NetBSD/sys/uvm/uvm_page.c
thorpej a7d0570e67 First sweep at scheduler state cleanup. Collect MI scheduler
state into global and per-CPU scheduler state:

	- Global state: sched_qs (run queues), sched_whichqs (bitmap
	  of non-empty run queues), sched_slpque (sleep queues).
	  NOTE: These may collectively move into a struct schedstate
	  at some point in the future.

	- Per-CPU state, struct schedstate_percpu: spc_runtime
	  (time process on this CPU started running), spc_flags
	  (replaces struct proc's p_schedflags), and
	  spc_curpriority (usrpri of processes on this CPU).

	- Every platform must now supply a struct cpu_info and
	  a curcpu() macro.  Simplify existing cpu_info declarations
	  where appropriate.

	- All references to per-CPU scheduler state now made through
	  curcpu().  NOTE: this will likely be adjusted in the future
	  after further changes to struct proc are made.

Tested on i386 and Alpha.  Changes are mostly mechanical, but apologies
in advance if it doesn't compile on a particular platform.
2000-05-26 21:19:19 +00:00

1303 lines
32 KiB
C

/* $NetBSD: uvm_page.c,v 1.35 2000/05/26 21:20:34 thorpej Exp $ */
/*
* Copyright (c) 1997 Charles D. Cranor and Washington University.
* Copyright (c) 1991, 1993, The Regents of the University of California.
*
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Charles D. Cranor,
* Washington University, the University of California, Berkeley and
* its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vm_page.c 8.3 (Berkeley) 3/21/94
* from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* uvm_page.c: page ops.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/sched.h>
#include <vm/vm.h>
#include <vm/vm_page.h>
#include <vm/vm_kern.h>
#define UVM_PAGE /* pull in uvm_page.h functions */
#include <uvm/uvm.h>
/*
* global vars... XXXCDC: move to uvm. structure.
*/
/*
* physical memory config is stored in vm_physmem.
*/
struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
/*
* for testing the idle page zero loop.
*/
boolean_t vm_page_zero_enable = TRUE;
/*
* local variables
*/
/*
* these variables record the values returned by vm_page_bootstrap,
* for debugging purposes. The implementation of uvm_pageboot_alloc
* and pmap_startup here also uses them internally.
*/
static vaddr_t virtual_space_start;
static vaddr_t virtual_space_end;
/*
* we use a hash table with only one bucket during bootup. we will
* later rehash (resize) the hash table once the allocator is ready.
* we static allocate the one bootstrap bucket below...
*/
static struct pglist uvm_bootbucket;
/*
* local prototypes
*/
static void uvm_pageinsert __P((struct vm_page *));
/*
* inline functions
*/
/*
* uvm_pageinsert: insert a page in the object and the hash table
*
* => caller must lock object
* => caller must lock page queues
* => call should have already set pg's object and offset pointers
* and bumped the version counter
*/
__inline static void
uvm_pageinsert(pg)
struct vm_page *pg;
{
struct pglist *buck;
int s;
#ifdef DIAGNOSTIC
if (pg->flags & PG_TABLED)
panic("uvm_pageinsert: already inserted");
#endif
buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
s = splimp();
simple_lock(&uvm.hashlock);
TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
simple_unlock(&uvm.hashlock);
splx(s);
TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
pg->flags |= PG_TABLED;
pg->uobject->uo_npages++;
}
/*
* uvm_page_remove: remove page from object and hash
*
* => caller must lock object
* => caller must lock page queues
*/
void __inline
uvm_pageremove(pg)
struct vm_page *pg;
{
struct pglist *buck;
int s;
#ifdef DIAGNOSTIC
if ((pg->flags & (PG_FAULTING)) != 0)
panic("uvm_pageremove: page is faulting");
#endif
if ((pg->flags & PG_TABLED) == 0)
return; /* XXX: log */
buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
s = splimp();
simple_lock(&uvm.hashlock);
TAILQ_REMOVE(buck, pg, hashq);
simple_unlock(&uvm.hashlock);
splx(s);
/* object should be locked */
TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
pg->flags &= ~PG_TABLED;
pg->uobject->uo_npages--;
pg->uobject = NULL;
pg->version++;
}
/*
* uvm_page_init: init the page system. called from uvm_init().
