NetBSD/sys/arch/sun3/dev/zs.c

1457 lines
34 KiB
C

/* $NetBSD: zs.c,v 1.13 1994/12/12 18:59:27 gwr Exp $ */
/*
* Copyright (c) 1994 Gordon W. Ross
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)zs.c 8.1 (Berkeley) 7/19/93
*/
/*
* Zilog Z8530 (ZSCC) driver.
*
* Runs two tty ports (ttya and ttyb) on zs0,
* and runs a keyboard and mouse on zs1.
*
* This driver knows far too much about chip to usage mappings.
*/
#define NZS 2 /* XXX */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/device.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/tty.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <machine/autoconf.h>
#include <machine/cpu.h>
#include <machine/obio.h>
#include <machine/mon.h>
#include <machine/eeprom.h>
#include <machine/kbd.h>
#include <dev/cons.h>
#include "zsreg.h"
#include "zsvar.h"
#ifdef KGDB
#include <machine/remote-sl.h>
#endif
#define ZSMAJOR 12 /* XXX */
#define ZS_KBD 2 /* XXX */
#define ZS_MOUSE 3 /* XXX */
/* The Sun3 provides a 4.9152 MHz clock to the ZS chips. */
#define PCLK (9600 * 512) /* PCLK pin input clock rate */
/*
* Select software interrupt levels.
*/
#define ZSSOFT_PRI 2 /* XXX - Want TTY_PRI */
#define ZSHARD_PRI 6 /* Wired on the CPU board... */
/*
* Software state per found chip. This would be called `zs_softc',
* but the previous driver had a rather different zs_softc....
*/
struct zsinfo {
struct device zi_dev; /* base device */
volatile struct zsdevice *zi_zs;/* chip registers */
struct zs_chanstate zi_cs[2]; /* channel A and B software state */
};
struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
/* Definition of the driver for autoconfig. */
static int zs_match(struct device *, void *, void *);
static void zs_attach(struct device *, struct device *, void *);
struct cfdriver zscd = {
NULL, "zs", zs_match, zs_attach,
DV_TTY, sizeof(struct zsinfo) };
/* Interrupt handlers. */
static int zshard(int);
static int zssoft(int);
struct zs_chanstate *zslist;
/* Routines called from other code. */
int zsopen(dev_t, int, int, struct proc *);
int zsclose(dev_t, int, int, struct proc *);
static void zsiopen(struct tty *);
static void zsiclose(struct tty *);
static void zsstart(struct tty *);
void zsstop(struct tty *, int);
static int zsparam(struct tty *, struct termios *);
/* Routines purely local to this driver. */
static int zs_getspeed(volatile struct zschan *);
static void zs_reset(volatile struct zschan *, int, int);
static void zs_modem(struct zs_chanstate *, int);
static void zs_loadchannelregs(volatile struct zschan *, u_char *);
static u_char zs_read(volatile struct zschan *, u_char);
static u_char zs_write(volatile struct zschan *, u_char, u_char);
/* Console stuff. */
static volatile struct zschan *zs_conschan;
#ifdef KGDB
/* KGDB stuff. Must reboot to change zs_kgdbunit. */
extern int kgdb_dev, kgdb_rate;
static int zs_kgdb_savedspeed;
static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *);
#endif
/*
* Console keyboard L1-A processing is done in the hardware interrupt code,
* so we need to duplicate some of the console keyboard decode state. (We
* must not use the regular state as the hardware code keeps ahead of the
* software state: the software state tracks the most recent ring input but
* the hardware state tracks the most recent ZSCC input.) See also kbd.h.
*/
static struct conk_state { /* console keyboard state */
char conk_id; /* true => ID coming up (console only) */
char conk_l1; /* true => L1 pressed (console only) */
} zsconk_state;
int zshardscope;
int zsshortcuts; /* number of "shortcut" software interrupts */
int zssoftpending; /* We have done isr_soft_request() */
static struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
/* Default OBIO addresses. */
static int zs_physaddr[NZS] = { OBIO_ZS, OBIO_KEYBD_MS };
/* Find PROM mappings (for console support). */
void zs_init()
{
if (zsaddr[0] == NULL)
zsaddr[0] = (struct zsdevice *)
obio_find_mapping(OBIO_ZS, OBIO_ZS_SIZE);
if (zsaddr[1] == NULL)
zsaddr[1] = (struct zsdevice *)
obio_find_mapping(OBIO_KEYBD_MS, OBIO_ZS_SIZE);
}
/*
* Match slave number to zs unit number, so that misconfiguration will
* not set up the keyboard as ttya, etc.
