NetBSD/sys/dev/pci/if_ale.c
ozaki-r 9c4cd06355 Introduce softint-based if_input
This change intends to run the whole network stack in softint context
(or normal LWP), not hardware interrupt context. Note that the work is
still incomplete by this change; to that end, we also have to softint-ify
if_link_state_change (and bpf) which can still run in hardware interrupt.

This change softint-ifies at ifp->if_input that is called from
each device driver (and ieee80211_input) to ensure Layer 2 runs
in softint (e.g., ether_input and bridge_input). To this end,
we provide a framework (called percpuq) that utlizes softint(9)
and percpu ifqueues. With this patch, rxintr of most drivers just
queues received packets and schedules a softint, and the softint
dequeues packets and does rest packet processing.

To minimize changes to each driver, percpuq is allocated in struct
ifnet for now and that is initialized by default (in if_attach).
We probably have to move percpuq to softc of each driver, but it's
future work. At this point, only wm(4) has percpuq in its softc
as a reference implementation.

Additional information including performance numbers can be found
in the thread at tech-kern@ and tech-net@:
http://mail-index.netbsd.org/tech-kern/2016/01/14/msg019997.html

Acknowledgment: riastradh@ greatly helped this work.
Thank you very much!
2016-02-09 08:32:07 +00:00

2024 lines
56 KiB
C

/* $NetBSD: if_ale.c,v 1.20 2016/02/09 08:32:11 ozaki-r Exp $ */
/*-
* Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
*/
/* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.20 2016/02/09 08:32:11 ozaki-r Exp $");
#include "vlan.h"
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/queue.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/callout.h>
#include <sys/socket.h>
#include <sys/bus.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_llc.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#include <net/if_types.h>
#include <net/if_vlanvar.h>
#include <net/bpf.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_alereg.h>
static int ale_match(device_t, cfdata_t, void *);
static void ale_attach(device_t, device_t, void *);
static int ale_detach(device_t, int);
static int ale_miibus_readreg(device_t, int, int);
static void ale_miibus_writereg(device_t, int, int, int);
static void ale_miibus_statchg(struct ifnet *);
static int ale_init(struct ifnet *);
static void ale_start(struct ifnet *);
static int ale_ioctl(struct ifnet *, u_long, void *);
static void ale_watchdog(struct ifnet *);
static int ale_mediachange(struct ifnet *);
static void ale_mediastatus(struct ifnet *, struct ifmediareq *);
static int ale_intr(void *);
static int ale_rxeof(struct ale_softc *sc);
static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
uint32_t, uint32_t *);
static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
static void ale_txeof(struct ale_softc *);
static int ale_dma_alloc(struct ale_softc *);
static void ale_dma_free(struct ale_softc *);
static int ale_encap(struct ale_softc *, struct mbuf **);
static void ale_init_rx_pages(struct ale_softc *);
static void ale_init_tx_ring(struct ale_softc *);
static void ale_stop(struct ifnet *, int);
static void ale_tick(void *);
static void ale_get_macaddr(struct ale_softc *);
static void ale_mac_config(struct ale_softc *);
static void ale_phy_reset(struct ale_softc *);
static void ale_reset(struct ale_softc *);
static void ale_rxfilter(struct ale_softc *);
static void ale_rxvlan(struct ale_softc *);
static void ale_stats_clear(struct ale_softc *);
static void ale_stats_update(struct ale_softc *);
static void ale_stop_mac(struct ale_softc *);
CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
ale_match, ale_attach, ale_detach, NULL);
int aledebug = 0;
#define DPRINTF(x) do { if (aledebug) printf x; } while (0)
#define ETHER_ALIGN 2
#define ALE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
static int
ale_miibus_readreg(device_t dev, int phy, int reg)
{
struct ale_softc *sc = device_private(dev);
uint32_t v;
int i;
if (phy != sc->ale_phyaddr)
return 0;
if (sc->ale_flags & ALE_FLAG_FASTETHER) {
switch (reg) {
case MII_100T2CR:
case MII_100T2SR:
case MII_EXTSR:
return 0;
default:
break;
}
}
CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
DELAY(5);
v = CSR_READ_4(sc, ALE_MDIO);
if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
break;
}
if (i == 0) {
printf("%s: phy read timeout: phy %d, reg %d\n",
device_xname(sc->sc_dev), phy, reg);
return 0;
}
return (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
}
static void
ale_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct ale_softc *sc = device_private(dev);
uint32_t v;
int i;
if (phy != sc->ale_phyaddr)
return;
if (sc->ale_flags & ALE_FLAG_FASTETHER) {
switch (reg) {
case MII_100T2CR:
case MII_100T2SR:
case MII_EXTSR:
return;
default:
break;
}
}
CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
(val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
DELAY(5);
v = CSR_READ_4(sc, ALE_MDIO);
if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
break;
}
if (i == 0)
printf("%s: phy write timeout: phy %d, reg %d\n",
device_xname(sc->sc_dev), phy, reg);
}
static void
ale_miibus_statchg(struct ifnet *ifp)
{
struct ale_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_miibus;
uint32_t reg;
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
sc->ale_flags &= ~ALE_FLAG_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->ale_flags |= ALE_FLAG_LINK;
break;
case IFM_1000_T:
if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
sc->ale_flags |= ALE_FLAG_LINK;
break;
default:
break;
}
}
/* Stop Rx/Tx MACs. */
ale_stop_mac(sc);
/* Program MACs with resolved speed/duplex/flow-control. */
if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
ale_mac_config(sc);
/* Reenable Tx/Rx MACs. */
reg = CSR_READ_4(sc, ALE_MAC_CFG);
reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
}
}
void
ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct ale_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_miibus;
mii_pollstat(mii);
ifmr->ifm_status = mii->mii_media_status;
ifmr->ifm_active = mii->mii_media_active;
}
int
ale_mediachange(struct ifnet *ifp)
{
struct ale_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_miibus;
int error;
if (mii->mii_instance != 0) {
struct mii_softc *miisc;
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
error = mii_mediachg(mii);
return error;
}
int
ale_match(device_t dev, cfdata_t match, void *aux)
{
struct pci_attach_args *pa = aux;
return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
}
void
ale_get_macaddr(struct ale_softc *sc)
{
uint32_t ea[2], reg;
int i, vpdc;
reg = CSR_READ_4(sc, ALE_SPI_CTRL);
if ((reg & SPI_VPD_ENB) != 0) {
reg &= ~SPI_VPD_ENB;
CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
}
if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
&vpdc, NULL)) {
/*
* PCI VPD capability found, let TWSI reload EEPROM.