*
* => we return the range of kernel virtual memory in kvm_startp/kvm_endp
*/
void
uvm_page_init(kvm_startp, kvm_endp)
vaddr_t *kvm_startp, *kvm_endp;
{
vsize_t freepages, pagecount, n;
vm_page_t pagearray;
int lcv, i;
paddr_t paddr;
/*
* step 1: init the page queues and page queue locks
*/
for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
for (i = 0; i < PGFL_NQUEUES; i++)
TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
}
TAILQ_INIT(&uvm.page_active);
TAILQ_INIT(&uvm.page_inactive_swp);
TAILQ_INIT(&uvm.page_inactive_obj);
simple_lock_init(&uvm.pageqlock);
simple_lock_init(&uvm.fpageqlock);
/*
* step 2: init the <obj,offset> => <page> hash table. for now
* we just have one bucket (the bootstrap bucket). later on we
* will allocate new buckets as we dynamically resize the hash table.
*/
uvm.page_nhash = 1; /* 1 bucket */
uvm.page_hashmask = 0; /* mask for hash function */
uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
TAILQ_INIT(uvm.page_hash); /* init hash table */
simple_lock_init(&uvm.hashlock); /* init hash table lock */
/*
* step 3: allocate vm_page structures.
*/
/*
* sanity check:
* before calling this function the MD code is expected to register
* some free RAM with the uvm_page_physload() function. our job
* now is to allocate vm_page structures for this memory.
*/
if (vm_nphysseg == 0)
panic("vm_page_bootstrap: no memory pre-allocated");
/*
* first calculate the number of free pages...
*
* note that we use start/end rather than avail_start/avail_end.
* this allows us to allocate extra vm_page structures in case we
* want to return some memory to the pool after booting.
*/
freepages = 0;
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
/*
* we now know we have (PAGE_SIZE * freepages) bytes of memory we can
* use. for each page of memory we use we need a vm_page structure.
* thus, the total number of pages we can use is the total size of
* the memory divided by the PAGE_SIZE plus the size of the vm_page
* structure. we add one to freepages as a fudge factor to avoid
* truncation errors (since we can only allocate in terms of whole
* pages).
*/
pagecount = ((freepages + 1) << PAGE_SHIFT) /
(PAGE_SIZE + sizeof(struct vm_page));
pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
sizeof(struct vm_page));
memset(pagearray, 0, pagecount * sizeof(struct vm_page));
/*
* step 4: init the vm_page structures and put them in the correct
* place...
*/
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
n = vm_physmem[lcv].end - vm_physmem[lcv].start;
if (n > pagecount) {
printf("uvm_page_init: lost %ld page(s) in init\n",
(long)(n - pagecount));
panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
/* n = pagecount; */
}
/* set up page array pointers */
vm_physmem[lcv].pgs = pagearray;
pagearray += n;
pagecount -= n;
vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
/* init and free vm_pages (we've already zeroed them) */
paddr = ptoa(vm_physmem[lcv].start);
for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
vm_physmem[lcv].pgs[i].phys_addr = paddr;
if (atop(paddr) >= vm_physmem[lcv].avail_start &&
atop(paddr) <= vm_physmem[lcv].avail_end) {
uvmexp.npages++;
/* add page to free pool */
uvm_pagefree(&vm_physmem[lcv].pgs[i]);
}
}
}
/*
* step 5: pass up the values of virtual_space_start and
* virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
* layers of the VM.
