1083f0866d
our last 4.1 branch import, plus a few other changes: c/27718 26242 c++/27451 c/26818 tree-optimization/26622 target/27758 middle-end/27743 middle-end/27620 tree-optimization/27549 tree-optimization/27283 target/26600 c++/26757 driver/26885 tree-optimization/27603 rtl-optimization/14261 rtl-optimization/22563 middle-end/26729 rtl-optimization/27335 target/27421 middle-end/27384 middle-end/27488 target/27158 bootstrap/26872 target/26545 tree-optimization/27136 tree-optimization/27409 middle-end/27260 tree-optimization/27151 target/26481 target/26765 target/26481 tree-optimization/27285 optimization/25985 tree-optimization/27364 c/25309 target/27387 target/27374 middle-end/26565 target/26826 tree-optimization/27236 middle-end/26869 tree-optimization/27218 rtl-optimization/26685 tree-optimization/26865 target/26961 target/21283 c/26774 c/25875 mudflap/26789
7696 lines
239 KiB
C
7696 lines
239 KiB
C
/* Process declarations and variables for C compiler.
|
||
Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
|
||
2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
/* Process declarations and symbol lookup for C front end.
|
||
Also constructs types; the standard scalar types at initialization,
|
||
and structure, union, array and enum types when they are declared. */
|
||
|
||
/* ??? not all decl nodes are given the most useful possible
|
||
line numbers. For example, the CONST_DECLs for enum values. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "input.h"
|
||
#include "tm.h"
|
||
#include "intl.h"
|
||
#include "tree.h"
|
||
#include "tree-inline.h"
|
||
#include "rtl.h"
|
||
#include "flags.h"
|
||
#include "function.h"
|
||
#include "output.h"
|
||
#include "expr.h"
|
||
#include "c-tree.h"
|
||
#include "toplev.h"
|
||
#include "ggc.h"
|
||
#include "tm_p.h"
|
||
#include "cpplib.h"
|
||
#include "target.h"
|
||
#include "debug.h"
|
||
#include "opts.h"
|
||
#include "timevar.h"
|
||
#include "c-common.h"
|
||
#include "c-pragma.h"
|
||
#include "langhooks.h"
|
||
#include "tree-mudflap.h"
|
||
#include "tree-gimple.h"
|
||
#include "diagnostic.h"
|
||
#include "tree-dump.h"
|
||
#include "cgraph.h"
|
||
#include "hashtab.h"
|
||
#include "libfuncs.h"
|
||
#include "except.h"
|
||
#include "langhooks-def.h"
|
||
#include "pointer-set.h"
|
||
|
||
/* In grokdeclarator, distinguish syntactic contexts of declarators. */
|
||
enum decl_context
|
||
{ NORMAL, /* Ordinary declaration */
|
||
FUNCDEF, /* Function definition */
|
||
PARM, /* Declaration of parm before function body */
|
||
FIELD, /* Declaration inside struct or union */
|
||
TYPENAME}; /* Typename (inside cast or sizeof) */
|
||
|
||
|
||
/* Nonzero if we have seen an invalid cross reference
|
||
to a struct, union, or enum, but not yet printed the message. */
|
||
tree pending_invalid_xref;
|
||
|
||
/* File and line to appear in the eventual error message. */
|
||
location_t pending_invalid_xref_location;
|
||
|
||
/* True means we've initialized exception handling. */
|
||
bool c_eh_initialized_p;
|
||
|
||
/* While defining an enum type, this is 1 plus the last enumerator
|
||
constant value. Note that will do not have to save this or `enum_overflow'
|
||
around nested function definition since such a definition could only
|
||
occur in an enum value expression and we don't use these variables in
|
||
that case. */
|
||
|
||
static tree enum_next_value;
|
||
|
||
/* Nonzero means that there was overflow computing enum_next_value. */
|
||
|
||
static int enum_overflow;
|
||
|
||
/* The file and line that the prototype came from if this is an
|
||
old-style definition; used for diagnostics in
|
||
store_parm_decls_oldstyle. */
|
||
|
||
static location_t current_function_prototype_locus;
|
||
|
||
/* Whether this prototype was built-in. */
|
||
|
||
static bool current_function_prototype_built_in;
|
||
|
||
/* The argument type information of this prototype. */
|
||
|
||
static tree current_function_prototype_arg_types;
|
||
|
||
/* The argument information structure for the function currently being
|
||
defined. */
|
||
|
||
static struct c_arg_info *current_function_arg_info;
|
||
|
||
/* The obstack on which parser and related data structures, which are
|
||
not live beyond their top-level declaration or definition, are
|
||
allocated. */
|
||
struct obstack parser_obstack;
|
||
|
||
/* The current statement tree. */
|
||
|
||
static GTY(()) struct stmt_tree_s c_stmt_tree;
|
||
|
||
/* State saving variables. */
|
||
tree c_break_label;
|
||
tree c_cont_label;
|
||
|
||
/* Linked list of TRANSLATION_UNIT_DECLS for the translation units
|
||
included in this invocation. Note that the current translation
|
||
unit is not included in this list. */
|
||
|
||
static GTY(()) tree all_translation_units;
|
||
|
||
/* A list of decls to be made automatically visible in each file scope. */
|
||
static GTY(()) tree visible_builtins;
|
||
|
||
/* Set to 0 at beginning of a function definition, set to 1 if
|
||
a return statement that specifies a return value is seen. */
|
||
|
||
int current_function_returns_value;
|
||
|
||
/* Set to 0 at beginning of a function definition, set to 1 if
|
||
a return statement with no argument is seen. */
|
||
|
||
int current_function_returns_null;
|
||
|
||
/* Set to 0 at beginning of a function definition, set to 1 if
|
||
a call to a noreturn function is seen. */
|
||
|
||
int current_function_returns_abnormally;
|
||
|
||
/* Set to nonzero by `grokdeclarator' for a function
|
||
whose return type is defaulted, if warnings for this are desired. */
|
||
|
||
static int warn_about_return_type;
|
||
|
||
/* Nonzero when starting a function declared `extern inline'. */
|
||
|
||
static int current_extern_inline;
|
||
|
||
/* Nonzero when the current toplevel function contains a declaration
|
||
of a nested function which is never defined. */
|
||
|
||
static bool undef_nested_function;
|
||
|
||
/* True means global_bindings_p should return false even if the scope stack
|
||
says we are in file scope. */
|
||
bool c_override_global_bindings_to_false;
|
||
|
||
|
||
/* Each c_binding structure describes one binding of an identifier to
|
||
a decl. All the decls in a scope - irrespective of namespace - are
|
||
chained together by the ->prev field, which (as the name implies)
|
||
runs in reverse order. All the decls in a given namespace bound to
|
||
a given identifier are chained by the ->shadowed field, which runs
|
||
from inner to outer scopes.
|
||
|
||
The ->decl field usually points to a DECL node, but there are two
|
||
exceptions. In the namespace of type tags, the bound entity is a
|
||
RECORD_TYPE, UNION_TYPE, or ENUMERAL_TYPE node. If an undeclared
|
||
identifier is encountered, it is bound to error_mark_node to
|
||
suppress further errors about that identifier in the current
|
||
function.
|
||
|
||
The ->type field stores the type of the declaration in this scope;
|
||
if NULL, the type is the type of the ->decl field. This is only of
|
||
relevance for objects with external or internal linkage which may
|
||
be redeclared in inner scopes, forming composite types that only
|
||
persist for the duration of those scopes. In the external scope,
|
||
this stores the composite of all the types declared for this
|
||
object, visible or not. The ->inner_comp field (used only at file
|
||
scope) stores whether an incomplete array type at file scope was
|
||
completed at an inner scope to an array size other than 1.
|
||
|
||
The depth field is copied from the scope structure that holds this
|
||
decl. It is used to preserve the proper ordering of the ->shadowed
|
||
field (see bind()) and also for a handful of special-case checks.
|
||
Finally, the invisible bit is true for a decl which should be
|
||
ignored for purposes of normal name lookup, and the nested bit is
|
||
true for a decl that's been bound a second time in an inner scope;
|
||
in all such cases, the binding in the outer scope will have its
|
||
invisible bit true. */
|
||
|
||
struct c_binding GTY((chain_next ("%h.prev")))
|
||
{
|
||
tree decl; /* the decl bound */
|
||
tree type; /* the type in this scope */
|
||
tree id; /* the identifier it's bound to */
|
||
struct c_binding *prev; /* the previous decl in this scope */
|
||
struct c_binding *shadowed; /* the innermost decl shadowed by this one */
|
||
unsigned int depth : 28; /* depth of this scope */
|
||
BOOL_BITFIELD invisible : 1; /* normal lookup should ignore this binding */
|
||
BOOL_BITFIELD nested : 1; /* do not set DECL_CONTEXT when popping */
|
||
BOOL_BITFIELD inner_comp : 1; /* incomplete array completed in inner scope */
|
||
/* one free bit */
|
||
};
|
||
#define B_IN_SCOPE(b1, b2) ((b1)->depth == (b2)->depth)
|
||
#define B_IN_CURRENT_SCOPE(b) ((b)->depth == current_scope->depth)
|
||
#define B_IN_FILE_SCOPE(b) ((b)->depth == 1 /*file_scope->depth*/)
|
||
#define B_IN_EXTERNAL_SCOPE(b) ((b)->depth == 0 /*external_scope->depth*/)
|
||
|
||
#define I_SYMBOL_BINDING(node) \
|
||
(((struct lang_identifier *) IDENTIFIER_NODE_CHECK(node))->symbol_binding)
|
||
#define I_SYMBOL_DECL(node) \
|
||
(I_SYMBOL_BINDING(node) ? I_SYMBOL_BINDING(node)->decl : 0)
|
||
|
||
#define I_TAG_BINDING(node) \
|
||
(((struct lang_identifier *) IDENTIFIER_NODE_CHECK(node))->tag_binding)
|
||
#define I_TAG_DECL(node) \
|
||
(I_TAG_BINDING(node) ? I_TAG_BINDING(node)->decl : 0)
|
||
|
||
#define I_LABEL_BINDING(node) \
|
||
(((struct lang_identifier *) IDENTIFIER_NODE_CHECK(node))->label_binding)
|
||
#define I_LABEL_DECL(node) \
|
||
(I_LABEL_BINDING(node) ? I_LABEL_BINDING(node)->decl : 0)
|
||
|
||
/* Each C symbol points to three linked lists of c_binding structures.
|
||
These describe the values of the identifier in the three different
|
||
namespaces defined by the language. */
|
||
|
||
struct lang_identifier GTY(())
|
||
{
|
||
struct c_common_identifier common_id;
|
||
struct c_binding *symbol_binding; /* vars, funcs, constants, typedefs */
|
||
struct c_binding *tag_binding; /* struct/union/enum tags */
|
||
struct c_binding *label_binding; /* labels */
|
||
};
|
||
|
||
/* Validate c-lang.c's assumptions. */
|
||
extern char C_SIZEOF_STRUCT_LANG_IDENTIFIER_isnt_accurate
|
||
[(sizeof(struct lang_identifier) == C_SIZEOF_STRUCT_LANG_IDENTIFIER) ? 1 : -1];
|
||
|
||
/* The resulting tree type. */
|
||
|
||
union lang_tree_node
|
||
GTY((desc ("TREE_CODE (&%h.generic) == IDENTIFIER_NODE"),
|
||
chain_next ("TREE_CODE (&%h.generic) == INTEGER_TYPE ? (union lang_tree_node *) TYPE_NEXT_VARIANT (&%h.generic) : (union lang_tree_node *) TREE_CHAIN (&%h.generic)")))
|
||
{
|
||
union tree_node GTY ((tag ("0"),
|
||
desc ("tree_node_structure (&%h)")))
|
||
generic;
|
||
struct lang_identifier GTY ((tag ("1"))) identifier;
|
||
};
|
||
|
||
/* Each c_scope structure describes the complete contents of one
|
||
scope. Four scopes are distinguished specially: the innermost or
|
||
current scope, the innermost function scope, the file scope (always
|
||
the second to outermost) and the outermost or external scope.
|
||
|
||
Most declarations are recorded in the current scope.
|
||
|
||
All normal label declarations are recorded in the innermost
|
||
function scope, as are bindings of undeclared identifiers to
|
||
error_mark_node. (GCC permits nested functions as an extension,
|
||
hence the 'innermost' qualifier.) Explicitly declared labels
|
||
(using the __label__ extension) appear in the current scope.
|
||
|
||
Being in the file scope (current_scope == file_scope) causes
|
||
special behavior in several places below. Also, under some
|
||
conditions the Objective-C front end records declarations in the
|
||
file scope even though that isn't the current scope.
|
||
|
||
All declarations with external linkage are recorded in the external
|
||
scope, even if they aren't visible there; this models the fact that
|
||
such declarations are visible to the entire program, and (with a
|
||
bit of cleverness, see pushdecl) allows diagnosis of some violations
|
||
of C99 6.2.2p7 and 6.2.7p2:
|
||
|
||
If, within the same translation unit, the same identifier appears
|
||
with both internal and external linkage, the behavior is
|
||
undefined.
|
||
|
||
All declarations that refer to the same object or function shall
|
||
have compatible type; otherwise, the behavior is undefined.
|
||
|
||
Initially only the built-in declarations, which describe compiler
|
||
intrinsic functions plus a subset of the standard library, are in
|
||
this scope.
|
||
|
||
The order of the blocks list matters, and it is frequently appended
|
||
to. To avoid having to walk all the way to the end of the list on
|
||
each insertion, or reverse the list later, we maintain a pointer to
|
||
the last list entry. (FIXME: It should be feasible to use a reversed
|
||
list here.)
|
||
|
||
The bindings list is strictly in reverse order of declarations;
|
||
pop_scope relies on this. */
|
||
|
||
|
||
struct c_scope GTY((chain_next ("%h.outer")))
|
||
{
|
||
/* The scope containing this one. */
|
||
struct c_scope *outer;
|
||
|
||
/* The next outermost function scope. */
|
||
struct c_scope *outer_function;
|
||
|
||
/* All bindings in this scope. */
|
||
struct c_binding *bindings;
|
||
|
||
/* For each scope (except the global one), a chain of BLOCK nodes
|
||
for all the scopes that were entered and exited one level down. */
|
||
tree blocks;
|
||
tree blocks_last;
|
||
|
||
/* The depth of this scope. Used to keep the ->shadowed chain of
|
||
bindings sorted innermost to outermost. */
|
||
unsigned int depth : 28;
|
||
|
||
/* True if we are currently filling this scope with parameter
|
||
declarations. */
|
||
BOOL_BITFIELD parm_flag : 1;
|
||
|
||
/* True if we already complained about forward parameter decls
|
||
in this scope. This prevents double warnings on
|
||
foo (int a; int b; ...) */
|
||
BOOL_BITFIELD warned_forward_parm_decls : 1;
|
||
|
||
/* True if this is the outermost block scope of a function body.
|
||
This scope contains the parameters, the local variables declared
|
||
in the outermost block, and all the labels (except those in
|
||
nested functions, or declared at block scope with __label__). */
|
||
BOOL_BITFIELD function_body : 1;
|
||
|
||
/* True means make a BLOCK for this scope no matter what. */
|
||
BOOL_BITFIELD keep : 1;
|
||
};
|
||
|
||
/* The scope currently in effect. */
|
||
|
||
static GTY(()) struct c_scope *current_scope;
|
||
|
||
/* The innermost function scope. Ordinary (not explicitly declared)
|
||
labels, bindings to error_mark_node, and the lazily-created
|
||
bindings of __func__ and its friends get this scope. */
|
||
|
||
static GTY(()) struct c_scope *current_function_scope;
|
||
|
||
/* The C file scope. This is reset for each input translation unit. */
|
||
|
||
static GTY(()) struct c_scope *file_scope;
|
||
|
||
/* The outermost scope. This is used for all declarations with
|
||
external linkage, and only these, hence the name. */
|
||
|
||
static GTY(()) struct c_scope *external_scope;
|
||
|
||
/* A chain of c_scope structures awaiting reuse. */
|
||
|
||
static GTY((deletable)) struct c_scope *scope_freelist;
|
||
|
||
/* A chain of c_binding structures awaiting reuse. */
|
||
|
||
static GTY((deletable)) struct c_binding *binding_freelist;
|
||
|
||
/* Append VAR to LIST in scope SCOPE. */
|
||
#define SCOPE_LIST_APPEND(scope, list, decl) do { \
|
||
struct c_scope *s_ = (scope); \
|
||
tree d_ = (decl); \
|
||
if (s_->list##_last) \
|
||
TREE_CHAIN (s_->list##_last) = d_; \
|
||
else \
|
||
s_->list = d_; \
|
||
s_->list##_last = d_; \
|
||
} while (0)
|
||
|
||
/* Concatenate FROM in scope FSCOPE onto TO in scope TSCOPE. */
|
||
#define SCOPE_LIST_CONCAT(tscope, to, fscope, from) do { \
|
||
struct c_scope *t_ = (tscope); \
|
||
struct c_scope *f_ = (fscope); \
|
||
if (t_->to##_last) \
|
||
TREE_CHAIN (t_->to##_last) = f_->from; \
|
||
else \
|
||
t_->to = f_->from; \
|
||
t_->to##_last = f_->from##_last; \
|
||
} while (0)
|
||
|
||
/* True means unconditionally make a BLOCK for the next scope pushed. */
|
||
|
||
static bool keep_next_level_flag;
|
||
|
||
/* True means the next call to push_scope will be the outermost scope
|
||
of a function body, so do not push a new scope, merely cease
|
||
expecting parameter decls. */
|
||
|
||
static bool next_is_function_body;
|
||
|
||
/* Functions called automatically at the beginning and end of execution. */
|
||
|
||
static GTY(()) tree static_ctors;
|
||
static GTY(()) tree static_dtors;
|
||
|
||
/* Forward declarations. */
|
||
static tree lookup_name_in_scope (tree, struct c_scope *);
|
||
static tree c_make_fname_decl (tree, int);
|
||
static tree grokdeclarator (const struct c_declarator *,
|
||
struct c_declspecs *,
|
||
enum decl_context, bool, tree *);
|
||
static tree grokparms (struct c_arg_info *, bool);
|
||
static void layout_array_type (tree);
|
||
|
||
/* T is a statement. Add it to the statement-tree. This is the
|
||
C/ObjC version--C++ has a slightly different version of this
|
||
function. */
|
||
|
||
tree
|
||
add_stmt (tree t)
|
||
{
|
||
enum tree_code code = TREE_CODE (t);
|
||
|
||
if (EXPR_P (t) && code != LABEL_EXPR)
|
||
{
|
||
if (!EXPR_HAS_LOCATION (t))
|
||
SET_EXPR_LOCATION (t, input_location);
|
||
}
|
||
|
||
if (code == LABEL_EXPR || code == CASE_LABEL_EXPR)
|
||
STATEMENT_LIST_HAS_LABEL (cur_stmt_list) = 1;
|
||
|
||
/* Add T to the statement-tree. Non-side-effect statements need to be
|
||
recorded during statement expressions. */
|
||
append_to_statement_list_force (t, &cur_stmt_list);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* States indicating how grokdeclarator() should handle declspecs marked
|
||
with __attribute__((deprecated)). An object declared as
|
||
__attribute__((deprecated)) suppresses warnings of uses of other
|
||
deprecated items. */
|
||
|
||
enum deprecated_states {
|
||
DEPRECATED_NORMAL,
|
||
DEPRECATED_SUPPRESS
|
||
};
|
||
|
||
static enum deprecated_states deprecated_state = DEPRECATED_NORMAL;
|
||
|
||
void
|
||
c_print_identifier (FILE *file, tree node, int indent)
|
||
{
|
||
print_node (file, "symbol", I_SYMBOL_DECL (node), indent + 4);
|
||
print_node (file, "tag", I_TAG_DECL (node), indent + 4);
|
||
print_node (file, "label", I_LABEL_DECL (node), indent + 4);
|
||
if (C_IS_RESERVED_WORD (node))
|
||
{
|
||
tree rid = ridpointers[C_RID_CODE (node)];
|
||
indent_to (file, indent + 4);
|
||
fprintf (file, "rid %p \"%s\"",
|
||
(void *) rid, IDENTIFIER_POINTER (rid));
|
||
}
|
||
}
|
||
|
||
/* Establish a binding between NAME, an IDENTIFIER_NODE, and DECL,
|
||
which may be any of several kinds of DECL or TYPE or error_mark_node,
|
||
in the scope SCOPE. */
|
||
static void
|
||
bind (tree name, tree decl, struct c_scope *scope, bool invisible, bool nested)
|
||
{
|
||
struct c_binding *b, **here;
|
||
|
||
if (binding_freelist)
|
||
{
|
||
b = binding_freelist;
|
||
binding_freelist = b->prev;
|
||
}
|
||
else
|
||
b = GGC_NEW (struct c_binding);
|
||
|
||
b->shadowed = 0;
|
||
b->decl = decl;
|
||
b->id = name;
|
||
b->depth = scope->depth;
|
||
b->invisible = invisible;
|
||
b->nested = nested;
|
||
b->inner_comp = 0;
|
||
|
||
b->type = 0;
|
||
|
||
b->prev = scope->bindings;
|
||
scope->bindings = b;
|
||
|
||
if (!name)
|
||
return;
|
||
|
||
switch (TREE_CODE (decl))
|
||
{
|
||
case LABEL_DECL: here = &I_LABEL_BINDING (name); break;
|
||
case ENUMERAL_TYPE:
|
||
case UNION_TYPE:
|
||
case RECORD_TYPE: here = &I_TAG_BINDING (name); break;
|
||
case VAR_DECL:
|
||
case FUNCTION_DECL:
|
||
case TYPE_DECL:
|
||
case CONST_DECL:
|
||
case PARM_DECL:
|
||
case ERROR_MARK: here = &I_SYMBOL_BINDING (name); break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Locate the appropriate place in the chain of shadowed decls
|
||
to insert this binding. Normally, scope == current_scope and
|
||
this does nothing. */
|
||
while (*here && (*here)->depth > scope->depth)
|
||
here = &(*here)->shadowed;
|
||
|
||
b->shadowed = *here;
|
||
*here = b;
|
||
}
|
||
|
||
/* Clear the binding structure B, stick it on the binding_freelist,
|
||
and return the former value of b->prev. This is used by pop_scope
|
||
and get_parm_info to iterate destructively over all the bindings
|
||
from a given scope. */
|
||
static struct c_binding *
|
||
free_binding_and_advance (struct c_binding *b)
|
||
{
|
||
struct c_binding *prev = b->prev;
|
||
|
||
memset (b, 0, sizeof (struct c_binding));
|
||
b->prev = binding_freelist;
|
||
binding_freelist = b;
|
||
|
||
return prev;
|
||
}
|
||
|
||
|
||
/* Hook called at end of compilation to assume 1 elt
|
||
for a file-scope tentative array defn that wasn't complete before. */
|
||
|
||
void
|
||
c_finish_incomplete_decl (tree decl)
|
||
{
|
||
if (TREE_CODE (decl) == VAR_DECL)
|
||
{
|
||
tree type = TREE_TYPE (decl);
|
||
if (type != error_mark_node
|
||
&& TREE_CODE (type) == ARRAY_TYPE
|
||
&& !DECL_EXTERNAL (decl)
|
||
&& TYPE_DOMAIN (type) == 0)
|
||
{
|
||
warning (0, "array %q+D assumed to have one element", decl);
|
||
|
||
complete_array_type (&TREE_TYPE (decl), NULL_TREE, true);
|
||
|
||
layout_decl (decl, 0);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* The Objective-C front-end often needs to determine the current scope. */
|
||
|
||
void *
|
||
objc_get_current_scope (void)
|
||
{
|
||
return current_scope;
|
||
}
|
||
|
||
/* The following function is used only by Objective-C. It needs to live here
|
||
because it accesses the innards of c_scope. */
|
||
|
||
void
|
||
objc_mark_locals_volatile (void *enclosing_blk)
|
||
{
|
||
struct c_scope *scope;
|
||
struct c_binding *b;
|
||
|
||
for (scope = current_scope;
|
||
scope && scope != enclosing_blk;
|
||
scope = scope->outer)
|
||
{
|
||
for (b = scope->bindings; b; b = b->prev)
|
||
objc_volatilize_decl (b->decl);
|
||
|
||
/* Do not climb up past the current function. */
|
||
if (scope->function_body)
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Nonzero if we are currently in file scope. */
|
||
|
||
int
|
||
global_bindings_p (void)
|
||
{
|
||
return current_scope == file_scope && !c_override_global_bindings_to_false;
|
||
}
|
||
|
||
void
|
||
keep_next_level (void)
|
||
{
|
||
keep_next_level_flag = true;
|
||
}
|
||
|
||
/* Identify this scope as currently being filled with parameters. */
|
||
|
||
void
|
||
declare_parm_level (void)
|
||
{
|
||
current_scope->parm_flag = true;
|
||
}
|
||
|
||
void
|
||
push_scope (void)
|
||
{
|
||
if (next_is_function_body)
|
||
{
|
||
/* This is the transition from the parameters to the top level
|
||
of the function body. These are the same scope
|
||
(C99 6.2.1p4,6) so we do not push another scope structure.
|
||
next_is_function_body is set only by store_parm_decls, which
|
||
in turn is called when and only when we are about to
|
||
encounter the opening curly brace for the function body.
|
||
|
||
The outermost block of a function always gets a BLOCK node,
|
||
because the debugging output routines expect that each
|
||
function has at least one BLOCK. */
|
||
current_scope->parm_flag = false;
|
||
current_scope->function_body = true;
|
||
current_scope->keep = true;
|
||
current_scope->outer_function = current_function_scope;
|
||
current_function_scope = current_scope;
|
||
|
||
keep_next_level_flag = false;
|
||
next_is_function_body = false;
|
||
}
|
||
else
|
||
{
|
||
struct c_scope *scope;
|
||
if (scope_freelist)
|
||
{
|
||
scope = scope_freelist;
|
||
scope_freelist = scope->outer;
|
||
}
|
||
else
|
||
scope = GGC_CNEW (struct c_scope);
|
||
|
||
scope->keep = keep_next_level_flag;
|
||
scope->outer = current_scope;
|
||
scope->depth = current_scope ? (current_scope->depth + 1) : 0;
|
||
|
||
/* Check for scope depth overflow. Unlikely (2^28 == 268,435,456) but
|
||
possible. */
|
||
if (current_scope && scope->depth == 0)
|
||
{
|
||
scope->depth--;
|
||
sorry ("GCC supports only %u nested scopes", scope->depth);
|
||
}
|
||
|
||
current_scope = scope;
|
||
keep_next_level_flag = false;
|
||
}
|
||
}
|
||
|
||
/* Set the TYPE_CONTEXT of all of TYPE's variants to CONTEXT. */
|
||
|
||
static void
|
||
set_type_context (tree type, tree context)
|
||
{
|
||
for (type = TYPE_MAIN_VARIANT (type); type;
|
||
type = TYPE_NEXT_VARIANT (type))
|
||
TYPE_CONTEXT (type) = context;
|
||
}
|
||
|
||
/* Exit a scope. Restore the state of the identifier-decl mappings
|
||
that were in effect when this scope was entered. Return a BLOCK
|
||
node containing all the DECLs in this scope that are of interest
|
||
to debug info generation. */
|
||
|
||
tree
|
||
pop_scope (void)
|
||
{
|
||
struct c_scope *scope = current_scope;
|
||
tree block, context, p;
|
||
struct c_binding *b;
|
||
|
||
bool functionbody = scope->function_body;
|
||
bool keep = functionbody || scope->keep || scope->bindings;
|
||
|
||
c_end_vm_scope (scope->depth);
|
||
|
||
/* If appropriate, create a BLOCK to record the decls for the life
|
||
of this function. */
|
||
block = 0;
|
||
if (keep)
|
||
{
|
||
block = make_node (BLOCK);
|
||
BLOCK_SUBBLOCKS (block) = scope->blocks;
|
||
TREE_USED (block) = 1;
|
||
|
||
/* In each subblock, record that this is its superior. */
|
||
for (p = scope->blocks; p; p = TREE_CHAIN (p))
|
||
BLOCK_SUPERCONTEXT (p) = block;
|
||
|
||
BLOCK_VARS (block) = 0;
|
||
}
|
||
|
||
/* The TYPE_CONTEXTs for all of the tagged types belonging to this
|
||
scope must be set so that they point to the appropriate
|
||
construct, i.e. either to the current FUNCTION_DECL node, or
|
||
else to the BLOCK node we just constructed.
