_init(&sc->sc_softintr_ch);
sc->sc_rx_irq = fba->fba_fca.fca_rx_irq;
sc->sc_tx_irq = fba->fba_fca.fca_tx_irq;
sc->sc_hwflags = 0;
sc->sc_swflags = 0;
/* If we have a console tag then make a note of it */
if (fcomconstag)
sc->sc_hwflags |= HW_FLAG_CONSOLE;
if (sc->sc_hwflags & HW_FLAG_CONSOLE) {
int major;
/* locate the major number */
for (major = 0; major < nchrdev; ++major)
if (cdevsw[major].d_open == fcomopen)
break;
cn_tab->cn_dev = makedev(major, sc->sc_dev.dv_unit);
printf(": console");
}
printf("\n");
sc->sc_ih = intr_claim(sc->sc_rx_irq, IPL_SERIAL, "serial rx",
fcom_rxintr, sc);
if (sc->sc_ih == NULL)
panic("%s: Cannot install rx interrupt handler\n",
sc->sc_dev.dv_xname);
}
static void fcomstart __P((struct tty *));
static int fcomparam __P((struct tty *, struct termios *));
int
fcomopen(dev, flag, mode, p)
dev_t dev;
int flag, mode;
struct proc *p;
{
struct fcom_softc *sc;
int unit = minor(dev);
struct tty *tp;
if (unit >= fcom_cd.cd_ndevs)
return ENXIO;
sc = fcom_cd.cd_devs[unit];
if (!sc)
return ENXIO;
if (!(tp = sc->sc_tty))
sc->sc_tty = tp = ttymalloc();
if (!sc->sc_rxbuffer[0]) {
sc->sc_rxbuffer[0] = malloc(RX_BUFFER_SIZE, M_DEVBUF, M_WAITOK);
sc->sc_rxbuffer[1] = malloc(RX_BUFFER_SIZE, M_DEVBUF, M_WAITOK);
sc->sc_rxpos = 0;
sc->sc_rxcur = 0;
sc->sc_rxbuf = sc->sc_rxbuffer[sc->sc_rxcur];
if (!sc->sc_rxbuf)
panic("%s: Cannot allocate rx buffer memory",
sc->sc_dev.dv_xname);
}
tp->t_oproc = fcomstart;
tp->t_param = fcomparam;
tp->t_dev = dev;
if (!(tp->t_state & TS_ISOPEN && tp->t_wopen == 0)) {
ttychars(tp);
tp->t_cflag = TTYDEF_CFLAG;
tp->t_iflag = TTYDEF_IFLAG;
tp->t_oflag = TTYDEF_OFLAG;
tp->t_lflag = TTYDEF_LFLAG;
/*
* Initialize the termios status to the defaults. Add in the
* sticky bits from TIOCSFLAGS.
*/
tp->t_ispeed = 0;
if (ISSET(sc->sc_hwflags, HW_FLAG_CONSOLE))
tp->t_ospeed = comcnspeed;
else
tp->t_ospeed = TTYDEF_SPEED;
fcomparam(tp, &tp->t_termios);
ttsetwater(tp);
} else if ((tp->t_state&TS_XCLUDE) && suser(p->p_ucred, &p->p_acflag))
return EBUSY;
tp->t_state |= TS_CARR_ON;
return (*linesw[tp->t_line].l_open)(dev, tp);
}
int
fcomclose(dev, flag, mode, p)
dev_t dev;
int flag, mode;
struct proc *p;
{
struct fcom_softc *sc = fcom_cd.cd_devs[minor(dev)];
struct tty *tp = sc->sc_tty;
/* XXX This is for cons.c. */
if (!ISSET(tp->t_state, TS_ISOPEN))
return (0);
(*linesw[tp->t_line].l_close)(tp, flag);
ttyclose(tp);
#ifdef DIAGNOSTIC
if (sc->sc_rxbuffer[0] == NULL)
panic("fcomclose: rx buffers not allocated\n");
#endif /* DIAGNOSTIC */
free(sc->sc_rxbuffer[0], M_DEVBUF);
free(sc->sc_rxbuffer[1], M_DEVBUF);
sc->sc_rxbuffer[0] = NULL;
sc->sc_rxbuffer[1] = NULL;
return 0;
}
int
fcomread(dev, uio, flag)
dev_t dev;
struct uio *uio;
int flag;
{
struct fcom_softc *sc = fcom_cd.cd_devs[minor(dev)];
struct tty *tp = sc->sc_tty;
return (*linesw[tp->t_line].l_read)(tp, uio, flag);
}
int
fcomwrite(dev, uio, flag)
dev_t dev;
struct uio *uio;
int flag;
{
struct fcom_softc *sc = fcom_cd.cd_devs[minor(dev)];
struct tty *tp = sc->sc_tty;
return (*linesw[tp->t_line].l_write)(tp, uio, flag);
}
int
fcomioctl(dev, cmd, data, flag, p)
dev_t dev;
u_long cmd;
caddr_t data;
int flag;
struct proc *p;
{
struct fcom_softc *sc = fcom_cd.cd_devs[minor(dev)];
struct tty *tp = sc->sc_tty;
int error;