*/
*kvm_startp = round_page(virtual_space_start);
*kvm_endp = trunc_page(virtual_space_end);
/*
* step 6: init pagedaemon lock
*/
simple_lock_init(&uvm.pagedaemon_lock);
/*
* step 7: init reserve thresholds
* XXXCDC - values may need adjusting
*/
uvmexp.reserve_pagedaemon = 1;
uvmexp.reserve_kernel = 5;
/*
* step 8: determine if we should zero pages in the idle
* loop.
*
* XXXJRT - might consider zero'ing up to the target *now*,
* but that could take an awfully long time if you
* have a lot of memory.
*/
uvm.page_idle_zero = vm_page_zero_enable;
/*
* done!
*/
uvm.page_init_done = TRUE;
}
/*
* uvm_setpagesize: set the page size
*
* => sets page_shift and page_mask from uvmexp.pagesize.
* => XXXCDC: move global vars.
*/
void
uvm_setpagesize()
{
if (uvmexp.pagesize == 0)
uvmexp.pagesize = DEFAULT_PAGE_SIZE;
uvmexp.pagemask = uvmexp.pagesize - 1;
if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
panic("uvm_setpagesize: page size not a power of two");
for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
break;
}
/*
* uvm_pageboot_alloc: steal memory from physmem for bootstrapping
*/
vaddr_t
uvm_pageboot_alloc(size)
vsize_t size;
{
#if defined(PMAP_STEAL_MEMORY)
vaddr_t addr;
/*
* defer bootstrap allocation to MD code (it may want to allocate
* from a direct-mapped segment). pmap_steal_memory should round
* off virtual_space_start/virtual_space_end.
*/
addr = pmap_steal_memory(size, &virtual_space_start,
&virtual_space_end);
return(addr);
#else /* !PMAP_STEAL_MEMORY */
static boolean_t initialized = FALSE;
vaddr_t addr, vaddr;
paddr_t paddr;
/* round to page size */
size = round_page(size);
/*
* on first call to this function, initialize ourselves.
*/
if (initialized == FALSE) {
pmap_virtual_space(&virtual_space_start, &virtual_space_end);
/* round it the way we like it */
virtual_space_start = round_page(virtual_space_start);
virtual_space_end = trunc_page(virtual_space_end);
initialized = TRUE;
}
/*
* allocate virtual memory for this request
*/
if (virtual_space_start == virtual_space_end ||
(virtual_space_end - virtual_space_start) < size)
panic("uvm_pageboot_alloc: out of virtual space");
addr = virtual_space_start;
#ifdef PMAP_GROWKERNEL
/*
* If the kernel pmap can't map the requested space,
* then allocate more resources for it.
*/
if (uvm_maxkaddr < (addr + size)) {
uvm_maxkaddr = pmap_growkernel(addr + size);
if (uvm_maxkaddr < (addr + size))
panic("uvm_pageboot_alloc: pmap_growkernel() failed");
}
#endif
virtual_space_start += size;
/*
* allocate and mapin physical pages to back new virtual pages
*/
for (vaddr = round_page(addr) ; vaddr < addr + size ;
vaddr += PAGE_SIZE) {
if (!uvm_page_physget(&paddr))
panic("uvm_pageboot_alloc: out of memory");
/*
* Note this memory is no longer managed, so using
* pmap_kenter is safe.
*/
pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
}
return(addr);
#endif /* PMAP_STEAL_MEMORY */
}
#if !defined(PMAP_STEAL_MEMORY)
/*
* uvm_page_physget: "steal" one page from the vm_physmem structure.
*
* => attempt to allocate it off the end of a segment in which the "avail"
* values match the start/end values. if we can't do that, then we
* will advance both values (making them equal, and removing some
* vm_page structures from the non-avail area).
* => return false if out of memory.