|
||
|
||
Note that for tagged types whose scope is just the formal
|
||
parameter list for some function type specification, we can't
|
||
properly set their TYPE_CONTEXTs here, because we don't have a
|
||
pointer to the appropriate FUNCTION_TYPE node readily available
|
||
to us. For those cases, the TYPE_CONTEXTs of the relevant tagged
|
||
type nodes get set in `grokdeclarator' as soon as we have created
|
||
the FUNCTION_TYPE node which will represent the "scope" for these
|
||
"parameter list local" tagged types. */
|
||
if (scope->function_body)
|
||
context = current_function_decl;
|
||
else if (scope == file_scope)
|
||
{
|
||
tree file_decl = build_decl (TRANSLATION_UNIT_DECL, 0, 0);
|
||
TREE_CHAIN (file_decl) = all_translation_units;
|
||
all_translation_units = file_decl;
|
||
context = file_decl;
|
||
}
|
||
else
|
||
context = block;
|
||
|
||
/* Clear all bindings in this scope. */
|
||
for (b = scope->bindings; b; b = free_binding_and_advance (b))
|
||
{
|
||
p = b->decl;
|
||
switch (TREE_CODE (p))
|
||
{
|
||
case LABEL_DECL:
|
||
/* Warnings for unused labels, errors for undefined labels. */
|
||
if (TREE_USED (p) && !DECL_INITIAL (p))
|
||
{
|
||
error ("label %q+D used but not defined", p);
|
||
DECL_INITIAL (p) = error_mark_node;
|
||
}
|
||
else if (!TREE_USED (p) && warn_unused_label)
|
||
{
|
||
if (DECL_INITIAL (p))
|
||
warning (0, "label %q+D defined but not used", p);
|
||
else
|
||
warning (0, "label %q+D declared but not defined", p);
|
||
}
|
||
/* Labels go in BLOCK_VARS. */
|
||
TREE_CHAIN (p) = BLOCK_VARS (block);
|
||
BLOCK_VARS (block) = p;
|
||
gcc_assert (I_LABEL_BINDING (b->id) == b);
|
||
I_LABEL_BINDING (b->id) = b->shadowed;
|
||
break;
|
||
|
||
case ENUMERAL_TYPE:
|
||
case UNION_TYPE:
|
||
case RECORD_TYPE:
|
||
set_type_context (p, context);
|
||
|
||
/* Types may not have tag-names, in which case the type
|
||
appears in the bindings list with b->id NULL. */
|
||
if (b->id)
|
||
{
|
||
gcc_assert (I_TAG_BINDING (b->id) == b);
|
||
I_TAG_BINDING (b->id) = b->shadowed;
|
||
}
|
||
break;
|
||
|
||
case FUNCTION_DECL:
|
||
/* Propagate TREE_ADDRESSABLE from nested functions to their
|
||
containing functions. */
|
||
if (!TREE_ASM_WRITTEN (p)
|
||
&& DECL_INITIAL (p) != 0
|
||
&& TREE_ADDRESSABLE (p)
|
||
&& DECL_ABSTRACT_ORIGIN (p) != 0
|
||
&& DECL_ABSTRACT_ORIGIN (p) != p)
|
||
TREE_ADDRESSABLE (DECL_ABSTRACT_ORIGIN (p)) = 1;
|
||
if (!DECL_EXTERNAL (p)
|
||
&& DECL_INITIAL (p) == 0)
|
||
{
|
||
error ("nested function %q+D declared but never defined", p);
|
||
undef_nested_function = true;
|
||
}
|
||
goto common_symbol;
|
||
|
||
case VAR_DECL:
|
||
/* Warnings for unused variables. */
|
||
if (!TREE_USED (p)
|
||
&& !TREE_NO_WARNING (p)
|
||
&& !DECL_IN_SYSTEM_HEADER (p)
|
||
&& DECL_NAME (p)
|
||
&& !DECL_ARTIFICIAL (p)
|
||
&& scope != file_scope
|
||
&& scope != external_scope)
|
||
warning (OPT_Wunused_variable, "unused variable %q+D", p);
|
||
|
||
if (b->inner_comp)
|
||
{
|
||
error ("type of array %q+D completed incompatibly with"
|
||
" implicit initialization", p);
|
||
}
|
||
|
||
/* Fall through. */
|
||
case TYPE_DECL:
|
||
case CONST_DECL:
|
||
common_symbol:
|
||
/* All of these go in BLOCK_VARS, but only if this is the
|
||
binding in the home scope. */
|
||
if (!b->nested)
|
||
{
|
||
TREE_CHAIN (p) = BLOCK_VARS (block);
|
||
BLOCK_VARS (block) = p;
|
||
}
|
||
/* If this is the file scope, and we are processing more
|
||
than one translation unit in this compilation, set
|
||
DECL_CONTEXT of each decl to the TRANSLATION_UNIT_DECL.
|
||
This makes same_translation_unit_p work, and causes
|
||
static declarations to be given disambiguating suffixes. */
|
||
if (scope == file_scope && num_in_fnames > 1)
|
||
{
|
||
DECL_CONTEXT (p) = context;
|
||
if (TREE_CODE (p) == TYPE_DECL)
|
||
set_type_context (TREE_TYPE (p), context);
|
||
}
|
||
|
||
/* Fall through. */
|
||
/* Parameters go in DECL_ARGUMENTS, not BLOCK_VARS, and have
|
||
already been put there by store_parm_decls. Unused-
|
||
parameter warnings are handled by function.c.
|
||
error_mark_node obviously does not go in BLOCK_VARS and
|
||
does not get unused-variable warnings. */
|
||
case PARM_DECL:
|
||
case ERROR_MARK:
|
||
/* It is possible for a decl not to have a name. We get
|
||
here with b->id NULL in this case. */
|
||
if (b->id)
|
||
{
|
||
gcc_assert (I_SYMBOL_BINDING (b->id) == b);
|
||
I_SYMBOL_BINDING (b->id) = b->shadowed;
|
||
if (b->shadowed && b->shadowed->type)
|
||
TREE_TYPE (b->shadowed->decl) = b->shadowed->type;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
|
||
/* Dispose of the block that we just made inside some higher level. */
|
||
if ((scope->function_body || scope == file_scope) && context)
|
||
{
|
||
DECL_INITIAL (context) = block;
|
||
BLOCK_SUPERCONTEXT (block) = context;
|
||
}
|
||
else if (scope->outer)
|
||
{
|
||
if (block)
|
||
SCOPE_LIST_APPEND (scope->outer, blocks, block);
|
||
/* If we did not make a block for the scope just exited, any
|
||
blocks made for inner scopes must be carried forward so they
|
||
will later become subblocks of something else. */
|
||
else if (scope->blocks)
|
||
SCOPE_LIST_CONCAT (scope->outer, blocks, scope, blocks);
|
||
}
|
||
|
||
/* Pop the current scope, and free the structure for reuse. */
|
||
current_scope = scope->outer;
|
||
if (scope->function_body)
|
||
current_function_scope = scope->outer_function;
|
||
|
||
memset (scope, 0, sizeof (struct c_scope));
|
||
scope->outer = scope_freelist;
|
||
scope_freelist = scope;
|
||
|
||
return block;
|
||
}
|
||
|
||
void
|
||
push_file_scope (void)
|
||
{
|
||
tree decl;
|
||
|
||
if (file_scope)
|
||
return;
|
||
|
||
push_scope ();
|
||
file_scope = current_scope;
|
||
|
||
start_fname_decls ();
|
||
|
||
for (decl = visible_builtins; decl; decl = TREE_CHAIN (decl))
|
||
bind (DECL_NAME (decl), decl, file_scope,
|
||
/*invisible=*/false, /*nested=*/true);
|
||
}
|
||
|
||
void
|
||
pop_file_scope (void)
|
||
{
|
||
/* In case there were missing closebraces, get us back to the global
|
||
binding level. */
|
||
while (current_scope != file_scope)
|
||
pop_scope ();
|
||
|
||
/* __FUNCTION__ is defined at file scope (""). This
|
||
call may not be necessary as my tests indicate it
|
||
still works without it. */
|
||
finish_fname_decls ();
|
||
|
||
/* This is the point to write out a PCH if we're doing that.
|
||
In that case we do not want to do anything else. */
|
||
if (pch_file)
|
||
{
|
||
c_common_write_pch ();
|
||
return;
|
||
}
|
||
|
||
/* Pop off the file scope and close this translation unit. */
|
||
pop_scope ();
|
||
file_scope = 0;
|
||
|
||
maybe_apply_pending_pragma_weaks ();
|
||
cgraph_finalize_compilation_unit ();
|
||
}
|
||
|
||
/* Insert BLOCK at the end of the list of subblocks of the current
|
||
scope. This is used when a BIND_EXPR is expanded, to handle the
|
||
BLOCK node inside the BIND_EXPR. */
|
||
|
||
void
|
||
insert_block (tree block)
|
||
{
|
||
TREE_USED (block) = 1;
|
||
SCOPE_LIST_APPEND (current_scope, blocks, block);
|
||
}
|
||
|
||
/* Push a definition or a declaration of struct, union or enum tag "name".
|
||
"type" should be the type node.
|
||
We assume that the tag "name" is not already defined.
|
||
|
||
Note that the definition may really be just a forward reference.
|
||
In that case, the TYPE_SIZE will be zero. */
|
||
|
||
static void
|
||
pushtag (tree name, tree type)
|
||
{
|
||
/* Record the identifier as the type's name if it has none. */
|
||
if (name && !TYPE_NAME (type))
|
||
TYPE_NAME (type) = name;
|
||
bind (name, type, current_scope, /*invisible=*/false, /*nested=*/false);
|
||
|
||
/* Create a fake NULL-named TYPE_DECL node whose TREE_TYPE will be the
|
||
tagged type we just added to the current scope. This fake
|
||
NULL-named TYPE_DECL node helps dwarfout.c to know when it needs
|
||
to output a representation of a tagged type, and it also gives
|
||
us a convenient place to record the "scope start" address for the
|
||
tagged type. */
|
||
|
||
TYPE_STUB_DECL (type) = pushdecl (build_decl (TYPE_DECL, NULL_TREE, type));
|
||
|
||
/* An approximation for now, so we can tell this is a function-scope tag.
|
||
This will be updated in pop_scope. */
|
||
TYPE_CONTEXT (type) = DECL_CONTEXT (TYPE_STUB_DECL (type));
|
||
}
|
||
|
||
/* Subroutine of compare_decls. Allow harmless mismatches in return
|
||
and argument types provided that the type modes match. This function
|
||
return a unified type given a suitable match, and 0 otherwise. */
|
||
|
||
static tree
|
||
match_builtin_function_types (tree newtype, tree oldtype)
|
||
{
|
||
tree newrettype, oldrettype;
|
||
tree newargs, oldargs;
|
||
tree trytype, tryargs;
|
||
|
||
/* Accept the return type of the new declaration if same modes. */
|
||
oldrettype = TREE_TYPE (oldtype);
|
||
newrettype = TREE_TYPE (newtype);
|
||
|
||
if (TYPE_MODE (oldrettype) != TYPE_MODE (newrettype))
|
||
return 0;
|
||
|
||
oldargs = TYPE_ARG_TYPES (oldtype);
|
||
newargs = TYPE_ARG_TYPES (newtype);
|
||
tryargs = newargs;
|
||
|
||
while (oldargs || newargs)
|
||
{
|
||
if (!oldargs
|
||
|| !newargs
|
||
|| !TREE_VALUE (oldargs)
|
||
|| !TREE_VALUE (newargs)
|
||
|| TYPE_MODE (TREE_VALUE (oldargs))
|
||
!= TYPE_MODE (TREE_VALUE (newargs)))
|
||
return 0;
|
||
|
||
oldargs = TREE_CHAIN (oldargs);
|
||
newargs = TREE_CHAIN (newargs);
|
||
}
|
||
|
||
trytype = build_function_type (newrettype, tryargs);
|
||
return build_type_attribute_variant (trytype, TYPE_ATTRIBUTES (oldtype));
|
||
}
|
||
|
||
/* Subroutine of diagnose_mismatched_decls. Check for function type
|
||
mismatch involving an empty arglist vs a nonempty one and give clearer
|
||
diagnostics. */
|
||
static void
|
||
diagnose_arglist_conflict (tree newdecl, tree olddecl,
|
||
tree newtype, tree oldtype)
|
||
{
|
||
tree t;
|
||
|
||
if (TREE_CODE (olddecl) != FUNCTION_DECL
|
||
|| !comptypes (TREE_TYPE (oldtype), TREE_TYPE (newtype))
|
||
|| !((TYPE_ARG_TYPES (oldtype) == 0 && DECL_INITIAL (olddecl) == 0)
|
||
||
|
||
(TYPE_ARG_TYPES (newtype) == 0 && DECL_INITIAL (newdecl) == 0)))
|
||
return;
|
||
|
||
t = TYPE_ARG_TYPES (oldtype);
|
||
if (t == 0)
|
||
t = TYPE_ARG_TYPES (newtype);
|
||
for (; t; t = TREE_CHAIN (t))
|
||
{
|
||
tree type = TREE_VALUE (t);
|
||
|
||
if (TREE_CHAIN (t) == 0
|
||
&& TYPE_MAIN_VARIANT (type) != void_type_node)
|
||
{
|
||
inform ("a parameter list with an ellipsis can%'t match "
|
||
"an empty parameter name list declaration");
|
||
break;
|
||
}
|
||
|
||
if (c_type_promotes_to (type) != type)
|
||
{
|
||
inform ("an argument type that has a default promotion can%'t match "
|
||
"an empty parameter name list declaration");
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Another subroutine of diagnose_mismatched_decls. OLDDECL is an
|
||
old-style function definition, NEWDECL is a prototype declaration.
|
||
Diagnose inconsistencies in the argument list. Returns TRUE if
|
||
the prototype is compatible, FALSE if not. */
|
||
static bool
|
||
validate_proto_after_old_defn (tree newdecl, tree newtype, tree oldtype)
|
||
{
|
||
tree newargs, oldargs;
|
||
int i;
|
||
|
||
#define END_OF_ARGLIST(t) ((t) == void_type_node)
|
||
|
||
oldargs = TYPE_ACTUAL_ARG_TYPES (oldtype);
|
||
newargs = TYPE_ARG_TYPES (newtype);
|
||
i = 1;
|
||
|
||
for (;;)
|
||
{
|
||
tree oldargtype = TYPE_MAIN_VARIANT (TREE_VALUE (oldargs));
|
||
tree newargtype = TYPE_MAIN_VARIANT (TREE_VALUE (newargs));
|
||
|
||
if (END_OF_ARGLIST (oldargtype) && END_OF_ARGLIST (newargtype))
|
||
break;
|
||
|
||
/* Reaching the end of just one list means the two decls don't
|
||
agree on the number of arguments. */
|
||
if (END_OF_ARGLIST (oldargtype))
|
||
{
|
||
error ("prototype for %q+D declares more arguments "
|
||
"than previous old-style definition", newdecl);
|
||
return false;
|
||
}
|
||
else if (END_OF_ARGLIST (newargtype))
|
||
{
|
||
error ("prototype for %q+D declares fewer arguments "
|
||
"than previous old-style definition", newdecl);
|
||
return false;
|
||
}
|
||
|
||
/* Type for passing arg must be consistent with that declared
|
||
for the arg. */
|
||
else if (!comptypes (oldargtype, newargtype))
|
||
{
|
||
error ("prototype for %q+D declares argument %d"
|
||
" with incompatible type",
|
||
newdecl, i);
|
||
return false;
|
||
}
|
||
|
||
oldargs = TREE_CHAIN (oldargs);
|
||
newargs = TREE_CHAIN (newargs);
|
||
i++;
|
||
}
|
||
|
||
/* If we get here, no errors were found, but do issue a warning
|
||
for this poor-style construct. */
|
||
warning (0, "prototype for %q+D follows non-prototype definition",
|
||
newdecl);
|
||
return true;
|
||
#undef END_OF_ARGLIST
|
||
}
|
||
|
||
/* Subroutine of diagnose_mismatched_decls. Report the location of DECL,
|
||
first in a pair of mismatched declarations, using the diagnostic
|
||
function DIAG. */
|
||
static void
|
||
locate_old_decl (tree decl, void (*diag)(const char *, ...) ATTRIBUTE_GCC_CDIAG(1,2))
|
||
{
|
||
if (TREE_CODE (decl) == FUNCTION_DECL && DECL_BUILT_IN (decl))
|
||
;
|
||
else if (DECL_INITIAL (decl))
|
||
diag (G_("previous definition of %q+D was here"), decl);
|
||
else if (C_DECL_IMPLICIT (decl))
|
||
diag (G_("previous implicit declaration of %q+D was here"), decl);
|
||
else
|
||
diag (G_("previous declaration of %q+D was here"), decl);
|
||
}
|
||
|
||
/* Subroutine of duplicate_decls. Compare NEWDECL to OLDDECL.
|
||
Returns true if the caller should proceed to merge the two, false
|
||
if OLDDECL should simply be discarded. As a side effect, issues
|
||
all necessary diagnostics for invalid or poor-style combinations.
|
||
If it returns true, writes the types of NEWDECL and OLDDECL to
|
||
*NEWTYPEP and *OLDTYPEP - these may have been adjusted from
|
||
TREE_TYPE (NEWDECL, OLDDECL) respectively. */
|
||
|
||
static bool
|
||
diagnose_mismatched_decls (tree newdecl, tree olddecl,
|
||
tree *newtypep, tree *oldtypep)
|
||
{
|
||
tree newtype, oldtype;
|
||
bool pedwarned = false;
|
||
bool warned = false;
|
||
bool retval = true;
|
||
|
||
#define DECL_EXTERN_INLINE(DECL) (DECL_DECLARED_INLINE_P (DECL) \
|
||
&& DECL_EXTERNAL (DECL))
|
||
|
||
/* If we have error_mark_node for either decl or type, just discard
|
||
the previous decl - we're in an error cascade already. */
|
||
if (olddecl == error_mark_node || newdecl == error_mark_node)
|
||
return false;
|
||
*oldtypep = oldtype = TREE_TYPE (olddecl);
|
||
*newtypep = newtype = TREE_TYPE (newdecl);
|
||
if (oldtype == error_mark_node || newtype == error_mark_node)
|
||
return false;
|
||
|
||
/* Two different categories of symbol altogether. This is an error
|
||
unless OLDDECL is a builtin. OLDDECL will be discarded in any case. */
|
||
if (TREE_CODE (olddecl) != TREE_CODE (newdecl))
|
||
{
|
||
if (!(TREE_CODE (olddecl) == FUNCTION_DECL
|
||
&& DECL_BUILT_IN (olddecl)
|
||
&& !C_DECL_DECLARED_BUILTIN (olddecl)))
|
||
{
|
||
error ("%q+D redeclared as different kind of symbol", newdecl);
|
||
locate_old_decl (olddecl, error);
|
||
}
|
||
else if (TREE_PUBLIC (newdecl))
|
||
warning (0, "built-in function %q+D declared as non-function",
|
||
newdecl);
|
||
else
|
||
warning (OPT_Wshadow, "declaration of %q+D shadows "
|
||
"a built-in function", newdecl);
|
||
return false;
|
||
}
|
||
|
||
/* Enumerators have no linkage, so may only be declared once in a
|
||
given scope. */
|
||
if (TREE_CODE (olddecl) == CONST_DECL)
|
||
{
|
||
error ("redeclaration of enumerator %q+D", newdecl);
|
||
locate_old_decl (olddecl, error);
|
||
return false;
|
||
}
|
||
|
||
if (!comptypes (oldtype, newtype))
|
||
{
|
||
if (TREE_CODE (olddecl) == FUNCTION_DECL
|
||
&& DECL_BUILT_IN (olddecl) && !C_DECL_DECLARED_BUILTIN (olddecl))
|
||
{
|
||
/* Accept harmless mismatch in function types.
|
||
This is for the ffs and fprintf builtins. */
|
||
tree trytype = match_builtin_function_types (newtype, oldtype);
|
||
|
||
if (trytype && comptypes (newtype, trytype))
|
||
*oldtypep = oldtype = trytype;
|
||
else
|
||
{
|
||
/* If types don't match for a built-in, throw away the
|
||
built-in. No point in calling locate_old_decl here, it
|
||
won't print anything. */
|
||
warning (0, "conflicting types for built-in function %q+D",
|
||
newdecl);
|
||
return false;
|
||
}
|
||
}
|
||
else if (TREE_CODE (olddecl) == FUNCTION_DECL
|
||
&& DECL_IS_BUILTIN (olddecl))
|
||
{
|
||
/* A conflicting function declaration for a predeclared
|
||
function that isn't actually built in. Objective C uses
|
||
these. The new declaration silently overrides everything
|
||
but the volatility (i.e. noreturn) indication. See also
|
||
below. FIXME: Make Objective C use normal builtins. */
|
||
TREE_THIS_VOLATILE (newdecl) |= TREE_THIS_VOLATILE (olddecl);
|
||
return false;
|
||
}
|
||
/* Permit void foo (...) to match int foo (...) if the latter is
|
||
the definition and implicit int was used. See
|
||
c-torture/compile/920625-2.c. */
|
||
else if (TREE_CODE (newdecl) == FUNCTION_DECL && DECL_INITIAL (newdecl)
|
||
&& TYPE_MAIN_VARIANT (TREE_TYPE (oldtype)) == void_type_node
|
||
&& TYPE_MAIN_VARIANT (TREE_TYPE (newtype)) == integer_type_node
|
||
&& C_FUNCTION_IMPLICIT_INT (newdecl) && !DECL_INITIAL (olddecl))
|
||
{
|
||
pedwarn ("conflicting types for %q+D", newdecl);
|
||
/* Make sure we keep void as the return type. */
|
||
TREE_TYPE (newdecl) = *newtypep = newtype = oldtype;
|
||
C_FUNCTION_IMPLICIT_INT (newdecl) = 0;
|
||
pedwarned = true;
|
||
}
|
||
/* Permit void foo (...) to match an earlier call to foo (...) with
|
||
no declared type (thus, implicitly int). */
|
||
else if (TREE_CODE (newdecl) == FUNCTION_DECL
|
||
&& TYPE_MAIN_VARIANT (TREE_TYPE (newtype)) == void_type_node
|
||
&& TYPE_MAIN_VARIANT (TREE_TYPE (oldtype)) == integer_type_node
|
||
&& C_DECL_IMPLICIT (olddecl) && !DECL_INITIAL (olddecl))
|
||
{
|
||
pedwarn ("conflicting types for %q+D", newdecl);
|
||
/* Make sure we keep void as the return type. */
|
||
TREE_TYPE (olddecl) = *oldtypep = oldtype = newtype;
|
||
pedwarned = true;
|
||
}
|
||
else
|
||
{
|
||
if (TYPE_QUALS (newtype) != TYPE_QUALS (oldtype))
|
||
error ("conflicting type qualifiers for %q+D", newdecl);
|
||
else
|
||
error ("conflicting types for %q+D", newdecl);
|
||
diagnose_arglist_conflict (newdecl, olddecl, newtype, oldtype);
|
||
locate_old_decl (olddecl, error);
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Redeclaration of a type is a constraint violation (6.7.2.3p1),
|
||
but silently ignore the redeclaration if either is in a system
|
||
header. (Conflicting redeclarations were handled above.) */
|
||
if (TREE_CODE (newdecl) == TYPE_DECL)
|
||
{
|
||
if (DECL_IN_SYSTEM_HEADER (newdecl) || DECL_IN_SYSTEM_HEADER (olddecl))
|
||
return true; /* Allow OLDDECL to continue in use. */
|
||
|
||
error ("redefinition of typedef %q+D", newdecl);
|
||
locate_old_decl (olddecl, error);
|
||
return false;
|
||
}
|
||
|
||
/* Function declarations can either be 'static' or 'extern' (no
|
||
qualifier is equivalent to 'extern' - C99 6.2.2p5) and therefore
|
||
can never conflict with each other on account of linkage (6.2.2p4).
|
||
Multiple definitions are not allowed (6.9p3,5) but GCC permits
|
||
two definitions if one is 'extern inline' and one is not. The non-
|
||
extern-inline definition supersedes the extern-inline definition. */
|
||
|
||
else if (TREE_CODE (newdecl) == FUNCTION_DECL)
|
||
{
|
||
/* If you declare a built-in function name as static, or
|
||
define the built-in with an old-style definition (so we
|
||
can't validate the argument list) the built-in definition is
|
||
overridden, but optionally warn this was a bad choice of name. */
|
||
if (DECL_BUILT_IN (olddecl)
|
||
&& !C_DECL_DECLARED_BUILTIN (olddecl)
|
||
&& (!TREE_PUBLIC (newdecl)
|
||
|| (DECL_INITIAL (newdecl)
|
||
&& !TYPE_ARG_TYPES (TREE_TYPE (newdecl)))))
|
||
{
|
||
warning (OPT_Wshadow, "declaration of %q+D shadows "
|
||
"a built-in function", newdecl);
|
||
/* Discard the old built-in function. */
|
||
return false;
|
||
}
|
||
|
||
if (DECL_INITIAL (newdecl))
|
||
{
|
||
if (DECL_INITIAL (olddecl))
|
||
{
|
||
/* If both decls are in the same TU and the new declaration
|
||
isn't overriding an extern inline reject the new decl.
|
||
When we handle c99 style inline rules we'll want to reject
|
||
the following:
|
||
|
||
DECL_EXTERN_INLINE (olddecl)
|
||
&& !DECL_EXTERN_INLINE (newdecl)
|
||
|
||
if they're in the same translation unit. Until we implement
|
||
the full semantics we accept the construct. */
|
||
if (!(DECL_EXTERN_INLINE (olddecl)
|
||
&& !DECL_EXTERN_INLINE (newdecl))
|
||
&& same_translation_unit_p (newdecl, olddecl))
|
||
{
|
||
error ("redefinition of %q+D", newdecl);
|
||
locate_old_decl (olddecl, error);
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
/* If we have a prototype after an old-style function definition,
|
||
the argument types must be checked specially. */
|
||
else if (DECL_INITIAL (olddecl)
|
||
&& !TYPE_ARG_TYPES (oldtype) && TYPE_ARG_TYPES (newtype)
|
||
&& TYPE_ACTUAL_ARG_TYPES (oldtype)
|
||
&& !validate_proto_after_old_defn (newdecl, newtype, oldtype))
|
||
{
|
||
locate_old_decl (olddecl, error);
|
||
return false;
|
||
}
|
||
/* A non-static declaration (even an "extern") followed by a
|
||
static declaration is undefined behavior per C99 6.2.2p3-5,7.
|
||
The same is true for a static forward declaration at block
|
||
scope followed by a non-static declaration/definition at file
|
||
scope. Static followed by non-static at the same scope is
|
||
not undefined behavior, and is the most convenient way to get
|
||
some effects (see e.g. what unwind-dw2-fde-glibc.c does to
|
||
the definition of _Unwind_Find_FDE in unwind-dw2-fde.c), but
|
||
we do diagnose it if -Wtraditional. */
|
||
if (TREE_PUBLIC (olddecl) && !TREE_PUBLIC (newdecl))
|
||
{
|
||
/* Two exceptions to the rule. If olddecl is an extern
|
||
inline, or a predeclared function that isn't actually
|
||
built in, newdecl silently overrides olddecl. The latter
|
||
occur only in Objective C; see also above. (FIXME: Make
|
||
Objective C use normal builtins.) */
|
||
if (!DECL_IS_BUILTIN (olddecl)
|
||
&& !DECL_EXTERN_INLINE (olddecl))
|
||
{
|
||
error ("static declaration of %q+D follows "
|
||
"non-static declaration", newdecl);
|
||
locate_old_decl (olddecl, error);
|
||
}
|
||
return false;
|
||
}
|
||
else if (TREE_PUBLIC (newdecl) && !TREE_PUBLIC (olddecl))
|
||
{
|
||
if (DECL_CONTEXT (olddecl))
|
||
{
|
||
error ("non-static declaration of %q+D follows "
|
||
"static declaration", newdecl);
|
||
locate_old_decl (olddecl, error);
|
||
return false;
|
||
}
|
||
else if (warn_traditional)
|
||
{
|
||
warning (OPT_Wtraditional, "non-static declaration of %q+D "
|
||
"follows static declaration", newdecl);
|
||
warned = true;
|
||
}
|
||
}
|
||
}
|
||
else if (TREE_CODE (newdecl) == VAR_DECL)
|
||
{
|
||
/* Only variables can be thread-local, and all declarations must
|
||
agree on this property. */
|
||
if (DECL_THREAD_LOCAL_P (newdecl) != DECL_THREAD_LOCAL_P (olddecl))
|
||
{
|
||
if (DECL_THREAD_LOCAL_P (newdecl))
|
||
error ("thread-local declaration of %q+D follows "
|
||
"non-thread-local declaration", newdecl);
|
||
else
|
||
error ("non-thread-local declaration of %q+D follows "
|
||
"thread-local declaration", newdecl);
|
||
|
||
locate_old_decl (olddecl, error);
|
||
return false;
|
||
}
|
||
|
||
/* Multiple initialized definitions are not allowed (6.9p3,5). */
|
||
if (DECL_INITIAL (newdecl) && DECL_INITIAL (olddecl))
|
||
{
|
||
error ("redefinition of %q+D", newdecl);
|
||
locate_old_decl (olddecl, error);
|
||
return false;
|
||
}
|
||
|
||
/* Objects declared at file scope: if the first declaration had
|
||
external linkage (even if it was an external reference) the
|
||
second must have external linkage as well, or the behavior is
|
||
undefined. If the first declaration had internal linkage, then
|
||
the second must too, or else be an external reference (in which
|
||
case the composite declaration still has internal linkage).
|
||
As for function declarations, we warn about the static-then-
|
||
extern case only for -Wtraditional. See generally 6.2.2p3-5,7. */
|
||
if (DECL_FILE_SCOPE_P (newdecl)
|
||
&& TREE_PUBLIC (newdecl) != TREE_PUBLIC (olddecl))
|
||
{
|
||
if (DECL_EXTERNAL (newdecl))
|
||
{
|
||
if (!DECL_FILE_SCOPE_P (olddecl))
|
||
{
|
||
error ("extern declaration of %q+D follows "
|
||
"declaration with no linkage", newdecl);
|
||
locate_old_decl (olddecl, error);
|
||
return false;
|
||
}
|
||
else if (warn_traditional)
|
||
{
|
||
warning (OPT_Wtraditional, "non-static declaration of %q+D "
|
||
"follows static declaration", newdecl);
|
||
warned = true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (TREE_PUBLIC (newdecl))
|
||
error ("non-static declaration of %q+D follows "
|
||
"static declaration", newdecl);
|
||
else
|
||
error ("static declaration of %q+D follows "
|
||
"non-static declaration", newdecl);
|
||
|
||
locate_old_decl (olddecl, error);
|
||
return false;
|
||
}
|
||
}
|
||
/* Two objects with the same name declared at the same block
|
||
scope must both be external references (6.7p3). */
|
||
else if (!DECL_FILE_SCOPE_P (newdecl))
|
||
{
|
||
if (DECL_EXTERNAL (newdecl))
|
||
{
|
||
/* Extern with initializer at block scope, which will
|
||
already have received an error. */
|
||
}
|
||
else if (DECL_EXTERNAL (olddecl))
|
||
{
|
||
error ("declaration of %q+D with no linkage follows "
|
||
"extern declaration", newdecl);
|
||
locate_old_decl (olddecl, error);
|
||
}
|
||
else
|
||
{
|
||
error ("redeclaration of %q+D with no linkage", newdecl);
|
||
locate_old_decl (olddecl, error);
|
||
}
|
||
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* warnings */
|
||
/* All decls must agree on a visibility. */
|
||
if (CODE_CONTAINS_STRUCT (TREE_CODE (newdecl), TS_DECL_WITH_VIS)
|
||
&& DECL_VISIBILITY_SPECIFIED (newdecl) && DECL_VISIBILITY_SPECIFIED (olddecl)
|
||
&& DECL_VISIBILITY (newdecl) != DECL_VISIBILITY (olddecl))
|
||
{
|
||
warning (0, "redeclaration of %q+D with different visibility "
|
||
"(old visibility preserved)", newdecl);
|
||
warned = true;
|
||
}
|
||
|
||
if (TREE_CODE (newdecl) == FUNCTION_DECL)
|
||
{
|
||
/* Diagnose inline __attribute__ ((noinline)) which is silly. */
|
||
if (DECL_DECLARED_INLINE_P (newdecl)
|
||
&& lookup_attribute ("noinline", DECL_ATTRIBUTES (olddecl)))
|
||
{
|
||
warning (OPT_Wattributes, "inline declaration of %qD follows "
|
||
"declaration with attribute noinline", newdecl);
|
||
warned = true;
|
||
}
|
||
else if (DECL_DECLARED_INLINE_P (olddecl)
|
||
&& lookup_attribute ("noinline", DECL_ATTRIBUTES (newdecl)))
|
||
{
|
||
warning (OPT_Wattributes, "declaration of %q+D with attribute "
|
||
"noinline follows inline declaration ", newdecl);
|
||
warned = true;
|
||
}
|
||
|
||
/* Inline declaration after use or definition.