*/
static int
zs_match(struct device *parent, void *vcf, void *args)
{
struct cfdata *cf = vcf;
struct confargs *ca = args;
int unit, x;
unit = cf->cf_unit;
if (unit < 0 || unit >= NZS)
return (0);
if (ca->ca_paddr == -1)
ca->ca_paddr = zs_physaddr[unit];
if (ca->ca_intpri == -1)
ca->ca_intpri = ZSHARD_PRI;
/* The peek returns non-zero on error. */
return !bus_peek(ca, 0, 1, &x);
}
/*
* Attach a found zs.
*
* USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
* SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
*/
static void
zs_attach(struct device *parent, struct device *self, void *args)
{
struct cfdata *cf;
struct confargs *ca;
register int zs, unit;
register struct zsinfo *zi;
register struct zs_chanstate *cs;
register volatile struct zsdevice *addr;
register struct tty *tp, *ctp;
int softcar;
static int didintr;
cf = self->dv_cfdata;
zs = self->dv_unit;
ca = args;
printf(" softpri %d\n", ZSSOFT_PRI);
if (zsaddr[zs] == NULL) {
zsaddr[zs] = (struct zsdevice *)
obio_alloc(ca->ca_paddr, OBIO_ZS_SIZE);
}
addr = zsaddr[zs];
if (!didintr) {
didintr = 1;
isr_add_autovect(zssoft, NULL, ZSSOFT_PRI);
isr_add_autovect(zshard, NULL, ZSHARD_PRI);
}
zi = (struct zsinfo *)self;
zi->zi_zs = addr;
unit = zs * 2;
cs = zi->zi_cs;
if(!zs_tty[unit])
zs_tty[unit] = ttymalloc();
tp = zs_tty[unit];
if(!zs_tty[unit+1])
zs_tty[unit+1] = ttymalloc();
if (unit == 0) {
softcar = 0;
} else
softcar = cf->cf_flags;
/* link into interrupt list with order (A,B) (B=A+1) */
cs[0].cs_next = &cs[1];
cs[1].cs_next = zslist;
zslist = cs;
cs->cs_unit = unit;
cs->cs_zc = &addr->zs_chan[CHAN_A];
cs->cs_speed = zs_getspeed(cs->cs_zc);
#ifdef DEBUG
mon_printf("zs%da speed %d ", zs, cs->cs_speed);
#endif
cs->cs_softcar = softcar & 1;
#if 0
/* XXX - Drop carrier here? -gwr */
zs_modem(cs, cs->cs_softcar ? 1 : 0);
#endif
cs->cs_ttyp = tp;
tp->t_dev = makedev(ZSMAJOR, unit);
tp->t_oproc = zsstart;
tp->t_param = zsparam;
if (cs->cs_zc == zs_conschan) {
/* This unit is the console. */
cs->cs_consio = 1;
cs->cs_brkabort = 1;
cs->cs_softcar = 1;
} else {
/* Can not run kgdb on the console? */
#ifdef KGDB
zs_checkkgdb(unit, cs, tp);
#endif
}
if (unit == ZS_KBD) {
/*
* Keyboard: tell /dev/kbd driver how to talk to us.
*/
tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
tp->t_cflag = CS8;
kbd_serial(tp, zsiopen, zsiclose);
cs->cs_conk = 1; /* do L1-A processing */
}
unit++;
cs++;
tp = zs_tty[unit];
cs->cs_unit = unit;
cs->cs_zc = &addr->zs_chan[CHAN_B];
cs->cs_speed = zs_getspeed(cs->cs_zc);
#ifdef DEBUG
mon_printf("zs%db speed %d\n", zs, cs->cs_speed);
#endif
cs->cs_softcar = softcar & 2;
#if 0
/* XXX - Drop carrier here? -gwr */
zs_modem(cs, cs->cs_softcar ? 1 : 0);
#endif
cs->cs_ttyp = tp;
tp->t_dev = makedev(ZSMAJOR, unit);
tp->t_oproc = zsstart;
tp->t_param = zsparam;
if (cs->cs_zc == zs_conschan) {
/* This unit is the console. */
cs->cs_consio = 1;
cs->cs_brkabort = 1;
cs->cs_softcar = 1;
} else {
/* Can not run kgdb on the console? */
#ifdef KGDB
zs_checkkgdb(unit, cs, tp);
#endif
}
if (unit == ZS_MOUSE) {
/*
* Mouse: tell /dev/mouse driver how to talk to us.
*/
tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
tp->t_cflag = CS8;
ms_serial(tp, zsiopen, zsiclose);
}
}
/*
* Put a channel in a known state. Interrupts may be left disabled
* or enabled, as desired.