* This will set ethernet address of controller.
*/
CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
TWSI_CTRL_SW_LD_START);
for (i = 100; i > 0; i--) {
DELAY(1000);
reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
if ((reg & TWSI_CTRL_SW_LD_START) == 0)
break;
}
if (i == 0)
printf("%s: reloading EEPROM timeout!\n",
device_xname(sc->sc_dev));
} else {
if (aledebug)
printf("%s: PCI VPD capability not found!\n",
device_xname(sc->sc_dev));
}
ea[0] = CSR_READ_4(sc, ALE_PAR0);
ea[1] = CSR_READ_4(sc, ALE_PAR1);
sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
}
void
ale_phy_reset(struct ale_softc *sc)
{
/* Reset magic from Linux. */
CSR_WRITE_2(sc, ALE_GPHY_CTRL,
GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
GPHY_CTRL_PHY_PLL_ON);
DELAY(1000);
CSR_WRITE_2(sc, ALE_GPHY_CTRL,
GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
DELAY(1000);
#define ATPHY_DBG_ADDR 0x1D
#define ATPHY_DBG_DATA 0x1E
/* Enable hibernation mode. */
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
ATPHY_DBG_ADDR, 0x0B);
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
ATPHY_DBG_DATA, 0xBC00);
/* Set Class A/B for all modes. */
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
ATPHY_DBG_ADDR, 0x00);
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
ATPHY_DBG_DATA, 0x02EF);
/* Enable 10BT power saving. */
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
ATPHY_DBG_ADDR, 0x12);
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
ATPHY_DBG_DATA, 0x4C04);
/* Adjust 1000T power. */
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
ATPHY_DBG_ADDR, 0x04);
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
ATPHY_DBG_DATA, 0x8BBB);
/* 10BT center tap voltage. */
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
ATPHY_DBG_ADDR, 0x05);
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
ATPHY_DBG_DATA, 0x2C46);
#undef ATPHY_DBG_ADDR
#undef ATPHY_DBG_DATA
DELAY(1000);
}
void
ale_attach(device_t parent, device_t self, void *aux)
{
struct ale_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr;
struct ifnet *ifp;
pcireg_t memtype;
int mii_flags, error = 0;
uint32_t rxf_len, txf_len;
const char *chipname;
char intrbuf[PCI_INTRSTR_LEN];
aprint_naive("\n");
aprint_normal(": Attansic/Atheros L1E Ethernet\n");
sc->sc_dev = self;
sc->sc_dmat = pa->pa_dmat;
sc->sc_pct = pa->pa_pc;
sc->sc_pcitag = pa->pa_tag;
/*
* Allocate IO memory
*/
memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
switch (memtype) {
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
break;
default:
aprint_error_dev(self, "invalid base address register\n");
break;
}
if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
&sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
aprint_error_dev(self, "could not map mem space\n");
return;
}
if (pci_intr_map(pa, &ih) != 0) {
aprint_error_dev(self, "could not map interrupt\n");
goto fail;
}
/*
* Allocate IRQ
*/
intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
if (sc->sc_irq_handle == NULL) {
aprint_error_dev(self, "could not establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
goto fail;
}
/* Set PHY address. */
sc->ale_phyaddr = ALE_PHY_ADDR;
/* Reset PHY. */
ale_phy_reset(sc);
/* Reset the ethernet controller. */
ale_reset(sc);
/* Get PCI and chip id/revision. */
sc->ale_rev = PCI_REVISION(pa->pa_class);
if (sc->ale_rev >= 0xF0) {
/* L2E Rev. B. AR8114 */
sc->ale_flags |= ALE_FLAG_FASTETHER;
chipname = "AR8114 (L2E RevB)";
} else {
if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
/* L1E AR8121 */
sc->ale_flags |= ALE_FLAG_JUMBO;
chipname = "AR8121 (L1E)";
} else {
/* L2E Rev. A. AR8113 */
sc->ale_flags |= ALE_FLAG_FASTETHER;
chipname = "AR8113 (L2E RevA)";
}
}
aprint_normal_dev(self, "%s, %s\n", chipname, intrstr);
/*
* All known controllers seems to require 4 bytes alignment
* of Tx buffers to make Tx checksum offload with custom
* checksum generation method work.
*/
sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
/*
* All known controllers seems to have issues on Rx checksum
* offload for fragmented IP datagrams.
*/
sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
/*
* Don't use Tx CMB. It is known to cause RRS update failure
* under certain circumstances. Typical phenomenon of the
* issue would be unexpected sequence number encountered in
* Rx handler.
*/
sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
MASTER_CHIP_REV_SHIFT;
aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
/*
* Uninitialized hardware returns an invalid chip id/revision
* as well as 0xFFFFFFFF for Tx/Rx fifo length.