|
||
??? Should we still warn about this now we have unit-at-a-time
|
||
mode and can get it right?
|
||
Definitely don't complain if the decls are in different translation
|
||
units. */
|
||
if (DECL_DECLARED_INLINE_P (newdecl) && !DECL_DECLARED_INLINE_P (olddecl)
|
||
&& same_translation_unit_p (olddecl, newdecl))
|
||
{
|
||
if (TREE_USED (olddecl))
|
||
{
|
||
warning (0, "%q+D declared inline after being called", olddecl);
|
||
warned = true;
|
||
}
|
||
else if (DECL_INITIAL (olddecl))
|
||
{
|
||
warning (0, "%q+D declared inline after its definition", olddecl);
|
||
warned = true;
|
||
}
|
||
}
|
||
}
|
||
else /* PARM_DECL, VAR_DECL */
|
||
{
|
||
/* Redeclaration of a parameter is a constraint violation (this is
|
||
not explicitly stated, but follows from C99 6.7p3 [no more than
|
||
one declaration of the same identifier with no linkage in the
|
||
same scope, except type tags] and 6.2.2p6 [parameters have no
|
||
linkage]). We must check for a forward parameter declaration,
|
||
indicated by TREE_ASM_WRITTEN on the old declaration - this is
|
||
an extension, the mandatory diagnostic for which is handled by
|
||
mark_forward_parm_decls. */
|
||
|
||
if (TREE_CODE (newdecl) == PARM_DECL
|
||
&& (!TREE_ASM_WRITTEN (olddecl) || TREE_ASM_WRITTEN (newdecl)))
|
||
{
|
||
error ("redefinition of parameter %q+D", newdecl);
|
||
locate_old_decl (olddecl, error);
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Optional warning for completely redundant decls. */
|
||
if (!warned && !pedwarned
|
||
&& warn_redundant_decls
|
||
/* Don't warn about a function declaration followed by a
|
||
definition. */
|
||
&& !(TREE_CODE (newdecl) == FUNCTION_DECL
|
||
&& DECL_INITIAL (newdecl) && !DECL_INITIAL (olddecl))
|
||
/* Don't warn about redundant redeclarations of builtins. */
|
||
&& !(TREE_CODE (newdecl) == FUNCTION_DECL
|
||
&& !DECL_BUILT_IN (newdecl)
|
||
&& DECL_BUILT_IN (olddecl)
|
||
&& !C_DECL_DECLARED_BUILTIN (olddecl))
|
||
/* Don't warn about an extern followed by a definition. */
|
||
&& !(DECL_EXTERNAL (olddecl) && !DECL_EXTERNAL (newdecl))
|
||
/* Don't warn about forward parameter decls. */
|
||
&& !(TREE_CODE (newdecl) == PARM_DECL
|
||
&& TREE_ASM_WRITTEN (olddecl) && !TREE_ASM_WRITTEN (newdecl))
|
||
/* Don't warn about a variable definition following a declaration. */
|
||
&& !(TREE_CODE (newdecl) == VAR_DECL
|
||
&& DECL_INITIAL (newdecl) && !DECL_INITIAL (olddecl)))
|
||
{
|
||
warning (OPT_Wredundant_decls, "redundant redeclaration of %q+D",
|
||
newdecl);
|
||
warned = true;
|
||
}
|
||
|
||
/* Report location of previous decl/defn in a consistent manner. */
|
||
if (warned || pedwarned)
|
||
locate_old_decl (olddecl, pedwarned ? pedwarn : warning0);
|
||
|
||
#undef DECL_EXTERN_INLINE
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* Subroutine of duplicate_decls. NEWDECL has been found to be
|
||
consistent with OLDDECL, but carries new information. Merge the
|
||
new information into OLDDECL. This function issues no
|
||
diagnostics. */
|
||
|
||
static void
|
||
merge_decls (tree newdecl, tree olddecl, tree newtype, tree oldtype)
|
||
{
|
||
int new_is_definition = (TREE_CODE (newdecl) == FUNCTION_DECL
|
||
&& DECL_INITIAL (newdecl) != 0);
|
||
int new_is_prototype = (TREE_CODE (newdecl) == FUNCTION_DECL
|
||
&& TYPE_ARG_TYPES (TREE_TYPE (newdecl)) != 0);
|
||
int old_is_prototype = (TREE_CODE (olddecl) == FUNCTION_DECL
|
||
&& TYPE_ARG_TYPES (TREE_TYPE (olddecl)) != 0);
|
||
|
||
/* For real parm decl following a forward decl, rechain the old decl
|
||
in its new location and clear TREE_ASM_WRITTEN (it's not a
|
||
forward decl anymore). */
|
||
if (TREE_CODE (newdecl) == PARM_DECL
|
||
&& TREE_ASM_WRITTEN (olddecl) && !TREE_ASM_WRITTEN (newdecl))
|
||
{
|
||
struct c_binding *b, **here;
|
||
|
||
for (here = ¤t_scope->bindings; *here; here = &(*here)->prev)
|
||
if ((*here)->decl == olddecl)
|
||
goto found;
|
||
gcc_unreachable ();
|
||
|
||
found:
|
||
b = *here;
|
||
*here = b->prev;
|
||
b->prev = current_scope->bindings;
|
||
current_scope->bindings = b;
|
||
|
||
TREE_ASM_WRITTEN (olddecl) = 0;
|
||
}
|
||
|
||
DECL_ATTRIBUTES (newdecl)
|
||
= targetm.merge_decl_attributes (olddecl, newdecl);
|
||
|
||
/* Merge the data types specified in the two decls. */
|
||
TREE_TYPE (newdecl)
|
||
= TREE_TYPE (olddecl)
|
||
= composite_type (newtype, oldtype);
|
||
|
||
/* Lay the type out, unless already done. */
|
||
if (!comptypes (oldtype, TREE_TYPE (newdecl)))
|
||
{
|
||
if (TREE_TYPE (newdecl) != error_mark_node)
|
||
layout_type (TREE_TYPE (newdecl));
|
||
if (TREE_CODE (newdecl) != FUNCTION_DECL
|
||
&& TREE_CODE (newdecl) != TYPE_DECL
|
||
&& TREE_CODE (newdecl) != CONST_DECL)
|
||
layout_decl (newdecl, 0);
|
||
}
|
||
else
|
||
{
|
||
/* Since the type is OLDDECL's, make OLDDECL's size go with. */
|
||
DECL_SIZE (newdecl) = DECL_SIZE (olddecl);
|
||
DECL_SIZE_UNIT (newdecl) = DECL_SIZE_UNIT (olddecl);
|
||
DECL_MODE (newdecl) = DECL_MODE (olddecl);
|
||
if (TREE_CODE (olddecl) != FUNCTION_DECL)
|
||
if (DECL_ALIGN (olddecl) > DECL_ALIGN (newdecl))
|
||
{
|
||
DECL_ALIGN (newdecl) = DECL_ALIGN (olddecl);
|
||
DECL_USER_ALIGN (newdecl) |= DECL_ALIGN (olddecl);
|
||
}
|
||
}
|
||
|
||
|
||
/* Merge the type qualifiers. */
|
||
if (TREE_READONLY (newdecl))
|
||
TREE_READONLY (olddecl) = 1;
|
||
|
||
if (TREE_THIS_VOLATILE (newdecl))
|
||
{
|
||
TREE_THIS_VOLATILE (olddecl) = 1;
|
||
if (TREE_CODE (newdecl) == VAR_DECL)
|
||
make_var_volatile (newdecl);
|
||
}
|
||
|
||
/* Merge deprecatedness. */
|
||
if (TREE_DEPRECATED (newdecl))
|
||
TREE_DEPRECATED (olddecl) = 1;
|
||
|
||
/* Keep source location of definition rather than declaration and of
|
||
prototype rather than non-prototype unless that prototype is
|
||
built-in. */
|
||
if ((DECL_INITIAL (newdecl) == 0 && DECL_INITIAL (olddecl) != 0)
|
||
|| (old_is_prototype && !new_is_prototype
|
||
&& !C_DECL_BUILTIN_PROTOTYPE (olddecl)))
|
||
DECL_SOURCE_LOCATION (newdecl) = DECL_SOURCE_LOCATION (olddecl);
|
||
|
||
/* Merge the initialization information. */
|
||
if (DECL_INITIAL (newdecl) == 0)
|
||
DECL_INITIAL (newdecl) = DECL_INITIAL (olddecl);
|
||
|
||
if (CODE_CONTAINS_STRUCT (TREE_CODE (olddecl), TS_DECL_WITH_VIS))
|
||
{
|
||
/* Merge the unused-warning information. */
|
||
if (DECL_IN_SYSTEM_HEADER (olddecl))
|
||
DECL_IN_SYSTEM_HEADER (newdecl) = 1;
|
||
else if (DECL_IN_SYSTEM_HEADER (newdecl))
|
||
DECL_IN_SYSTEM_HEADER (olddecl) = 1;
|
||
|
||
/* Merge the section attribute.
|
||
We want to issue an error if the sections conflict but that must be
|
||
done later in decl_attributes since we are called before attributes
|
||
are assigned. */
|
||
if (DECL_SECTION_NAME (newdecl) == NULL_TREE)
|
||
DECL_SECTION_NAME (newdecl) = DECL_SECTION_NAME (olddecl);
|
||
|
||
/* Copy the assembler name.
|
||
Currently, it can only be defined in the prototype. */
|
||
COPY_DECL_ASSEMBLER_NAME (olddecl, newdecl);
|
||
|
||
/* Use visibility of whichever declaration had it specified */
|
||
if (DECL_VISIBILITY_SPECIFIED (olddecl))
|
||
{
|
||
DECL_VISIBILITY (newdecl) = DECL_VISIBILITY (olddecl);
|
||
DECL_VISIBILITY_SPECIFIED (newdecl) = 1;
|
||
}
|
||
|
||
if (TREE_CODE (newdecl) == FUNCTION_DECL)
|
||
{
|
||
DECL_STATIC_CONSTRUCTOR(newdecl) |= DECL_STATIC_CONSTRUCTOR(olddecl);
|
||
DECL_STATIC_DESTRUCTOR (newdecl) |= DECL_STATIC_DESTRUCTOR (olddecl);
|
||
DECL_NO_LIMIT_STACK (newdecl) |= DECL_NO_LIMIT_STACK (olddecl);
|
||
DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (newdecl)
|
||
|= DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (olddecl);
|
||
TREE_THIS_VOLATILE (newdecl) |= TREE_THIS_VOLATILE (olddecl);
|
||
TREE_READONLY (newdecl) |= TREE_READONLY (olddecl);
|
||
DECL_IS_MALLOC (newdecl) |= DECL_IS_MALLOC (olddecl);
|
||
DECL_IS_PURE (newdecl) |= DECL_IS_PURE (olddecl);
|
||
DECL_IS_NOVOPS (newdecl) |= DECL_IS_NOVOPS (olddecl);
|
||
}
|
||
|
||
/* Merge the storage class information. */
|
||
merge_weak (newdecl, olddecl);
|
||
|
||
/* For functions, static overrides non-static. */
|
||
if (TREE_CODE (newdecl) == FUNCTION_DECL)
|
||
{
|
||
TREE_PUBLIC (newdecl) &= TREE_PUBLIC (olddecl);
|
||
/* This is since we don't automatically
|
||
copy the attributes of NEWDECL into OLDDECL. */
|
||
TREE_PUBLIC (olddecl) = TREE_PUBLIC (newdecl);
|
||
/* If this clears `static', clear it in the identifier too. */
|
||
if (!TREE_PUBLIC (olddecl))
|
||
TREE_PUBLIC (DECL_NAME (olddecl)) = 0;
|
||
}
|
||
}
|
||
|
||
if (DECL_EXTERNAL (newdecl))
|
||
{
|
||
TREE_STATIC (newdecl) = TREE_STATIC (olddecl);
|
||
DECL_EXTERNAL (newdecl) = DECL_EXTERNAL (olddecl);
|
||
|
||
/* An extern decl does not override previous storage class. */
|
||
TREE_PUBLIC (newdecl) = TREE_PUBLIC (olddecl);
|
||
if (!DECL_EXTERNAL (newdecl))
|
||
{
|
||
DECL_CONTEXT (newdecl) = DECL_CONTEXT (olddecl);
|
||
DECL_COMMON (newdecl) = DECL_COMMON (olddecl);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
TREE_STATIC (olddecl) = TREE_STATIC (newdecl);
|
||
TREE_PUBLIC (olddecl) = TREE_PUBLIC (newdecl);
|
||
}
|
||
|
||
if (TREE_CODE (newdecl) == FUNCTION_DECL)
|
||
{
|
||
/* If we're redefining a function previously defined as extern
|
||
inline, make sure we emit debug info for the inline before we
|
||
throw it away, in case it was inlined into a function that hasn't
|
||
been written out yet. */
|
||
if (new_is_definition && DECL_INITIAL (olddecl))
|
||
{
|
||
if (TREE_USED (olddecl)
|
||
/* In unit-at-a-time mode we never inline re-defined extern
|
||
inline functions. */
|
||
&& !flag_unit_at_a_time
|
||
&& cgraph_function_possibly_inlined_p (olddecl))
|
||
(*debug_hooks->outlining_inline_function) (olddecl);
|
||
|
||
/* The new defn must not be inline. */
|
||
DECL_INLINE (newdecl) = 0;
|
||
DECL_UNINLINABLE (newdecl) = 1;
|
||
}
|
||
else
|
||
{
|
||
/* If either decl says `inline', this fn is inline,
|
||
unless its definition was passed already. */
|
||
if (DECL_DECLARED_INLINE_P (newdecl)
|
||
|| DECL_DECLARED_INLINE_P (olddecl))
|
||
DECL_DECLARED_INLINE_P (newdecl) = 1;
|
||
|
||
DECL_UNINLINABLE (newdecl) = DECL_UNINLINABLE (olddecl)
|
||
= (DECL_UNINLINABLE (newdecl) || DECL_UNINLINABLE (olddecl));
|
||
}
|
||
|
||
if (DECL_BUILT_IN (olddecl))
|
||
{
|
||
/* If redeclaring a builtin function, it stays built in.
|
||
But it gets tagged as having been declared. */
|
||
DECL_BUILT_IN_CLASS (newdecl) = DECL_BUILT_IN_CLASS (olddecl);
|
||
DECL_FUNCTION_CODE (newdecl) = DECL_FUNCTION_CODE (olddecl);
|
||
C_DECL_DECLARED_BUILTIN (newdecl) = 1;
|
||
if (new_is_prototype)
|
||
C_DECL_BUILTIN_PROTOTYPE (newdecl) = 0;
|
||
else
|
||
C_DECL_BUILTIN_PROTOTYPE (newdecl)
|
||
= C_DECL_BUILTIN_PROTOTYPE (olddecl);
|
||
}
|
||
|
||
/* Also preserve various other info from the definition. */
|
||
if (!new_is_definition)
|
||
{
|
||
DECL_RESULT (newdecl) = DECL_RESULT (olddecl);
|
||
DECL_INITIAL (newdecl) = DECL_INITIAL (olddecl);
|
||
DECL_STRUCT_FUNCTION (newdecl) = DECL_STRUCT_FUNCTION (olddecl);
|
||
DECL_SAVED_TREE (newdecl) = DECL_SAVED_TREE (olddecl);
|
||
DECL_ARGUMENTS (newdecl) = DECL_ARGUMENTS (olddecl);
|
||
|
||
/* Set DECL_INLINE on the declaration if we've got a body
|
||
from which to instantiate. */
|
||
if (DECL_INLINE (olddecl) && !DECL_UNINLINABLE (newdecl))
|
||
{
|
||
DECL_INLINE (newdecl) = 1;
|
||
DECL_ABSTRACT_ORIGIN (newdecl)
|
||
= DECL_ABSTRACT_ORIGIN (olddecl);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* If a previous declaration said inline, mark the
|
||
definition as inlinable. */
|
||
if (DECL_DECLARED_INLINE_P (newdecl)
|
||
&& !DECL_UNINLINABLE (newdecl))
|
||
DECL_INLINE (newdecl) = 1;
|
||
}
|
||
}
|
||
|
||
/* Copy most of the decl-specific fields of NEWDECL into OLDDECL.
|
||
But preserve OLDDECL's DECL_UID and DECL_CONTEXT. */
|
||
{
|
||
unsigned olddecl_uid = DECL_UID (olddecl);
|
||
tree olddecl_context = DECL_CONTEXT (olddecl);
|
||
|
||
memcpy ((char *) olddecl + sizeof (struct tree_common),
|
||
(char *) newdecl + sizeof (struct tree_common),
|
||
sizeof (struct tree_decl_common) - sizeof (struct tree_common));
|
||
switch (TREE_CODE (olddecl))
|
||
{
|
||
case FIELD_DECL:
|
||
case VAR_DECL:
|
||
case PARM_DECL:
|
||
case LABEL_DECL:
|
||
case RESULT_DECL:
|
||
case CONST_DECL:
|
||
case TYPE_DECL:
|
||
case FUNCTION_DECL:
|
||
memcpy ((char *) olddecl + sizeof (struct tree_decl_common),
|
||
(char *) newdecl + sizeof (struct tree_decl_common),
|
||
tree_code_size (TREE_CODE (olddecl)) - sizeof (struct tree_decl_common));
|
||
break;
|
||
|
||
default:
|
||
|
||
memcpy ((char *) olddecl + sizeof (struct tree_decl_common),
|
||
(char *) newdecl + sizeof (struct tree_decl_common),
|
||
sizeof (struct tree_decl_non_common) - sizeof (struct tree_decl_common));
|
||
}
|
||
DECL_UID (olddecl) = olddecl_uid;
|
||
DECL_CONTEXT (olddecl) = olddecl_context;
|
||
}
|
||
|
||
/* If OLDDECL had its DECL_RTL instantiated, re-invoke make_decl_rtl
|
||
so that encode_section_info has a chance to look at the new decl
|
||
flags and attributes. */
|
||
if (DECL_RTL_SET_P (olddecl)
|
||
&& (TREE_CODE (olddecl) == FUNCTION_DECL
|
||
|| (TREE_CODE (olddecl) == VAR_DECL
|
||
&& TREE_STATIC (olddecl))))
|
||
make_decl_rtl (olddecl);
|
||
}
|
||
|
||
/* Handle when a new declaration NEWDECL has the same name as an old
|
||
one OLDDECL in the same binding contour. Prints an error message
|
||
if appropriate.
|
||
|
||
If safely possible, alter OLDDECL to look like NEWDECL, and return
|
||
true. Otherwise, return false. */
|
||
|
||
static bool
|
||
duplicate_decls (tree newdecl, tree olddecl)
|
||
{
|
||
tree newtype = NULL, oldtype = NULL;
|
||
|
||
if (!diagnose_mismatched_decls (newdecl, olddecl, &newtype, &oldtype))
|
||
{
|
||
/* Avoid `unused variable' and other warnings warnings for OLDDECL. */
|
||
TREE_NO_WARNING (olddecl) = 1;
|
||
return false;
|
||
}
|
||
|
||
merge_decls (newdecl, olddecl, newtype, oldtype);
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Check whether decl-node NEW_DECL shadows an existing declaration. */
|
||
static void
|
||
warn_if_shadowing (tree new_decl)
|
||
{
|
||
struct c_binding *b;
|
||
|
||
/* Shadow warnings wanted? */
|
||
if (!warn_shadow
|
||
/* No shadow warnings for internally generated vars. */
|
||
|| DECL_IS_BUILTIN (new_decl)
|
||
/* No shadow warnings for vars made for inlining. */
|
||
|| DECL_FROM_INLINE (new_decl))
|
||
return;
|
||
|
||
/* Is anything being shadowed? Invisible decls do not count. */
|
||
for (b = I_SYMBOL_BINDING (DECL_NAME (new_decl)); b; b = b->shadowed)
|
||
if (b->decl && b->decl != new_decl && !b->invisible)
|
||
{
|
||
tree old_decl = b->decl;
|
||
|
||
if (old_decl == error_mark_node)
|
||
{
|
||
warning (OPT_Wshadow, "declaration of %q+D shadows previous "
|
||
"non-variable", new_decl);
|
||
break;
|
||
}
|
||
else if (TREE_CODE (old_decl) == PARM_DECL)
|
||
warning (OPT_Wshadow, "declaration of %q+D shadows a parameter",
|
||
new_decl);
|
||
else if (DECL_FILE_SCOPE_P (old_decl))
|
||
warning (OPT_Wshadow, "declaration of %q+D shadows a global "
|
||
"declaration", new_decl);
|
||
else if (TREE_CODE (old_decl) == FUNCTION_DECL
|
||
&& DECL_BUILT_IN (old_decl))
|
||
{
|
||
warning (OPT_Wshadow, "declaration of %q+D shadows "
|
||
"a built-in function", new_decl);
|
||
break;
|
||
}
|
||
else
|
||
warning (OPT_Wshadow, "declaration of %q+D shadows a previous local",
|
||
new_decl);
|
||
|
||
warning (OPT_Wshadow, "%Jshadowed declaration is here", old_decl);
|
||
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
/* Subroutine of pushdecl.
|
||
|
||
X is a TYPE_DECL for a typedef statement. Create a brand new
|
||
..._TYPE node (which will be just a variant of the existing
|
||
..._TYPE node with identical properties) and then install X
|
||
as the TYPE_NAME of this brand new (duplicate) ..._TYPE node.
|
||
|
||
The whole point here is to end up with a situation where each
|
||
and every ..._TYPE node the compiler creates will be uniquely
|
||
associated with AT MOST one node representing a typedef name.
|
||
This way, even though the compiler substitutes corresponding
|
||
..._TYPE nodes for TYPE_DECL (i.e. "typedef name") nodes very
|
||
early on, later parts of the compiler can always do the reverse
|
||
translation and get back the corresponding typedef name. For
|
||
example, given:
|
||
|
||
typedef struct S MY_TYPE;
|
||
MY_TYPE object;
|
||
|
||
Later parts of the compiler might only know that `object' was of
|
||
type `struct S' if it were not for code just below. With this
|
||
code however, later parts of the compiler see something like:
|
||
|
||
struct S' == struct S
|
||
typedef struct S' MY_TYPE;
|
||
struct S' object;
|
||
|
||
And they can then deduce (from the node for type struct S') that
|
||
the original object declaration was:
|
||
|
||
MY_TYPE object;
|
||
|
||
Being able to do this is important for proper support of protoize,
|
||
and also for generating precise symbolic debugging information
|
||
which takes full account of the programmer's (typedef) vocabulary.
|
||
|
||
Obviously, we don't want to generate a duplicate ..._TYPE node if
|
||
the TYPE_DECL node that we are now processing really represents a
|
||
standard built-in type.
|
||
|
||
Since all standard types are effectively declared at line zero
|
||
in the source file, we can easily check to see if we are working
|
||
on a standard type by checking the current value of lineno. */
|
||
|
||
static void
|
||
clone_underlying_type (tree x)
|
||
{
|
||
if (DECL_IS_BUILTIN (x))
|
||
{
|
||
if (TYPE_NAME (TREE_TYPE (x)) == 0)
|
||
TYPE_NAME (TREE_TYPE (x)) = x;
|
||
}
|
||
else if (TREE_TYPE (x) != error_mark_node
|
||
&& DECL_ORIGINAL_TYPE (x) == NULL_TREE)
|
||
{
|
||
tree tt = TREE_TYPE (x);
|
||
DECL_ORIGINAL_TYPE (x) = tt;
|
||
tt = build_variant_type_copy (tt);
|
||
TYPE_NAME (tt) = x;
|
||
TREE_USED (tt) = TREE_USED (x);
|
||
TREE_TYPE (x) = tt;
|
||
}
|
||
}
|
||
|
||
/* Record a decl-node X as belonging to the current lexical scope.
|
||
Check for errors (such as an incompatible declaration for the same
|
||
name already seen in the same scope).
|
||
|
||
Returns either X or an old decl for the same name.
|
||
If an old decl is returned, it may have been smashed
|
||
to agree with what X says. */
|
||
|
||
tree
|
||
pushdecl (tree x)
|
||
{
|
||
tree name = DECL_NAME (x);
|
||
struct c_scope *scope = current_scope;
|
||
struct c_binding *b;
|
||
bool nested = false;
|
||
|
||
/* Functions need the lang_decl data. */
|
||
if (TREE_CODE (x) == FUNCTION_DECL && !DECL_LANG_SPECIFIC (x))
|
||
DECL_LANG_SPECIFIC (x) = GGC_CNEW (struct lang_decl);
|
||
|
||
/* Must set DECL_CONTEXT for everything not at file scope or
|
||
DECL_FILE_SCOPE_P won't work. Local externs don't count
|
||
unless they have initializers (which generate code). */
|
||
if (current_function_decl
|
||
&& ((TREE_CODE (x) != FUNCTION_DECL && TREE_CODE (x) != VAR_DECL)
|
||
|| DECL_INITIAL (x) || !DECL_EXTERNAL (x)))
|
||
DECL_CONTEXT (x) = current_function_decl;
|
||
|
||
/* If this is of variably modified type, prevent jumping into its
|
||
scope. */
|
||
if ((TREE_CODE (x) == VAR_DECL || TREE_CODE (x) == TYPE_DECL)
|
||
&& variably_modified_type_p (TREE_TYPE (x), NULL_TREE))
|
||
c_begin_vm_scope (scope->depth);
|
||
|
||
/* Anonymous decls are just inserted in the scope. */
|
||
if (!name)
|
||
{
|
||
bind (name, x, scope, /*invisible=*/false, /*nested=*/false);
|
||
return x;
|
||
}
|
||
|
||
/* First, see if there is another declaration with the same name in
|
||
the current scope. If there is, duplicate_decls may do all the
|
||
work for us. If duplicate_decls returns false, that indicates
|
||
two incompatible decls in the same scope; we are to silently
|
||
replace the old one (duplicate_decls has issued all appropriate
|
||
diagnostics). In particular, we should not consider possible
|
||
duplicates in the external scope, or shadowing. */
|
||
b = I_SYMBOL_BINDING (name);
|
||
if (b && B_IN_SCOPE (b, scope))
|
||
{
|
||
struct c_binding *b_ext, *b_use;
|
||
tree type = TREE_TYPE (x);
|
||
tree visdecl = b->decl;
|
||
tree vistype = TREE_TYPE (visdecl);
|
||
if (TREE_CODE (TREE_TYPE (x)) == ARRAY_TYPE
|
||
&& COMPLETE_TYPE_P (TREE_TYPE (x)))
|
||
b->inner_comp = false;
|
||
b_use = b;
|
||
b_ext = b;
|
||
/* If this is an external linkage declaration, we should check
|
||
for compatibility with the type in the external scope before
|
||
setting the type at this scope based on the visible
|
||
information only. */
|
||
if (TREE_PUBLIC (x) && TREE_PUBLIC (visdecl))
|
||
{
|
||
while (b_ext && !B_IN_EXTERNAL_SCOPE (b_ext))
|
||
b_ext = b_ext->shadowed;
|
||
if (b_ext)
|
||
{
|
||
b_use = b_ext;
|
||
if (b_use->type)
|
||
TREE_TYPE (b_use->decl) = b_use->type;
|
||
}
|
||
}
|
||
if (duplicate_decls (x, b_use->decl))
|
||
{
|
||
if (b_use != b)
|
||
{
|
||
/* Save the updated type in the external scope and
|
||
restore the proper type for this scope. */
|
||
tree thistype;
|
||
if (comptypes (vistype, type))
|
||
thistype = composite_type (vistype, type);
|
||
else
|
||
thistype = TREE_TYPE (b_use->decl);
|
||
b_use->type = TREE_TYPE (b_use->decl);
|
||
if (TREE_CODE (b_use->decl) == FUNCTION_DECL
|
||
&& DECL_BUILT_IN (b_use->decl))
|
||
thistype
|
||
= build_type_attribute_variant (thistype,
|
||
TYPE_ATTRIBUTES
|
||
(b_use->type));
|
||
TREE_TYPE (b_use->decl) = thistype;
|
||
}
|
||
return b_use->decl;
|
||
}
|
||
else
|
||
goto skip_external_and_shadow_checks;
|
||
}
|
||
|
||
/* All declarations with external linkage, and all external
|
||
references, go in the external scope, no matter what scope is
|
||
current. However, the binding in that scope is ignored for
|
||
purposes of normal name lookup. A separate binding structure is
|
||
created in the requested scope; this governs the normal
|
||
visibility of the symbol.