*/
static void
zs_reset(zc, inten, speed)
volatile struct zschan *zc;
int inten, speed;
{
int tconst;
static u_char reg[16] = {
0,
0,
0,
ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
0,
0,
0,
0,
ZSWR10_NRZ,
ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
0,
0,
ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
};
reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
tconst = BPS_TO_TCONST(PCLK / 16, speed);
reg[12] = tconst;
reg[13] = tconst >> 8;
zs_loadchannelregs(zc, reg);
}
/*
* Console support
*/
/*
* Used by the kd driver to find out if it can work.
*/
int
zscnprobe_kbd()
{
if (zsaddr[1] == NULL) {
mon_printf("zscnprobe_kbd: zs1 not yet mapped\n");
return CN_DEAD;
}
return CN_INTERNAL;
}
/*
* This is the console probe routine for ttya and ttyb.
*/
static int
zscnprobe(struct consdev *cn, int unit)
{
int maj, eeCons;
if (zsaddr[0] == NULL) {
mon_printf("zscnprobe: zs0 not mapped\n");
cn->cn_pri = CN_DEAD;
return 0;
}
/* XXX - Also try to make sure it exists? */
/* locate the major number */
for (maj = 0; maj < nchrdev; maj++)
if (cdevsw[maj].d_open == (void*)zsopen)
break;
cn->cn_dev = makedev(maj, unit);
/* Use EEPROM console setting to decide "remote" console. */
eeCons = ee_get_byte(EE_CONS_OFFSET, 0);
/* Hack: EE_CONS_TTYA + 1 == EE_CONS_TTYB */
if (eeCons == (EE_CONS_TTYA + unit)) {
cn->cn_pri = CN_REMOTE;
} else {
cn->cn_pri = CN_NORMAL;
}
return (0);
}
/* This is the constab entry for TTYA. */
int
zscnprobe_a(struct consdev *cn)
{
return (zscnprobe(cn, 0));
}
/* This is the constab entry for TTYB. */
int
zscnprobe_b(struct consdev *cn)
{
return (zscnprobe(cn, 1));
}
/* Attach as console. Also set zs_conschan */
int
zscninit(struct consdev *cn)
{
int unit;
volatile struct zsdevice *addr;
unit = minor(cn->cn_dev) & 1;
addr = zsaddr[0];
zs_conschan = ((unit == 0) ?
&addr->zs_chan[CHAN_A] :
&addr->zs_chan[CHAN_B] );
mon_printf("console on zs0 (tty%c)\n", unit + 'a');
}
/*
* Polled console input putchar.
*/
int
zscngetc(dev)
dev_t dev;
{
register volatile struct zschan *zc = zs_conschan;
register int s, c;
if (zc == NULL)
return (0);
s = splhigh();
/* Wait for a character to arrive. */
while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
ZS_DELAY();
ZS_DELAY();
c = zc->zc_data;
ZS_DELAY();
splx(s);
return (c);
}
/*
* Polled console output putchar.
*/
int
zscnputc(dev, c)
dev_t dev;
int c;
{
register volatile struct zschan *zc = zs_conschan;
register int s;
if (zc == NULL) {
s = splhigh();
mon_putchar(c);
splx(s);
return (0);
}
s = splhigh();
/* Wait for transmitter to become ready. */
while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
ZS_DELAY();
ZS_DELAY();
zc->zc_data = c;
ZS_DELAY();
splx(s);
}
#ifdef KGDB
/*
* The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
* Pick up the current speed and character size and restore the original
* speed.
*/
static void
zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp)
{
if (kgdb_dev == makedev(ZSMAJOR, unit)) {
tp->t_ispeed = tp->t_ospeed = kgdb_rate;
tp->t_cflag = CS8;
cs->cs_kgdb = 1;
cs->cs_speed = zs_kgdb_savedspeed;
(void) zsparam(tp, &tp->t_termios);
}
}
#endif
/*
* Compute the current baud rate given a ZSCC channel.
*/
static int
zs_getspeed(zc)
register volatile struct zschan *zc;
{
register int tconst;
tconst = ZS_READ(zc, 12);
tconst |= ZS_READ(zc, 13) << 8;
return (TCONST_TO_BPS(PCLK / 16, tconst));
}
/*
* Do an internal open.
*/
static void
zsiopen(struct tty *tp)
{
(void) zsparam(tp, &tp->t_termios);
ttsetwater(tp);
tp->t_state = TS_ISOPEN | TS_CARR_ON;
}
/*
* Do an internal close. Eventually we should shut off the chip when both
* ports on it are closed.