*/
/* subroutine: try to allocate from memory chunks on the specified freelist */
static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
static boolean_t
uvm_page_physget_freelist(paddrp, freelist)
paddr_t *paddrp;
int freelist;
{
int lcv, x;
/* pass 1: try allocating from a matching end */
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
#else
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
#endif
{
if (uvm.page_init_done == TRUE)
panic("vm_page_physget: called _after_ bootstrap");
if (vm_physmem[lcv].free_list != freelist)
continue;
/* try from front */
if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
*paddrp = ptoa(vm_physmem[lcv].avail_start);
vm_physmem[lcv].avail_start++;
vm_physmem[lcv].start++;
/* nothing left? nuke it */
if (vm_physmem[lcv].avail_start ==
vm_physmem[lcv].end) {
if (vm_nphysseg == 1)
panic("vm_page_physget: out of memory!");
vm_nphysseg--;
for (x = lcv ; x < vm_nphysseg ; x++)
/* structure copy */
vm_physmem[x] = vm_physmem[x+1];
}
return (TRUE);
}
/* try from rear */
if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
vm_physmem[lcv].avail_end--;
vm_physmem[lcv].end--;
/* nothing left? nuke it */
if (vm_physmem[lcv].avail_end ==
vm_physmem[lcv].start) {
if (vm_nphysseg == 1)
panic("vm_page_physget: out of memory!");
vm_nphysseg--;
for (x = lcv ; x < vm_nphysseg ; x++)
/* structure copy */
vm_physmem[x] = vm_physmem[x+1];
}
return (TRUE);
}
}
/* pass2: forget about matching ends, just allocate something */
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
#else
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
#endif
{
/* any room in this bank? */
if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
continue; /* nope */
*paddrp = ptoa(vm_physmem[lcv].avail_start);
vm_physmem[lcv].avail_start++;
/* truncate! */
vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
/* nothing left? nuke it */
if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
if (vm_nphysseg == 1)
panic("vm_page_physget: out of memory!");
vm_nphysseg--;
for (x = lcv ; x < vm_nphysseg ; x++)
/* structure copy */
vm_physmem[x] = vm_physmem[x+1];
}
return (TRUE);
}
return (FALSE); /* whoops! */
}
boolean_t
uvm_page_physget(paddrp)
paddr_t *paddrp;
{
int i;
/* try in the order of freelist preference */
for (i = 0; i < VM_NFREELIST; i++)
if (uvm_page_physget_freelist(paddrp, i) == TRUE)
return (TRUE);
return (FALSE);
}
#endif /* PMAP_STEAL_MEMORY */
/*
* uvm_page_physload: load physical memory into VM system
*
* => all args are PFs
* => all pages in start/end get vm_page structures
* => areas marked by avail_start/avail_end get added to the free page pool
* => we are limited to VM_PHYSSEG_MAX physical memory segments
*/
void
uvm_page_physload(start, end, avail_start, avail_end, free_list)
paddr_t start, end, avail_start, avail_end;
int free_list;
{
int preload, lcv;
psize_t npages;
struct vm_page *pgs;
struct vm_physseg *ps;
if (uvmexp.pagesize == 0)
panic("vm_page_physload: page size not set!");
if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
panic("uvm_page_physload: bad free list %d\n", free_list);
if (start >= end)
panic("uvm_page_physload: start >= end");
/*
* do we have room?
*/
if (vm_nphysseg == VM_PHYSSEG_MAX) {
printf("vm_page_physload: unable to load physical memory "
"segment\n");
printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
VM_PHYSSEG_MAX, start, end);
return;
}
/*
* check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
* called yet, so malloc is not available).