*/
txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
rxf_len == 0xFFFFFFF) {
aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
"%u Rx FIFO -- not initialized?\n",
sc->ale_chip_rev, txf_len, rxf_len);
goto fail;
}
if (aledebug) {
printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
txf_len, rxf_len);
}
/* Set max allowable DMA size. */
sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
callout_init(&sc->sc_tick_ch, 0);
callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
error = ale_dma_alloc(sc);
if (error)
goto fail;
/* Load station address. */
ale_get_macaddr(sc);
aprint_normal_dev(self, "Ethernet address %s\n",
ether_sprintf(sc->ale_eaddr));
ifp = &sc->sc_ec.ec_if;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = ale_init;
ifp->if_ioctl = ale_ioctl;
ifp->if_start = ale_start;
ifp->if_stop = ale_stop;
ifp->if_watchdog = ale_watchdog;
IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
IFQ_SET_READY(&ifp->if_snd);
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
#ifdef ALE_CHECKSUM
ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
#endif
#if NVLAN > 0
sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
#endif
/* Set up MII bus. */
sc->sc_miibus.mii_ifp = ifp;
sc->sc_miibus.mii_readreg = ale_miibus_readreg;
sc->sc_miibus.mii_writereg = ale_miibus_writereg;
sc->sc_miibus.mii_statchg = ale_miibus_statchg;
sc->sc_ec.ec_mii = &sc->sc_miibus;
ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
ale_mediastatus);
mii_flags = 0;
if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
mii_flags |= MIIF_DOPAUSE;
mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, mii_flags);
if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
aprint_error_dev(self, "no PHY found!\n");
ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
0, NULL);
ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
} else
ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
if_attach(ifp);
ether_ifattach(ifp, sc->ale_eaddr);
if (pmf_device_register(self, NULL, NULL))
pmf_class_network_register(self, ifp);
else
aprint_error_dev(self, "couldn't establish power handler\n");
return;
fail:
ale_dma_free(sc);
if (sc->sc_irq_handle != NULL) {
pci_intr_disestablish(pc, sc->sc_irq_handle);
sc->sc_irq_handle = NULL;
}
if (sc->sc_mem_size) {
bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
sc->sc_mem_size = 0;
}
}
static int
ale_detach(device_t self, int flags)
{
struct ale_softc *sc = device_private(self);
struct ifnet *ifp = &sc->sc_ec.ec_if;
int s;
pmf_device_deregister(self);
s = splnet();
ale_stop(ifp, 0);
splx(s);
mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
/* Delete all remaining media. */
ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
ether_ifdetach(ifp);
if_detach(ifp);
ale_dma_free(sc);
if (sc->sc_irq_handle != NULL) {
pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
sc->sc_irq_handle = NULL;
}
if (sc->sc_mem_size) {
bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
sc->sc_mem_size = 0;
}
return 0;
}
static int
ale_dma_alloc(struct ale_softc *sc)
{
struct ale_txdesc *txd;
int nsegs, error, guard_size, i;
if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
guard_size = ALE_JUMBO_FRAMELEN;
else
guard_size = ALE_MAX_FRAMELEN;
sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
ALE_RX_PAGE_ALIGN);
/*
* Create DMA stuffs for TX ring
*/
error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
if (error) {
sc->ale_cdata.ale_tx_ring_map = NULL;
return ENOBUFS;
}
/* Allocate DMA'able memory for TX ring */
error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
&nsegs, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not allocate DMA'able memory for Tx ring, "
"error = %i\n", device_xname(sc->sc_dev), error);
return error;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
BUS_DMA_NOWAIT);
if (error)
return ENOBUFS;
memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
/* Load the DMA map for Tx ring. */
error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not load DMA'able memory for Tx ring.\n",
device_xname(sc->sc_dev));
bus_dmamem_free(sc->sc_dmat,
&sc->ale_cdata.ale_tx_ring_seg, 1);
return error;
}
sc->ale_cdata.ale_tx_ring_paddr =
sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
for (i = 0; i < ALE_RX_PAGES; i++) {
/*
* Create DMA stuffs for RX pages
*/
error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
&sc->ale_cdata.ale_rx_page[i].page_map);
if (error) {
sc->ale_cdata.ale_rx_page[i].page_map = NULL;
return ENOBUFS;
}
/* Allocate DMA'able memory for RX pages */
error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
1, &nsegs, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not allocate DMA'able memory for "
"Rx ring.\n", device_xname(sc->sc_dev));
return error;
}
error = bus_dmamem_map(sc->sc_dmat,
&sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
sc->ale_pagesize,
(void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
BUS_DMA_NOWAIT);
if (error)
return ENOBUFS;
memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
sc->ale_pagesize);
/* Load the DMA map for Rx pages. */
error = bus_dmamap_load(sc->sc_dmat,
sc->ale_cdata.ale_rx_page[i].page_map,
sc->ale_cdata.ale_rx_page[i].page_addr,
sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not load DMA'able memory for "
"Rx pages.\n", device_xname(sc->sc_dev));
bus_dmamem_free(sc->sc_dmat,
&sc->ale_cdata.ale_rx_page[i].page_seg, 1);
return error;
}
sc->ale_cdata.ale_rx_page[i].page_paddr =
sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
}
/*
* Create DMA stuffs for Tx CMB.
*/
error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
if (error) {
sc->ale_cdata.ale_tx_cmb_map = NULL;
return ENOBUFS;
}
/* Allocate DMA'able memory for Tx CMB. */
error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
&sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
device_xname(sc->sc_dev));
return error;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
BUS_DMA_NOWAIT);
if (error)
return ENOBUFS;
memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
/* Load the DMA map for Tx CMB. */
error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not load DMA'able memory for Tx CMB.\n",
device_xname(sc->sc_dev));
bus_dmamem_free(sc->sc_dmat,
&sc->ale_cdata.ale_tx_cmb_seg, 1);
return error;
}
sc->ale_cdata.ale_tx_cmb_paddr =
sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
for (i = 0; i < ALE_RX_PAGES; i++) {
/*
* Create DMA stuffs for Rx CMB.