|
||
|
||
The binding in the externals scope is used exclusively for
|
||
detecting duplicate declarations of the same object, no matter
|
||
what scope they are in; this is what we do here. (C99 6.2.7p2:
|
||
All declarations that refer to the same object or function shall
|
||
have compatible type; otherwise, the behavior is undefined.) */
|
||
if (DECL_EXTERNAL (x) || scope == file_scope)
|
||
{
|
||
tree type = TREE_TYPE (x);
|
||
tree vistype = 0;
|
||
tree visdecl = 0;
|
||
bool type_saved = false;
|
||
if (b && !B_IN_EXTERNAL_SCOPE (b)
|
||
&& (TREE_CODE (b->decl) == FUNCTION_DECL
|
||
|| TREE_CODE (b->decl) == VAR_DECL)
|
||
&& DECL_FILE_SCOPE_P (b->decl))
|
||
{
|
||
visdecl = b->decl;
|
||
vistype = TREE_TYPE (visdecl);
|
||
}
|
||
if (scope != file_scope
|
||
&& !DECL_IN_SYSTEM_HEADER (x))
|
||
warning (OPT_Wnested_externs, "nested extern declaration of %qD", x);
|
||
|
||
while (b && !B_IN_EXTERNAL_SCOPE (b))
|
||
{
|
||
/* If this decl might be modified, save its type. This is
|
||
done here rather than when the decl is first bound
|
||
because the type may change after first binding, through
|
||
being completed or through attributes being added. If we
|
||
encounter multiple such decls, only the first should have
|
||
its type saved; the others will already have had their
|
||
proper types saved and the types will not have changed as
|
||
their scopes will not have been re-entered. */
|
||
if (DECL_P (b->decl) && DECL_FILE_SCOPE_P (b->decl) && !type_saved)
|
||
{
|
||
b->type = TREE_TYPE (b->decl);
|
||
type_saved = true;
|
||
}
|
||
if (B_IN_FILE_SCOPE (b)
|
||
&& TREE_CODE (b->decl) == VAR_DECL
|
||
&& TREE_STATIC (b->decl)
|
||
&& TREE_CODE (TREE_TYPE (b->decl)) == ARRAY_TYPE
|
||
&& !TYPE_DOMAIN (TREE_TYPE (b->decl))
|
||
&& TREE_CODE (type) == ARRAY_TYPE
|
||
&& TYPE_DOMAIN (type)
|
||
&& TYPE_MAX_VALUE (TYPE_DOMAIN (type))
|
||
&& !integer_zerop (TYPE_MAX_VALUE (TYPE_DOMAIN (type))))
|
||
{
|
||
/* Array type completed in inner scope, which should be
|
||
diagnosed if the completion does not have size 1 and
|
||
it does not get completed in the file scope. */
|
||
b->inner_comp = true;
|
||
}
|
||
b = b->shadowed;
|
||
}
|
||
|
||
/* If a matching external declaration has been found, set its
|
||
type to the composite of all the types of that declaration.
|
||
After the consistency checks, it will be reset to the
|
||
composite of the visible types only. */
|
||
if (b && (TREE_PUBLIC (x) || same_translation_unit_p (x, b->decl))
|
||
&& b->type)
|
||
TREE_TYPE (b->decl) = b->type;
|
||
|
||
/* The point of the same_translation_unit_p check here is,
|
||
we want to detect a duplicate decl for a construct like
|
||
foo() { extern bar(); } ... static bar(); but not if
|
||
they are in different translation units. In any case,
|
||
the static does not go in the externals scope. */
|
||
if (b
|
||
&& (TREE_PUBLIC (x) || same_translation_unit_p (x, b->decl))
|
||
&& duplicate_decls (x, b->decl))
|
||
{
|
||
tree thistype;
|
||
if (vistype)
|
||
{
|
||
if (comptypes (vistype, type))
|
||
thistype = composite_type (vistype, type);
|
||
else
|
||
thistype = TREE_TYPE (b->decl);
|
||
}
|
||
else
|
||
thistype = type;
|
||
b->type = TREE_TYPE (b->decl);
|
||
if (TREE_CODE (b->decl) == FUNCTION_DECL && DECL_BUILT_IN (b->decl))
|
||
thistype
|
||
= build_type_attribute_variant (thistype,
|
||
TYPE_ATTRIBUTES (b->type));
|
||
TREE_TYPE (b->decl) = thistype;
|
||
bind (name, b->decl, scope, /*invisible=*/false, /*nested=*/true);
|
||
return b->decl;
|
||
}
|
||
else if (TREE_PUBLIC (x))
|
||
{
|
||
if (visdecl && !b && duplicate_decls (x, visdecl))
|
||
{
|
||
/* An external declaration at block scope referring to a
|
||
visible entity with internal linkage. The composite
|
||
type will already be correct for this scope, so we
|
||
just need to fall through to make the declaration in
|
||
this scope. */
|
||
nested = true;
|
||
x = visdecl;
|
||
}
|
||
else
|
||
{
|
||
bind (name, x, external_scope, /*invisible=*/true,
|
||
/*nested=*/false);
|
||
nested = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (TREE_CODE (x) != PARM_DECL)
|
||
warn_if_shadowing (x);
|
||
|
||
skip_external_and_shadow_checks:
|
||
if (TREE_CODE (x) == TYPE_DECL)
|
||
clone_underlying_type (x);
|
||
|
||
bind (name, x, scope, /*invisible=*/false, nested);
|
||
|
||
/* If x's type is incomplete because it's based on a
|
||
structure or union which has not yet been fully declared,
|
||
attach it to that structure or union type, so we can go
|
||
back and complete the variable declaration later, if the
|
||
structure or union gets fully declared.
|
||
|
||
If the input is erroneous, we can have error_mark in the type
|
||
slot (e.g. "f(void a, ...)") - that doesn't count as an
|
||
incomplete type. */
|
||
if (TREE_TYPE (x) != error_mark_node
|
||
&& !COMPLETE_TYPE_P (TREE_TYPE (x)))
|
||
{
|
||
tree element = TREE_TYPE (x);
|
||
|
||
while (TREE_CODE (element) == ARRAY_TYPE)
|
||
element = TREE_TYPE (element);
|
||
element = TYPE_MAIN_VARIANT (element);
|
||
|
||
if ((TREE_CODE (element) == RECORD_TYPE
|
||
|| TREE_CODE (element) == UNION_TYPE)
|
||
&& (TREE_CODE (x) != TYPE_DECL
|
||
|| TREE_CODE (TREE_TYPE (x)) == ARRAY_TYPE)
|
||
&& !COMPLETE_TYPE_P (element))
|
||
C_TYPE_INCOMPLETE_VARS (element)
|
||
= tree_cons (NULL_TREE, x, C_TYPE_INCOMPLETE_VARS (element));
|
||
}
|
||
return x;
|
||
}
|
||
|
||
/* Record X as belonging to file scope.
|
||
This is used only internally by the Objective-C front end,
|
||
and is limited to its needs. duplicate_decls is not called;
|
||
if there is any preexisting decl for this identifier, it is an ICE. */
|
||
|
||
tree
|
||
pushdecl_top_level (tree x)
|
||
{
|
||
tree name;
|
||
bool nested = false;
|
||
gcc_assert (TREE_CODE (x) == VAR_DECL || TREE_CODE (x) == CONST_DECL);
|
||
|
||
name = DECL_NAME (x);
|
||
|
||
gcc_assert (TREE_CODE (x) == CONST_DECL || !I_SYMBOL_BINDING (name));
|
||
|
||
if (TREE_PUBLIC (x))
|
||
{
|
||
bind (name, x, external_scope, /*invisible=*/true, /*nested=*/false);
|
||
nested = true;
|
||
}
|
||
if (file_scope)
|
||
bind (name, x, file_scope, /*invisible=*/false, nested);
|
||
|
||
return x;
|
||
}
|
||
|
||
static void
|
||
implicit_decl_warning (tree id, tree olddecl)
|
||
{
|
||
void (*diag) (const char *, ...) ATTRIBUTE_GCC_CDIAG(1,2);
|
||
switch (mesg_implicit_function_declaration)
|
||
{
|
||
case 0: return;
|
||
case 1: diag = warning0; break;
|
||
case 2: diag = error; break;
|
||
default: gcc_unreachable ();
|
||
}
|
||
|
||
diag (G_("implicit declaration of function %qE"), id);
|
||
if (olddecl)
|
||
locate_old_decl (olddecl, diag);
|
||
}
|
||
|
||
/* Generate an implicit declaration for identifier FUNCTIONID as a
|
||
function of type int (). */
|
||
|
||
tree
|
||
implicitly_declare (tree functionid)
|
||
{
|
||
struct c_binding *b;
|
||
tree decl = 0;
|
||
tree asmspec_tree;
|
||
|
||
for (b = I_SYMBOL_BINDING (functionid); b; b = b->shadowed)
|
||
{
|
||
if (B_IN_SCOPE (b, external_scope))
|
||
{
|
||
decl = b->decl;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (decl)
|
||
{
|
||
if (decl == error_mark_node)
|
||
return decl;
|
||
|
||
/* FIXME: Objective-C has weird not-really-builtin functions
|
||
which are supposed to be visible automatically. They wind up
|
||
in the external scope because they're pushed before the file
|
||
scope gets created. Catch this here and rebind them into the
|
||
file scope. */
|
||
if (!DECL_BUILT_IN (decl) && DECL_IS_BUILTIN (decl))
|
||
{
|
||
bind (functionid, decl, file_scope,
|
||
/*invisible=*/false, /*nested=*/true);
|
||
return decl;
|
||
}
|
||
else
|
||
{
|
||
tree newtype = default_function_type;
|
||
if (b->type)
|
||
TREE_TYPE (decl) = b->type;
|
||
/* Implicit declaration of a function already declared
|
||
(somehow) in a different scope, or as a built-in.
|
||
If this is the first time this has happened, warn;
|
||
then recycle the old declaration but with the new type. */
|
||
if (!C_DECL_IMPLICIT (decl))
|
||
{
|
||
implicit_decl_warning (functionid, decl);
|
||
C_DECL_IMPLICIT (decl) = 1;
|
||
}
|
||
if (DECL_BUILT_IN (decl))
|
||
{
|
||
newtype = build_type_attribute_variant (newtype,
|
||
TYPE_ATTRIBUTES
|
||
(TREE_TYPE (decl)));
|
||
if (!comptypes (newtype, TREE_TYPE (decl)))
|
||
{
|
||
warning (0, "incompatible implicit declaration of built-in"
|
||
" function %qD", decl);
|
||
newtype = TREE_TYPE (decl);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (!comptypes (newtype, TREE_TYPE (decl)))
|
||
{
|
||
error ("incompatible implicit declaration of function %qD",
|
||
decl);
|
||
locate_old_decl (decl, error);
|
||
}
|
||
}
|
||
b->type = TREE_TYPE (decl);
|
||
TREE_TYPE (decl) = newtype;
|
||
bind (functionid, decl, current_scope,
|
||
/*invisible=*/false, /*nested=*/true);
|
||
return decl;
|
||
}
|
||
}
|
||
|
||
/* Not seen before. */
|
||
decl = build_decl (FUNCTION_DECL, functionid, default_function_type);
|
||
DECL_EXTERNAL (decl) = 1;
|
||
TREE_PUBLIC (decl) = 1;
|
||
C_DECL_IMPLICIT (decl) = 1;
|
||
implicit_decl_warning (functionid, 0);
|
||
asmspec_tree = maybe_apply_renaming_pragma (decl, /*asmname=*/NULL);
|
||
if (asmspec_tree)
|
||
set_user_assembler_name (decl, TREE_STRING_POINTER (asmspec_tree));
|
||
|
||
/* C89 says implicit declarations are in the innermost block.
|
||
So we record the decl in the standard fashion. */
|
||
decl = pushdecl (decl);
|
||
|
||
/* No need to call objc_check_decl here - it's a function type. */
|
||
rest_of_decl_compilation (decl, 0, 0);
|
||
|
||
/* Write a record describing this implicit function declaration
|
||
to the prototypes file (if requested). */
|
||
gen_aux_info_record (decl, 0, 1, 0);
|
||
|
||
/* Possibly apply some default attributes to this implicit declaration. */
|
||
decl_attributes (&decl, NULL_TREE, 0);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Issue an error message for a reference to an undeclared variable
|
||
ID, including a reference to a builtin outside of function-call
|
||
context. Establish a binding of the identifier to error_mark_node
|
||
in an appropriate scope, which will suppress further errors for the
|
||
same identifier. The error message should be given location LOC. */
|
||
void
|
||
undeclared_variable (tree id, location_t loc)
|
||
{
|
||
static bool already = false;
|
||
struct c_scope *scope;
|
||
|
||
if (current_function_decl == 0)
|
||
{
|
||
error ("%H%qE undeclared here (not in a function)", &loc, id);
|
||
scope = current_scope;
|
||
}
|
||
else
|
||
{
|
||
error ("%H%qE undeclared (first use in this function)", &loc, id);
|
||
|
||
if (!already)
|
||
{
|
||
error ("%H(Each undeclared identifier is reported only once", &loc);
|
||
error ("%Hfor each function it appears in.)", &loc);
|
||
already = true;
|
||
}
|
||
|
||
/* If we are parsing old-style parameter decls, current_function_decl
|
||
will be nonnull but current_function_scope will be null. */
|
||
scope = current_function_scope ? current_function_scope : current_scope;
|
||
}
|
||
bind (id, error_mark_node, scope, /*invisible=*/false, /*nested=*/false);
|
||
}
|
||
|
||
/* Subroutine of lookup_label, declare_label, define_label: construct a
|
||
LABEL_DECL with all the proper frills. */
|
||
|
||
static tree
|
||
make_label (tree name, location_t location)
|
||
{
|
||
tree label = build_decl (LABEL_DECL, name, void_type_node);
|
||
|
||
DECL_CONTEXT (label) = current_function_decl;
|
||
DECL_MODE (label) = VOIDmode;
|
||
DECL_SOURCE_LOCATION (label) = location;
|
||
|
||
return label;
|
||
}
|
||
|
||
/* Get the LABEL_DECL corresponding to identifier NAME as a label.
|
||
Create one if none exists so far for the current function.
|
||
This is called when a label is used in a goto expression or
|
||
has its address taken. */
|
||
|
||
tree
|
||
lookup_label (tree name)
|
||
{
|
||
tree label;
|
||
|
||
if (current_function_decl == 0)
|
||
{
|
||
error ("label %qE referenced outside of any function", name);
|
||
return 0;
|
||
}
|
||
|
||
/* Use a label already defined or ref'd with this name, but not if
|
||
it is inherited from a containing function and wasn't declared
|
||
using __label__. */
|
||
label = I_LABEL_DECL (name);
|
||
if (label && (DECL_CONTEXT (label) == current_function_decl
|
||
|| C_DECLARED_LABEL_FLAG (label)))
|
||
{
|
||
/* If the label has only been declared, update its apparent
|
||
location to point here, for better diagnostics if it
|
||
turns out not to have been defined. */
|
||
if (!TREE_USED (label))
|
||
DECL_SOURCE_LOCATION (label) = input_location;
|
||
return label;
|
||
}
|
||
|
||
/* No label binding for that identifier; make one. */
|
||
label = make_label (name, input_location);
|
||
|
||
/* Ordinary labels go in the current function scope. */
|
||
bind (name, label, current_function_scope,
|
||
/*invisible=*/false, /*nested=*/false);
|
||
return label;
|
||
}
|
||
|
||
/* Make a label named NAME in the current function, shadowing silently
|
||
any that may be inherited from containing functions or containing
|
||
scopes. This is called for __label__ declarations. */
|
||
|
||
tree
|
||
declare_label (tree name)
|
||
{
|
||
struct c_binding *b = I_LABEL_BINDING (name);
|
||
tree label;
|
||
|
||
/* Check to make sure that the label hasn't already been declared
|
||
at this scope */
|
||
if (b && B_IN_CURRENT_SCOPE (b))
|
||
{
|
||
error ("duplicate label declaration %qE", name);
|
||
locate_old_decl (b->decl, error);
|
||
|
||
/* Just use the previous declaration. */
|
||
return b->decl;
|
||
}
|
||
|
||
label = make_label (name, input_location);
|
||
C_DECLARED_LABEL_FLAG (label) = 1;
|
||
|
||
/* Declared labels go in the current scope. */
|
||
bind (name, label, current_scope,
|
||
/*invisible=*/false, /*nested=*/false);
|
||
return label;
|
||
}
|
||
|
||
/* Define a label, specifying the location in the source file.
|
||
Return the LABEL_DECL node for the label, if the definition is valid.
|
||
Otherwise return 0. */
|
||
|
||
tree
|
||
define_label (location_t location, tree name)
|
||
{
|
||
/* Find any preexisting label with this name. It is an error
|
||
if that label has already been defined in this function, or
|
||
if there is a containing function with a declared label with
|
||
the same name. */
|
||
tree label = I_LABEL_DECL (name);
|
||
struct c_label_list *nlist_se, *nlist_vm;
|
||
|
||
if (label
|
||
&& ((DECL_CONTEXT (label) == current_function_decl
|
||
&& DECL_INITIAL (label) != 0)
|
||
|| (DECL_CONTEXT (label) != current_function_decl
|
||
&& C_DECLARED_LABEL_FLAG (label))))
|
||
{
|
||
error ("%Hduplicate label %qD", &location, label);
|
||
locate_old_decl (label, error);
|
||
return 0;
|
||
}
|
||
else if (label && DECL_CONTEXT (label) == current_function_decl)
|
||
{
|
||
/* The label has been used or declared already in this function,
|
||
but not defined. Update its location to point to this
|
||
definition. */
|
||
if (C_DECL_UNDEFINABLE_STMT_EXPR (label))
|
||
error ("%Jjump into statement expression", label);
|
||
if (C_DECL_UNDEFINABLE_VM (label))
|
||
error ("%Jjump into scope of identifier with variably modified type",
|
||
label);
|
||
DECL_SOURCE_LOCATION (label) = location;
|
||
}
|
||
else
|
||
{
|
||
/* No label binding for that identifier; make one. */
|
||
label = make_label (name, location);
|
||
|
||
/* Ordinary labels go in the current function scope. */
|
||
bind (name, label, current_function_scope,
|
||
/*invisible=*/false, /*nested=*/false);
|
||
}
|
||
|
||
if (!in_system_header && lookup_name (name))
|
||
warning (OPT_Wtraditional, "%Htraditional C lacks a separate namespace "
|
||
"for labels, identifier %qE conflicts", &location, name);
|
||
|
||
nlist_se = XOBNEW (&parser_obstack, struct c_label_list);
|
||
nlist_se->next = label_context_stack_se->labels_def;
|
||
nlist_se->label = label;
|
||
label_context_stack_se->labels_def = nlist_se;
|
||
|
||
nlist_vm = XOBNEW (&parser_obstack, struct c_label_list);
|
||
nlist_vm->next = label_context_stack_vm->labels_def;
|
||
nlist_vm->label = label;
|
||
label_context_stack_vm->labels_def = nlist_vm;
|
||
|
||
/* Mark label as having been defined. */
|
||
DECL_INITIAL (label) = error_mark_node;
|
||
return label;
|
||
}
|
||
|
||
/* Given NAME, an IDENTIFIER_NODE,
|
||
return the structure (or union or enum) definition for that name.
|
||
If THISLEVEL_ONLY is nonzero, searches only the current_scope.
|
||
CODE says which kind of type the caller wants;
|
||
it is RECORD_TYPE or UNION_TYPE or ENUMERAL_TYPE.
|
||
If the wrong kind of type is found, an error is reported. */
|
||
|
||
static tree
|
||
lookup_tag (enum tree_code code, tree name, int thislevel_only)
|
||
{
|
||
struct c_binding *b = I_TAG_BINDING (name);
|
||
int thislevel = 0;
|
||
|
||
if (!b || !b->decl)
|
||
return 0;
|
||
|
||
/* We only care about whether it's in this level if
|
||
thislevel_only was set or it might be a type clash. */
|
||
if (thislevel_only || TREE_CODE (b->decl) != code)
|
||
{
|
||
/* For our purposes, a tag in the external scope is the same as
|
||
a tag in the file scope. (Primarily relevant to Objective-C
|
||
and its builtin structure tags, which get pushed before the
|
||
file scope is created.) */
|
||
if (B_IN_CURRENT_SCOPE (b)
|
||
|| (current_scope == file_scope && B_IN_EXTERNAL_SCOPE (b)))
|
||
thislevel = 1;
|
||
}
|
||
|
||
if (thislevel_only && !thislevel)
|
||
return 0;
|
||
|
||
if (TREE_CODE (b->decl) != code)
|
||
{
|
||
/* Definition isn't the kind we were looking for. */
|
||
pending_invalid_xref = name;
|
||
pending_invalid_xref_location = input_location;
|
||
|
||
/* If in the same binding level as a declaration as a tag
|
||
of a different type, this must not be allowed to
|
||
shadow that tag, so give the error immediately.
|
||
(For example, "struct foo; union foo;" is invalid.) */
|
||
if (thislevel)
|
||
pending_xref_error ();
|
||
}
|
||
return b->decl;
|
||
}
|
||
|
||
/* Print an error message now
|
||
for a recent invalid struct, union or enum cross reference.
|
||
We don't print them immediately because they are not invalid
|
||
when used in the `struct foo;' construct for shadowing. */
|
||
|
||
void
|
||
pending_xref_error (void)
|
||
{
|
||
if (pending_invalid_xref != 0)
|
||
error ("%H%qE defined as wrong kind of tag",
|
||
&pending_invalid_xref_location, pending_invalid_xref);
|
||
pending_invalid_xref = 0;
|
||
}
|
||
|
||
|
||
/* Look up NAME in the current scope and its superiors
|
||
in the namespace of variables, functions and typedefs.
|
||
Return a ..._DECL node of some kind representing its definition,
|
||
or return 0 if it is undefined. */
|
||
|
||
tree
|
||
lookup_name (tree name)
|
||
{
|
||
struct c_binding *b = I_SYMBOL_BINDING (name);
|
||
if (b && !b->invisible)
|
||
return b->decl;
|
||
return 0;
|
||
}
|
||
|
||
/* Similar to `lookup_name' but look only at the indicated scope. */
|
||
|
||
static tree
|
||
lookup_name_in_scope (tree name, struct c_scope *scope)
|
||
{
|
||
struct c_binding *b;
|
||
|
||
for (b = I_SYMBOL_BINDING (name); b; b = b->shadowed)
|
||
if (B_IN_SCOPE (b, scope))
|
||
return b->decl;
|
||
return 0;
|
||
}
|
||
|
||
/* Create the predefined scalar types of C,
|
||
and some nodes representing standard constants (0, 1, (void *) 0).
|
||
Initialize the global scope.
|
||
Make definitions for built-in primitive functions. */
|
||
|
||
void
|
||
c_init_decl_processing (void)
|
||
{
|
||
location_t save_loc = input_location;
|
||
|
||
/* Initialize reserved words for parser. */
|
||
c_parse_init ();
|
||
|
||
current_function_decl = 0;
|
||
|
||
gcc_obstack_init (&parser_obstack);
|
||
|
||
/* Make the externals scope. */
|
||
push_scope ();
|
||
external_scope = current_scope;
|
||
|
||
/* Declarations from c_common_nodes_and_builtins must not be associated
|
||
with this input file, lest we get differences between using and not
|
||
using preprocessed headers. */
|
||
#ifdef USE_MAPPED_LOCATION
|
||
input_location = BUILTINS_LOCATION;
|
||
#else
|
||
input_location.file = "<built-in>";
|
||
input_location.line = 0;
|
||
#endif
|
||
|
||
build_common_tree_nodes (flag_signed_char, false);
|
||
|
||
c_common_nodes_and_builtins ();
|
||
|
||
/* In C, comparisons and TRUTH_* expressions have type int. */
|
||
truthvalue_type_node = integer_type_node;
|
||
truthvalue_true_node = integer_one_node;
|
||
truthvalue_false_node = integer_zero_node;
|
||
|
||
/* Even in C99, which has a real boolean type. */
|
||
pushdecl (build_decl (TYPE_DECL, get_identifier ("_Bool"),
|
||
boolean_type_node));
|
||
|
||
input_location = save_loc;
|
||
|
||
pedantic_lvalues = true;
|
||
|
||
make_fname_decl = c_make_fname_decl;
|
||
start_fname_decls ();
|
||
}
|
||
|
||
/* Create the VAR_DECL for __FUNCTION__ etc. ID is the name to give the
|
||
decl, NAME is the initialization string and TYPE_DEP indicates whether
|
||
NAME depended on the type of the function. As we don't yet implement
|
||
delayed emission of static data, we mark the decl as emitted
|
||
so it is not placed in the output. Anything using it must therefore pull
|
||
out the STRING_CST initializer directly. FIXME. */
|
||
|
||
static tree
|
||
c_make_fname_decl (tree id, int type_dep)
|
||
{
|
||
const char *name = fname_as_string (type_dep);
|
||
tree decl, type, init;
|
||
size_t length = strlen (name);
|
||
|
||
type = build_array_type (char_type_node,
|
||
build_index_type (size_int (length)));
|
||
type = c_build_qualified_type (type, TYPE_QUAL_CONST);
|
||
|
||
decl = build_decl (VAR_DECL, id, type);
|
||
|
||
TREE_STATIC (decl) = 1;
|
||
TREE_READONLY (decl) = 1;
|
||
DECL_ARTIFICIAL (decl) = 1;
|
||
|
||
init = build_string (length + 1, name);
|
||
free ((char *) name);
|
||
TREE_TYPE (init) = type;
|
||
DECL_INITIAL (decl) = init;
|
||
|
||
TREE_USED (decl) = 1;
|
||
|
||
if (current_function_decl)
|
||
{
|
||
DECL_CONTEXT (decl) = current_function_decl;
|
||
bind (id, decl, current_function_scope,
|
||
/*invisible=*/false, /*nested=*/false);
|
||
}
|
||
|
||
finish_decl (decl, init, NULL_TREE);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Return a definition for a builtin function named NAME and whose data type
|
||
is TYPE. TYPE should be a function type with argument types.
|
||
FUNCTION_CODE tells later passes how to compile calls to this function.
|
||
See tree.h for its possible values.
|
||
|
||
If LIBRARY_NAME is nonzero, use that for DECL_ASSEMBLER_NAME,
|
||
the name to be called if we can't opencode the function. If
|
||
ATTRS is nonzero, use that for the function's attribute list. */
|
||
|
||
tree
|
||
builtin_function (const char *name, tree type, int function_code,
|
||
enum built_in_class cl, const char *library_name,
|
||
tree attrs)
|
||
{
|
||
tree id = get_identifier (name);
|
||
tree decl = build_decl (FUNCTION_DECL, id, type);
|
||
TREE_PUBLIC (decl) = 1;
|
||
DECL_EXTERNAL (decl) = 1;
|
||
DECL_LANG_SPECIFIC (decl) = GGC_CNEW (struct lang_decl);
|
||
DECL_BUILT_IN_CLASS (decl) = cl;
|
||
DECL_FUNCTION_CODE (decl) = function_code;
|
||
C_DECL_BUILTIN_PROTOTYPE (decl) = (TYPE_ARG_TYPES (type) != 0);
|
||
if (library_name)
|
||
SET_DECL_ASSEMBLER_NAME (decl, get_identifier (library_name));
|
||
|
||
/* Should never be called on a symbol with a preexisting meaning. */
|
||
gcc_assert (!I_SYMBOL_BINDING (id));
|
||
|
||
bind (id, decl, external_scope, /*invisible=*/true, /*nested=*/false);
|
||
|
||
/* Builtins in the implementation namespace are made visible without
|
||
needing to be explicitly declared. See push_file_scope. */
|
||
if (name[0] == '_' && (name[1] == '_' || ISUPPER (name[1])))
|
||
{
|
||
TREE_CHAIN (decl) = visible_builtins;
|
||
visible_builtins = decl;
|
||
}
|
||
|
||
/* Possibly apply some default attributes to this built-in function. */
|
||
if (attrs)
|
||
decl_attributes (&decl, attrs, ATTR_FLAG_BUILT_IN);
|
||
else
|
||
decl_attributes (&decl, NULL_TREE, 0);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Called when a declaration is seen that contains no names to declare.
|
||
If its type is a reference to a structure, union or enum inherited
|
||
from a containing scope, shadow that tag name for the current scope
|
||
with a forward reference.
|
||
If its type defines a new named structure or union
|
||
or defines an enum, it is valid but we need not do anything here.
|
||
Otherwise, it is an error. */
|
||
|
||
void
|
||
shadow_tag (const struct c_declspecs *declspecs)
|
||
{
|
||
shadow_tag_warned (declspecs, 0);
|
||
}
|
||
|
||
/* WARNED is 1 if we have done a pedwarn, 2 if we have done a warning,
|
||
but no pedwarn. */
|
||
void
|
||
shadow_tag_warned (const struct c_declspecs *declspecs, int warned)
|
||
{
|
||
bool found_tag = false;
|
||
|
||
if (declspecs->type && !declspecs->default_int_p && !declspecs->typedef_p)
|
||
{
|
||
tree value = declspecs->type;
|
||
enum tree_code code = TREE_CODE (value);
|
||
|
||
if (code == RECORD_TYPE || code == UNION_TYPE || code == ENUMERAL_TYPE)
|
||
/* Used to test also that TYPE_SIZE (value) != 0.