*/
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
if (vm_physmem[lcv].pgs)
break;
}
preload = (lcv == vm_nphysseg);
/*
* if VM is already running, attempt to malloc() vm_page structures
*/
if (!preload) {
#if defined(VM_PHYSSEG_NOADD)
panic("vm_page_physload: tried to add RAM after vm_mem_init");
#else
/* XXXCDC: need some sort of lockout for this case */
paddr_t paddr;
npages = end - start; /* # of pages */
MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
M_VMPAGE, M_NOWAIT);
if (pgs == NULL) {
printf("vm_page_physload: can not malloc vm_page "
"structs for segment\n");
printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
return;
}
/* zero data, init phys_addr and free_list, and free pages */
memset(pgs, 0, sizeof(struct vm_page) * npages);
for (lcv = 0, paddr = ptoa(start) ;
lcv < npages ; lcv++, paddr += PAGE_SIZE) {
pgs[lcv].phys_addr = paddr;
pgs[lcv].free_list = free_list;
if (atop(paddr) >= avail_start &&
atop(paddr) <= avail_end)
uvm_pagefree(&pgs[lcv]);
}
/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
#endif
} else {
/* gcc complains if these don't get init'd */
pgs = NULL;
npages = 0;
}
/*
* now insert us in the proper place in vm_physmem[]
*/
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
/* random: put it at the end (easy!) */
ps = &vm_physmem[vm_nphysseg];
#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
{
int x;
/* sort by address for binary search */
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
if (start < vm_physmem[lcv].start)
break;
ps = &vm_physmem[lcv];
/* move back other entries, if necessary ... */
for (x = vm_nphysseg ; x > lcv ; x--)
/* structure copy */
vm_physmem[x] = vm_physmem[x - 1];
}
#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
{
int x;
/* sort by largest segment first */
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
if ((end - start) >
(vm_physmem[lcv].end - vm_physmem[lcv].start))
break;
ps = &vm_physmem[lcv];
/* move back other entries, if necessary ... */
for (x = vm_nphysseg ; x > lcv ; x--)
/* structure copy */
vm_physmem[x] = vm_physmem[x - 1];
}
#else
panic("vm_page_physload: unknown physseg strategy selected!");
#endif
ps->start = start;
ps->end = end;
ps->avail_start = avail_start;
ps->avail_end = avail_end;
if (preload) {
ps->pgs = NULL;
} else {
ps->pgs = pgs;
ps->lastpg = pgs + npages - 1;
}
ps->free_list = free_list;
vm_nphysseg++;
/*
* done!
*/
if (!preload)
uvm_page_rehash();
return;
}
/*
* uvm_page_rehash: reallocate hash table based on number of free pages.
*/
void
uvm_page_rehash()
{
int freepages, lcv, bucketcount, s, oldcount;
struct pglist *newbuckets, *oldbuckets;
struct vm_page *pg;
size_t newsize, oldsize;
/*
* compute number of pages that can go in the free pool
*/
freepages = 0;
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
freepages +=
(vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
/*
* compute number of buckets needed for this number of pages
*/
bucketcount = 1;
while (bucketcount < freepages)
bucketcount = bucketcount * 2;
/*
* compute the size of the current table and new table.
*/
oldbuckets = uvm.page_hash;
oldcount = uvm.page_nhash;
oldsize = round_page(sizeof(struct pglist) * oldcount);
newsize = round_page(sizeof(struct pglist) * bucketcount);
/*
* allocate the new buckets
*/
newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
if (newbuckets == NULL) {
printf("uvm_page_physrehash: WARNING: could not grow page "
"hash table\n");
return;
}
for (lcv = 0 ; lcv < bucketcount ; lcv++)
TAILQ_INIT(&newbuckets[lcv]);
/*
* now replace the old buckets with the new ones and rehash everything
*/
s = splimp();
simple_lock(&uvm.hashlock);
uvm.page_hash = newbuckets;
uvm.page_nhash = bucketcount;
uvm.page_hashmask = bucketcount - 1; /* power of 2 */
/* ... and rehash */
for (lcv = 0 ; lcv < oldcount ; lcv++) {
while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
TAILQ_INSERT_TAIL(
&uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
pg, hashq);
}
}
simple_unlock(&uvm.hashlock);
splx(s);
/*
* free old bucket array if is not the boot-time table
*/
if (oldbuckets != &uvm_bootbucket)
uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
/*
* done
*/
return;
}
#if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
void uvm_page_physdump __P((void)); /* SHUT UP GCC */
/* call from DDB */
void
uvm_page_physdump()
{
int lcv;
printf("rehash: physical memory config [segs=%d of %d]:\n",
vm_nphysseg, VM_PHYSSEG_MAX);
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
vm_physmem[lcv].avail_end);
printf("STRATEGY = ");
switch (VM_PHYSSEG_STRAT) {
case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
default: printf("<<UNKNOWN>>!!!!\n");
}
printf("number of buckets = %d\n", uvm.page_nhash);
}
#endif
/*
* uvm_pagealloc_strat: allocate vm_page from a particular free list.