*/
error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
&sc->ale_cdata.ale_rx_page[i].cmb_map);
if (error) {
sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
return ENOBUFS;
}
/* Allocate DMA'able memory for Rx CMB */
error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
&nsegs, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not allocate DMA'able memory for "
"Rx CMB\n", device_xname(sc->sc_dev));
return error;
}
error = bus_dmamem_map(sc->sc_dmat,
&sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
ALE_RX_CMB_SZ,
(void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
BUS_DMA_NOWAIT);
if (error)
return ENOBUFS;
memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
/* Load the DMA map for Rx CMB */
error = bus_dmamap_load(sc->sc_dmat,
sc->ale_cdata.ale_rx_page[i].cmb_map,
sc->ale_cdata.ale_rx_page[i].cmb_addr,
ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not load DMA'able memory for Rx CMB"
"\n", device_xname(sc->sc_dev));
bus_dmamem_free(sc->sc_dmat,
&sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
return error;
}
sc->ale_cdata.ale_rx_page[i].cmb_paddr =
sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
}
/* Create DMA maps for Tx buffers. */
for (i = 0; i < ALE_TX_RING_CNT; i++) {
txd = &sc->ale_cdata.ale_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
&txd->tx_dmamap);
if (error) {
txd->tx_dmamap = NULL;
printf("%s: could not create Tx dmamap.\n",
device_xname(sc->sc_dev));
return error;
}
}
return 0;
}
static void
ale_dma_free(struct ale_softc *sc)
{
struct ale_txdesc *txd;
int i;
/* Tx buffers. */
for (i = 0; i < ALE_TX_RING_CNT; i++) {
txd = &sc->ale_cdata.ale_txdesc[i];
if (txd->tx_dmamap != NULL) {
bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
/* Tx descriptor ring. */
if (sc->ale_cdata.ale_tx_ring_map != NULL)
bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
if (sc->ale_cdata.ale_tx_ring_map != NULL &&
sc->ale_cdata.ale_tx_ring != NULL)
bus_dmamem_free(sc->sc_dmat,
&sc->ale_cdata.ale_tx_ring_seg, 1);
sc->ale_cdata.ale_tx_ring = NULL;
sc->ale_cdata.ale_tx_ring_map = NULL;
/* Rx page block. */
for (i = 0; i < ALE_RX_PAGES; i++) {
if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
bus_dmamap_unload(sc->sc_dmat,
sc->ale_cdata.ale_rx_page[i].page_map);
if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
bus_dmamem_free(sc->sc_dmat,
&sc->ale_cdata.ale_rx_page[i].page_seg, 1);
sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
sc->ale_cdata.ale_rx_page[i].page_map = NULL;
}
/* Rx CMB. */
for (i = 0; i < ALE_RX_PAGES; i++) {
if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
bus_dmamap_unload(sc->sc_dmat,
sc->ale_cdata.ale_rx_page[i].cmb_map);
if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
bus_dmamem_free(sc->sc_dmat,
&sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
}
/* Tx CMB. */
if (sc->ale_cdata.ale_tx_cmb_map != NULL)
bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
sc->ale_cdata.ale_tx_cmb != NULL)
bus_dmamem_free(sc->sc_dmat,
&sc->ale_cdata.ale_tx_cmb_seg, 1);
sc->ale_cdata.ale_tx_cmb = NULL;
sc->ale_cdata.ale_tx_cmb_map = NULL;
}
static int
ale_encap(struct ale_softc *sc, struct mbuf **m_head)
{
struct ale_txdesc *txd, *txd_last;
struct tx_desc *desc;
struct mbuf *m;
bus_dmamap_t map;
uint32_t cflags, poff, vtag;
int error, i, nsegs, prod;
#if NVLAN > 0
struct m_tag *mtag;
#endif
m = *m_head;
cflags = vtag = 0;
poff = 0;
prod = sc->ale_cdata.ale_tx_prod;
txd = &sc->ale_cdata.ale_txdesc[prod];
txd_last = txd;
map = txd->tx_dmamap;
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
if (error == EFBIG) {
error = 0;
*m_head = m_pullup(*m_head, MHLEN);
if (*m_head == NULL) {
printf("%s: can't defrag TX mbuf\n",
device_xname(sc->sc_dev));
return ENOBUFS;
}
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not load defragged TX mbuf\n",
device_xname(sc->sc_dev));
m_freem(*m_head);
*m_head = NULL;
return error;
}
} else if (error) {
printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
return error;
}
nsegs = map->dm_nsegs;
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return EIO;
}
/* Check descriptor overrun. */
if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
bus_dmamap_unload(sc->sc_dmat, map);
return ENOBUFS;
}
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
m = *m_head;
/* Configure Tx checksum offload. */
if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
/*
* AR81xx supports Tx custom checksum offload feature
* that offloads single 16bit checksum computation.
* So you can choose one among IP, TCP and UDP.
* Normally driver sets checksum start/insertion
* position from the information of TCP/UDP frame as
* TCP/UDP checksum takes more time than that of IP.
* However it seems that custom checksum offload
* requires 4 bytes aligned Tx buffers due to hardware
* bug.
* AR81xx also supports explicit Tx checksum computation
* if it is told that the size of IP header and TCP
* header(for UDP, the header size does not matter
* because it's fixed length). However with this scheme
* TSO does not work so you have to choose one either
* TSO or explicit Tx checksum offload. I chosen TSO
* plus custom checksum offload with work-around which
* will cover most common usage for this consumer
* ethernet controller. The work-around takes a lot of
* CPU cycles if Tx buffer is not aligned on 4 bytes
* boundary, though.