*/
static void
zsiclose(struct tty *tp)
{
ttylclose(tp, 0); /* ??? */
ttyclose(tp); /* ??? */
tp->t_state = 0;
}
/*
* Open a zs serial port. This interface may not be used to open
* the keyboard and mouse ports. (XXX)
*/
int
zsopen(dev_t dev, int flags, int mode, struct proc *p)
{
register struct tty *tp;
register struct zs_chanstate *cs;
struct zsinfo *zi;
int unit = minor(dev), zs = unit >> 1, error, s;
#ifdef DEBUG
mon_printf("zs_open\n");
#endif
if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
unit == ZS_KBD || unit == ZS_MOUSE)
return (ENXIO);
cs = &zi->zi_cs[unit & 1];
#if 0
/* The kd driver avoids the need for this hack. */
if (cs->cs_consio)
return (ENXIO); /* ??? */
#endif
tp = cs->cs_ttyp;
s = spltty();
if ((tp->t_state & TS_ISOPEN) == 0) {
ttychars(tp);
if (tp->t_ispeed == 0) {
tp->t_iflag = TTYDEF_IFLAG;
tp->t_oflag = TTYDEF_OFLAG;
#if 0
tp->t_cflag = TTYDEF_CFLAG;
#else
/* Make default same as PROM uses. */
tp->t_cflag = (CREAD | CS8 | HUPCL);
#endif
tp->t_lflag = TTYDEF_LFLAG;
tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
}
(void) zsparam(tp, &tp->t_termios);
ttsetwater(tp);
} else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
splx(s);
return (EBUSY);
}
error = 0;
#ifdef DEBUG
mon_printf("wait for carrier...\n");
#endif
for (;;) {
/* loop, turning on the device, until carrier present */
zs_modem(cs, 1);
/* May never get status intr if carrier already on. -gwr */
if (cs->cs_zc->zc_csr & ZSRR0_DCD)
tp->t_state |= TS_CARR_ON;
if (cs->cs_softcar)
tp->t_state |= TS_CARR_ON;
if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
tp->t_state & TS_CARR_ON)
break;
tp->t_state |= TS_WOPEN;
if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
ttopen, 0))
break;
}
#ifdef DEBUG
mon_printf("...carrier %s\n",
(tp->t_state & TS_CARR_ON) ? "on" : "off");
#endif
splx(s);
if (error == 0)
error = linesw[tp->t_line].l_open(dev, tp);
if (error)
zs_modem(cs, 0);
return (error);
}
/*
* Close a zs serial port.
*/
int
zsclose(dev_t dev, int flags, int mode, struct proc *p)
{
register struct zs_chanstate *cs;
register struct tty *tp;
struct zsinfo *zi;
int unit = minor(dev), s;
#ifdef DEBUG
mon_printf("zs_close\n");
#endif
zi = zscd.cd_devs[unit >> 1];
cs = &zi->zi_cs[unit & 1];
tp = cs->cs_ttyp;
linesw[tp->t_line].l_close(tp, flags);
if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
(tp->t_state & TS_ISOPEN) == 0) {
zs_modem(cs, 0);
/* hold low for 1 second */
(void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
}
if (cs->cs_creg[5] & ZSWR5_BREAK)
{
s = splzs();
cs->cs_preg[5] &= ~ZSWR5_BREAK;
cs->cs_creg[5] &= ~ZSWR5_BREAK;
ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
splx(s);
}
ttyclose(tp);
#ifdef KGDB
/* Reset the speed if we're doing kgdb on this port */
if (cs->cs_kgdb) {
tp->t_ispeed = tp->t_ospeed = kgdb_rate;
(void) zsparam(tp, &tp->t_termios);
}
#endif
return (0);
}
/*
* Read/write zs serial port.
*/
int
zsread(dev_t dev, struct uio *uio, int flags)
{
register struct tty *tp = zs_tty[minor(dev)];
return (linesw[tp->t_line].l_read(tp, uio, flags));
}
int
zswrite(dev_t dev, struct uio *uio, int flags)
{
register struct tty *tp = zs_tty[minor(dev)];
return (linesw[tp->t_line].l_write(tp, uio, flags));
}
/*
* ZS hardware interrupt. Scan all ZS channels. NB: we know here that
* channels are kept in (A,B) pairs.
*
* Do just a little, then get out; set a software interrupt if more
* work is needed.
*
* We deliberately ignore the vectoring Zilog gives us, and match up
* only the number of `reset interrupt under service' operations, not
* the order.