*
* => return null if no pages free
* => wake up pagedaemon if number of free pages drops below low water mark
* => if obj != NULL, obj must be locked (to put in hash)
* => if anon != NULL, anon must be locked (to put in anon)
* => only one of obj or anon can be non-null
* => caller must activate/deactivate page if it is not wired.
* => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
* => policy decision: it is more important to pull a page off of the
* appropriate priority free list than it is to get a zero'd or
* unknown contents page. This is because we live with the
* consequences of a bad free list decision for the entire
* lifetime of the page, e.g. if the page comes from memory that
* is slower to access.
*/
struct vm_page *
uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
struct uvm_object *obj;
voff_t off;
int flags;
struct vm_anon *anon;
int strat, free_list;
{
int lcv, try1, try2, s, zeroit = 0;
struct vm_page *pg;
struct pglist *freeq;
struct pgfreelist *pgfl;
boolean_t use_reserve;
#ifdef DIAGNOSTIC
/* sanity check */
if (obj && anon)
panic("uvm_pagealloc: obj and anon != NULL");
#endif
s = uvm_lock_fpageq(); /* lock free page queue */
/*
* check to see if we need to generate some free pages waking
* the pagedaemon.
*/
if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
uvmexp.inactive < uvmexp.inactarg))
wakeup(&uvm.pagedaemon);
/*
* fail if any of these conditions is true:
* [1] there really are no free pages, or
* [2] only kernel "reserved" pages remain and
* the page isn't being allocated to a kernel object.
* [3] only pagedaemon "reserved" pages remain and
* the requestor isn't the pagedaemon.
*/
use_reserve = (flags & UVM_PGA_USERESERVE) ||
(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
(uvmexp.free <= uvmexp.reserve_pagedaemon &&
!(use_reserve && curproc == uvm.pagedaemon_proc)))
goto fail;
#if PGFL_NQUEUES != 2
#error uvm_pagealloc_strat needs to be updated
#endif
/*
* If we want a zero'd page, try the ZEROS queue first, otherwise
* we try the UNKNOWN queue first.
*/
if (flags & UVM_PGA_ZERO) {
try1 = PGFL_ZEROS;
try2 = PGFL_UNKNOWN;
} else {
try1 = PGFL_UNKNOWN;
try2 = PGFL_ZEROS;
}
again:
switch (strat) {
case UVM_PGA_STRAT_NORMAL:
/* Check all freelists in descending priority order. */
for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
pgfl = &uvm.page_free[lcv];
if ((pg = TAILQ_FIRST((freeq =
&pgfl->pgfl_queues[try1]))) != NULL ||
(pg = TAILQ_FIRST((freeq =
&pgfl->pgfl_queues[try2]))) != NULL)
goto gotit;
}
/* No pages free! */
goto fail;
case UVM_PGA_STRAT_ONLY:
case UVM_PGA_STRAT_FALLBACK:
/* Attempt to allocate from the specified free list. */
#ifdef DIAGNOSTIC
if (free_list >= VM_NFREELIST || free_list < 0)
panic("uvm_pagealloc_strat: bad free list %d",
free_list);
#endif
pgfl = &uvm.page_free[free_list];
if ((pg = TAILQ_FIRST((freeq =
&pgfl->pgfl_queues[try1]))) != NULL ||
(pg = TAILQ_FIRST((freeq =
&pgfl->pgfl_queues[try2]))) != NULL)
goto gotit;
/* Fall back, if possible. */
if (strat == UVM_PGA_STRAT_FALLBACK) {
strat = UVM_PGA_STRAT_NORMAL;
goto again;
}
/* No pages free! */
goto fail;