*/
cflags |= ALE_TD_CXSUM;
/* Set checksum start offset. */
cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
}
#if NVLAN > 0
/* Configure VLAN hardware tag insertion. */
if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
vtag = ALE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
cflags |= ALE_TD_INSERT_VLAN_TAG;
}
#endif
desc = NULL;
for (i = 0; i < nsegs; i++) {
desc = &sc->ale_cdata.ale_tx_ring[prod];
desc->addr = htole64(map->dm_segs[i].ds_addr);
desc->len =
htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
desc->flags = htole32(cflags);
sc->ale_cdata.ale_tx_cnt++;
ALE_DESC_INC(prod, ALE_TX_RING_CNT);
}
/* Update producer index. */
sc->ale_cdata.ale_tx_prod = prod;
/* Finally set EOP on the last descriptor. */
prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
desc = &sc->ale_cdata.ale_tx_ring[prod];
desc->flags |= htole32(ALE_TD_EOP);
/* Swap dmamap of the first and the last. */
txd = &sc->ale_cdata.ale_txdesc[prod];
map = txd_last->tx_dmamap;
txd_last->tx_dmamap = txd->tx_dmamap;
txd->tx_dmamap = map;
txd->tx_m = m;
/* Sync descriptors. */
bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
return 0;
}
static void
ale_start(struct ifnet *ifp)
{
struct ale_softc *sc = ifp->if_softc;
struct mbuf *m_head;
int enq;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
/* Reclaim transmitted frames. */
if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
ale_txeof(sc);
enq = 0;
for (;;) {
IFQ_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (ale_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
break;
}
enq = 1;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
bpf_mtap(ifp, m_head);
}
if (enq) {
/* Kick. */
CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
sc->ale_cdata.ale_tx_prod);
/* Set a timeout in case the chip goes out to lunch. */
ifp->if_timer = ALE_TX_TIMEOUT;
}
}
static void
ale_watchdog(struct ifnet *ifp)
{
struct ale_softc *sc = ifp->if_softc;
if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
printf("%s: watchdog timeout (missed link)\n",
device_xname(sc->sc_dev));
ifp->if_oerrors++;
ale_init(ifp);
return;
}
printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
ifp->if_oerrors++;
ale_init(ifp);
if (!IFQ_IS_EMPTY(&ifp->if_snd))
ale_start(ifp);
}
static int
ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct ale_softc *sc = ifp->if_softc;
int s, error;
s = splnet();
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
ale_rxfilter(sc);
error = 0;
}
splx(s);
return error;
}
static void
ale_mac_config(struct ale_softc *sc)
{
struct mii_data *mii;
uint32_t reg;
mii = &sc->sc_miibus;
reg = CSR_READ_4(sc, ALE_MAC_CFG);
reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
MAC_CFG_SPEED_MASK);
/* Reprogram MAC with resolved speed/duplex. */
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
reg |= MAC_CFG_SPEED_10_100;
break;
case IFM_1000_T:
reg |= MAC_CFG_SPEED_1000;
break;
}
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
reg |= MAC_CFG_FULL_DUPLEX;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
reg |= MAC_CFG_TX_FC;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
reg |= MAC_CFG_RX_FC;
}
CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
}
static void
ale_stats_clear(struct ale_softc *sc)
{
struct smb sb;
uint32_t *reg;
int i;
for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
i += sizeof(uint32_t);
}
/* Read Tx statistics. */
for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
i += sizeof(uint32_t);
}
}
static void
ale_stats_update(struct ale_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct ale_hw_stats *stat;
struct smb sb, *smb;
uint32_t *reg;
int i;
stat = &sc->ale_stats;
smb = &sb;
/* Read Rx statistics. */
for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
i += sizeof(uint32_t);
}
/* Read Tx statistics. */
for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
i += sizeof(uint32_t);
}
/* Rx stats. */
stat->rx_frames += smb->rx_frames;
stat->rx_bcast_frames += smb->rx_bcast_frames;
stat->rx_mcast_frames += smb->rx_mcast_frames;
stat->rx_pause_frames += smb->rx_pause_frames;
stat->rx_control_frames += smb->rx_control_frames;
stat->rx_crcerrs += smb->rx_crcerrs;
stat->rx_lenerrs += smb->rx_lenerrs;
stat->rx_bytes += smb->rx_bytes;
stat->rx_runts += smb->rx_runts;
stat->rx_fragments += smb->rx_fragments;
stat->rx_pkts_64 += smb->rx_pkts_64;
stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
stat->rx_pkts_truncated += smb->rx_pkts_truncated;
stat->rx_fifo_oflows += smb->rx_fifo_oflows;
stat->rx_rrs_errs += smb->rx_rrs_errs;
stat->rx_alignerrs += smb->rx_alignerrs;
stat->rx_bcast_bytes += smb->rx_bcast_bytes;
stat->rx_mcast_bytes += smb->rx_mcast_bytes;
stat->rx_pkts_filtered += smb->rx_pkts_filtered;
/* Tx stats. */
stat->tx_frames += smb->tx_frames;
stat->tx_bcast_frames += smb->tx_bcast_frames;
stat->tx_mcast_frames += smb->tx_mcast_frames;
stat->tx_pause_frames += smb->tx_pause_frames;
stat->tx_excess_defer += smb->tx_excess_defer;
stat->tx_control_frames += smb->tx_control_frames;
stat->tx_deferred += smb->tx_deferred;
stat->tx_bytes += smb->tx_bytes;
stat->tx_pkts_64 += smb->tx_pkts_64;
stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
stat->tx_single_colls += smb->tx_single_colls;
stat->tx_multi_colls += smb->tx_multi_colls;
stat->tx_late_colls += smb->tx_late_colls;
stat->tx_excess_colls += smb->tx_excess_colls;
stat->tx_abort += smb->tx_abort;
stat->tx_underrun += smb->tx_underrun;
stat->tx_desc_underrun += smb->tx_desc_underrun;
stat->tx_lenerrs += smb->tx_lenerrs;
stat->tx_pkts_truncated += smb->tx_pkts_truncated;
stat->tx_bcast_bytes += smb->tx_bcast_bytes;
stat->tx_mcast_bytes += smb->tx_mcast_bytes;
/* Update counters in ifnet. */
ifp->if_opackets += smb->tx_frames;
ifp->if_collisions += smb->tx_single_colls +
smb->tx_multi_colls * 2 + smb->tx_late_colls +
smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
/*
* XXX
* tx_pkts_truncated counter looks suspicious. It constantly
* increments with no sign of Tx errors. This may indicate
* the counter name is not correct one so I've removed the
* counter in output errors.