if ((error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p)) >= 0)
return error;
if ((error = ttioctl(tp, cmd, data, flag, p)) >= 0)
return error;
switch (cmd) {
case TIOCGFLAGS:
*(int *)data = sc->sc_swflags;
break;
case TIOCSFLAGS:
error = suser(p->p_ucred, &p->p_acflag);
if (error)
return (error);
sc->sc_swflags = *(int *)data;
break;
}
return ENOTTY;
}
struct tty *
fcomtty(dev)
dev_t dev;
{
struct fcom_softc *sc = fcom_cd.cd_devs[minor(dev)];
return sc->sc_tty;
}
void
fcomstop(tp, flag)
struct tty *tp;
int flag;
{
}
static void
fcomstart(tp)
struct tty *tp;
{
struct clist *cl;
int s, len;
u_char buf[64];
int loop;
struct fcom_softc *sc = fcom_cd.cd_devs[minor(tp->t_dev)];
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int timo;
s = spltty();
if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP)) {
(void)splx(s);
return;
}
tp->t_state |= TS_BUSY;
(void)splx(s);
/* s = splserial();*/
/* wait for any pending transmission to finish */
timo = 100000;
while ((bus_space_read_4(iot, ioh, UART_FLAGS) & UART_TX_BUSY) && --timo)
;
s = splserial();
if (bus_space_read_4(iot, ioh, UART_FLAGS) & UART_TX_BUSY) {
tp->t_state |= TS_TIMEOUT;
callout_reset(&tp->t_rstrt_ch, 1, ttrstrt, tp);
(void)splx(s);
return;
}
(void)splx(s);
cl = &tp->t_outq;
len = q_to_b(cl, buf, 64);
for (loop = 0; loop < len; ++loop) {
/* s = splserial();*/
bus_space_write_4(iot, ioh, UART_DATA, buf[loop]);
/* wait for this transmission to complete */
timo = 100000;
while ((bus_space_read_4(iot, ioh, UART_FLAGS) & UART_TX_BUSY) && --timo)
;
/* (void)splx(s);*/
}
s = spltty();
tp->t_state &= ~TS_BUSY;
if (cl->c_cc) {
tp->t_state |= TS_TIMEOUT;
callout_reset(&tp->t_rstrt_ch, 1, ttrstrt, tp);
}
if (cl->c_cc <= tp->t_lowat) {
if (tp->t_state & TS_ASLEEP) {
tp->t_state &= ~TS_ASLEEP;
wakeup(cl);
}
selwakeup(&tp->t_wsel);
}
(void)splx(s);
}
static int
fcomparam(tp, t)
struct tty *tp;
struct termios *t;
{
struct fcom_softc *sc = fcom_cd.cd_devs[minor(tp->t_dev)];
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int baudrate;
int h_ubrlcr;
int m_ubrlcr;
int l_ubrlcr;
int s;
/* check requested parameters */
if (t->c_ospeed < 0)
return (EINVAL);
if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
return (EINVAL);
switch (t->c_ospeed) {
case B1200:
case B2400:
case B4800:
case B9600:
case B19200:
case B38400:
baudrate = UART_BRD(dc21285_fclk, t->c_ospeed);
break;
default:
baudrate = UART_BRD(dc21285_fclk, 9600);
break;
}
l_ubrlcr = baudrate & 0xff;
m_ubrlcr = (baudrate >> 8) & 0xf;
h_ubrlcr = 0;
switch (ISSET(t->c_cflag, CSIZE)) {
case CS5:
h_ubrlcr |= UART_DATA_BITS_5;
break;
case CS6:
h_ubrlcr |= UART_DATA_BITS_6;
break;
case CS7:
h_ubrlcr |= UART_DATA_BITS_7;
break;
case CS8:
h_ubrlcr |= UART_DATA_BITS_8;
break;
}
if (ISSET(t->c_cflag, PARENB)) {
h_ubrlcr |= UART_PARITY_ENABLE;
if (ISSET(t->c_cflag, PARODD))
h_ubrlcr |= UART_ODD_PARITY;
else
h_ubrlcr |= UART_EVEN_PARITY;
}
if (ISSET(t->c_cflag, CSTOPB))
h_ubrlcr |= UART_STOP_BITS_2;
bus_space_write_4(iot, ioh, UART_L_UBRLCR, l_ubrlcr);
bus_space_write_4(iot, ioh, UART_M_UBRLCR, m_ubrlcr);
bus_space_write_4(iot, ioh, UART_H_UBRLCR, h_ubrlcr);
s = splserial();
sc->sc_l_ubrlcr = l_ubrlcr;
sc->sc_m_ubrlcr = m_ubrlcr;
sc->sc_h_ubrlcr = h_ubrlcr;
/*
* For the console, always force CLOCAL and !HUPCL, so that the port
* is always active.