default:
panic("uvm_pagealloc_strat: bad strat %d", strat);
/* NOTREACHED */
}
gotit:
TAILQ_REMOVE(freeq, pg, pageq);
uvmexp.free--;
/* update zero'd page count */
if (pg->flags & PG_ZERO)
uvmexp.zeropages--;
/*
* update allocation statistics and remember if we have to
* zero the page
*/
if (flags & UVM_PGA_ZERO) {
if (pg->flags & PG_ZERO) {
uvmexp.pga_zerohit++;
zeroit = 0;
} else {
uvmexp.pga_zeromiss++;
zeroit = 1;
}
}
uvm_unlock_fpageq(s); /* unlock free page queue */
pg->offset = off;
pg->uobject = obj;
pg->uanon = anon;
pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
pg->version++;
pg->wire_count = 0;
pg->loan_count = 0;
if (anon) {
anon->u.an_page = pg;
pg->pqflags = PQ_ANON;
} else {
if (obj)
uvm_pageinsert(pg);
pg->pqflags = 0;
}
#if defined(UVM_PAGE_TRKOWN)
pg->owner_tag = NULL;
#endif
UVM_PAGE_OWN(pg, "new alloc");
if (flags & UVM_PGA_ZERO) {
/*
* A zero'd page is not clean. If we got a page not already
* zero'd, then we have to zero it ourselves.
*/
pg->flags &= ~PG_CLEAN;
if (zeroit)
pmap_zero_page(VM_PAGE_TO_PHYS(pg));
}
return(pg);
fail:
uvm_unlock_fpageq(s);
return (NULL);
}
/*
* uvm_pagerealloc: reallocate a page from one object to another
*
* => both objects must be locked
*/
void
uvm_pagerealloc(pg, newobj, newoff)
struct vm_page *pg;
struct uvm_object *newobj;
voff_t newoff;
{
/*
* remove it from the old object
*/
if (pg->uobject) {
uvm_pageremove(pg);
}
/*
* put it in the new object
*/
if (newobj) {
pg->uobject = newobj;
pg->offset = newoff;
pg->version++;
uvm_pageinsert(pg);
}
return;
}
/*
* uvm_pagefree: free page
*
* => erase page's identity (i.e. remove from hash/object)
* => put page on free list
* => caller must lock owning object (either anon or uvm_object)
* => caller must lock page queues
* => assumes all valid mappings of pg are gone
*/
void uvm_pagefree(pg)
struct vm_page *pg;
{
int s;
int saved_loan_count = pg->loan_count;
/*
* if the page was an object page (and thus "TABLED"), remove it
* from the object.
*/
if (pg->flags & PG_TABLED) {
/*
* if the object page is on loan we are going to drop ownership.
* it is possible that an anon will take over as owner for this
* page later on. the anon will want a !PG_CLEAN page so that
* it knows it needs to allocate swap if it wants to page the
* page out.
*/
if (saved_loan_count)
pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
uvm_pageremove(pg);
/*
* if our page was on loan, then we just lost control over it
* (in fact, if it was loaned to an anon, the anon may have
* already taken over ownership of the page by now and thus
* changed the loan_count [e.g. in uvmfault_anonget()]) we just
* return (when the last loan is dropped, then the page can be
* freed by whatever was holding the last loan).
*/
if (saved_loan_count)
return;
} else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
/*
* if our page is owned by an anon and is loaned out to the
* kernel then we just want to drop ownership and return.
* the kernel must free the page when all its loans clear ...
* note that the kernel can't change the loan status of our
* page as long as we are holding PQ lock.