*/
/* ARGSUSED */
int
zshard(int intrarg)
{
register struct zs_chanstate *a;
#define b (a + 1)
register volatile struct zschan *zc;
register int rr3, intflags = 0, v, i;
static int zsrint(struct zs_chanstate *, volatile struct zschan *);
static int zsxint(struct zs_chanstate *, volatile struct zschan *);
static int zssint(struct zs_chanstate *, volatile struct zschan *);
for (a = zslist; a != NULL; a = b->cs_next) {
rr3 = ZS_READ(a->cs_zc, 3);
/* XXX - This should loop to empty the on-chip fifo. */
if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
intflags |= 2;
zc = a->cs_zc;
i = a->cs_rbput;
if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
intflags |= 1;
}
if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
intflags |= 1;
}
if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
intflags |= 1;
}
a->cs_rbput = i;
}
/* XXX - This should loop to empty the on-chip fifo. */
if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
intflags |= 2;
zc = b->cs_zc;
i = b->cs_rbput;
if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
intflags |= 1;
}
if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
intflags |= 1;
}
if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
intflags |= 1;
}
b->cs_rbput = i;
}
}
#undef b
if (intflags & 1) {
if (zssoftpending == 0) {
zssoftpending = ZSSOFT_PRI;
isr_soft_request(ZSSOFT_PRI);
}
}
return (intflags & 2);
}
static int
zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
{
register int c = zc->zc_data;
if (cs->cs_conk) {
register struct conk_state *conk = &zsconk_state;
/*
* Check here for console abort function, so that we
* can abort even when interrupts are locking up the
* machine.
*/
if (c == KBD_RESET) {
conk->conk_id = 1; /* ignore next byte */
conk->conk_l1 = 0;
} else if (conk->conk_id)
conk->conk_id = 0; /* stop ignoring bytes */
else if (c == KBD_L1)
conk->conk_l1 = 1; /* L1 went down */
else if (c == (KBD_L1|KBD_UP))
conk->conk_l1 = 0; /* L1 went up */
else if (c == KBD_A && conk->conk_l1) {
zsabort();
conk->conk_l1 = 0; /* we never see the up */
goto clearit; /* eat the A after L1-A */
}
}
#ifdef KGDB
if (c == FRAME_START && cs->cs_kgdb &&
(cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
zskgdb(cs->cs_unit);
goto clearit;
}
#endif
/* compose receive character and status */
c <<= 8;
c |= ZS_READ(zc, 1);
/* clear receive error & interrupt condition */
zc->zc_csr = ZSWR0_RESET_ERRORS;
zc->zc_csr = ZSWR0_CLR_INTR;
return (ZRING_MAKE(ZRING_RINT, c));
clearit:
zc->zc_csr = ZSWR0_RESET_ERRORS;
zc->zc_csr = ZSWR0_CLR_INTR;
return (0);
}
static int
zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
{
register int i = cs->cs_tbc;
if (i == 0) {
zc->zc_csr = ZSWR0_RESET_TXINT;
zc->zc_csr = ZSWR0_CLR_INTR;
return (ZRING_MAKE(ZRING_XINT, 0));
}
cs->cs_tbc = i - 1;
zc->zc_data = *cs->cs_tba++;
zc->zc_csr = ZSWR0_CLR_INTR;
return (0);
}
static int
zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
{
register int rr0;
rr0 = zc->zc_csr;
zc->zc_csr = ZSWR0_RESET_STATUS;
zc->zc_csr = ZSWR0_CLR_INTR;
/*
* The chip's hardware flow control is, as noted in zsreg.h,
* busted---if the DCD line goes low the chip shuts off the
* receiver (!). If we want hardware CTS flow control but do
* not have it, and carrier is now on, turn HFC on; if we have
* HFC now but carrier has gone low, turn it off.
*/
if (rr0 & ZSRR0_DCD) {
if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
(cs->cs_creg[3] & ZSWR3_HFC) == 0) {
cs->cs_creg[3] |= ZSWR3_HFC;
ZS_WRITE(zc, 3, cs->cs_creg[3]);
}
} else {
if (cs->cs_creg[3] & ZSWR3_HFC) {
cs->cs_creg[3] &= ~ZSWR3_HFC;
ZS_WRITE(zc, 3, cs->cs_creg[3]);
}
}
if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
/* Wait for end of break to avoid PROM abort. */
while (zc->zc_csr & ZSRR0_BREAK)
ZS_DELAY();
zsabort();
return (0);
}
return (ZRING_MAKE(ZRING_SINT, rr0));
}
zsabort()
{
#ifdef DDB
Debugger();
#else
printf("stopping on keyboard abort\n");
sun3_rom_abort();
#endif
}
#ifdef KGDB
/*
* KGDB framing character received: enter kernel debugger. This probably
* should time out after a few seconds to avoid hanging on spurious input.