*/
ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
smb->tx_underrun;
ifp->if_ipackets += smb->rx_frames;
ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
smb->rx_runts + smb->rx_pkts_truncated +
smb->rx_fifo_oflows + smb->rx_rrs_errs +
smb->rx_alignerrs;
}
static int
ale_intr(void *xsc)
{
struct ale_softc *sc = xsc;
struct ifnet *ifp = &sc->sc_ec.ec_if;
uint32_t status;
status = CSR_READ_4(sc, ALE_INTR_STATUS);
if ((status & ALE_INTRS) == 0)
return 0;
/* Acknowledge and disable interrupts. */
CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
if (ifp->if_flags & IFF_RUNNING) {
int error;
error = ale_rxeof(sc);
if (error) {
sc->ale_stats.reset_brk_seq++;
ale_init(ifp);
return 0;
}
if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
if (status & INTR_DMA_RD_TO_RST)
printf("%s: DMA read error! -- resetting\n",
device_xname(sc->sc_dev));
if (status & INTR_DMA_WR_TO_RST)
printf("%s: DMA write error! -- resetting\n",
device_xname(sc->sc_dev));
ale_init(ifp);
return 0;
}
ale_txeof(sc);
if (!IFQ_IS_EMPTY(&ifp->if_snd))
ale_start(ifp);
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
return 1;
}
static void
ale_txeof(struct ale_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct ale_txdesc *txd;
uint32_t cons, prod;
int prog;
if (sc->ale_cdata.ale_tx_cnt == 0)
return;
bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
BUS_DMASYNC_POSTREAD);
prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
} else
prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
cons = sc->ale_cdata.ale_tx_cons;
/*
* Go through our Tx list and free mbufs for those
* frames which have been transmitted.
*/
for (prog = 0; cons != prod; prog++,
ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
if (sc->ale_cdata.ale_tx_cnt <= 0)
break;
prog++;
ifp->if_flags &= ~IFF_OACTIVE;
sc->ale_cdata.ale_tx_cnt--;
txd = &sc->ale_cdata.ale_txdesc[cons];
if (txd->tx_m != NULL) {
/* Reclaim transmitted mbufs. */
bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
if (prog > 0) {
sc->ale_cdata.ale_tx_cons = cons;
/*
* Unarm watchdog timer only when there is no pending
* Tx descriptors in queue.
*/
if (sc->ale_cdata.ale_tx_cnt == 0)
ifp->if_timer = 0;
}
}
static void
ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
uint32_t length, uint32_t *prod)
{
struct ale_rx_page *rx_page;
rx_page = *page;
/* Update consumer position. */
rx_page->cons += roundup(length + sizeof(struct rx_rs),
ALE_RX_PAGE_ALIGN);
if (rx_page->cons >= ALE_RX_PAGE_SZ) {
/*
* End of Rx page reached, let hardware reuse
* this page.
*/
rx_page->cons = 0;
*rx_page->cmb_addr = 0;
bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
RXF_VALID);
/* Switch to alternate Rx page. */
sc->ale_cdata.ale_rx_curp ^= 1;
rx_page = *page =
&sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
/* Page flipped, sync CMB and Rx page. */
bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
/* Sync completed, cache updated producer index. */
*prod = *rx_page->cmb_addr;
}
}
/*
* It seems that AR81xx controller can compute partial checksum.
* The partial checksum value can be used to accelerate checksum
* computation for fragmented TCP/UDP packets. Upper network stack
* already takes advantage of the partial checksum value in IP
* reassembly stage. But I'm not sure the correctness of the
* partial hardware checksum assistance due to lack of data sheet.
* In addition, the Rx feature of controller that requires copying
* for every frames effectively nullifies one of most nice offload
* capability of controller.
*/
static void
ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
{
if (status & ALE_RD_IPCSUM_NOK)
m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
if (((status & ALE_RD_IPV4_FRAG) == 0) &&
((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
(status & ALE_RD_TCP_UDPCSUM_NOK))
{
m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
}
} else {
if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
if (status & ALE_RD_TCP_UDPCSUM_NOK) {
m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
}
}
}
/*
* Don't mark bad checksum for TCP/UDP frames
* as fragmented frames may always have set
* bad checksummed bit of frame status.
*/
}
/* Process received frames. */
static int
ale_rxeof(struct ale_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct ale_rx_page *rx_page;
struct rx_rs *rs;
struct mbuf *m;
uint32_t length, prod, seqno, status;
int prog;
rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
/*
* Don't directly access producer index as hardware may
* update it while Rx handler is in progress. It would
* be even better if there is a way to let hardware
* know how far driver processed its received frames.
* Alternatively, hardware could provide a way to disable
* CMB updates until driver acknowledges the end of CMB
* access.
*/
prod = *rx_page->cmb_addr;
for (prog = 0; ; prog++) {
if (rx_page->cons >= prod)
break;
rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
if (sc->ale_cdata.ale_rx_seqno != seqno) {
/*
* Normally I believe this should not happen unless
* severe driver bug or corrupted memory. However
* it seems to happen under certain conditions which
* is triggered by abrupt Rx events such as initiation
* of bulk transfer of remote host. It's not easy to
* reproduce this and I doubt it could be related
* with FIFO overflow of hardware or activity of Tx
* CMB updates. I also remember similar behaviour
* seen on RealTek 8139 which uses resembling Rx
* scheme.