*/
pg->pqflags &= ~PQ_ANON;
pg->uanon = NULL;
return;
}
#ifdef DIAGNOSTIC
if (saved_loan_count) {
printf("uvm_pagefree: warning: freeing page with a loan "
"count of %d\n", saved_loan_count);
panic("uvm_pagefree: loan count");
}
#endif
/*
* now remove the page from the queues
*/
if (pg->pqflags & PQ_ACTIVE) {
TAILQ_REMOVE(&uvm.page_active, pg, pageq);
pg->pqflags &= ~PQ_ACTIVE;
uvmexp.active--;
}
if (pg->pqflags & PQ_INACTIVE) {
if (pg->pqflags & PQ_SWAPBACKED)
TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
else
TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
pg->pqflags &= ~PQ_INACTIVE;
uvmexp.inactive--;
}
/*
* if the page was wired, unwire it now.
*/
if (pg->wire_count) {
pg->wire_count = 0;
uvmexp.wired--;
}
/*
* and put on free queue
*/
pg->flags &= ~PG_ZERO;
s = uvm_lock_fpageq();
TAILQ_INSERT_TAIL(&uvm.page_free[
uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
pg->pqflags = PQ_FREE;
#ifdef DEBUG
pg->uobject = (void *)0xdeadbeef;
pg->offset = 0xdeadbeef;
pg->uanon = (void *)0xdeadbeef;
#endif
uvmexp.free++;
if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
uvm.page_idle_zero = vm_page_zero_enable;
uvm_unlock_fpageq(s);
}
#if defined(UVM_PAGE_TRKOWN)
/*
* uvm_page_own: set or release page ownership
*
* => this is a debugging function that keeps track of who sets PG_BUSY
* and where they do it. it can be used to track down problems
* such a process setting "PG_BUSY" and never releasing it.
* => page's object [if any] must be locked
* => if "tag" is NULL then we are releasing page ownership
*/
void
uvm_page_own(pg, tag)
struct vm_page *pg;
char *tag;
{
/* gain ownership? */
if (tag) {
if (pg->owner_tag) {
printf("uvm_page_own: page %p already owned "
"by proc %d [%s]\n", pg,
pg->owner, pg->owner_tag);
panic("uvm_page_own");
}
pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
pg->owner_tag = tag;
return;
}
/* drop ownership */
if (pg->owner_tag == NULL) {
printf("uvm_page_own: dropping ownership of an non-owned "
"page (%p)\n", pg);
panic("uvm_page_own");
}
pg->owner_tag = NULL;
return;
}
#endif
/*
* uvm_pageidlezero: zero free pages while the system is idle.
*
* => we do at least one iteration per call, if we are below the target.
* => we loop until we either reach the target or whichqs indicates that
* there is a process ready to run.
*/
void
uvm_pageidlezero()
{
struct vm_page *pg;
struct pgfreelist *pgfl;
int free_list, s;
do {
s = uvm_lock_fpageq();
if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
uvm.page_idle_zero = FALSE;
uvm_unlock_fpageq(s);
return;
}
for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
pgfl = &uvm.page_free[free_list];
if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
PGFL_UNKNOWN])) != NULL)
break;
}
if (pg == NULL) {
/*
* No non-zero'd pages; don't bother trying again
* until we know we have non-zero'd pages free.
*/
uvm.page_idle_zero = FALSE;
uvm_unlock_fpageq(s);
return;
}
TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
uvmexp.free--;
uvm_unlock_fpageq(s);
#ifdef PMAP_PAGEIDLEZERO
PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg));
#else
/*
* XXX This will toast the cache unless the pmap_zero_page()
* XXX implementation does uncached access.
*/
pmap_zero_page(VM_PAGE_TO_PHYS(pg));
#endif
pg->flags |= PG_ZERO;
s = uvm_lock_fpageq();
TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
uvmexp.free++;
uvmexp.zeropages++;
uvm_unlock_fpageq(s);
} while (sched_whichqs == 0);
}