*/
zskgdb(int unit)
{
printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
kgdb_connect(1);
}
#endif
/*
* Print out a ring or fifo overrun error message.
*/
static void
zsoverrun(int unit, long *ptime, char *what)
{
if (*ptime != time.tv_sec) {
*ptime = time.tv_sec;
log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
(unit & 1) + 'a', what);
}
}
/*
* ZS software interrupt. Scan all channels for deferred interrupts.
*/
int
zssoft(int arg)
{
register struct zs_chanstate *cs;
register volatile struct zschan *zc;
register struct linesw *line;
register struct tty *tp;
register int get, n, c, cc, unit, s;
if (zssoftpending == 0)
return (0);
zssoftpending = 0;
isr_soft_clear(ZSSOFT_PRI);
for (cs = zslist; cs != NULL; cs = cs->cs_next) {
get = cs->cs_rbget;
again:
n = cs->cs_rbput; /* atomic */
if (get == n) /* nothing more on this line */
continue;
unit = cs->cs_unit; /* set up to handle interrupts */
zc = cs->cs_zc;
tp = cs->cs_ttyp;
line = &linesw[tp->t_line];
/*
* Compute the number of interrupts in the receive ring.
* If the count is overlarge, we lost some events, and
* must advance to the first valid one. It may get
* overwritten if more data are arriving, but this is
* too expensive to check and gains nothing (we already
* lost out; all we can do at this point is trade one
* kind of loss for another).
*/
n -= get;
if (n > ZLRB_RING_SIZE) {
zsoverrun(unit, &cs->cs_rotime, "ring");
get += n - ZLRB_RING_SIZE;
n = ZLRB_RING_SIZE;
}
while (--n >= 0) {
/* race to keep ahead of incoming interrupts */
c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
switch (ZRING_TYPE(c)) {
case ZRING_RINT:
c = ZRING_VALUE(c);
if (c & ZSRR1_DO)
zsoverrun(unit, &cs->cs_fotime, "fifo");
cc = c >> 8;
if (c & ZSRR1_FE)
cc |= TTY_FE;
if (c & ZSRR1_PE)
cc |= TTY_PE;
/*
* this should be done through
* bstreams XXX gag choke
*/
if (unit == ZS_KBD)
kbd_rint(cc);
else if (unit == ZS_MOUSE)
ms_rint(cc);
else
line->l_rint(cc, tp);
break;
case ZRING_XINT:
/*
* Transmit done: change registers and resume,
* or clear BUSY.
*/
if (cs->cs_heldchange) {
s = splzs();
c = zc->zc_csr;
if ((c & ZSRR0_DCD) == 0)
cs->cs_preg[3] &= ~ZSWR3_HFC;
bcopy((caddr_t)cs->cs_preg,
(caddr_t)cs->cs_creg, 16);
zs_loadchannelregs(zc, cs->cs_creg);
splx(s);
cs->cs_heldchange = 0;
if (cs->cs_heldtbc &&
(tp->t_state & TS_TTSTOP) == 0) {
cs->cs_tbc = cs->cs_heldtbc - 1;
zc->zc_data = *cs->cs_tba++;
goto again;
}
}
tp->t_state &= ~TS_BUSY;
if (tp->t_state & TS_FLUSH)
tp->t_state &= ~TS_FLUSH;
else
ndflush(&tp->t_outq, cs->cs_tba -
(caddr_t) tp->t_outq.c_cf);
line->l_start(tp);
break;
case ZRING_SINT:
/*
* Status line change. HFC bit is run in
* hardware interrupt, to avoid locking
* at splzs here.
*/
c = ZRING_VALUE(c);
if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
cc = (c & ZSRR0_DCD) != 0;
if (line->l_modem(tp, cc) == 0)
zs_modem(cs, cc);
}
cs->cs_rr0 = c;
break;
default:
log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
unit >> 1, (unit & 1) + 'a', c);
break;
}
}
cs->cs_rbget = get;
goto again;
}
return (1);
}
int
zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
{
int unit = minor(dev);
struct zsinfo *zi = zscd.cd_devs[unit >> 1];
register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
register struct tty *tp = cs->cs_ttyp;
register int error, s;
error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
if (error >= 0)
return (error);
error = ttioctl(tp, cmd, data, flag, p);
if (error >= 0)
return (error);
switch (cmd) {
case TIOCSBRK:
{
s = splzs();
cs->cs_preg[5] |= ZSWR5_BREAK;
cs->cs_creg[5] |= ZSWR5_BREAK;
ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
splx(s);
break;
}
case TIOCCBRK:
{
s = splzs();
cs->cs_preg[5] &= ~ZSWR5_BREAK;
cs->cs_creg[5] &= ~ZSWR5_BREAK;
ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
splx(s);
break;
}
case TIOCSDTR:
case TIOCCDTR:
case TIOCMSET:
case TIOCMBIS:
case TIOCMBIC:
case TIOCMGET:
default:
return (ENOTTY);
}
return (0);
}
/*
* Start or restart transmission.