*/
if (aledebug)
printf("%s: garbled seq: %u, expected: %u -- "
"resetting!\n", device_xname(sc->sc_dev),
seqno, sc->ale_cdata.ale_rx_seqno);
return EIO;
}
/* Frame received. */
sc->ale_cdata.ale_rx_seqno++;
length = ALE_RX_BYTES(le32toh(rs->length));
status = le32toh(rs->flags);
if (status & ALE_RD_ERROR) {
/*
* We want to pass the following frames to upper
* layer regardless of error status of Rx return
* status.
*
* o IP/TCP/UDP checksum is bad.
* o frame length and protocol specific length
* does not match.
*/
if (status & (ALE_RD_CRC | ALE_RD_CODE |
ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
ALE_RD_TRUNC)) {
ale_rx_update_page(sc, &rx_page, length, &prod);
continue;
}
}
/*
* m_devget(9) is major bottle-neck of ale(4)(It comes
* from hardware limitation). For jumbo frames we could
* get a slightly better performance if driver use
* m_getjcl(9) with proper buffer size argument. However
* that would make code more complicated and I don't
* think users would expect good Rx performance numbers
* on these low-end consumer ethernet controller.
*/
m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
0, ifp, NULL);
if (m == NULL) {
ifp->if_iqdrops++;
ale_rx_update_page(sc, &rx_page, length, &prod);
continue;
}
if (status & ALE_RD_IPV4)
ale_rxcsum(sc, m, status);
#if NVLAN > 0
if (status & ALE_RD_VLAN) {
uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
VLAN_INPUT_TAG(ifp, m, ALE_RX_VLAN_TAG(vtags), );
}
#endif
bpf_mtap(ifp, m);
/* Pass it to upper layer. */
if_percpuq_enqueue(ifp->if_percpuq, m);
ale_rx_update_page(sc, &rx_page, length, &prod);
}
return 0;
}
static void
ale_tick(void *xsc)
{
struct ale_softc *sc = xsc;
struct mii_data *mii = &sc->sc_miibus;
int s;
s = splnet();
mii_tick(mii);
ale_stats_update(sc);
splx(s);
callout_schedule(&sc->sc_tick_ch, hz);
}
static void
ale_reset(struct ale_softc *sc)
{
uint32_t reg;
int i;
/* Initialize PCIe module. From Linux. */
CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
DELAY(10);
if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
break;
}
if (i == 0)
printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
break;
DELAY(10);
}
if (i == 0)
printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
reg);
}
static int
ale_init(struct ifnet *ifp)
{
struct ale_softc *sc = ifp->if_softc;
struct mii_data *mii;
uint8_t eaddr[ETHER_ADDR_LEN];
bus_addr_t paddr;
uint32_t reg, rxf_hi, rxf_lo;
/*
* Cancel any pending I/O.
*/
ale_stop(ifp, 0);
/*
* Reset the chip to a known state.
*/
ale_reset(sc);
/* Initialize Tx descriptors, DMA memory blocks. */
ale_init_rx_pages(sc);
ale_init_tx_ring(sc);
/* Reprogram the station address. */
memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
CSR_WRITE_4(sc, ALE_PAR0,
eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
/*
* Clear WOL status and disable all WOL feature as WOL
* would interfere Rx operation under normal environments.
*/
CSR_READ_4(sc, ALE_WOL_CFG);
CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
/*
* Set Tx descriptor/RXF0/CMB base addresses. They share
* the same high address part of DMAable region.
*/
paddr = sc->ale_cdata.ale_tx_ring_paddr;
CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
CSR_WRITE_4(sc, ALE_TPD_CNT,
(ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
/* Set Rx page base address, note we use single queue. */
paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
/* Set Tx/Rx CMB addresses. */
paddr = sc->ale_cdata.ale_tx_cmb_paddr;
CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
/* Mark RXF0 is valid. */
CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
/*
* No need to initialize RFX1/RXF2/RXF3. We don't use
* multi-queue yet.
*/
/* Set Rx page size, excluding guard frame size. */
CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
/* Tell hardware that we're ready to load DMA blocks. */
CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
/* Set Rx/Tx interrupt trigger threshold. */
CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
(4 << INT_TRIG_TX_THRESH_SHIFT));
/*
* XXX
* Set interrupt trigger timer, its purpose and relation
* with interrupt moderation mechanism is not clear yet.
*/
CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
(ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
/* Configure interrupt moderation timer. */
sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
reg = CSR_READ_4(sc, ALE_MASTER_CFG);
reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
if (ALE_USECS(sc->ale_int_rx_mod) != 0)
reg |= MASTER_IM_RX_TIMER_ENB;
if (ALE_USECS(sc->ale_int_tx_mod) != 0)
reg |= MASTER_IM_TX_TIMER_ENB;
CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
/* Set Maximum frame size of controller. */
if (ifp->if_mtu < ETHERMTU)
sc->ale_max_frame_size = ETHERMTU;
else
sc->ale_max_frame_size = ifp->if_mtu;
sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
/* Configure IPG/IFG parameters. */
CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
/* Set parameters for half-duplex media. */
CSR_WRITE_4(sc, ALE_HDPX_CFG,
((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
HDPX_CFG_LCOL_MASK) |
((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
HDPX_CFG_ABEBT_MASK) |
((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
HDPX_CFG_JAMIPG_MASK));
/* Configure Tx jumbo frame parameters. */
if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
if (ifp->if_mtu < ETHERMTU)
reg = sc->ale_max_frame_size;
else if (ifp->if_mtu < 6 * 1024)
reg = (sc->ale_max_frame_size * 2) / 3;
else
reg = sc->ale_max_frame_size / 2;
CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
roundup(reg, TX_JUMBO_THRESH_UNIT) >>
TX_JUMBO_THRESH_UNIT_SHIFT);
}
/* Configure TxQ. */
reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
<< TXQ_CFG_TX_FIFO_BURST_SHIFT;
reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
TXQ_CFG_TPD_BURST_MASK;
CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
/* Configure Rx jumbo frame & flow control parameters. */
if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
(((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
RX_JUMBO_LKAH_MASK));
reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
rxf_hi = (reg * 7) / 10;
rxf_lo = (reg * 3)/ 10;
CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
RX_FIFO_PAUSE_THRESH_LO_MASK) |
((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
RX_FIFO_PAUSE_THRESH_HI_MASK));
}
/* Disable RSS. */
CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
/* Configure RxQ. */
CSR_WRITE_4(sc, ALE_RXQ_CFG,
RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
/* Configure DMA parameters. */
reg = 0;
if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
reg |= DMA_CFG_TXCMB_ENB;
CSR_WRITE_4(sc, ALE_DMA_CFG,
DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
sc->ale_dma_rd_burst | reg |
sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
DMA_CFG_RD_DELAY_CNT_MASK) |
((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
DMA_CFG_WR_DELAY_CNT_MASK));
/*
* Hardware can be configured to issue SMB interrupt based
* on programmed interval. Since there is a callout that is
* invoked for every hz in driver we use that instead of
* relying on periodic SMB interrupt.