|
||
That caused warning for `struct foo;' at top level in the file. */
|
||
{
|
||
tree name = TYPE_NAME (value);
|
||
tree t;
|
||
|
||
found_tag = true;
|
||
|
||
if (name == 0)
|
||
{
|
||
if (warned != 1 && code != ENUMERAL_TYPE)
|
||
/* Empty unnamed enum OK */
|
||
{
|
||
pedwarn ("unnamed struct/union that defines no instances");
|
||
warned = 1;
|
||
}
|
||
}
|
||
else if (!declspecs->tag_defined_p
|
||
&& declspecs->storage_class != csc_none)
|
||
{
|
||
if (warned != 1)
|
||
pedwarn ("empty declaration with storage class specifier "
|
||
"does not redeclare tag");
|
||
warned = 1;
|
||
pending_xref_error ();
|
||
}
|
||
else if (!declspecs->tag_defined_p
|
||
&& (declspecs->const_p
|
||
|| declspecs->volatile_p
|
||
|| declspecs->restrict_p))
|
||
{
|
||
if (warned != 1)
|
||
pedwarn ("empty declaration with type qualifier "
|
||
"does not redeclare tag");
|
||
warned = 1;
|
||
pending_xref_error ();
|
||
}
|
||
else
|
||
{
|
||
pending_invalid_xref = 0;
|
||
t = lookup_tag (code, name, 1);
|
||
|
||
if (t == 0)
|
||
{
|
||
t = make_node (code);
|
||
pushtag (name, t);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (warned != 1 && !in_system_header)
|
||
{
|
||
pedwarn ("useless type name in empty declaration");
|
||
warned = 1;
|
||
}
|
||
}
|
||
}
|
||
else if (warned != 1 && !in_system_header && declspecs->typedef_p)
|
||
{
|
||
pedwarn ("useless type name in empty declaration");
|
||
warned = 1;
|
||
}
|
||
|
||
pending_invalid_xref = 0;
|
||
|
||
if (declspecs->inline_p)
|
||
{
|
||
error ("%<inline%> in empty declaration");
|
||
warned = 1;
|
||
}
|
||
|
||
if (current_scope == file_scope && declspecs->storage_class == csc_auto)
|
||
{
|
||
error ("%<auto%> in file-scope empty declaration");
|
||
warned = 1;
|
||
}
|
||
|
||
if (current_scope == file_scope && declspecs->storage_class == csc_register)
|
||
{
|
||
error ("%<register%> in file-scope empty declaration");
|
||
warned = 1;
|
||
}
|
||
|
||
if (!warned && !in_system_header && declspecs->storage_class != csc_none)
|
||
{
|
||
warning (0, "useless storage class specifier in empty declaration");
|
||
warned = 2;
|
||
}
|
||
|
||
if (!warned && !in_system_header && declspecs->thread_p)
|
||
{
|
||
warning (0, "useless %<__thread%> in empty declaration");
|
||
warned = 2;
|
||
}
|
||
|
||
if (!warned && !in_system_header && (declspecs->const_p
|
||
|| declspecs->volatile_p
|
||
|| declspecs->restrict_p))
|
||
{
|
||
warning (0, "useless type qualifier in empty declaration");
|
||
warned = 2;
|
||
}
|
||
|
||
if (warned != 1)
|
||
{
|
||
if (!found_tag)
|
||
pedwarn ("empty declaration");
|
||
}
|
||
}
|
||
|
||
|
||
/* Return the qualifiers from SPECS as a bitwise OR of TYPE_QUAL_*
|
||
bits. SPECS represents declaration specifiers that the grammar
|
||
only permits to contain type qualifiers and attributes. */
|
||
|
||
int
|
||
quals_from_declspecs (const struct c_declspecs *specs)
|
||
{
|
||
int quals = ((specs->const_p ? TYPE_QUAL_CONST : 0)
|
||
| (specs->volatile_p ? TYPE_QUAL_VOLATILE : 0)
|
||
| (specs->restrict_p ? TYPE_QUAL_RESTRICT : 0));
|
||
gcc_assert (!specs->type
|
||
&& !specs->decl_attr
|
||
&& specs->typespec_word == cts_none
|
||
&& specs->storage_class == csc_none
|
||
&& !specs->typedef_p
|
||
&& !specs->explicit_signed_p
|
||
&& !specs->deprecated_p
|
||
&& !specs->long_p
|
||
&& !specs->long_long_p
|
||
&& !specs->short_p
|
||
&& !specs->signed_p
|
||
&& !specs->unsigned_p
|
||
&& !specs->complex_p
|
||
&& !specs->inline_p
|
||
&& !specs->thread_p);
|
||
return quals;
|
||
}
|
||
|
||
/* Construct an array declarator. EXPR is the expression inside [], or
|
||
NULL_TREE. QUALS are the type qualifiers inside the [] (to be applied
|
||
to the pointer to which a parameter array is converted). STATIC_P is
|
||
true if "static" is inside the [], false otherwise. VLA_UNSPEC_P
|
||
is true if the array is [*], a VLA of unspecified length which is
|
||
nevertheless a complete type (not currently implemented by GCC),
|
||
false otherwise. The field for the contained declarator is left to be
|
||
filled in by set_array_declarator_inner. */
|
||
|
||
struct c_declarator *
|
||
build_array_declarator (tree expr, struct c_declspecs *quals, bool static_p,
|
||
bool vla_unspec_p)
|
||
{
|
||
struct c_declarator *declarator = XOBNEW (&parser_obstack,
|
||
struct c_declarator);
|
||
declarator->kind = cdk_array;
|
||
declarator->declarator = 0;
|
||
declarator->u.array.dimen = expr;
|
||
if (quals)
|
||
{
|
||
declarator->u.array.attrs = quals->attrs;
|
||
declarator->u.array.quals = quals_from_declspecs (quals);
|
||
}
|
||
else
|
||
{
|
||
declarator->u.array.attrs = NULL_TREE;
|
||
declarator->u.array.quals = 0;
|
||
}
|
||
declarator->u.array.static_p = static_p;
|
||
declarator->u.array.vla_unspec_p = vla_unspec_p;
|
||
if (pedantic && !flag_isoc99)
|
||
{
|
||
if (static_p || quals != NULL)
|
||
pedwarn ("ISO C90 does not support %<static%> or type "
|
||
"qualifiers in parameter array declarators");
|
||
if (vla_unspec_p)
|
||
pedwarn ("ISO C90 does not support %<[*]%> array declarators");
|
||
}
|
||
if (vla_unspec_p)
|
||
warning (0, "GCC does not yet properly implement %<[*]%> array declarators");
|
||
return declarator;
|
||
}
|
||
|
||
/* Set the contained declarator of an array declarator. DECL is the
|
||
declarator, as constructed by build_array_declarator; INNER is what
|
||
appears on the left of the []. ABSTRACT_P is true if it is an
|
||
abstract declarator, false otherwise; this is used to reject static
|
||
and type qualifiers in abstract declarators, where they are not in
|
||
the C99 grammar (subject to possible change in DR#289). */
|
||
|
||
struct c_declarator *
|
||
set_array_declarator_inner (struct c_declarator *decl,
|
||
struct c_declarator *inner, bool abstract_p)
|
||
{
|
||
decl->declarator = inner;
|
||
if (abstract_p && (decl->u.array.quals != TYPE_UNQUALIFIED
|
||
|| decl->u.array.attrs != NULL_TREE
|
||
|| decl->u.array.static_p))
|
||
error ("static or type qualifiers in abstract declarator");
|
||
return decl;
|
||
}
|
||
|
||
/* INIT is a constructor that forms DECL's initializer. If the final
|
||
element initializes a flexible array field, add the size of that
|
||
initializer to DECL's size. */
|
||
|
||
static void
|
||
add_flexible_array_elts_to_size (tree decl, tree init)
|
||
{
|
||
unsigned int size;
|
||
tree elt, type;
|
||
|
||
size = VEC_length (constructor_elt, CONSTRUCTOR_ELTS (init));
|
||
if (size == 0)
|
||
return;
|
||
|
||
elt = VEC_index (constructor_elt, CONSTRUCTOR_ELTS (init), size - 1)->value;
|
||
type = TREE_TYPE (elt);
|
||
if (TREE_CODE (type) == ARRAY_TYPE
|
||
&& TYPE_SIZE (type) == NULL_TREE
|
||
&& TYPE_DOMAIN (type) != NULL_TREE
|
||
&& TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL_TREE)
|
||
{
|
||
complete_array_type (&type, elt, false);
|
||
DECL_SIZE (decl)
|
||
= size_binop (PLUS_EXPR, DECL_SIZE (decl), TYPE_SIZE (type));
|
||
DECL_SIZE_UNIT (decl)
|
||
= size_binop (PLUS_EXPR, DECL_SIZE_UNIT (decl), TYPE_SIZE_UNIT (type));
|
||
}
|
||
}
|
||
|
||
/* Decode a "typename", such as "int **", returning a ..._TYPE node. */
|
||
|
||
tree
|
||
groktypename (struct c_type_name *type_name)
|
||
{
|
||
tree type;
|
||
tree attrs = type_name->specs->attrs;
|
||
|
||
type_name->specs->attrs = NULL_TREE;
|
||
|
||
type = grokdeclarator (type_name->declarator, type_name->specs, TYPENAME,
|
||
false, NULL);
|
||
|
||
/* Apply attributes. */
|
||
decl_attributes (&type, attrs, 0);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Decode a declarator in an ordinary declaration or data definition.
|
||
This is called as soon as the type information and variable name
|
||
have been parsed, before parsing the initializer if any.
|
||
Here we create the ..._DECL node, fill in its type,
|
||
and put it on the list of decls for the current context.
|
||
The ..._DECL node is returned as the value.
|
||
|
||
Exception: for arrays where the length is not specified,
|
||
the type is left null, to be filled in by `finish_decl'.
|
||
|
||
Function definitions do not come here; they go to start_function
|
||
instead. However, external and forward declarations of functions
|
||
do go through here. Structure field declarations are done by
|
||
grokfield and not through here. */
|
||
|
||
tree
|
||
start_decl (struct c_declarator *declarator, struct c_declspecs *declspecs,
|
||
bool initialized, tree attributes)
|
||
{
|
||
tree decl;
|
||
tree tem;
|
||
|
||
/* An object declared as __attribute__((deprecated)) suppresses
|
||
warnings of uses of other deprecated items. */
|
||
if (lookup_attribute ("deprecated", attributes))
|
||
deprecated_state = DEPRECATED_SUPPRESS;
|
||
|
||
decl = grokdeclarator (declarator, declspecs,
|
||
NORMAL, initialized, NULL);
|
||
if (!decl)
|
||
return 0;
|
||
|
||
deprecated_state = DEPRECATED_NORMAL;
|
||
|
||
if (warn_main > 0 && TREE_CODE (decl) != FUNCTION_DECL
|
||
&& MAIN_NAME_P (DECL_NAME (decl)))
|
||
warning (OPT_Wmain, "%q+D is usually a function", decl);
|
||
|
||
if (initialized)
|
||
/* Is it valid for this decl to have an initializer at all?
|
||
If not, set INITIALIZED to zero, which will indirectly
|
||
tell 'finish_decl' to ignore the initializer once it is parsed. */
|
||
switch (TREE_CODE (decl))
|
||
{
|
||
case TYPE_DECL:
|
||
error ("typedef %qD is initialized (use __typeof__ instead)", decl);
|
||
initialized = 0;
|
||
break;
|
||
|
||
case FUNCTION_DECL:
|
||
error ("function %qD is initialized like a variable", decl);
|
||
initialized = 0;
|
||
break;
|
||
|
||
case PARM_DECL:
|
||
/* DECL_INITIAL in a PARM_DECL is really DECL_ARG_TYPE. */
|
||
error ("parameter %qD is initialized", decl);
|
||
initialized = 0;
|
||
break;
|
||
|
||
default:
|
||
/* Don't allow initializations for incomplete types except for
|
||
arrays which might be completed by the initialization. */
|
||
|
||
/* This can happen if the array size is an undefined macro.
|
||
We already gave a warning, so we don't need another one. */
|
||
if (TREE_TYPE (decl) == error_mark_node)
|
||
initialized = 0;
|
||
else if (COMPLETE_TYPE_P (TREE_TYPE (decl)))
|
||
{
|
||
/* A complete type is ok if size is fixed. */
|
||
|
||
if (TREE_CODE (TYPE_SIZE (TREE_TYPE (decl))) != INTEGER_CST
|
||
|| C_DECL_VARIABLE_SIZE (decl))
|
||
{
|
||
error ("variable-sized object may not be initialized");
|
||
initialized = 0;
|
||
}
|
||
}
|
||
else if (TREE_CODE (TREE_TYPE (decl)) != ARRAY_TYPE)
|
||
{
|
||
error ("variable %qD has initializer but incomplete type", decl);
|
||
initialized = 0;
|
||
}
|
||
else if (C_DECL_VARIABLE_SIZE (decl))
|
||
{
|
||
/* Although C99 is unclear about whether incomplete arrays
|
||
of VLAs themselves count as VLAs, it does not make
|
||
sense to permit them to be initialized given that
|
||
ordinary VLAs may not be initialized. */
|
||
error ("variable-sized object may not be initialized");
|
||
initialized = 0;
|
||
}
|
||
}
|
||
|
||
if (initialized)
|
||
{
|
||
if (current_scope == file_scope)
|
||
TREE_STATIC (decl) = 1;
|
||
|
||
/* Tell 'pushdecl' this is an initialized decl
|
||
even though we don't yet have the initializer expression.
|
||
Also tell 'finish_decl' it may store the real initializer. */
|
||
DECL_INITIAL (decl) = error_mark_node;
|
||
}
|
||
|
||
/* If this is a function declaration, write a record describing it to the
|
||
prototypes file (if requested). */
|
||
|
||
if (TREE_CODE (decl) == FUNCTION_DECL)
|
||
gen_aux_info_record (decl, 0, 0, TYPE_ARG_TYPES (TREE_TYPE (decl)) != 0);
|
||
|
||
/* ANSI specifies that a tentative definition which is not merged with
|
||
a non-tentative definition behaves exactly like a definition with an
|
||
initializer equal to zero. (Section 3.7.2)
|
||
|
||
-fno-common gives strict ANSI behavior, though this tends to break
|
||
a large body of code that grew up without this rule.
|
||
|
||
Thread-local variables are never common, since there's no entrenched
|
||
body of code to break, and it allows more efficient variable references
|
||
in the presence of dynamic linking. */
|
||
|
||
if (TREE_CODE (decl) == VAR_DECL
|
||
&& !initialized
|
||
&& TREE_PUBLIC (decl)
|
||
&& !DECL_THREAD_LOCAL_P (decl)
|
||
&& !flag_no_common)
|
||
DECL_COMMON (decl) = 1;
|
||
|
||
/* Set attributes here so if duplicate decl, will have proper attributes. */
|
||
decl_attributes (&decl, attributes, 0);
|
||
|
||
if (TREE_CODE (decl) == FUNCTION_DECL
|
||
&& targetm.calls.promote_prototypes (TREE_TYPE (decl)))
|
||
{
|
||
struct c_declarator *ce = declarator;
|
||
|
||
if (ce->kind == cdk_pointer)
|
||
ce = declarator->declarator;
|
||
if (ce->kind == cdk_function)
|
||
{
|
||
tree args = ce->u.arg_info->parms;
|
||
for (; args; args = TREE_CHAIN (args))
|
||
{
|
||
tree type = TREE_TYPE (args);
|
||
if (type && INTEGRAL_TYPE_P (type)
|
||
&& TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node))
|
||
DECL_ARG_TYPE (args) = integer_type_node;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (TREE_CODE (decl) == FUNCTION_DECL
|
||
&& DECL_DECLARED_INLINE_P (decl)
|
||
&& DECL_UNINLINABLE (decl)
|
||
&& lookup_attribute ("noinline", DECL_ATTRIBUTES (decl)))
|
||
warning (OPT_Wattributes, "inline function %q+D given attribute noinline",
|
||
decl);
|
||
|
||
/* Add this decl to the current scope.
|
||
TEM may equal DECL or it may be a previous decl of the same name. */
|
||
tem = pushdecl (decl);
|
||
|
||
if (initialized && DECL_EXTERNAL (tem))
|
||
{
|
||
DECL_EXTERNAL (tem) = 0;
|
||
TREE_STATIC (tem) = 1;
|
||
}
|
||
|
||
return tem;
|
||
}
|
||
|
||
/* Finish processing of a declaration;
|
||
install its initial value.
|
||
If the length of an array type is not known before,
|
||
it must be determined now, from the initial value, or it is an error. */
|
||
|
||
void
|
||
finish_decl (tree decl, tree init, tree asmspec_tree)
|
||
{
|
||
tree type = TREE_TYPE (decl);
|
||
int was_incomplete = (DECL_SIZE (decl) == 0);
|
||
const char *asmspec = 0;
|
||
|
||
/* If a name was specified, get the string. */
|
||
if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
|
||
&& DECL_FILE_SCOPE_P (decl))
|
||
asmspec_tree = maybe_apply_renaming_pragma (decl, asmspec_tree);
|
||
if (asmspec_tree)
|
||
asmspec = TREE_STRING_POINTER (asmspec_tree);
|
||
|
||
/* If `start_decl' didn't like having an initialization, ignore it now. */
|
||
if (init != 0 && DECL_INITIAL (decl) == 0)
|
||
init = 0;
|
||
|
||
/* Don't crash if parm is initialized. */
|
||
if (TREE_CODE (decl) == PARM_DECL)
|
||
init = 0;
|
||
|
||
if (init)
|
||
store_init_value (decl, init);
|
||
|
||
if (c_dialect_objc () && (TREE_CODE (decl) == VAR_DECL
|
||
|| TREE_CODE (decl) == FUNCTION_DECL
|
||
|| TREE_CODE (decl) == FIELD_DECL))
|
||
objc_check_decl (decl);
|
||
|
||
/* Deduce size of array from initialization, if not already known. */
|
||
if (TREE_CODE (type) == ARRAY_TYPE
|
||
&& TYPE_DOMAIN (type) == 0
|
||
&& TREE_CODE (decl) != TYPE_DECL)
|
||
{
|
||
bool do_default
|
||
= (TREE_STATIC (decl)
|
||
/* Even if pedantic, an external linkage array
|
||
may have incomplete type at first. */
|
||
? pedantic && !TREE_PUBLIC (decl)
|
||
: !DECL_EXTERNAL (decl));
|
||
int failure
|
||
= complete_array_type (&TREE_TYPE (decl), DECL_INITIAL (decl),
|
||
do_default);
|
||
|
||
/* Get the completed type made by complete_array_type. */
|
||
type = TREE_TYPE (decl);
|
||
|
||
switch (failure)
|
||
{
|
||
case 1:
|
||
error ("initializer fails to determine size of %q+D", decl);
|
||
break;
|
||
|
||
case 2:
|
||
if (do_default)
|
||
error ("array size missing in %q+D", decl);
|
||
/* If a `static' var's size isn't known,
|
||
make it extern as well as static, so it does not get
|
||
allocated.
|
||
If it is not `static', then do not mark extern;
|
||
finish_incomplete_decl will give it a default size
|
||
and it will get allocated. */
|
||
else if (!pedantic && TREE_STATIC (decl) && !TREE_PUBLIC (decl))
|
||
DECL_EXTERNAL (decl) = 1;
|
||
break;
|
||
|
||
case 3:
|
||
error ("zero or negative size array %q+D", decl);
|
||
break;
|
||
|
||
case 0:
|
||
/* For global variables, update the copy of the type that
|
||
exists in the binding. */
|
||
if (TREE_PUBLIC (decl))
|
||
{
|
||
struct c_binding *b_ext = I_SYMBOL_BINDING (DECL_NAME (decl));
|
||
while (b_ext && !B_IN_EXTERNAL_SCOPE (b_ext))
|
||
b_ext = b_ext->shadowed;
|
||
if (b_ext)
|
||
{
|
||
if (b_ext->type)
|
||
b_ext->type = composite_type (b_ext->type, type);
|
||
else
|
||
b_ext->type = type;
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (DECL_INITIAL (decl))
|
||
TREE_TYPE (DECL_INITIAL (decl)) = type;
|
||
|
||
layout_decl (decl, 0);
|
||
}
|
||
|
||
if (TREE_CODE (decl) == VAR_DECL)
|
||
{
|
||
if (init && TREE_CODE (init) == CONSTRUCTOR)
|
||
add_flexible_array_elts_to_size (decl, init);
|
||
|
||
if (DECL_SIZE (decl) == 0 && TREE_TYPE (decl) != error_mark_node
|
||
&& COMPLETE_TYPE_P (TREE_TYPE (decl)))
|
||
layout_decl (decl, 0);
|
||
|
||
if (DECL_SIZE (decl) == 0
|
||
/* Don't give an error if we already gave one earlier. */
|
||
&& TREE_TYPE (decl) != error_mark_node
|
||
&& (TREE_STATIC (decl)
|
||
/* A static variable with an incomplete type
|
||
is an error if it is initialized.
|
||
Also if it is not file scope.
|
||
Otherwise, let it through, but if it is not `extern'
|
||
then it may cause an error message later. */
|
||
? (DECL_INITIAL (decl) != 0
|
||
|| !DECL_FILE_SCOPE_P (decl))
|
||
/* An automatic variable with an incomplete type
|
||
is an error. */
|
||
: !DECL_EXTERNAL (decl)))
|
||
{
|
||
error ("storage size of %q+D isn%'t known", decl);
|
||
TREE_TYPE (decl) = error_mark_node;
|
||
}
|
||
|
||
if ((DECL_EXTERNAL (decl) || TREE_STATIC (decl))
|
||
&& DECL_SIZE (decl) != 0)
|
||
{
|
||
if (TREE_CODE (DECL_SIZE (decl)) == INTEGER_CST)
|
||
constant_expression_warning (DECL_SIZE (decl));
|
||
else
|
||
error ("storage size of %q+D isn%'t constant", decl);
|
||
}
|
||
|
||
if (TREE_USED (type))
|
||
TREE_USED (decl) = 1;
|
||
}
|
||
|
||
/* If this is a function and an assembler name is specified, reset DECL_RTL
|
||
so we can give it its new name. Also, update built_in_decls if it
|
||
was a normal built-in. */
|
||
if (TREE_CODE (decl) == FUNCTION_DECL && asmspec)
|
||
{
|
||
if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
|
||
set_builtin_user_assembler_name (decl, asmspec);
|
||
set_user_assembler_name (decl, asmspec);
|
||
}
|
||
|
||
/* If #pragma weak was used, mark the decl weak now. */
|
||
maybe_apply_pragma_weak (decl);
|
||
|
||
/* If this is a variable definition, determine its ELF visibility. */
|
||
if (TREE_CODE (decl) == VAR_DECL
|
||
&& TREE_STATIC (decl)
|
||
&& !DECL_EXTERNAL (decl))
|
||
c_determine_visibility (decl);
|
||
|
||
/* Output the assembler code and/or RTL code for variables and functions,
|
||
unless the type is an undefined structure or union.
|
||
If not, it will get done when the type is completed. */
|
||
|
||
if (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == FUNCTION_DECL)
|
||
{
|
||
/* This is a no-op in c-lang.c or something real in objc-act.c. */
|
||
if (c_dialect_objc ())
|
||
objc_check_decl (decl);
|
||
|
||
if (asmspec)
|
||
{
|
||
/* If this is not a static variable, issue a warning.
|
||
It doesn't make any sense to give an ASMSPEC for an
|
||
ordinary, non-register local variable. Historically,
|
||
GCC has accepted -- but ignored -- the ASMSPEC in
|
||
this case. */
|
||
if (!DECL_FILE_SCOPE_P (decl)
|
||
&& TREE_CODE (decl) == VAR_DECL
|
||
&& !C_DECL_REGISTER (decl)
|
||
&& !TREE_STATIC (decl))
|
||
warning (0, "ignoring asm-specifier for non-static local "
|
||
"variable %q+D", decl);
|
||
else
|
||
set_user_assembler_name (decl, asmspec);
|
||
}
|
||
|
||
if (DECL_FILE_SCOPE_P (decl))
|
||
{
|
||
if (DECL_INITIAL (decl) == NULL_TREE
|
||
|| DECL_INITIAL (decl) == error_mark_node)
|
||
/* Don't output anything
|
||
when a tentative file-scope definition is seen.
|
||
But at end of compilation, do output code for them. */
|
||
DECL_DEFER_OUTPUT (decl) = 1;
|
||
rest_of_decl_compilation (decl, true, 0);
|
||
}
|
||
else
|
||
{
|
||
/* In conjunction with an ASMSPEC, the `register'
|
||
keyword indicates that we should place the variable
|
||
in a particular register. */
|
||
if (asmspec && C_DECL_REGISTER (decl))
|
||
{
|
||
DECL_HARD_REGISTER (decl) = 1;
|
||
/* This cannot be done for a structure with volatile
|
||
fields, on which DECL_REGISTER will have been
|
||
reset. */
|
||
if (!DECL_REGISTER (decl))
|
||
error ("cannot put object with volatile field into register");
|
||
}
|
||
|
||
if (TREE_CODE (decl) != FUNCTION_DECL)
|
||
{
|
||
/* If we're building a variable sized type, and we might be
|
||
reachable other than via the top of the current binding
|
||
level, then create a new BIND_EXPR so that we deallocate
|
||
the object at the right time. */
|
||
/* Note that DECL_SIZE can be null due to errors. */
|
||
if (DECL_SIZE (decl)
|
||
&& !TREE_CONSTANT (DECL_SIZE (decl))
|
||
&& STATEMENT_LIST_HAS_LABEL (cur_stmt_list))
|
||
{
|
||
tree bind;
|
||
bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, NULL);
|
||
TREE_SIDE_EFFECTS (bind) = 1;
|
||
add_stmt (bind);
|
||
BIND_EXPR_BODY (bind) = push_stmt_list ();
|
||
}
|
||
add_stmt (build_stmt (DECL_EXPR, decl));
|
||
}
|
||
}
|
||
|
||
|
||
if (!DECL_FILE_SCOPE_P (decl))
|
||
{
|
||
/* Recompute the RTL of a local array now
|
||
if it used to be an incomplete type. */
|
||
if (was_incomplete
|
||
&& !TREE_STATIC (decl) && !DECL_EXTERNAL (decl))
|
||
{
|
||
/* If we used it already as memory, it must stay in memory. */
|
||
TREE_ADDRESSABLE (decl) = TREE_USED (decl);
|
||
/* If it's still incomplete now, no init will save it. */
|
||
if (DECL_SIZE (decl) == 0)
|
||
DECL_INITIAL (decl) = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If this was marked 'used', be sure it will be output. */
|
||
if (lookup_attribute ("used", DECL_ATTRIBUTES (decl)))
|
||
mark_decl_referenced (decl);
|
||
|
||
if (TREE_CODE (decl) == TYPE_DECL)
|
||
{
|
||
if (!DECL_FILE_SCOPE_P (decl)
|
||
&& variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
|
||
add_stmt (build_stmt (DECL_EXPR, decl));
|
||
|
||
rest_of_decl_compilation (decl, DECL_FILE_SCOPE_P (decl), 0);
|
||
}
|
||
|
||
/* At the end of a declaration, throw away any variable type sizes
|
||
of types defined inside that declaration. There is no use
|
||
computing them in the following function definition. */
|
||
if (current_scope == file_scope)
|
||
get_pending_sizes ();
|
||
|
||
/* Install a cleanup (aka destructor) if one was given. */
|
||
if (TREE_CODE (decl) == VAR_DECL && !TREE_STATIC (decl))
|
||
{
|
||
tree attr = lookup_attribute ("cleanup", DECL_ATTRIBUTES (decl));
|
||
if (attr)
|
||
{
|
||
tree cleanup_id = TREE_VALUE (TREE_VALUE (attr));
|
||
tree cleanup_decl = lookup_name (cleanup_id);
|
||
tree cleanup;
|
||
|
||
/* Build "cleanup(&decl)" for the destructor. */
|
||
cleanup = build_unary_op (ADDR_EXPR, decl, 0);
|
||
cleanup = build_tree_list (NULL_TREE, cleanup);
|
||
cleanup = build_function_call (cleanup_decl, cleanup);
|
||
|
||
/* Don't warn about decl unused; the cleanup uses it. */
|
||
TREE_USED (decl) = 1;
|
||
TREE_USED (cleanup_decl) = 1;
|
||
|
||
/* Initialize EH, if we've been told to do so. */
|
||
if (flag_exceptions && !c_eh_initialized_p)
|
||
{
|
||
c_eh_initialized_p = true;
|
||
eh_personality_libfunc
|
||
= init_one_libfunc (USING_SJLJ_EXCEPTIONS
|
||
? "__gcc_personality_sj0"
|
||
: "__gcc_personality_v0");
|
||
default_init_unwind_resume_libfunc ();
|
||
using_eh_for_cleanups ();
|
||
}
|
||
|
||
push_cleanup (decl, cleanup, false);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Given a parsed parameter declaration, decode it into a PARM_DECL. */
|
||
|
||
tree
|
||
grokparm (const struct c_parm *parm)
|
||
{
|
||
tree decl = grokdeclarator (parm->declarator, parm->specs, PARM, false,
|
||
NULL);
|
||
|
||
decl_attributes (&decl, parm->attrs, 0);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Given a parsed parameter declaration, decode it into a PARM_DECL
|
||
and push that on the current scope. */
|
||
|
||
void
|
||
push_parm_decl (const struct c_parm *parm)
|
||
{
|
||
tree decl;
|
||
|
||
decl = grokdeclarator (parm->declarator, parm->specs, PARM, false, NULL);
|
||
decl_attributes (&decl, parm->attrs, 0);
|
||
|
||
decl = pushdecl (decl);
|
||
|
||
finish_decl (decl, NULL_TREE, NULL_TREE);
|
||
}
|
||
|
||
/* Mark all the parameter declarations to date as forward decls.