*/
static void
zsstart(register struct tty *tp)
{
register struct zs_chanstate *cs;
register int s, nch;
int unit = minor(tp->t_dev);
struct zsinfo *zi = zscd.cd_devs[unit >> 1];
cs = &zi->zi_cs[unit & 1];
s = spltty();
/*
* If currently active or delaying, no need to do anything.
*/
if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
goto out;
/*
* If there are sleepers, and output has drained below low
* water mark, awaken.
*/
if (tp->t_outq.c_cc <= tp->t_lowat) {
if (tp->t_state & TS_ASLEEP) {
tp->t_state &= ~TS_ASLEEP;
wakeup((caddr_t)&tp->t_outq);
}
selwakeup(&tp->t_wsel);
}
nch = ndqb(&tp->t_outq, 0); /* XXX */
if (nch) {
register char *p = tp->t_outq.c_cf;
/* mark busy, enable tx done interrupts, & send first byte */
tp->t_state |= TS_BUSY;
(void) splzs();
cs->cs_preg[1] |= ZSWR1_TIE;
cs->cs_creg[1] |= ZSWR1_TIE;
ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
cs->cs_zc->zc_data = *p;
cs->cs_tba = p + 1;
cs->cs_tbc = nch - 1;
} else {
/*
* Nothing to send, turn off transmit done interrupts.
* This is useful if something is doing polled output.
*/
(void) splzs();
cs->cs_preg[1] &= ~ZSWR1_TIE;
cs->cs_creg[1] &= ~ZSWR1_TIE;
ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
}
out:
splx(s);
}
/*
* Stop output, e.g., for ^S or output flush.
*/
void
zsstop(register struct tty *tp, int flag)
{
register struct zs_chanstate *cs;
register int s, unit = minor(tp->t_dev);
struct zsinfo *zi = zscd.cd_devs[unit >> 1];
cs = &zi->zi_cs[unit & 1];
s = splzs();
if (tp->t_state & TS_BUSY) {
/*
* Device is transmitting; must stop it.
*/
cs->cs_tbc = 0;
if ((tp->t_state & TS_TTSTOP) == 0)
tp->t_state |= TS_FLUSH;
}
splx(s);
}
/*
* Set ZS tty parameters from termios.
*
* This routine makes use of the fact that only registers
* 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
*/
static int
zsparam(register struct tty *tp, register struct termios *t)
{
int unit = minor(tp->t_dev);
struct zsinfo *zi = zscd.cd_devs[unit >> 1];
register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
register int tmp, tmp5, cflag, s;
/*
* Because PCLK is only run at 4.9 MHz, the fastest we
* can go is 51200 baud (this corresponds to TC=1).
* This is somewhat unfortunate as there is no real
* reason we should not be able to handle higher rates.
*/
tmp = t->c_ospeed;
if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
return (EINVAL);
if (tmp == 0) {
/* stty 0 => drop DTR and RTS */
zs_modem(cs, 0);
return (0);
}
tmp = BPS_TO_TCONST(PCLK / 16, tmp);
if (tmp < 2)
return (EINVAL);
cflag = t->c_cflag;
tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
tp->t_cflag = cflag;
/*
* Block interrupts so that state will not
* be altered until we are done setting it up.
*/
s = splzs();
cs->cs_preg[12] = tmp;
cs->cs_preg[13] = tmp >> 8;
cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
switch (cflag & CSIZE) {
case CS5:
tmp = ZSWR3_RX_5;
tmp5 = ZSWR5_TX_5;
break;
case CS6:
tmp = ZSWR3_RX_6;
tmp5 = ZSWR5_TX_6;
break;
case CS7:
tmp = ZSWR3_RX_7;
tmp5 = ZSWR5_TX_7;
break;
case CS8:
default:
tmp = ZSWR3_RX_8;
tmp5 = ZSWR5_TX_8;
break;
}
/*
* Output hardware flow control on the chip is horrendous: if
* carrier detect drops, the receiver is disabled. Hence we
* can only do this when the carrier is on.