*/
if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
ISSET(sc->sc_hwflags, HW_FLAG_CONSOLE)) {
SET(t->c_cflag, CLOCAL);
CLR(t->c_cflag, HUPCL);
}
/* and copy to tty */
tp->t_ispeed = 0;
tp->t_ospeed = t->c_ospeed;
tp->t_cflag = t->c_cflag;
bus_space_write_4(iot, ioh, UART_L_UBRLCR, l_ubrlcr);
bus_space_write_4(iot, ioh, UART_M_UBRLCR, m_ubrlcr);
bus_space_write_4(iot, ioh, UART_H_UBRLCR, h_ubrlcr);
(void)splx(s);
return (0);
}
static int softint_scheduled = 0;
static void
fcom_softintr(sc)
struct fcom_softc *sc;
{
struct tty *tp = sc->sc_tty;
int s;
int loop;
int len;
char *ptr;
s = spltty();
ptr = sc->sc_rxbuf;
len = sc->sc_rxpos;
sc->sc_rxcur ^= 1;
sc->sc_rxbuf = sc->sc_rxbuffer[sc->sc_rxcur];
sc->sc_rxpos = 0;
(void)splx(s);
for (loop = 0; loop < len; ++loop)
(*linesw[tp->t_line].l_rint)(ptr[loop], tp);
softint_scheduled = 0;
}
#if 0
static int
fcom_txintr(arg)
void *arg;
{
/* struct fcom_softc *sc = arg;*/
printf("fcom_txintr()\n");
return(0);
}
#endif
static int
fcom_rxintr(arg)
void *arg;
{
struct fcom_softc *sc = arg;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct tty *tp = sc->sc_tty;
int status;
int byte;
do {
status = bus_space_read_4(iot, ioh, UART_FLAGS);
if ((status & UART_RX_FULL))
break;
byte = bus_space_read_4(iot, ioh, UART_DATA);
status = bus_space_read_4(iot, ioh, UART_RX_STAT);
#if DDB_KEYCODE > 0
/*
* Temporary hack so that I can force the kernel into
* the debugger via the serial port
*/
if (byte == DDB_KEYCODE) Debugger();
#endif
if (tp && (tp->t_state & TS_ISOPEN))
if (sc->sc_rxpos < RX_BUFFER_SIZE) {
sc->sc_rxbuf[sc->sc_rxpos++] = byte;
if (!softint_scheduled) {
softint_scheduled = 1;
callout_reset(&sc->sc_softintr_ch,
1, fcom_softintr, sc);
}
}
} while (1);
return(0);
}
#if 0
void
fcom_iflush(sc)
struct fcom_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
/* flush any pending I/O */
while (!ISSET(bus_space_read_4(iot, ioh, UART_FLAGS), UART_RX_FULL))
(void) bus_space_read_4(iot, ioh, UART_DATA);
}
#endif
/*
* Following are all routines needed for COM to act as console
*/
#if 0
void
fcomcnprobe(cp)
struct consdev *cp;
{
int major;
/* Serial console is always present so no probe */
/* locate the major number */
for (major = 0; major < nchrdev; major++)
if (cdevsw[major].d_open == fcomopen)
break;
/* initialize required fields */
cp->cn_dev = makedev(major, CONUNIT);
cp->cn_pri = CN_REMOTE; /* Force a serial port console */
}
void
fcomcninit(cp)
struct consdev *cp;
{
fcomconstag = &fcomcons_bs_tag;
if (bus_space_map(fcomconstag, DC21285_ARMCSR_BASE, DC21285_ARMCSR_SIZE, 0, &fcomconsioh))
panic("fcomcninit: mapping failed");
fcominitcons(fcomconstag, fcomconsioh);
}
#endif
int
fcomcnattach(iobase, rate, cflag)
u_int iobase;
int rate;
tcflag_t cflag;
{
static struct consdev fcomcons = {
NULL, NULL, fcomcngetc, fcomcnputc, fcomcnpollc, NULL,
NODEV, CN_NORMAL
};
fcomconstag = &fcomcons_bs_tag;
if (bus_space_map(fcomconstag, iobase, DC21285_ARMCSR_SIZE,
0, &fcomconsioh))
panic("fcomcninit: mapping failed");
fcominit(fcomconstag, fcomconsioh, rate, cflag);
cn_tab = &fcomcons;
/* comcnspeed = rate;
comcnmode = cflag;*/
return (0);
}
int
fcomcndetach(void)
{
bus_space_unmap(fcomconstag, fcomconsioh, DC21285_ARMCSR_SIZE);
cn_tab = NULL;
return (0);
}
/*
* Initialize UART to known state.