|
||
Also diagnose use of this extension. */
|
||
|
||
void
|
||
mark_forward_parm_decls (void)
|
||
{
|
||
struct c_binding *b;
|
||
|
||
if (pedantic && !current_scope->warned_forward_parm_decls)
|
||
{
|
||
pedwarn ("ISO C forbids forward parameter declarations");
|
||
current_scope->warned_forward_parm_decls = true;
|
||
}
|
||
|
||
for (b = current_scope->bindings; b; b = b->prev)
|
||
if (TREE_CODE (b->decl) == PARM_DECL)
|
||
TREE_ASM_WRITTEN (b->decl) = 1;
|
||
}
|
||
|
||
/* Build a COMPOUND_LITERAL_EXPR. TYPE is the type given in the compound
|
||
literal, which may be an incomplete array type completed by the
|
||
initializer; INIT is a CONSTRUCTOR that initializes the compound
|
||
literal. */
|
||
|
||
tree
|
||
build_compound_literal (tree type, tree init)
|
||
{
|
||
/* We do not use start_decl here because we have a type, not a declarator;
|
||
and do not use finish_decl because the decl should be stored inside
|
||
the COMPOUND_LITERAL_EXPR rather than added elsewhere as a DECL_EXPR. */
|
||
tree decl;
|
||
tree complit;
|
||
tree stmt;
|
||
|
||
if (type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
decl = build_decl (VAR_DECL, NULL_TREE, type);
|
||
DECL_EXTERNAL (decl) = 0;
|
||
TREE_PUBLIC (decl) = 0;
|
||
TREE_STATIC (decl) = (current_scope == file_scope);
|
||
DECL_CONTEXT (decl) = current_function_decl;
|
||
TREE_USED (decl) = 1;
|
||
TREE_TYPE (decl) = type;
|
||
TREE_READONLY (decl) = TYPE_READONLY (type);
|
||
store_init_value (decl, init);
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE && !COMPLETE_TYPE_P (type))
|
||
{
|
||
int failure = complete_array_type (&TREE_TYPE (decl),
|
||
DECL_INITIAL (decl), true);
|
||
gcc_assert (!failure);
|
||
|
||
type = TREE_TYPE (decl);
|
||
TREE_TYPE (DECL_INITIAL (decl)) = type;
|
||
}
|
||
|
||
if (type == error_mark_node || !COMPLETE_TYPE_P (type))
|
||
return error_mark_node;
|
||
|
||
stmt = build_stmt (DECL_EXPR, decl);
|
||
complit = build1 (COMPOUND_LITERAL_EXPR, type, stmt);
|
||
TREE_SIDE_EFFECTS (complit) = 1;
|
||
|
||
layout_decl (decl, 0);
|
||
|
||
if (TREE_STATIC (decl))
|
||
{
|
||
/* This decl needs a name for the assembler output. */
|
||
set_compound_literal_name (decl);
|
||
DECL_DEFER_OUTPUT (decl) = 1;
|
||
DECL_COMDAT (decl) = 1;
|
||
DECL_ARTIFICIAL (decl) = 1;
|
||
DECL_IGNORED_P (decl) = 1;
|
||
pushdecl (decl);
|
||
rest_of_decl_compilation (decl, 1, 0);
|
||
}
|
||
|
||
return complit;
|
||
}
|
||
|
||
/* Determine whether TYPE is a structure with a flexible array member,
|
||
or a union containing such a structure (possibly recursively). */
|
||
|
||
static bool
|
||
flexible_array_type_p (tree type)
|
||
{
|
||
tree x;
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case RECORD_TYPE:
|
||
x = TYPE_FIELDS (type);
|
||
if (x == NULL_TREE)
|
||
return false;
|
||
while (TREE_CHAIN (x) != NULL_TREE)
|
||
x = TREE_CHAIN (x);
|
||
if (TREE_CODE (TREE_TYPE (x)) == ARRAY_TYPE
|
||
&& TYPE_SIZE (TREE_TYPE (x)) == NULL_TREE
|
||
&& TYPE_DOMAIN (TREE_TYPE (x)) != NULL_TREE
|
||
&& TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (x))) == NULL_TREE)
|
||
return true;
|
||
return false;
|
||
case UNION_TYPE:
|
||
for (x = TYPE_FIELDS (type); x != NULL_TREE; x = TREE_CHAIN (x))
|
||
{
|
||
if (flexible_array_type_p (TREE_TYPE (x)))
|
||
return true;
|
||
}
|
||
return false;
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Performs sanity checks on the TYPE and WIDTH of the bit-field NAME,
|
||
replacing with appropriate values if they are invalid. */
|
||
static void
|
||
check_bitfield_type_and_width (tree *type, tree *width, const char *orig_name)
|
||
{
|
||
tree type_mv;
|
||
unsigned int max_width;
|
||
unsigned HOST_WIDE_INT w;
|
||
const char *name = orig_name ? orig_name: _("<anonymous>");
|
||
|
||
/* Detect and ignore out of range field width and process valid
|
||
field widths. */
|
||
if (!INTEGRAL_TYPE_P (TREE_TYPE (*width))
|
||
|| TREE_CODE (*width) != INTEGER_CST)
|
||
{
|
||
error ("bit-field %qs width not an integer constant", name);
|
||
*width = integer_one_node;
|
||
}
|
||
else
|
||
{
|
||
constant_expression_warning (*width);
|
||
if (tree_int_cst_sgn (*width) < 0)
|
||
{
|
||
error ("negative width in bit-field %qs", name);
|
||
*width = integer_one_node;
|
||
}
|
||
else if (integer_zerop (*width) && orig_name)
|
||
{
|
||
error ("zero width for bit-field %qs", name);
|
||
*width = integer_one_node;
|
||
}
|
||
}
|
||
|
||
/* Detect invalid bit-field type. */
|
||
if (TREE_CODE (*type) != INTEGER_TYPE
|
||
&& TREE_CODE (*type) != BOOLEAN_TYPE
|
||
&& TREE_CODE (*type) != ENUMERAL_TYPE)
|
||
{
|
||
error ("bit-field %qs has invalid type", name);
|
||
*type = unsigned_type_node;
|
||
}
|
||
|
||
type_mv = TYPE_MAIN_VARIANT (*type);
|
||
if (pedantic
|
||
&& !in_system_header
|
||
&& type_mv != integer_type_node
|
||
&& type_mv != unsigned_type_node
|
||
&& type_mv != boolean_type_node)
|
||
pedwarn ("type of bit-field %qs is a GCC extension", name);
|
||
|
||
if (type_mv == boolean_type_node)
|
||
max_width = CHAR_TYPE_SIZE;
|
||
else
|
||
max_width = TYPE_PRECISION (*type);
|
||
|
||
if (0 < compare_tree_int (*width, max_width))
|
||
{
|
||
error ("width of %qs exceeds its type", name);
|
||
w = max_width;
|
||
*width = build_int_cst (NULL_TREE, w);
|
||
}
|
||
else
|
||
w = tree_low_cst (*width, 1);
|
||
|
||
if (TREE_CODE (*type) == ENUMERAL_TYPE)
|
||
{
|
||
struct lang_type *lt = TYPE_LANG_SPECIFIC (*type);
|
||
if (!lt
|
||
|| w < min_precision (lt->enum_min, TYPE_UNSIGNED (*type))
|
||
|| w < min_precision (lt->enum_max, TYPE_UNSIGNED (*type)))
|
||
warning (0, "%qs is narrower than values of its type", name);
|
||
}
|
||
}
|
||
|
||
/* Build a bit-field integer type for the given WIDTH and UNSIGNEDP. */
|
||
static tree
|
||
c_build_bitfield_integer_type (unsigned HOST_WIDE_INT width, int unsignedp)
|
||
{
|
||
/* Extended integer types of the same width as a standard type have
|
||
lesser rank, so those of the same width as int promote to int or
|
||
unsigned int and are valid for printf formats expecting int or
|
||
unsigned int. To avoid such special cases, avoid creating
|
||
extended integer types for bit-fields if a standard integer type
|
||
is available. */
|
||
if (width == TYPE_PRECISION (integer_type_node))
|
||
return unsignedp ? unsigned_type_node : integer_type_node;
|
||
if (width == TYPE_PRECISION (signed_char_type_node))
|
||
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
|
||
if (width == TYPE_PRECISION (short_integer_type_node))
|
||
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
|
||
if (width == TYPE_PRECISION (long_integer_type_node))
|
||
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
|
||
if (width == TYPE_PRECISION (long_long_integer_type_node))
|
||
return (unsignedp ? long_long_unsigned_type_node
|
||
: long_long_integer_type_node);
|
||
return build_nonstandard_integer_type (width, unsignedp);
|
||
}
|
||
|
||
/* Given declspecs and a declarator,
|
||
determine the name and type of the object declared
|
||
and construct a ..._DECL node for it.
|
||
(In one case we can return a ..._TYPE node instead.
|
||
For invalid input we sometimes return 0.)
|
||
|
||
DECLSPECS is a c_declspecs structure for the declaration specifiers.
|
||
|
||
DECL_CONTEXT says which syntactic context this declaration is in:
|
||
NORMAL for most contexts. Make a VAR_DECL or FUNCTION_DECL or TYPE_DECL.
|
||
FUNCDEF for a function definition. Like NORMAL but a few different
|
||
error messages in each case. Return value may be zero meaning
|
||
this definition is too screwy to try to parse.
|
||
PARM for a parameter declaration (either within a function prototype
|
||
or before a function body). Make a PARM_DECL, or return void_type_node.
|
||
TYPENAME if for a typename (in a cast or sizeof).
|
||
Don't make a DECL node; just return the ..._TYPE node.
|
||
FIELD for a struct or union field; make a FIELD_DECL.
|
||
INITIALIZED is true if the decl has an initializer.
|
||
WIDTH is non-NULL for bit-fields, and is a pointer to an INTEGER_CST node
|
||
representing the width of the bit-field.
|
||
|
||
In the TYPENAME case, DECLARATOR is really an absolute declarator.
|
||
It may also be so in the PARM case, for a prototype where the
|
||
argument type is specified but not the name.
|
||
|
||
This function is where the complicated C meanings of `static'
|
||
and `extern' are interpreted. */
|
||
|
||
static tree
|
||
grokdeclarator (const struct c_declarator *declarator,
|
||
struct c_declspecs *declspecs,
|
||
enum decl_context decl_context, bool initialized, tree *width)
|
||
{
|
||
tree type = declspecs->type;
|
||
bool threadp = declspecs->thread_p;
|
||
enum c_storage_class storage_class = declspecs->storage_class;
|
||
int constp;
|
||
int restrictp;
|
||
int volatilep;
|
||
int type_quals = TYPE_UNQUALIFIED;
|
||
const char *name, *orig_name;
|
||
tree typedef_type = 0;
|
||
int funcdef_flag = 0;
|
||
bool funcdef_syntax = false;
|
||
int size_varies = 0;
|
||
tree decl_attr = declspecs->decl_attr;
|
||
int array_ptr_quals = TYPE_UNQUALIFIED;
|
||
tree array_ptr_attrs = NULL_TREE;
|
||
int array_parm_static = 0;
|
||
tree returned_attrs = NULL_TREE;
|
||
bool bitfield = width != NULL;
|
||
tree element_type;
|
||
struct c_arg_info *arg_info = 0;
|
||
|
||
if (decl_context == FUNCDEF)
|
||
funcdef_flag = 1, decl_context = NORMAL;
|
||
|
||
/* Look inside a declarator for the name being declared
|
||
and get it as a string, for an error message. */
|
||
{
|
||
const struct c_declarator *decl = declarator;
|
||
name = 0;
|
||
|
||
while (decl)
|
||
switch (decl->kind)
|
||
{
|
||
case cdk_function:
|
||
case cdk_array:
|
||
case cdk_pointer:
|
||
funcdef_syntax = (decl->kind == cdk_function);
|
||
decl = decl->declarator;
|
||
break;
|
||
|
||
case cdk_attrs:
|
||
decl = decl->declarator;
|
||
break;
|
||
|
||
case cdk_id:
|
||
if (decl->u.id)
|
||
name = IDENTIFIER_POINTER (decl->u.id);
|
||
decl = 0;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
orig_name = name;
|
||
if (name == 0)
|
||
name = "type name";
|
||
}
|
||
|
||
/* A function definition's declarator must have the form of
|
||
a function declarator. */
|
||
|
||
if (funcdef_flag && !funcdef_syntax)
|
||
return 0;
|
||
|
||
/* If this looks like a function definition, make it one,
|
||
even if it occurs where parms are expected.
|
||
Then store_parm_decls will reject it and not use it as a parm. */
|
||
if (decl_context == NORMAL && !funcdef_flag && current_scope->parm_flag)
|
||
decl_context = PARM;
|
||
|
||
if (declspecs->deprecated_p && deprecated_state != DEPRECATED_SUPPRESS)
|
||
warn_deprecated_use (declspecs->type);
|
||
|
||
typedef_type = type;
|
||
size_varies = C_TYPE_VARIABLE_SIZE (type);
|
||
|
||
/* Diagnose defaulting to "int". */
|
||
|
||
if (declspecs->default_int_p && !in_system_header)
|
||
{
|
||
/* Issue a warning if this is an ISO C 99 program or if
|
||
-Wreturn-type and this is a function, or if -Wimplicit;
|
||
prefer the former warning since it is more explicit. */
|
||
if ((warn_implicit_int || warn_return_type || flag_isoc99)
|
||
&& funcdef_flag)
|
||
warn_about_return_type = 1;
|
||
else if (warn_implicit_int || flag_isoc99)
|
||
pedwarn_c99 ("type defaults to %<int%> in declaration of %qs", name);
|
||
}
|
||
|
||
/* Adjust the type if a bit-field is being declared,
|
||
-funsigned-bitfields applied and the type is not explicitly
|
||
"signed". */
|
||
if (bitfield && !flag_signed_bitfields && !declspecs->explicit_signed_p
|
||
&& TREE_CODE (type) == INTEGER_TYPE)
|
||
type = c_common_unsigned_type (type);
|
||
|
||
/* Figure out the type qualifiers for the declaration. There are
|
||
two ways a declaration can become qualified. One is something
|
||
like `const int i' where the `const' is explicit. Another is
|
||
something like `typedef const int CI; CI i' where the type of the
|
||
declaration contains the `const'. A third possibility is that
|
||
there is a type qualifier on the element type of a typedefed
|
||
array type, in which case we should extract that qualifier so
|
||
that c_apply_type_quals_to_decls receives the full list of
|
||
qualifiers to work with (C90 is not entirely clear about whether
|
||
duplicate qualifiers should be diagnosed in this case, but it
|
||
seems most appropriate to do so). */
|
||
element_type = strip_array_types (type);
|
||
constp = declspecs->const_p + TYPE_READONLY (element_type);
|
||
restrictp = declspecs->restrict_p + TYPE_RESTRICT (element_type);
|
||
volatilep = declspecs->volatile_p + TYPE_VOLATILE (element_type);
|
||
if (pedantic && !flag_isoc99)
|
||
{
|
||
if (constp > 1)
|
||
pedwarn ("duplicate %<const%>");
|
||
if (restrictp > 1)
|
||
pedwarn ("duplicate %<restrict%>");
|
||
if (volatilep > 1)
|
||
pedwarn ("duplicate %<volatile%>");
|
||
}
|
||
if (!flag_gen_aux_info && (TYPE_QUALS (element_type)))
|
||
type = TYPE_MAIN_VARIANT (type);
|
||
type_quals = ((constp ? TYPE_QUAL_CONST : 0)
|
||
| (restrictp ? TYPE_QUAL_RESTRICT : 0)
|
||
| (volatilep ? TYPE_QUAL_VOLATILE : 0));
|
||
|
||
/* Warn about storage classes that are invalid for certain
|
||
kinds of declarations (parameters, typenames, etc.). */
|
||
|
||
if (funcdef_flag
|
||
&& (threadp
|
||
|| storage_class == csc_auto
|
||
|| storage_class == csc_register
|
||
|| storage_class == csc_typedef))
|
||
{
|
||
if (storage_class == csc_auto
|
||
&& (pedantic || current_scope == file_scope))
|
||
pedwarn ("function definition declared %<auto%>");
|
||
if (storage_class == csc_register)
|
||
error ("function definition declared %<register%>");
|
||
if (storage_class == csc_typedef)
|
||
error ("function definition declared %<typedef%>");
|
||
if (threadp)
|
||
error ("function definition declared %<__thread%>");
|
||
threadp = false;
|
||
if (storage_class == csc_auto
|
||
|| storage_class == csc_register
|
||
|| storage_class == csc_typedef)
|
||
storage_class = csc_none;
|
||
}
|
||
else if (decl_context != NORMAL && (storage_class != csc_none || threadp))
|
||
{
|
||
if (decl_context == PARM && storage_class == csc_register)
|
||
;
|
||
else
|
||
{
|
||
switch (decl_context)
|
||
{
|
||
case FIELD:
|
||
error ("storage class specified for structure field %qs",
|
||
name);
|
||
break;
|
||
case PARM:
|
||
error ("storage class specified for parameter %qs", name);
|
||
break;
|
||
default:
|
||
error ("storage class specified for typename");
|
||
break;
|
||
}
|
||
storage_class = csc_none;
|
||
threadp = false;
|
||
}
|
||
}
|
||
else if (storage_class == csc_extern
|
||
&& initialized
|
||
&& !funcdef_flag)
|
||
{
|
||
/* 'extern' with initialization is invalid if not at file scope. */
|
||
if (current_scope == file_scope)
|
||
warning (0, "%qs initialized and declared %<extern%>", name);
|
||
else
|
||
error ("%qs has both %<extern%> and initializer", name);
|
||
}
|
||
else if (current_scope == file_scope)
|
||
{
|
||
if (storage_class == csc_auto)
|
||
error ("file-scope declaration of %qs specifies %<auto%>", name);
|
||
if (pedantic && storage_class == csc_register)
|
||
pedwarn ("file-scope declaration of %qs specifies %<register%>", name);
|
||
}
|
||
else
|
||
{
|
||
if (storage_class == csc_extern && funcdef_flag)
|
||
error ("nested function %qs declared %<extern%>", name);
|
||
else if (threadp && storage_class == csc_none)
|
||
{
|
||
error ("function-scope %qs implicitly auto and declared "
|
||
"%<__thread%>",
|
||
name);
|
||
threadp = false;
|
||
}
|
||
}
|
||
|
||
/* Now figure out the structure of the declarator proper.
|
||
Descend through it, creating more complex types, until we reach
|
||
the declared identifier (or NULL_TREE, in an absolute declarator).
|
||
At each stage we maintain an unqualified version of the type
|
||
together with any qualifiers that should be applied to it with
|
||
c_build_qualified_type; this way, array types including
|
||
multidimensional array types are first built up in unqualified
|
||
form and then the qualified form is created with
|
||
TYPE_MAIN_VARIANT pointing to the unqualified form. */
|
||
|
||
while (declarator && declarator->kind != cdk_id)
|
||
{
|
||
if (type == error_mark_node)
|
||
{
|
||
declarator = declarator->declarator;
|
||
continue;
|
||
}
|
||
|
||
/* Each level of DECLARATOR is either a cdk_array (for ...[..]),
|
||
a cdk_pointer (for *...),
|
||
a cdk_function (for ...(...)),
|
||
a cdk_attrs (for nested attributes),
|
||
or a cdk_id (for the name being declared
|
||
or the place in an absolute declarator
|
||
where the name was omitted).
|
||
For the last case, we have just exited the loop.
|
||
|
||
At this point, TYPE is the type of elements of an array,
|
||
or for a function to return, or for a pointer to point to.
|
||
After this sequence of ifs, TYPE is the type of the
|
||
array or function or pointer, and DECLARATOR has had its
|
||
outermost layer removed. */
|
||
|
||
if (array_ptr_quals != TYPE_UNQUALIFIED
|
||
|| array_ptr_attrs != NULL_TREE
|
||
|| array_parm_static)
|
||
{
|
||
/* Only the innermost declarator (making a parameter be of
|
||
array type which is converted to pointer type)
|
||
may have static or type qualifiers. */
|
||
error ("static or type qualifiers in non-parameter array declarator");
|
||
array_ptr_quals = TYPE_UNQUALIFIED;
|
||
array_ptr_attrs = NULL_TREE;
|
||
array_parm_static = 0;
|
||
}
|
||
|
||
switch (declarator->kind)
|
||
{
|
||
case cdk_attrs:
|
||
{
|
||
/* A declarator with embedded attributes. */
|
||
tree attrs = declarator->u.attrs;
|
||
const struct c_declarator *inner_decl;
|
||
int attr_flags = 0;
|
||
declarator = declarator->declarator;
|
||
inner_decl = declarator;
|
||
while (inner_decl->kind == cdk_attrs)
|
||
inner_decl = inner_decl->declarator;
|
||
if (inner_decl->kind == cdk_id)
|
||
attr_flags |= (int) ATTR_FLAG_DECL_NEXT;
|
||
else if (inner_decl->kind == cdk_function)
|
||
attr_flags |= (int) ATTR_FLAG_FUNCTION_NEXT;
|
||
else if (inner_decl->kind == cdk_array)
|
||
attr_flags |= (int) ATTR_FLAG_ARRAY_NEXT;
|
||
returned_attrs = decl_attributes (&type,
|
||
chainon (returned_attrs, attrs),
|
||
attr_flags);
|
||
break;
|
||
}
|
||
case cdk_array:
|
||
{
|
||
tree itype = NULL_TREE;
|
||
tree size = declarator->u.array.dimen;
|
||
/* The index is a signed object `sizetype' bits wide. */
|
||
tree index_type = c_common_signed_type (sizetype);
|
||
|
||
array_ptr_quals = declarator->u.array.quals;
|
||
array_ptr_attrs = declarator->u.array.attrs;
|
||
array_parm_static = declarator->u.array.static_p;
|
||
|
||
declarator = declarator->declarator;
|
||
|
||
/* Check for some types that there cannot be arrays of. */
|
||
|
||
if (VOID_TYPE_P (type))
|
||
{
|
||
error ("declaration of %qs as array of voids", name);
|
||
type = error_mark_node;
|
||
}
|
||
|
||
if (TREE_CODE (type) == FUNCTION_TYPE)
|
||
{
|
||
error ("declaration of %qs as array of functions", name);
|
||
type = error_mark_node;
|
||
}
|
||
|
||
if (pedantic && !in_system_header && flexible_array_type_p (type))
|
||
pedwarn ("invalid use of structure with flexible array member");
|
||
|
||
if (size == error_mark_node)
|
||
type = error_mark_node;
|
||
|
||
if (type == error_mark_node)
|
||
continue;
|
||
|
||
/* If size was specified, set ITYPE to a range-type for
|
||
that size. Otherwise, ITYPE remains null. finish_decl
|
||
may figure it out from an initial value. */
|
||
|
||
if (size)
|
||
{
|
||
/* Strip NON_LVALUE_EXPRs since we aren't using as an
|
||
lvalue. */
|
||
STRIP_TYPE_NOPS (size);
|
||
|
||
if (!INTEGRAL_TYPE_P (TREE_TYPE (size)))
|
||
{
|
||
error ("size of array %qs has non-integer type", name);
|
||
size = integer_one_node;
|
||
}
|
||
|
||
if (pedantic && integer_zerop (size))
|
||
pedwarn ("ISO C forbids zero-size array %qs", name);
|
||
|
||
if (TREE_CODE (size) == INTEGER_CST)
|
||
{
|
||
constant_expression_warning (size);
|
||
if (tree_int_cst_sgn (size) < 0)
|
||
{
|
||
error ("size of array %qs is negative", name);
|
||
size = integer_one_node;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Make sure the array size remains visibly
|
||
nonconstant even if it is (eg) a const variable
|
||
with known value. */
|
||
size_varies = 1;
|
||
|
||
if (!flag_isoc99 && pedantic)
|
||
{
|
||
if (TREE_CONSTANT (size))
|
||
pedwarn ("ISO C90 forbids array %qs whose size "
|
||
"can%'t be evaluated",
|
||
name);
|
||
else
|
||
pedwarn ("ISO C90 forbids variable-size array %qs",
|
||
name);
|
||
}
|
||
}
|
||
|
||
if (integer_zerop (size))
|
||
{
|
||
/* A zero-length array cannot be represented with
|
||
an unsigned index type, which is what we'll
|
||
get with build_index_type. Create an
|
||
open-ended range instead. */
|
||
itype = build_range_type (sizetype, size, NULL_TREE);
|
||
}
|
||
else
|
||
{
|
||
/* Arrange for the SAVE_EXPR on the inside of the
|
||
MINUS_EXPR, which allows the -1 to get folded
|
||
with the +1 that happens when building TYPE_SIZE. */
|
||
if (size_varies)
|
||
size = variable_size (size);
|
||
|
||
/* Compute the maximum valid index, that is, size
|
||
- 1. Do the calculation in index_type, so that
|
||
if it is a variable the computations will be
|
||
done in the proper mode. */
|
||
itype = fold_build2 (MINUS_EXPR, index_type,
|
||
convert (index_type, size),
|
||
convert (index_type,
|
||
size_one_node));
|
||
|
||
/* If that overflowed, the array is too big. ???
|
||
While a size of INT_MAX+1 technically shouldn't
|
||
cause an overflow (because we subtract 1), the
|
||
overflow is recorded during the conversion to
|
||
index_type, before the subtraction. Handling
|
||
this case seems like an unnecessary
|
||
complication. */
|
||
if (TREE_CODE (itype) == INTEGER_CST
|
||
&& TREE_OVERFLOW (itype))
|
||
{
|
||
error ("size of array %qs is too large", name);
|
||
type = error_mark_node;
|
||
continue;
|
||
}
|
||
|
||
itype = build_index_type (itype);
|
||
}
|
||
}
|
||
else if (decl_context == FIELD)
|
||
{
|
||
if (pedantic && !flag_isoc99 && !in_system_header)
|
||
pedwarn ("ISO C90 does not support flexible array members");
|
||
|
||
/* ISO C99 Flexible array members are effectively
|
||
identical to GCC's zero-length array extension. */
|
||
itype = build_range_type (sizetype, size_zero_node, NULL_TREE);
|
||
}
|
||
|
||
/* Complain about arrays of incomplete types. */
|
||
if (!COMPLETE_TYPE_P (type))
|
||
{
|
||
error ("array type has incomplete element type");
|
||
type = error_mark_node;
|
||
}
|
||
else
|
||
type = build_array_type (type, itype);
|
||
|
||
if (type != error_mark_node)
|
||
{
|
||
if (size_varies)
|
||
C_TYPE_VARIABLE_SIZE (type) = 1;
|
||
|
||
/* The GCC extension for zero-length arrays differs from
|
||
ISO flexible array members in that sizeof yields
|
||
zero. */
|
||
if (size && integer_zerop (size))
|
||
{
|
||
TYPE_SIZE (type) = bitsize_zero_node;
|
||
TYPE_SIZE_UNIT (type) = size_zero_node;
|
||
}
|
||
}
|
||
|
||
if (decl_context != PARM
|
||
&& (array_ptr_quals != TYPE_UNQUALIFIED
|
||
|| array_ptr_attrs != NULL_TREE
|
||
|| array_parm_static))
|
||
{
|
||
error ("static or type qualifiers in non-parameter array declarator");
|
||
array_ptr_quals = TYPE_UNQUALIFIED;
|
||
array_ptr_attrs = NULL_TREE;
|
||
array_parm_static = 0;
|
||
}
|
||
break;
|
||
}
|
||
case cdk_function:
|
||
{
|
||
/* Say it's a definition only for the declarator closest
|
||
to the identifier, apart possibly from some
|
||
attributes. */
|
||
bool really_funcdef = false;
|
||
tree arg_types;
|
||
if (funcdef_flag)
|
||
{
|
||
const struct c_declarator *t = declarator->declarator;
|
||
while (t->kind == cdk_attrs)
|
||
t = t->declarator;
|
||
really_funcdef = (t->kind == cdk_id);
|
||
}
|
||
|
||
/* Declaring a function type. Make sure we have a valid
|
||
type for the function to return. */
|
||
if (type == error_mark_node)
|
||
continue;
|
||
|
||
size_varies = 0;
|
||
|
||
/* Warn about some types functions can't return. */
|
||
if (TREE_CODE (type) == FUNCTION_TYPE)
|
||
{
|
||
error ("%qs declared as function returning a function", name);
|
||
type = integer_type_node;
|
||
}
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
error ("%qs declared as function returning an array", name);
|
||
type = integer_type_node;
|
||
}
|
||
|
||
/* Construct the function type and go to the next
|
||
inner layer of declarator. */
|
||
arg_info = declarator->u.arg_info;
|
||
arg_types = grokparms (arg_info, really_funcdef);
|
||
|
||
/* Type qualifiers before the return type of the function
|
||
qualify the return type, not the function type. */
|
||
if (type_quals)
|
||
{
|
||
/* Type qualifiers on a function return type are
|
||
normally permitted by the standard but have no
|
||
effect, so give a warning at -Wreturn-type.
|
||
Qualifiers on a void return type are banned on
|
||
function definitions in ISO C; GCC used to used
|
||
them for noreturn functions. */
|
||
if (VOID_TYPE_P (type) && really_funcdef)
|
||
pedwarn ("function definition has qualified void return type");
|
||
else
|
||
warning (OPT_Wreturn_type,
|
||
"type qualifiers ignored on function return type");
|
||
|
||
type = c_build_qualified_type (type, type_quals);
|
||
}
|
||
type_quals = TYPE_UNQUALIFIED;
|
||
|
||
type = build_function_type (type, arg_types);
|
||
declarator = declarator->declarator;
|
||
|
||
/* Set the TYPE_CONTEXTs for each tagged type which is local to
|
||
the formal parameter list of this FUNCTION_TYPE to point to
|
||
the FUNCTION_TYPE node itself. */
|
||
{
|
||
tree link;
|
||
|
||
for (link = arg_info->tags;
|
||
link;
|
||
link = TREE_CHAIN (link))
|
||
TYPE_CONTEXT (TREE_VALUE (link)) = type;
|
||
}
|
||
break;
|
||
}
|
||
case cdk_pointer:
|
||
{
|
||
/* Merge any constancy or volatility into the target type
|
||
for the pointer. */
|
||
|
||
if (pedantic && TREE_CODE (type) == FUNCTION_TYPE
|
||
&& type_quals)
|
||
pedwarn ("ISO C forbids qualified function types");
|
||
if (type_quals)
|
||
type = c_build_qualified_type (type, type_quals);
|
||
size_varies = 0;
|
||
|
||
type = build_pointer_type (type);
|
||
|
||
/* Process type qualifiers (such as const or volatile)
|
||
that were given inside the `*'. */
|
||
type_quals = declarator->u.pointer_quals;
|
||
|
||
declarator = declarator->declarator;
|
||
break;
|
||
}
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Now TYPE has the actual type, apart from any qualifiers in
|
||
TYPE_QUALS. */
|
||
|
||
/* Check the type and width of a bit-field. */
|
||
if (bitfield)
|
||
check_bitfield_type_and_width (&type, width, orig_name);
|
||
|
||
/* Did array size calculations overflow? */
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE
|
||
&& COMPLETE_TYPE_P (type)
|
||
&& TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST
|
||
&& TREE_OVERFLOW (TYPE_SIZE_UNIT (type)))
|
||
{
|
||
error ("size of array %qs is too large", name);
|
||
/* If we proceed with the array type as it is, we'll eventually
|
||
crash in tree_low_cst(). */
|
||
type = error_mark_node;
|
||
}
|
||
|
||
/* If this is declaring a typedef name, return a TYPE_DECL. */
|
||
|
||
if (storage_class == csc_typedef)
|
||
{
|
||
tree decl;
|
||
if (pedantic && TREE_CODE (type) == FUNCTION_TYPE
|
||
&& type_quals)
|
||
pedwarn ("ISO C forbids qualified function types");
|
||
if (type_quals)
|
||
type = c_build_qualified_type (type, type_quals);
|
||
decl = build_decl (TYPE_DECL, declarator->u.id, type);
|
||
if (declspecs->explicit_signed_p)
|
||
C_TYPEDEF_EXPLICITLY_SIGNED (decl) = 1;
|
||
decl_attributes (&decl, returned_attrs, 0);
|
||
if (declspecs->inline_p)
|
||
pedwarn ("typedef %q+D declared %<inline%>", decl);
|
||
return decl;
|
||
}
|
||
|
||
/* Detect the case of an array type of unspecified size
|
||
which came, as such, direct from a typedef name.