*/
if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
else
tmp |= ZSWR3_RX_ENABLE;
cs->cs_preg[3] = tmp;
cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
if ((cflag & PARODD) == 0)
tmp |= ZSWR4_EVENP;
if (cflag & PARENB)
tmp |= ZSWR4_PARENB;
cs->cs_preg[4] = tmp;
cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
cs->cs_preg[10] = ZSWR10_NRZ;
cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
/*
* If nothing is being transmitted, set up new current values,
* else mark them as pending.
*/
if (cs->cs_heldchange == 0) {
if (cs->cs_ttyp->t_state & TS_BUSY) {
cs->cs_heldtbc = cs->cs_tbc;
cs->cs_tbc = 0;
cs->cs_heldchange = 1;
} else {
bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
}
}
splx(s);
return (0);
}
/*
* Raise or lower modem control (DTR/RTS) signals. If a character is
* in transmission, the change is deferred.
*/
static void
zs_modem(struct zs_chanstate *cs, int onoff)
{
int s, bis, and;
if (onoff) {
bis = ZSWR5_DTR | ZSWR5_RTS;
and = ~0;
} else {
bis = 0;
and = ~(ZSWR5_DTR | ZSWR5_RTS);
}
s = splzs();
cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
if (cs->cs_heldchange == 0) {
if (cs->cs_ttyp->t_state & TS_BUSY) {
cs->cs_heldtbc = cs->cs_tbc;
cs->cs_tbc = 0;
cs->cs_heldchange = 1;
} else {
cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
}
}
splx(s);
}
/*
* Write the given register set to the given zs channel in the proper order.
* The channel must not be transmitting at the time. The receiver will
* be disabled for the time it takes to write all the registers.
*/
static void
zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
{
int i;
zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
i = zc->zc_data; /* drain fifo */
i = zc->zc_data;
i = zc->zc_data;
ZS_WRITE(zc, 4, reg[4]);
ZS_WRITE(zc, 10, reg[10]);
ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
ZS_WRITE(zc, 1, reg[1]);
ZS_WRITE(zc, 9, reg[9]);
ZS_WRITE(zc, 11, reg[11]);
ZS_WRITE(zc, 12, reg[12]);
ZS_WRITE(zc, 13, reg[13]);
ZS_WRITE(zc, 14, reg[14]);
ZS_WRITE(zc, 15, reg[15]);
ZS_WRITE(zc, 3, reg[3]);
ZS_WRITE(zc, 5, reg[5]);
}
static u_char
zs_read(zc, reg)
volatile struct zschan *zc;
u_char reg;
{
u_char val;
zc->zc_csr = reg;
ZS_DELAY();
val = zc->zc_csr;
ZS_DELAY();
return val;
}
static u_char
zs_write(zc, reg, val)
volatile struct zschan *zc;
u_char reg, val;
{
zc->zc_csr = reg;
ZS_DELAY();
zc->zc_csr = val;
ZS_DELAY();
return val;
}
#ifdef KGDB
/*
* Get a character from the given kgdb channel. Called at splhigh().
* XXX - Add delays, or combine with zscngetc()...
*/
static int
zs_kgdb_getc(void *arg)
{
register volatile struct zschan *zc = (volatile struct zschan *)arg;
while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
continue;
return (zc->zc_data);
}
/*
* Put a character to the given kgdb channel. Called at splhigh().
*/
static void
zs_kgdb_putc(void *arg, int c)
{
register volatile struct zschan *zc = (volatile struct zschan *)arg;
while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
continue;
zc->zc_data = c;
}
/*
* Set up for kgdb; called at boot time before configuration.
* KGDB interrupts will be enabled later when zs0 is configured.
*/
void
zs_kgdb_init()
{
volatile struct zsdevice *addr;
volatile struct zschan *zc;
int unit, zs;
if (major(kgdb_dev) != ZSMAJOR)
return;
unit = minor(kgdb_dev);
/*
* Unit must be 0 or 1 (zs0).
*/
if ((unsigned)unit >= ZS_KBD) {
printf("zs_kgdb_init: bad minor dev %d\n", unit);
return;
}
zs = unit >> 1;
unit &= 1;
if (zsaddr[0] == NULL)
panic("kbdb_attach: zs0 not yet mapped");
addr = zsaddr[0];
zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B];
zs_kgdb_savedspeed = zs_getspeed(zc);
printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
zs, unit + 'a', kgdb_rate);
zs_reset(zc, 1, kgdb_rate);
kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
}
#endif /* KGDB */