*/
void
fcominit(iot, ioh, rate, mode)
bus_space_tag_t iot;
bus_space_handle_t ioh;
int rate;
int mode;
{
int baudrate;
int h_ubrlcr;
int m_ubrlcr;
int l_ubrlcr;
switch (rate) {
case B1200:
case B2400:
case B4800:
case B9600:
case B19200:
case B38400:
baudrate = UART_BRD(dc21285_fclk, rate);
break;
default:
baudrate = UART_BRD(dc21285_fclk, 9600);
break;
}
h_ubrlcr = 0;
switch (mode & CSIZE) {
case CS5:
h_ubrlcr |= UART_DATA_BITS_5;
break;
case CS6:
h_ubrlcr |= UART_DATA_BITS_6;
break;
case CS7:
h_ubrlcr |= UART_DATA_BITS_7;
break;
case CS8:
h_ubrlcr |= UART_DATA_BITS_8;
break;
}
if (mode & PARENB)
h_ubrlcr |= UART_PARITY_ENABLE;
if (mode & PARODD)
h_ubrlcr |= UART_ODD_PARITY;
else
h_ubrlcr |= UART_EVEN_PARITY;
if (mode & CSTOPB)
h_ubrlcr |= UART_STOP_BITS_2;
m_ubrlcr = (baudrate >> 8) & 0xf;
l_ubrlcr = baudrate & 0xff;
bus_space_write_4(iot, ioh, UART_L_UBRLCR, l_ubrlcr);
bus_space_write_4(iot, ioh, UART_M_UBRLCR, m_ubrlcr);
bus_space_write_4(iot, ioh, UART_H_UBRLCR, h_ubrlcr);
}
#if 0
/*
* Set UART for console use. Do normal init, then enable interrupts.
*/
void
fcominitcons(iot, ioh)
bus_space_tag_t iot;
bus_space_handle_t ioh;
{
int s = splserial();
fcominit(iot, ioh, comcnspeed, comcnmode);
delay(10000);
(void)splx(s);
}
#endif
int
fcomcngetc(dev)
dev_t dev;
{
int s = splserial();
bus_space_tag_t iot = fcomconstag;
bus_space_handle_t ioh = fcomconsioh;
u_char stat, c;
while ((bus_space_read_4(iot, ioh, UART_FLAGS) & UART_RX_FULL) != 0)
;
c = bus_space_read_4(iot, ioh, UART_DATA);
stat = bus_space_read_4(iot, ioh, UART_RX_STAT);
(void)splx(s);
#if DDB_KEYCODE > 0
/*
* Temporary hack so that I can force the kernel into
* the debugger via the serial port
*/
if (c == DDB_KEYCODE) Debugger();
#endif
return (c);
}
/*
* Console kernel output character routine.
*/
void
fcomcnputc(dev, c)
dev_t dev;
int c;
{
int s = splserial();
bus_space_tag_t iot = fcomconstag;
bus_space_handle_t ioh = fcomconsioh;
int timo;
/* wait for any pending transmission to finish */
timo = 50000;
while ((bus_space_read_4(iot, ioh, UART_FLAGS) & UART_TX_BUSY) && --timo)
;
bus_space_write_4(iot, ioh, UART_DATA, c);
/* wait for this transmission to complete */
timo = 1500000;
while ((bus_space_read_4(iot, ioh, UART_FLAGS) & UART_TX_BUSY) && --timo)
;
/* Clear interrupt status here */
(void)splx(s);
}
void
fcomcnpollc(dev, on)
dev_t dev;
int on;
{
}