|
||
We must copy the type, so that each identifier gets
|
||
a distinct type, so that each identifier's size can be
|
||
controlled separately by its own initializer. */
|
||
|
||
if (type != 0 && typedef_type != 0
|
||
&& TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type) == 0
|
||
&& TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (typedef_type))
|
||
{
|
||
type = build_array_type (TREE_TYPE (type), 0);
|
||
if (size_varies)
|
||
C_TYPE_VARIABLE_SIZE (type) = 1;
|
||
}
|
||
|
||
/* If this is a type name (such as, in a cast or sizeof),
|
||
compute the type and return it now. */
|
||
|
||
if (decl_context == TYPENAME)
|
||
{
|
||
/* Note that the grammar rejects storage classes in typenames
|
||
and fields. */
|
||
gcc_assert (storage_class == csc_none && !threadp
|
||
&& !declspecs->inline_p);
|
||
if (pedantic && TREE_CODE (type) == FUNCTION_TYPE
|
||
&& type_quals)
|
||
pedwarn ("ISO C forbids const or volatile function types");
|
||
if (type_quals)
|
||
type = c_build_qualified_type (type, type_quals);
|
||
decl_attributes (&type, returned_attrs, 0);
|
||
return type;
|
||
}
|
||
|
||
/* Aside from typedefs and type names (handle above),
|
||
`void' at top level (not within pointer)
|
||
is allowed only in public variables.
|
||
We don't complain about parms either, but that is because
|
||
a better error message can be made later. */
|
||
|
||
if (VOID_TYPE_P (type) && decl_context != PARM
|
||
&& !((decl_context != FIELD && TREE_CODE (type) != FUNCTION_TYPE)
|
||
&& (storage_class == csc_extern
|
||
|| (current_scope == file_scope
|
||
&& !(storage_class == csc_static
|
||
|| storage_class == csc_register)))))
|
||
{
|
||
error ("variable or field %qs declared void", name);
|
||
type = integer_type_node;
|
||
}
|
||
|
||
/* Now create the decl, which may be a VAR_DECL, a PARM_DECL
|
||
or a FUNCTION_DECL, depending on DECL_CONTEXT and TYPE. */
|
||
|
||
{
|
||
tree decl;
|
||
|
||
if (decl_context == PARM)
|
||
{
|
||
tree type_as_written;
|
||
tree promoted_type;
|
||
|
||
/* A parameter declared as an array of T is really a pointer to T.
|
||
One declared as a function is really a pointer to a function. */
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
/* Transfer const-ness of array into that of type pointed to. */
|
||
type = TREE_TYPE (type);
|
||
if (type_quals)
|
||
type = c_build_qualified_type (type, type_quals);
|
||
type = build_pointer_type (type);
|
||
type_quals = array_ptr_quals;
|
||
|
||
/* We don't yet implement attributes in this context. */
|
||
if (array_ptr_attrs != NULL_TREE)
|
||
warning (OPT_Wattributes,
|
||
"attributes in parameter array declarator ignored");
|
||
|
||
size_varies = 0;
|
||
}
|
||
else if (TREE_CODE (type) == FUNCTION_TYPE)
|
||
{
|
||
if (pedantic && type_quals)
|
||
pedwarn ("ISO C forbids qualified function types");
|
||
if (type_quals)
|
||
type = c_build_qualified_type (type, type_quals);
|
||
type = build_pointer_type (type);
|
||
type_quals = TYPE_UNQUALIFIED;
|
||
}
|
||
else if (type_quals)
|
||
type = c_build_qualified_type (type, type_quals);
|
||
|
||
type_as_written = type;
|
||
|
||
decl = build_decl (PARM_DECL, declarator->u.id, type);
|
||
if (size_varies)
|
||
C_DECL_VARIABLE_SIZE (decl) = 1;
|
||
|
||
/* Compute the type actually passed in the parmlist,
|
||
for the case where there is no prototype.
|
||
(For example, shorts and chars are passed as ints.)
|
||
When there is a prototype, this is overridden later. */
|
||
|
||
if (type == error_mark_node)
|
||
promoted_type = type;
|
||
else
|
||
promoted_type = c_type_promotes_to (type);
|
||
|
||
DECL_ARG_TYPE (decl) = promoted_type;
|
||
if (declspecs->inline_p)
|
||
pedwarn ("parameter %q+D declared %<inline%>", decl);
|
||
}
|
||
else if (decl_context == FIELD)
|
||
{
|
||
/* Note that the grammar rejects storage classes in typenames
|
||
and fields. */
|
||
gcc_assert (storage_class == csc_none && !threadp
|
||
&& !declspecs->inline_p);
|
||
|
||
/* Structure field. It may not be a function. */
|
||
|
||
if (TREE_CODE (type) == FUNCTION_TYPE)
|
||
{
|
||
error ("field %qs declared as a function", name);
|
||
type = build_pointer_type (type);
|
||
}
|
||
else if (TREE_CODE (type) != ERROR_MARK
|
||
&& !COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (type))
|
||
{
|
||
error ("field %qs has incomplete type", name);
|
||
type = error_mark_node;
|
||
}
|
||
type = c_build_qualified_type (type, type_quals);
|
||
decl = build_decl (FIELD_DECL, declarator->u.id, type);
|
||
DECL_NONADDRESSABLE_P (decl) = bitfield;
|
||
|
||
if (size_varies)
|
||
C_DECL_VARIABLE_SIZE (decl) = 1;
|
||
}
|
||
else if (TREE_CODE (type) == FUNCTION_TYPE)
|
||
{
|
||
if (storage_class == csc_register || threadp)
|
||
{
|
||
error ("invalid storage class for function %qs", name);
|
||
}
|
||
else if (current_scope != file_scope)
|
||
{
|
||
/* Function declaration not at file scope. Storage
|
||
classes other than `extern' are not allowed, C99
|
||
6.7.1p5, and `extern' makes no difference. However,
|
||
GCC allows 'auto', perhaps with 'inline', to support
|
||
nested functions. */
|
||
if (storage_class == csc_auto)
|
||
{
|
||
if (pedantic)
|
||
pedwarn ("invalid storage class for function %qs", name);
|
||
}
|
||
else if (storage_class == csc_static)
|
||
{
|
||
error ("invalid storage class for function %qs", name);
|
||
if (funcdef_flag)
|
||
storage_class = declspecs->storage_class = csc_none;
|
||
else
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
decl = build_decl (FUNCTION_DECL, declarator->u.id, type);
|
||
decl = build_decl_attribute_variant (decl, decl_attr);
|
||
|
||
DECL_LANG_SPECIFIC (decl) = GGC_CNEW (struct lang_decl);
|
||
|
||
if (pedantic && type_quals && !DECL_IN_SYSTEM_HEADER (decl))
|
||
pedwarn ("ISO C forbids qualified function types");
|
||
|
||
/* GNU C interprets a volatile-qualified function type to indicate
|
||
that the function does not return. */
|
||
if ((type_quals & TYPE_QUAL_VOLATILE)
|
||
&& !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
|
||
warning (0, "%<noreturn%> function returns non-void value");
|
||
|
||
/* Every function declaration is an external reference
|
||
(DECL_EXTERNAL) except for those which are not at file
|
||
scope and are explicitly declared "auto". This is
|
||
forbidden by standard C (C99 6.7.1p5) and is interpreted by
|
||
GCC to signify a forward declaration of a nested function. */
|
||
if (storage_class == csc_auto && current_scope != file_scope)
|
||
DECL_EXTERNAL (decl) = 0;
|
||
else
|
||
DECL_EXTERNAL (decl) = 1;
|
||
|
||
/* Record absence of global scope for `static' or `auto'. */
|
||
TREE_PUBLIC (decl)
|
||
= !(storage_class == csc_static || storage_class == csc_auto);
|
||
|
||
/* For a function definition, record the argument information
|
||
block where store_parm_decls will look for it. */
|
||
if (funcdef_flag)
|
||
current_function_arg_info = arg_info;
|
||
|
||
if (declspecs->default_int_p)
|
||
C_FUNCTION_IMPLICIT_INT (decl) = 1;
|
||
|
||
/* Record presence of `inline', if it is reasonable. */
|
||
if (flag_hosted && MAIN_NAME_P (declarator->u.id))
|
||
{
|
||
if (declspecs->inline_p)
|
||
pedwarn ("cannot inline function %<main%>");
|
||
}
|
||
else if (declspecs->inline_p)
|
||
{
|
||
/* Record that the function is declared `inline'. */
|
||
DECL_DECLARED_INLINE_P (decl) = 1;
|
||
|
||
/* Do not mark bare declarations as DECL_INLINE. Doing so
|
||
in the presence of multiple declarations can result in
|
||
the abstract origin pointing between the declarations,
|
||
which will confuse dwarf2out. */
|
||
if (initialized)
|
||
{
|
||
DECL_INLINE (decl) = 1;
|
||
if (storage_class == csc_extern)
|
||
current_extern_inline = 1;
|
||
}
|
||
}
|
||
/* If -finline-functions, assume it can be inlined. This does
|
||
two things: let the function be deferred until it is actually
|
||
needed, and let dwarf2 know that the function is inlinable. */
|
||
else if (flag_inline_trees == 2 && initialized)
|
||
DECL_INLINE (decl) = 1;
|
||
}
|
||
else
|
||
{
|
||
/* It's a variable. */
|
||
/* An uninitialized decl with `extern' is a reference. */
|
||
int extern_ref = !initialized && storage_class == csc_extern;
|
||
|
||
type = c_build_qualified_type (type, type_quals);
|
||
|
||
/* C99 6.2.2p7: It is invalid (compile-time undefined
|
||
behavior) to create an 'extern' declaration for a
|
||
variable if there is a global declaration that is
|
||
'static' and the global declaration is not visible.
|
||
(If the static declaration _is_ currently visible,
|
||
the 'extern' declaration is taken to refer to that decl.) */
|
||
if (extern_ref && current_scope != file_scope)
|
||
{
|
||
tree global_decl = identifier_global_value (declarator->u.id);
|
||
tree visible_decl = lookup_name (declarator->u.id);
|
||
|
||
if (global_decl
|
||
&& global_decl != visible_decl
|
||
&& TREE_CODE (global_decl) == VAR_DECL
|
||
&& !TREE_PUBLIC (global_decl))
|
||
error ("variable previously declared %<static%> redeclared "
|
||
"%<extern%>");
|
||
}
|
||
|
||
decl = build_decl (VAR_DECL, declarator->u.id, type);
|
||
DECL_SOURCE_LOCATION (decl) = declarator->id_loc;
|
||
if (size_varies)
|
||
C_DECL_VARIABLE_SIZE (decl) = 1;
|
||
|
||
if (declspecs->inline_p)
|
||
pedwarn ("variable %q+D declared %<inline%>", decl);
|
||
|
||
/* At file scope, an initialized extern declaration may follow
|
||
a static declaration. In that case, DECL_EXTERNAL will be
|
||
reset later in start_decl. */
|
||
DECL_EXTERNAL (decl) = (storage_class == csc_extern);
|
||
|
||
/* At file scope, the presence of a `static' or `register' storage
|
||
class specifier, or the absence of all storage class specifiers
|
||
makes this declaration a definition (perhaps tentative). Also,
|
||
the absence of `static' makes it public. */
|
||
if (current_scope == file_scope)
|
||
{
|
||
TREE_PUBLIC (decl) = storage_class != csc_static;
|
||
TREE_STATIC (decl) = !extern_ref;
|
||
}
|
||
/* Not at file scope, only `static' makes a static definition. */
|
||
else
|
||
{
|
||
TREE_STATIC (decl) = (storage_class == csc_static);
|
||
TREE_PUBLIC (decl) = extern_ref;
|
||
}
|
||
|
||
if (threadp)
|
||
{
|
||
if (targetm.have_tls)
|
||
DECL_TLS_MODEL (decl) = decl_default_tls_model (decl);
|
||
else
|
||
/* A mere warning is sure to result in improper semantics
|
||
at runtime. Don't bother to allow this to compile. */
|
||
error ("thread-local storage not supported for this target");
|
||
}
|
||
}
|
||
|
||
/* Record `register' declaration for warnings on &
|
||
and in case doing stupid register allocation. */
|
||
|
||
if (storage_class == csc_register)
|
||
{
|
||
C_DECL_REGISTER (decl) = 1;
|
||
DECL_REGISTER (decl) = 1;
|
||
}
|
||
|
||
/* Record constancy and volatility. */
|
||
c_apply_type_quals_to_decl (type_quals, decl);
|
||
|
||
/* If a type has volatile components, it should be stored in memory.
|
||
Otherwise, the fact that those components are volatile
|
||
will be ignored, and would even crash the compiler.
|
||
Of course, this only makes sense on VAR,PARM, and RESULT decl's. */
|
||
if (C_TYPE_FIELDS_VOLATILE (TREE_TYPE (decl))
|
||
&& (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
|
||
|| TREE_CODE (decl) == RESULT_DECL))
|
||
{
|
||
/* It is not an error for a structure with volatile fields to
|
||
be declared register, but reset DECL_REGISTER since it
|
||
cannot actually go in a register. */
|
||
int was_reg = C_DECL_REGISTER (decl);
|
||
C_DECL_REGISTER (decl) = 0;
|
||
DECL_REGISTER (decl) = 0;
|
||
c_mark_addressable (decl);
|
||
C_DECL_REGISTER (decl) = was_reg;
|
||
}
|
||
|
||
/* This is the earliest point at which we might know the assembler
|
||
name of a variable. Thus, if it's known before this, die horribly. */
|
||
gcc_assert (!DECL_ASSEMBLER_NAME_SET_P (decl));
|
||
|
||
decl_attributes (&decl, returned_attrs, 0);
|
||
|
||
return decl;
|
||
}
|
||
}
|
||
|
||
/* Decode the parameter-list info for a function type or function definition.
|
||
The argument is the value returned by `get_parm_info' (or made in parse.y
|
||
if there is an identifier list instead of a parameter decl list).
|
||
These two functions are separate because when a function returns
|
||
or receives functions then each is called multiple times but the order
|
||
of calls is different. The last call to `grokparms' is always the one
|
||
that contains the formal parameter names of a function definition.
|
||
|
||
Return a list of arg types to use in the FUNCTION_TYPE for this function.
|
||
|
||
FUNCDEF_FLAG is true for a function definition, false for
|
||
a mere declaration. A nonempty identifier-list gets an error message
|
||
when FUNCDEF_FLAG is false. */
|
||
|
||
static tree
|
||
grokparms (struct c_arg_info *arg_info, bool funcdef_flag)
|
||
{
|
||
tree arg_types = arg_info->types;
|
||
|
||
if (arg_types == 0 && !funcdef_flag && !in_system_header)
|
||
warning (OPT_Wstrict_prototypes,
|
||
"function declaration isn%'t a prototype");
|
||
|
||
if (arg_types == error_mark_node)
|
||
return 0; /* don't set TYPE_ARG_TYPES in this case */
|
||
|
||
else if (arg_types && TREE_CODE (TREE_VALUE (arg_types)) == IDENTIFIER_NODE)
|
||
{
|
||
if (!funcdef_flag)
|
||
pedwarn ("parameter names (without types) in function declaration");
|
||
|
||
arg_info->parms = arg_info->types;
|
||
arg_info->types = 0;
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
tree parm, type, typelt;
|
||
unsigned int parmno;
|
||
|
||
/* If there is a parameter of incomplete type in a definition,
|
||
this is an error. In a declaration this is valid, and a
|
||
struct or union type may be completed later, before any calls
|
||
or definition of the function. In the case where the tag was
|
||
first declared within the parameter list, a warning has
|
||
already been given. If a parameter has void type, then
|
||
however the function cannot be defined or called, so
|
||
warn. */
|
||
|
||
for (parm = arg_info->parms, typelt = arg_types, parmno = 1;
|
||
parm;
|
||
parm = TREE_CHAIN (parm), typelt = TREE_CHAIN (typelt), parmno++)
|
||
{
|
||
type = TREE_VALUE (typelt);
|
||
if (type == error_mark_node)
|
||
continue;
|
||
|
||
if (!COMPLETE_TYPE_P (type))
|
||
{
|
||
if (funcdef_flag)
|
||
{
|
||
if (DECL_NAME (parm))
|
||
error ("parameter %u (%q+D) has incomplete type",
|
||
parmno, parm);
|
||
else
|
||
error ("%Jparameter %u has incomplete type",
|
||
parm, parmno);
|
||
|
||
TREE_VALUE (typelt) = error_mark_node;
|
||
TREE_TYPE (parm) = error_mark_node;
|
||
}
|
||
else if (VOID_TYPE_P (type))
|
||
{
|
||
if (DECL_NAME (parm))
|
||
warning (0, "parameter %u (%q+D) has void type",
|
||
parmno, parm);
|
||
else
|
||
warning (0, "%Jparameter %u has void type",
|
||
parm, parmno);
|
||
}
|
||
}
|
||
|
||
if (DECL_NAME (parm) && TREE_USED (parm))
|
||
warn_if_shadowing (parm);
|
||
}
|
||
return arg_types;
|
||
}
|
||
}
|
||
|
||
/* Take apart the current scope and return a c_arg_info structure with
|
||
info on a parameter list just parsed.
|
||
|
||
This structure is later fed to 'grokparms' and 'store_parm_decls'.
|
||
|
||
ELLIPSIS being true means the argument list ended in '...' so don't
|
||
append a sentinel (void_list_node) to the end of the type-list. */
|
||
|
||
struct c_arg_info *
|
||
get_parm_info (bool ellipsis)
|
||
{
|
||
struct c_binding *b = current_scope->bindings;
|
||
struct c_arg_info *arg_info = XOBNEW (&parser_obstack,
|
||
struct c_arg_info);
|
||
tree parms = 0;
|
||
tree tags = 0;
|
||
tree types = 0;
|
||
tree others = 0;
|
||
|
||
static bool explained_incomplete_types = false;
|
||
bool gave_void_only_once_err = false;
|
||
|
||
arg_info->parms = 0;
|
||
arg_info->tags = 0;
|
||
arg_info->types = 0;
|
||
arg_info->others = 0;
|
||
|
||
/* The bindings in this scope must not get put into a block.
|
||
We will take care of deleting the binding nodes. */
|
||
current_scope->bindings = 0;
|
||
|
||
/* This function is only called if there was *something* on the
|
||
parameter list. */
|
||
gcc_assert (b);
|
||
|
||
/* A parameter list consisting solely of 'void' indicates that the
|
||
function takes no arguments. But if the 'void' is qualified
|
||
(by 'const' or 'volatile'), or has a storage class specifier
|
||
('register'), then the behavior is undefined; issue an error.
|
||
Typedefs for 'void' are OK (see DR#157). */
|
||
if (b->prev == 0 /* one binding */
|
||
&& TREE_CODE (b->decl) == PARM_DECL /* which is a parameter */
|
||
&& !DECL_NAME (b->decl) /* anonymous */
|
||
&& VOID_TYPE_P (TREE_TYPE (b->decl))) /* of void type */
|
||
{
|
||
if (TREE_THIS_VOLATILE (b->decl)
|
||
|| TREE_READONLY (b->decl)
|
||
|| C_DECL_REGISTER (b->decl))
|
||
error ("%<void%> as only parameter may not be qualified");
|
||
|
||
/* There cannot be an ellipsis. */
|
||
if (ellipsis)
|
||
error ("%<void%> must be the only parameter");
|
||
|
||
arg_info->types = void_list_node;
|
||
return arg_info;
|
||
}
|
||
|
||
if (!ellipsis)
|
||
types = void_list_node;
|
||
|
||
/* Break up the bindings list into parms, tags, types, and others;
|
||
apply sanity checks; purge the name-to-decl bindings. */
|
||
while (b)
|
||
{
|
||
tree decl = b->decl;
|
||
tree type = TREE_TYPE (decl);
|
||
const char *keyword;
|
||
|
||
switch (TREE_CODE (decl))
|
||
{
|
||
case PARM_DECL:
|
||
if (b->id)
|
||
{
|
||
gcc_assert (I_SYMBOL_BINDING (b->id) == b);
|
||
I_SYMBOL_BINDING (b->id) = b->shadowed;
|
||
}
|
||
|
||
/* Check for forward decls that never got their actual decl. */
|
||
if (TREE_ASM_WRITTEN (decl))
|
||
error ("parameter %q+D has just a forward declaration", decl);
|
||
/* Check for (..., void, ...) and issue an error. */
|
||
else if (VOID_TYPE_P (type) && !DECL_NAME (decl))
|
||
{
|
||
if (!gave_void_only_once_err)
|
||
{
|
||
error ("%<void%> must be the only parameter");
|
||
gave_void_only_once_err = true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Valid parameter, add it to the list. */
|
||
TREE_CHAIN (decl) = parms;
|
||
parms = decl;
|
||
|
||
/* Since there is a prototype, args are passed in their
|
||
declared types. The back end may override this later. */
|
||
DECL_ARG_TYPE (decl) = type;
|
||
types = tree_cons (0, type, types);
|
||
}
|
||
break;
|
||
|
||
case ENUMERAL_TYPE: keyword = "enum"; goto tag;
|
||
case UNION_TYPE: keyword = "union"; goto tag;
|
||
case RECORD_TYPE: keyword = "struct"; goto tag;
|
||
tag:
|
||
/* Types may not have tag-names, in which case the type
|
||
appears in the bindings list with b->id NULL. */
|
||
if (b->id)
|
||
{
|
||
gcc_assert (I_TAG_BINDING (b->id) == b);
|
||
I_TAG_BINDING (b->id) = b->shadowed;
|
||
}
|
||
|
||
/* Warn about any struct, union or enum tags defined in a
|
||
parameter list. The scope of such types is limited to
|
||
the parameter list, which is rarely if ever desirable
|
||
(it's impossible to call such a function with type-
|
||
correct arguments). An anonymous union parm type is
|
||
meaningful as a GNU extension, so don't warn for that. */
|
||
if (TREE_CODE (decl) != UNION_TYPE || b->id != 0)
|
||
{
|
||
if (b->id)
|
||
/* The %s will be one of 'struct', 'union', or 'enum'. */
|
||
warning (0, "%<%s %E%> declared inside parameter list",
|
||
keyword, b->id);
|
||
else
|
||
/* The %s will be one of 'struct', 'union', or 'enum'. */
|
||
warning (0, "anonymous %s declared inside parameter list",
|
||
keyword);
|
||
|
||
if (!explained_incomplete_types)
|
||
{
|
||
warning (0, "its scope is only this definition or declaration,"
|
||
" which is probably not what you want");
|
||
explained_incomplete_types = true;
|
||
}
|
||
}
|
||
|
||
tags = tree_cons (b->id, decl, tags);
|
||
break;
|
||
|
||
case CONST_DECL:
|
||
case TYPE_DECL:
|
||
case FUNCTION_DECL:
|
||
/* CONST_DECLs appear here when we have an embedded enum,
|
||
and TYPE_DECLs appear here when we have an embedded struct
|
||
or union. No warnings for this - we already warned about the
|
||
type itself. FUNCTION_DECLs appear when there is an implicit
|
||
function declaration in the parameter list. */
|
||
|
||
TREE_CHAIN (decl) = others;
|
||
others = decl;
|
||
/* fall through */
|
||
|
||
case ERROR_MARK:
|
||
/* error_mark_node appears here when we have an undeclared
|
||
variable. Just throw it away. */
|
||
if (b->id)
|
||
{
|
||
gcc_assert (I_SYMBOL_BINDING (b->id) == b);
|
||
I_SYMBOL_BINDING (b->id) = b->shadowed;
|
||
}
|
||
break;
|
||
|
||
/* Other things that might be encountered. */
|
||
case LABEL_DECL:
|
||
case VAR_DECL:
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
b = free_binding_and_advance (b);
|
||
}
|
||
|
||
arg_info->parms = parms;
|
||
arg_info->tags = tags;
|
||
arg_info->types = types;
|
||
arg_info->others = others;
|
||
return arg_info;
|
||
}
|
||
|
||
/* Get the struct, enum or union (CODE says which) with tag NAME.
|
||
Define the tag as a forward-reference if it is not defined.
|
||
Return a c_typespec structure for the type specifier. */
|
||
|
||
struct c_typespec
|
||
parser_xref_tag (enum tree_code code, tree name)
|
||
{
|
||
struct c_typespec ret;
|
||
/* If a cross reference is requested, look up the type
|
||
already defined for this tag and return it. */
|
||
|
||
tree ref = lookup_tag (code, name, 0);
|
||
/* If this is the right type of tag, return what we found.
|
||
(This reference will be shadowed by shadow_tag later if appropriate.)
|
||
If this is the wrong type of tag, do not return it. If it was the
|
||
wrong type in the same scope, we will have had an error
|
||
message already; if in a different scope and declaring
|
||
a name, pending_xref_error will give an error message; but if in a
|
||
different scope and not declaring a name, this tag should
|
||
shadow the previous declaration of a different type of tag, and
|
||
this would not work properly if we return the reference found.
|
||
(For example, with "struct foo" in an outer scope, "union foo;"
|
||
must shadow that tag with a new one of union type.) */
|
||
ret.kind = (ref ? ctsk_tagref : ctsk_tagfirstref);
|
||
if (ref && TREE_CODE (ref) == code)
|
||
{
|
||
ret.spec = ref;
|
||
return ret;
|
||
}
|
||
|
||
/* If no such tag is yet defined, create a forward-reference node
|
||
and record it as the "definition".
|
||
When a real declaration of this type is found,
|
||
the forward-reference will be altered into a real type. */
|
||
|
||
ref = make_node (code);
|
||
if (code == ENUMERAL_TYPE)
|
||
{
|
||
/* Give the type a default layout like unsigned int
|
||
to avoid crashing if it does not get defined. */
|
||
TYPE_MODE (ref) = TYPE_MODE (unsigned_type_node);
|
||
TYPE_ALIGN (ref) = TYPE_ALIGN (unsigned_type_node);
|
||
TYPE_USER_ALIGN (ref) = 0;
|
||
TYPE_UNSIGNED (ref) = 1;
|
||
TYPE_PRECISION (ref) = TYPE_PRECISION (unsigned_type_node);
|
||
TYPE_MIN_VALUE (ref) = TYPE_MIN_VALUE (unsigned_type_node);
|
||
TYPE_MAX_VALUE (ref) = TYPE_MAX_VALUE (unsigned_type_node);
|
||
}
|
||
|
||
pushtag (name, ref);
|
||
|
||
ret.spec = ref;
|
||
return ret;
|
||
}
|
||
|
||
/* Get the struct, enum or union (CODE says which) with tag NAME.
|
||
Define the tag as a forward-reference if it is not defined.
|
||
Return a tree for the type. */
|
||
|
||
tree
|
||
xref_tag (enum tree_code code, tree name)
|
||
{
|
||
return parser_xref_tag (code, name).spec;
|
||
}
|
||
|
||
/* Make sure that the tag NAME is defined *in the current scope*
|
||
at least as a forward reference.
|
||
CODE says which kind of tag NAME ought to be. */
|
||
|
||
tree
|
||
start_struct (enum tree_code code, tree name)
|
||
{
|
||
/* If there is already a tag defined at this scope
|
||
(as a forward reference), just return it. */
|
||
|
||
tree ref = 0;
|
||
|
||
if (name != 0)
|
||
ref = lookup_tag (code, name, 1);
|
||
if (ref && TREE_CODE (ref) == code)
|
||
{
|
||
if (TYPE_SIZE (ref))
|
||
{
|
||
if (code == UNION_TYPE)
|
||
error ("redefinition of %<union %E%>", name);
|
||
else
|
||
error ("redefinition of %<struct %E%>", name);
|
||
}
|
||
else if (C_TYPE_BEING_DEFINED (ref))
|
||
{
|
||
if (code == UNION_TYPE)
|
||
error ("nested redefinition of %<union %E%>", name);
|
||
else
|
||
error ("nested redefinition of %<struct %E%>", name);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Otherwise create a forward-reference just so the tag is in scope. */
|
||
|
||
ref = make_node (code);
|
||
pushtag (name, ref);
|
||
}
|
||
|
||
C_TYPE_BEING_DEFINED (ref) = 1;
|
||
TYPE_PACKED (ref) = flag_pack_struct;
|
||
return ref;
|
||
}
|
||
|
||
/* Process the specs, declarator and width (NULL if omitted)
|
||
of a structure component, returning a FIELD_DECL node.
|
||
WIDTH is non-NULL for bit-fields only, and is an INTEGER_CST node.
|
||
|
||
This is done during the parsing of the struct declaration.
|
||
The FIELD_DECL nodes are chained together and the lot of them
|
||
are ultimately passed to `build_struct' to make the RECORD_TYPE node. */
|
||
|
||
tree
|
||
grokfield (struct c_declarator *declarator, struct c_declspecs *declspecs,
|
||
tree width)
|
||
{
|
||
tree value;
|
||
|
||
if (declarator->kind == cdk_id && declarator->u.id == NULL_TREE
|
||
&& width == NULL_TREE)
|
||
{
|
||
/* This is an unnamed decl.
|
||
|
||
If we have something of the form "union { list } ;" then this
|
||
is the anonymous union extension. Similarly for struct.
|
||
|
||
If this is something of the form "struct foo;", then
|
||
If MS extensions are enabled, this is handled as an
|
||
anonymous struct.
|
||
Otherwise this is a forward declaration of a structure tag.
|
||
|
||
If this is something of the form "foo;" and foo is a TYPE_DECL, then
|
||
If MS extensions are enabled and foo names a structure, then
|
||
again this is an anonymous struct.
|
||
Otherwise this is an error.
|
||
|
||
Oh what a horrid tangled web we weave. I wonder if MS consciously
|
||
took this from Plan 9 or if it was an accident of implementation
|
||
that took root before someone noticed the bug... */
|
||
|
||
tree type = declspecs->type;
|
||
bool type_ok = (TREE_CODE (type) == RECORD_TYPE
|
||
|| TREE_CODE (type) == UNION_TYPE);
|
||
bool ok = false;
|
||
|
||
if (type_ok
|
||
&& (flag_ms_extensions || !declspecs->typedef_p))
|
||
{
|
||
if (flag_ms_extensions)
|
||
ok = true;
|
||
else if (flag_iso)
|
||
ok = false;
|
||
else if (TYPE_NAME (type) == NULL)
|
||
ok = true;
|
||
else
|
||
ok = false;
|
||
}
|
||
if (!ok)
|
||
{
|
||
pedwarn ("declaration does not declare anything");
|
||
return NULL_TREE;
|
||
}
|
||
if (pedantic)
|
||
pedwarn ("ISO C doesn%'t support unnamed structs/unions");
|
||
}
|
||
|
||
value = grokdeclarator (declarator, declspecs, FIELD, false,
|
||
width ? &width : NULL);
|
||
|
||
finish_decl (value, NULL_TREE, NULL_TREE);
|
||
DECL_INITIAL (value) = width;
|
||
|
||
return value;
|
||
}
|
||
|
||
/* Generate an error for any duplicate field names in FIELDLIST. Munge
|
||
the list such that this does not present a problem later. */
|
||
|
||
static void
|
||
detect_field_duplicates (tree fieldlist)
|
||
{
|
||
tree x, y;
|
||
int timeout = 10;
|
||
|
||
/* First, see if there are more than "a few" fields.