*/
CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
/* Clear MAC statistics. */
ale_stats_clear(sc);
/*
* Configure Tx/Rx MACs.
* - Auto-padding for short frames.
* - Enable CRC generation.
* Actual reconfiguration of MAC for resolved speed/duplex
* is followed after detection of link establishment.
* AR81xx always does checksum computation regardless of
* MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
* cause Rx handling issue for fragmented IP datagrams due
* to silicon bug.
*/
reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
MAC_CFG_PREAMBLE_MASK);
if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
reg |= MAC_CFG_SPEED_10_100;
else
reg |= MAC_CFG_SPEED_1000;
CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
/* Set up the receive filter. */
ale_rxfilter(sc);
ale_rxvlan(sc);
/* Acknowledge all pending interrupts and clear it. */
CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
sc->ale_flags &= ~ALE_FLAG_LINK;
/* Switch to the current media. */
mii = &sc->sc_miibus;
mii_mediachg(mii);
callout_schedule(&sc->sc_tick_ch, hz);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
return 0;
}
static void
ale_stop(struct ifnet *ifp, int disable)
{
struct ale_softc *sc = ifp->if_softc;
struct ale_txdesc *txd;
uint32_t reg;
int i;
callout_stop(&sc->sc_tick_ch);
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
sc->ale_flags &= ~ALE_FLAG_LINK;
ale_stats_update(sc);
mii_down(&sc->sc_miibus);
/* Disable interrupts. */
CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
/* Disable queue processing and DMA. */
reg = CSR_READ_4(sc, ALE_TXQ_CFG);
reg &= ~TXQ_CFG_ENB;
CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
reg = CSR_READ_4(sc, ALE_RXQ_CFG);
reg &= ~RXQ_CFG_ENB;
CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
reg = CSR_READ_4(sc, ALE_DMA_CFG);
reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
DELAY(1000);
/* Stop Rx/Tx MACs. */
ale_stop_mac(sc);
/* Disable interrupts again? XXX */
CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
/*
* Free TX mbufs still in the queues.
*/
for (i = 0; i < ALE_TX_RING_CNT; i++) {
txd = &sc->ale_cdata.ale_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
}
static void
ale_stop_mac(struct ale_softc *sc)
{
uint32_t reg;
int i;
reg = CSR_READ_4(sc, ALE_MAC_CFG);
if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
}
for (i = ALE_TIMEOUT; i > 0; i--) {
reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
if (reg == 0)
break;
DELAY(10);
}
if (i == 0)
printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
device_xname(sc->sc_dev), reg);
}
static void
ale_init_tx_ring(struct ale_softc *sc)
{
struct ale_txdesc *txd;
int i;
sc->ale_cdata.ale_tx_prod = 0;
sc->ale_cdata.ale_tx_cons = 0;
sc->ale_cdata.ale_tx_cnt = 0;
memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
for (i = 0; i < ALE_TX_RING_CNT; i++) {
txd = &sc->ale_cdata.ale_txdesc[i];
txd->tx_m = NULL;
}
*sc->ale_cdata.ale_tx_cmb = 0;
bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
}
static void
ale_init_rx_pages(struct ale_softc *sc)
{
struct ale_rx_page *rx_page;
int i;
sc->ale_cdata.ale_rx_seqno = 0;
sc->ale_cdata.ale_rx_curp = 0;
for (i = 0; i < ALE_RX_PAGES; i++) {
rx_page = &sc->ale_cdata.ale_rx_page[i];
memset(rx_page->page_addr, 0, sc->ale_pagesize);
memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
rx_page->cons = 0;
*rx_page->cmb_addr = 0;
bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
}
}
static void
ale_rxvlan(struct ale_softc *sc)
{
uint32_t reg;
reg = CSR_READ_4(sc, ALE_MAC_CFG);
reg &= ~MAC_CFG_VLAN_TAG_STRIP;
if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
reg |= MAC_CFG_VLAN_TAG_STRIP;
CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
}
static void
ale_rxfilter(struct ale_softc *sc)
{
struct ethercom *ec = &sc->sc_ec;
struct ifnet *ifp = &ec->ec_if;
struct ether_multi *enm;
struct ether_multistep step;
uint32_t crc;
uint32_t mchash[2];
uint32_t rxcfg;
rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
ifp->if_flags &= ~IFF_ALLMULTI;
/*
* Always accept broadcast frames.
*/
rxcfg |= MAC_CFG_BCAST;
if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
ifp->if_flags |= IFF_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC)
rxcfg |= MAC_CFG_PROMISC;
else
rxcfg |= MAC_CFG_ALLMULTI;
mchash[0] = mchash[1] = 0xFFFFFFFF;
} else {
/* Program new filter. */
memset(mchash, 0, sizeof(mchash));
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
ETHER_NEXT_MULTI(step, enm);
}
}
CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
}