|
||
This is trivially true if there are zero or one fields. */
|
||
if (!fieldlist)
|
||
return;
|
||
x = TREE_CHAIN (fieldlist);
|
||
if (!x)
|
||
return;
|
||
do {
|
||
timeout--;
|
||
x = TREE_CHAIN (x);
|
||
} while (timeout > 0 && x);
|
||
|
||
/* If there were "few" fields, avoid the overhead of allocating
|
||
a hash table. Instead just do the nested traversal thing. */
|
||
if (timeout > 0)
|
||
{
|
||
for (x = TREE_CHAIN (fieldlist); x ; x = TREE_CHAIN (x))
|
||
if (DECL_NAME (x))
|
||
{
|
||
for (y = fieldlist; y != x; y = TREE_CHAIN (y))
|
||
if (DECL_NAME (y) == DECL_NAME (x))
|
||
{
|
||
error ("duplicate member %q+D", x);
|
||
DECL_NAME (x) = NULL_TREE;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
htab_t htab = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
|
||
void **slot;
|
||
|
||
for (x = fieldlist; x ; x = TREE_CHAIN (x))
|
||
if ((y = DECL_NAME (x)) != 0)
|
||
{
|
||
slot = htab_find_slot (htab, y, INSERT);
|
||
if (*slot)
|
||
{
|
||
error ("duplicate member %q+D", x);
|
||
DECL_NAME (x) = NULL_TREE;
|
||
}
|
||
*slot = y;
|
||
}
|
||
|
||
htab_delete (htab);
|
||
}
|
||
}
|
||
|
||
/* Fill in the fields of a RECORD_TYPE or UNION_TYPE node, T.
|
||
FIELDLIST is a chain of FIELD_DECL nodes for the fields.
|
||
ATTRIBUTES are attributes to be applied to the structure. */
|
||
|
||
tree
|
||
finish_struct (tree t, tree fieldlist, tree attributes)
|
||
{
|
||
tree x;
|
||
bool toplevel = file_scope == current_scope;
|
||
int saw_named_field;
|
||
|
||
/* If this type was previously laid out as a forward reference,
|
||
make sure we lay it out again. */
|
||
|
||
TYPE_SIZE (t) = 0;
|
||
|
||
decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
|
||
|
||
if (pedantic)
|
||
{
|
||
for (x = fieldlist; x; x = TREE_CHAIN (x))
|
||
if (DECL_NAME (x) != 0)
|
||
break;
|
||
|
||
if (x == 0)
|
||
{
|
||
if (TREE_CODE (t) == UNION_TYPE)
|
||
{
|
||
if (fieldlist)
|
||
pedwarn ("union has no named members");
|
||
else
|
||
pedwarn ("union has no members");
|
||
}
|
||
else
|
||
{
|
||
if (fieldlist)
|
||
pedwarn ("struct has no named members");
|
||
else
|
||
pedwarn ("struct has no members");
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Install struct as DECL_CONTEXT of each field decl.
|
||
Also process specified field sizes, found in the DECL_INITIAL,
|
||
storing 0 there after the type has been changed to precision equal
|
||
to its width, rather than the precision of the specified standard
|
||
type. (Correct layout requires the original type to have been preserved
|
||
until now.) */
|
||
|
||
saw_named_field = 0;
|
||
for (x = fieldlist; x; x = TREE_CHAIN (x))
|
||
{
|
||
if (TREE_TYPE (x) == error_mark_node)
|
||
continue;
|
||
|
||
DECL_CONTEXT (x) = t;
|
||
|
||
if (TYPE_PACKED (t) && TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
|
||
DECL_PACKED (x) = 1;
|
||
|
||
/* If any field is const, the structure type is pseudo-const. */
|
||
if (TREE_READONLY (x))
|
||
C_TYPE_FIELDS_READONLY (t) = 1;
|
||
else
|
||
{
|
||
/* A field that is pseudo-const makes the structure likewise. */
|
||
tree t1 = TREE_TYPE (x);
|
||
while (TREE_CODE (t1) == ARRAY_TYPE)
|
||
t1 = TREE_TYPE (t1);
|
||
if ((TREE_CODE (t1) == RECORD_TYPE || TREE_CODE (t1) == UNION_TYPE)
|
||
&& C_TYPE_FIELDS_READONLY (t1))
|
||
C_TYPE_FIELDS_READONLY (t) = 1;
|
||
}
|
||
|
||
/* Any field that is volatile means variables of this type must be
|
||
treated in some ways as volatile. */
|
||
if (TREE_THIS_VOLATILE (x))
|
||
C_TYPE_FIELDS_VOLATILE (t) = 1;
|
||
|
||
/* Any field of nominal variable size implies structure is too. */
|
||
if (C_DECL_VARIABLE_SIZE (x))
|
||
C_TYPE_VARIABLE_SIZE (t) = 1;
|
||
|
||
if (DECL_INITIAL (x))
|
||
{
|
||
unsigned HOST_WIDE_INT width = tree_low_cst (DECL_INITIAL (x), 1);
|
||
DECL_SIZE (x) = bitsize_int (width);
|
||
DECL_BIT_FIELD (x) = 1;
|
||
SET_DECL_C_BIT_FIELD (x);
|
||
}
|
||
|
||
/* Detect flexible array member in an invalid context. */
|
||
if (TREE_CODE (TREE_TYPE (x)) == ARRAY_TYPE
|
||
&& TYPE_SIZE (TREE_TYPE (x)) == NULL_TREE
|
||
&& TYPE_DOMAIN (TREE_TYPE (x)) != NULL_TREE
|
||
&& TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (x))) == NULL_TREE)
|
||
{
|
||
if (TREE_CODE (t) == UNION_TYPE)
|
||
{
|
||
error ("%Jflexible array member in union", x);
|
||
TREE_TYPE (x) = error_mark_node;
|
||
}
|
||
else if (TREE_CHAIN (x) != NULL_TREE)
|
||
{
|
||
error ("%Jflexible array member not at end of struct", x);
|
||
TREE_TYPE (x) = error_mark_node;
|
||
}
|
||
else if (!saw_named_field)
|
||
{
|
||
error ("%Jflexible array member in otherwise empty struct", x);
|
||
TREE_TYPE (x) = error_mark_node;
|
||
}
|
||
}
|
||
|
||
if (pedantic && !in_system_header && TREE_CODE (t) == RECORD_TYPE
|
||
&& flexible_array_type_p (TREE_TYPE (x)))
|
||
pedwarn ("%Jinvalid use of structure with flexible array member", x);
|
||
|
||
if (DECL_NAME (x))
|
||
saw_named_field = 1;
|
||
}
|
||
|
||
detect_field_duplicates (fieldlist);
|
||
|
||
/* Now we have the nearly final fieldlist. Record it,
|
||
then lay out the structure or union (including the fields). */
|
||
|
||
TYPE_FIELDS (t) = fieldlist;
|
||
|
||
layout_type (t);
|
||
|
||
/* Give bit-fields their proper types. */
|
||
{
|
||
tree *fieldlistp = &fieldlist;
|
||
while (*fieldlistp)
|
||
if (TREE_CODE (*fieldlistp) == FIELD_DECL && DECL_INITIAL (*fieldlistp)
|
||
&& TREE_TYPE (*fieldlistp) != error_mark_node)
|
||
{
|
||
unsigned HOST_WIDE_INT width
|
||
= tree_low_cst (DECL_INITIAL (*fieldlistp), 1);
|
||
tree type = TREE_TYPE (*fieldlistp);
|
||
if (width != TYPE_PRECISION (type))
|
||
{
|
||
TREE_TYPE (*fieldlistp)
|
||
= c_build_bitfield_integer_type (width, TYPE_UNSIGNED (type));
|
||
DECL_MODE (*fieldlistp) = TYPE_MODE (TREE_TYPE (*fieldlistp));
|
||
}
|
||
DECL_INITIAL (*fieldlistp) = 0;
|
||
}
|
||
else
|
||
fieldlistp = &TREE_CHAIN (*fieldlistp);
|
||
}
|
||
|
||
/* Now we have the truly final field list.
|
||
Store it in this type and in the variants. */
|
||
|
||
TYPE_FIELDS (t) = fieldlist;
|
||
|
||
/* If there are lots of fields, sort so we can look through them fast.
|
||
We arbitrarily consider 16 or more elts to be "a lot". */
|
||
|
||
{
|
||
int len = 0;
|
||
|
||
for (x = fieldlist; x; x = TREE_CHAIN (x))
|
||
{
|
||
if (len > 15 || DECL_NAME (x) == NULL)
|
||
break;
|
||
len += 1;
|
||
}
|
||
|
||
if (len > 15)
|
||
{
|
||
tree *field_array;
|
||
struct lang_type *space;
|
||
struct sorted_fields_type *space2;
|
||
|
||
len += list_length (x);
|
||
|
||
/* Use the same allocation policy here that make_node uses, to
|
||
ensure that this lives as long as the rest of the struct decl.
|
||
All decls in an inline function need to be saved. */
|
||
|
||
space = GGC_CNEW (struct lang_type);
|
||
space2 = GGC_NEWVAR (struct sorted_fields_type,
|
||
sizeof (struct sorted_fields_type) + len * sizeof (tree));
|
||
|
||
len = 0;
|
||
space->s = space2;
|
||
field_array = &space2->elts[0];
|
||
for (x = fieldlist; x; x = TREE_CHAIN (x))
|
||
{
|
||
field_array[len++] = x;
|
||
|
||
/* If there is anonymous struct or union, break out of the loop. */
|
||
if (DECL_NAME (x) == NULL)
|
||
break;
|
||
}
|
||
/* Found no anonymous struct/union. Add the TYPE_LANG_SPECIFIC. */
|
||
if (x == NULL)
|
||
{
|
||
TYPE_LANG_SPECIFIC (t) = space;
|
||
TYPE_LANG_SPECIFIC (t)->s->len = len;
|
||
field_array = TYPE_LANG_SPECIFIC (t)->s->elts;
|
||
qsort (field_array, len, sizeof (tree), field_decl_cmp);
|
||
}
|
||
}
|
||
}
|
||
|
||
for (x = TYPE_MAIN_VARIANT (t); x; x = TYPE_NEXT_VARIANT (x))
|
||
{
|
||
TYPE_FIELDS (x) = TYPE_FIELDS (t);
|
||
TYPE_LANG_SPECIFIC (x) = TYPE_LANG_SPECIFIC (t);
|
||
TYPE_ALIGN (x) = TYPE_ALIGN (t);
|
||
TYPE_USER_ALIGN (x) = TYPE_USER_ALIGN (t);
|
||
C_TYPE_FIELDS_READONLY (x) = C_TYPE_FIELDS_READONLY (t);
|
||
C_TYPE_FIELDS_VOLATILE (x) = C_TYPE_FIELDS_VOLATILE (t);
|
||
C_TYPE_VARIABLE_SIZE (x) = C_TYPE_VARIABLE_SIZE (t);
|
||
}
|
||
|
||
/* If this was supposed to be a transparent union, but we can't
|
||
make it one, warn and turn off the flag. */
|
||
if (TREE_CODE (t) == UNION_TYPE
|
||
&& TYPE_TRANSPARENT_UNION (t)
|
||
&& (!TYPE_FIELDS (t) || TYPE_MODE (t) != DECL_MODE (TYPE_FIELDS (t))))
|
||
{
|
||
TYPE_TRANSPARENT_UNION (t) = 0;
|
||
warning (0, "union cannot be made transparent");
|
||
}
|
||
|
||
/* If this structure or union completes the type of any previous
|
||
variable declaration, lay it out and output its rtl. */
|
||
for (x = C_TYPE_INCOMPLETE_VARS (TYPE_MAIN_VARIANT (t));
|
||
x;
|
||
x = TREE_CHAIN (x))
|
||
{
|
||
tree decl = TREE_VALUE (x);
|
||
if (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
|
||
layout_array_type (TREE_TYPE (decl));
|
||
if (TREE_CODE (decl) != TYPE_DECL)
|
||
{
|
||
layout_decl (decl, 0);
|
||
if (c_dialect_objc ())
|
||
objc_check_decl (decl);
|
||
rest_of_decl_compilation (decl, toplevel, 0);
|
||
if (!toplevel)
|
||
expand_decl (decl);
|
||
}
|
||
}
|
||
C_TYPE_INCOMPLETE_VARS (TYPE_MAIN_VARIANT (t)) = 0;
|
||
|
||
/* Finish debugging output for this type. */
|
||
rest_of_type_compilation (t, toplevel);
|
||
|
||
/* If we're inside a function proper, i.e. not file-scope and not still
|
||
parsing parameters, then arrange for the size of a variable sized type
|
||
to be bound now. */
|
||
if (cur_stmt_list && variably_modified_type_p (t, NULL))
|
||
add_stmt (build_stmt (DECL_EXPR, build_decl (TYPE_DECL, NULL, t)));
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Lay out the type T, and its element type, and so on. */
|
||
|
||
static void
|
||
layout_array_type (tree t)
|
||
{
|
||
if (TREE_CODE (TREE_TYPE (t)) == ARRAY_TYPE)
|
||
layout_array_type (TREE_TYPE (t));
|
||
layout_type (t);
|
||
}
|
||
|
||
/* Begin compiling the definition of an enumeration type.
|
||
NAME is its name (or null if anonymous).
|
||
Returns the type object, as yet incomplete.
|
||
Also records info about it so that build_enumerator
|
||
may be used to declare the individual values as they are read. */
|
||
|
||
tree
|
||
start_enum (tree name)
|
||
{
|
||
tree enumtype = 0;
|
||
|
||
/* If this is the real definition for a previous forward reference,
|
||
fill in the contents in the same object that used to be the
|
||
forward reference. */
|
||
|
||
if (name != 0)
|
||
enumtype = lookup_tag (ENUMERAL_TYPE, name, 1);
|
||
|
||
if (enumtype == 0 || TREE_CODE (enumtype) != ENUMERAL_TYPE)
|
||
{
|
||
enumtype = make_node (ENUMERAL_TYPE);
|
||
pushtag (name, enumtype);
|
||
}
|
||
|
||
if (C_TYPE_BEING_DEFINED (enumtype))
|
||
error ("nested redefinition of %<enum %E%>", name);
|
||
|
||
C_TYPE_BEING_DEFINED (enumtype) = 1;
|
||
|
||
if (TYPE_VALUES (enumtype) != 0)
|
||
{
|
||
/* This enum is a named one that has been declared already. */
|
||
error ("redeclaration of %<enum %E%>", name);
|
||
|
||
/* Completely replace its old definition.
|
||
The old enumerators remain defined, however. */
|
||
TYPE_VALUES (enumtype) = 0;
|
||
}
|
||
|
||
enum_next_value = integer_zero_node;
|
||
enum_overflow = 0;
|
||
|
||
if (flag_short_enums)
|
||
TYPE_PACKED (enumtype) = 1;
|
||
|
||
return enumtype;
|
||
}
|
||
|
||
/* After processing and defining all the values of an enumeration type,
|
||
install their decls in the enumeration type and finish it off.
|
||
ENUMTYPE is the type object, VALUES a list of decl-value pairs,
|
||
and ATTRIBUTES are the specified attributes.
|
||
Returns ENUMTYPE. */
|
||
|
||
tree
|
||
finish_enum (tree enumtype, tree values, tree attributes)
|
||
{
|
||
tree pair, tem;
|
||
tree minnode = 0, maxnode = 0;
|
||
int precision, unsign;
|
||
bool toplevel = (file_scope == current_scope);
|
||
struct lang_type *lt;
|
||
|
||
decl_attributes (&enumtype, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
|
||
|
||
/* Calculate the maximum value of any enumerator in this type. */
|
||
|
||
if (values == error_mark_node)
|
||
minnode = maxnode = integer_zero_node;
|
||
else
|
||
{
|
||
minnode = maxnode = TREE_VALUE (values);
|
||
for (pair = TREE_CHAIN (values); pair; pair = TREE_CHAIN (pair))
|
||
{
|
||
tree value = TREE_VALUE (pair);
|
||
if (tree_int_cst_lt (maxnode, value))
|
||
maxnode = value;
|
||
if (tree_int_cst_lt (value, minnode))
|
||
minnode = value;
|
||
}
|
||
}
|
||
|
||
/* Construct the final type of this enumeration. It is the same
|
||
as one of the integral types - the narrowest one that fits, except
|
||
that normally we only go as narrow as int - and signed iff any of
|
||
the values are negative. */
|
||
unsign = (tree_int_cst_sgn (minnode) >= 0);
|
||
precision = MAX (min_precision (minnode, unsign),
|
||
min_precision (maxnode, unsign));
|
||
|
||
if (TYPE_PACKED (enumtype) || precision > TYPE_PRECISION (integer_type_node))
|
||
{
|
||
tem = c_common_type_for_size (precision, unsign);
|
||
if (tem == NULL)
|
||
{
|
||
warning (0, "enumeration values exceed range of largest integer");
|
||
tem = long_long_integer_type_node;
|
||
}
|
||
}
|
||
else
|
||
tem = unsign ? unsigned_type_node : integer_type_node;
|
||
|
||
TYPE_MIN_VALUE (enumtype) = TYPE_MIN_VALUE (tem);
|
||
TYPE_MAX_VALUE (enumtype) = TYPE_MAX_VALUE (tem);
|
||
TYPE_UNSIGNED (enumtype) = TYPE_UNSIGNED (tem);
|
||
TYPE_SIZE (enumtype) = 0;
|
||
|
||
/* If the precision of the type was specific with an attribute and it
|
||
was too small, give an error. Otherwise, use it. */
|
||
if (TYPE_PRECISION (enumtype))
|
||
{
|
||
if (precision > TYPE_PRECISION (enumtype))
|
||
error ("specified mode too small for enumeral values");
|
||
}
|
||
else
|
||
TYPE_PRECISION (enumtype) = TYPE_PRECISION (tem);
|
||
|
||
layout_type (enumtype);
|
||
|
||
if (values != error_mark_node)
|
||
{
|
||
/* Change the type of the enumerators to be the enum type. We
|
||
need to do this irrespective of the size of the enum, for
|
||
proper type checking. Replace the DECL_INITIALs of the
|
||
enumerators, and the value slots of the list, with copies
|
||
that have the enum type; they cannot be modified in place
|
||
because they may be shared (e.g. integer_zero_node) Finally,
|
||
change the purpose slots to point to the names of the decls. */
|
||
for (pair = values; pair; pair = TREE_CHAIN (pair))
|
||
{
|
||
tree enu = TREE_PURPOSE (pair);
|
||
tree ini = DECL_INITIAL (enu);
|
||
|
||
TREE_TYPE (enu) = enumtype;
|
||
|
||
/* The ISO C Standard mandates enumerators to have type int,
|
||
even though the underlying type of an enum type is
|
||
unspecified. Here we convert any enumerators that fit in
|
||
an int to type int, to avoid promotions to unsigned types
|
||
when comparing integers with enumerators that fit in the
|
||
int range. When -pedantic is given, build_enumerator()
|
||
would have already taken care of those that don't fit. */
|
||
if (int_fits_type_p (ini, integer_type_node))
|
||
tem = integer_type_node;
|
||
else
|
||
tem = enumtype;
|
||
ini = convert (tem, ini);
|
||
|
||
DECL_INITIAL (enu) = ini;
|
||
TREE_PURPOSE (pair) = DECL_NAME (enu);
|
||
TREE_VALUE (pair) = ini;
|
||
}
|
||
|
||
TYPE_VALUES (enumtype) = values;
|
||
}
|
||
|
||
/* Record the min/max values so that we can warn about bit-field
|
||
enumerations that are too small for the values. */
|
||
lt = GGC_CNEW (struct lang_type);
|
||
lt->enum_min = minnode;
|
||
lt->enum_max = maxnode;
|
||
TYPE_LANG_SPECIFIC (enumtype) = lt;
|
||
|
||
/* Fix up all variant types of this enum type. */
|
||
for (tem = TYPE_MAIN_VARIANT (enumtype); tem; tem = TYPE_NEXT_VARIANT (tem))
|
||
{
|
||
if (tem == enumtype)
|
||
continue;
|
||
TYPE_VALUES (tem) = TYPE_VALUES (enumtype);
|
||
TYPE_MIN_VALUE (tem) = TYPE_MIN_VALUE (enumtype);
|
||
TYPE_MAX_VALUE (tem) = TYPE_MAX_VALUE (enumtype);
|
||
TYPE_SIZE (tem) = TYPE_SIZE (enumtype);
|
||
TYPE_SIZE_UNIT (tem) = TYPE_SIZE_UNIT (enumtype);
|
||
TYPE_MODE (tem) = TYPE_MODE (enumtype);
|
||
TYPE_PRECISION (tem) = TYPE_PRECISION (enumtype);
|
||
TYPE_ALIGN (tem) = TYPE_ALIGN (enumtype);
|
||
TYPE_USER_ALIGN (tem) = TYPE_USER_ALIGN (enumtype);
|
||
TYPE_UNSIGNED (tem) = TYPE_UNSIGNED (enumtype);
|
||
TYPE_LANG_SPECIFIC (tem) = TYPE_LANG_SPECIFIC (enumtype);
|
||
}
|
||
|
||
/* Finish debugging output for this type. */
|
||
rest_of_type_compilation (enumtype, toplevel);
|
||
|
||
return enumtype;
|
||
}
|
||
|
||
/* Build and install a CONST_DECL for one value of the
|
||
current enumeration type (one that was begun with start_enum).
|
||
Return a tree-list containing the CONST_DECL and its value.
|
||
Assignment of sequential values by default is handled here. */
|
||
|
||
tree
|
||
build_enumerator (tree name, tree value)
|
||
{
|
||
tree decl, type;
|
||
|
||
/* Validate and default VALUE. */
|
||
|
||
if (value != 0)
|
||
{
|
||
/* Don't issue more errors for error_mark_node (i.e. an
|
||
undeclared identifier) - just ignore the value expression. */
|
||
if (value == error_mark_node)
|
||
value = 0;
|
||
else if (!INTEGRAL_TYPE_P (TREE_TYPE (value))
|
||
|| TREE_CODE (value) != INTEGER_CST)
|
||
{
|
||
error ("enumerator value for %qE is not an integer constant", name);
|
||
value = 0;
|
||
}
|
||
else
|
||
{
|
||
value = default_conversion (value);
|
||
constant_expression_warning (value);
|
||
}
|
||
}
|
||
|
||
/* Default based on previous value. */
|
||
/* It should no longer be possible to have NON_LVALUE_EXPR
|
||
in the default. */
|
||
if (value == 0)
|
||
{
|
||
value = enum_next_value;
|
||
if (enum_overflow)
|
||
error ("overflow in enumeration values");
|
||
}
|
||
|
||
if (pedantic && !int_fits_type_p (value, integer_type_node))
|
||
{
|
||
pedwarn ("ISO C restricts enumerator values to range of %<int%>");
|
||
/* XXX This causes -pedantic to change the meaning of the program.
|
||
Remove? -zw 2004-03-15 */
|
||
value = convert (integer_type_node, value);
|
||
}
|
||
|
||
/* Set basis for default for next value. */
|
||
enum_next_value = build_binary_op (PLUS_EXPR, value, integer_one_node, 0);
|
||
enum_overflow = tree_int_cst_lt (enum_next_value, value);
|
||
|
||
/* Now create a declaration for the enum value name. */
|
||
|
||
type = TREE_TYPE (value);
|
||
type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
|
||
TYPE_PRECISION (integer_type_node)),
|
||
(TYPE_PRECISION (type)
|
||
>= TYPE_PRECISION (integer_type_node)
|
||
&& TYPE_UNSIGNED (type)));
|
||
|
||
decl = build_decl (CONST_DECL, name, type);
|
||
DECL_INITIAL (decl) = convert (type, value);
|
||
pushdecl (decl);
|
||
|
||
return tree_cons (decl, value, NULL_TREE);
|
||
}
|
||
|
||
|
||
/* Create the FUNCTION_DECL for a function definition.
|
||
DECLSPECS, DECLARATOR and ATTRIBUTES are the parts of
|
||
the declaration; they describe the function's name and the type it returns,
|
||
but twisted together in a fashion that parallels the syntax of C.
|
||
|
||
This function creates a binding context for the function body
|
||
as well as setting up the FUNCTION_DECL in current_function_decl.
|
||
|
||
Returns 1 on success. If the DECLARATOR is not suitable for a function
|
||
(it defines a datum instead), we return 0, which tells
|
||
yyparse to report a parse error. */
|
||
|
||
int
|
||
start_function (struct c_declspecs *declspecs, struct c_declarator *declarator,
|
||
tree attributes)
|
||
{
|
||
tree decl1, old_decl;
|
||
tree restype, resdecl;
|
||
struct c_label_context_se *nstack_se;
|
||
struct c_label_context_vm *nstack_vm;
|
||
|
||
current_function_returns_value = 0; /* Assume, until we see it does. */
|
||
current_function_returns_null = 0;
|
||
current_function_returns_abnormally = 0;
|
||
warn_about_return_type = 0;
|
||
current_extern_inline = 0;
|
||
c_switch_stack = NULL;
|
||
|
||
nstack_se = XOBNEW (&parser_obstack, struct c_label_context_se);
|
||
nstack_se->labels_def = NULL;
|
||
nstack_se->labels_used = NULL;
|
||
nstack_se->next = label_context_stack_se;
|
||
label_context_stack_se = nstack_se;
|
||
|
||
nstack_vm = XOBNEW (&parser_obstack, struct c_label_context_vm);
|
||
nstack_vm->labels_def = NULL;
|
||
nstack_vm->labels_used = NULL;
|
||
nstack_vm->scope = 0;
|
||
nstack_vm->next = label_context_stack_vm;
|
||
label_context_stack_vm = nstack_vm;
|
||
|
||
/* Indicate no valid break/continue context by setting these variables
|
||
to some non-null, non-label value. We'll notice and emit the proper
|
||
error message in c_finish_bc_stmt. */
|
||
c_break_label = c_cont_label = size_zero_node;
|
||
|
||
decl1 = grokdeclarator (declarator, declspecs, FUNCDEF, true, NULL);
|
||
|
||
/* If the declarator is not suitable for a function definition,
|
||
cause a syntax error. */
|
||
if (decl1 == 0)
|
||
{
|
||
label_context_stack_se = label_context_stack_se->next;
|
||
label_context_stack_vm = label_context_stack_vm->next;
|
||
return 0;
|
||
}
|
||
|
||
decl_attributes (&decl1, attributes, 0);
|
||
|
||
if (DECL_DECLARED_INLINE_P (decl1)
|
||
&& DECL_UNINLINABLE (decl1)
|
||
&& lookup_attribute ("noinline", DECL_ATTRIBUTES (decl1)))
|
||
warning (OPT_Wattributes, "inline function %q+D given attribute noinline",
|
||
decl1);
|
||
|
||
announce_function (decl1);
|
||
|
||
if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl1))))
|
||
{
|
||
error ("return type is an incomplete type");
|
||
/* Make it return void instead. */
|
||
TREE_TYPE (decl1)
|
||
= build_function_type (void_type_node,
|
||
TYPE_ARG_TYPES (TREE_TYPE (decl1)));
|
||
}
|
||
|
||
if (warn_about_return_type)
|
||
pedwarn_c99 ("return type defaults to %<int%>");
|
||
|
||
/* Make the init_value nonzero so pushdecl knows this is not tentative.
|
||
error_mark_node is replaced below (in pop_scope) with the BLOCK. */
|
||
DECL_INITIAL (decl1) = error_mark_node;
|
||
|
||
/* If this definition isn't a prototype and we had a prototype declaration
|
||
before, copy the arg type info from that prototype. */
|
||
old_decl = lookup_name_in_scope (DECL_NAME (decl1), current_scope);
|
||
current_function_prototype_locus = UNKNOWN_LOCATION;
|
||
current_function_prototype_built_in = false;
|
||
current_function_prototype_arg_types = NULL_TREE;
|
||
if (TYPE_ARG_TYPES (TREE_TYPE (decl1)) == 0)
|
||
{
|
||
if (old_decl != 0 && TREE_CODE (TREE_TYPE (old_decl)) == FUNCTION_TYPE
|
||
&& comptypes (TREE_TYPE (TREE_TYPE (decl1)),
|
||
TREE_TYPE (TREE_TYPE (old_decl))))
|
||
{
|
||
TREE_TYPE (decl1) = composite_type (TREE_TYPE (old_decl),
|
||
TREE_TYPE (decl1));
|
||
current_function_prototype_locus = DECL_SOURCE_LOCATION (old_decl);
|
||
current_function_prototype_built_in
|
||
= C_DECL_BUILTIN_PROTOTYPE (old_decl);
|
||
current_function_prototype_arg_types
|
||
= TYPE_ARG_TYPES (TREE_TYPE (decl1));
|
||
}
|
||
if (TREE_PUBLIC (decl1))
|
||
{
|
||
/* If there is an external prototype declaration of this
|
||
function, record its location but do not copy information
|
||
to this decl. This may be an invisible declaration
|
||
(built-in or in a scope which has finished) or simply
|
||
have more refined argument types than any declaration
|
||
found above. */
|
||
struct c_binding *b;
|
||
for (b = I_SYMBOL_BINDING (DECL_NAME (decl1)); b; b = b->shadowed)
|
||
if (B_IN_SCOPE (b, external_scope))
|
||
break;
|
||
if (b)
|
||
{
|
||
tree ext_decl, ext_type;
|
||
ext_decl = b->decl;
|
||
ext_type = b->type ? b->type : TREE_TYPE (ext_decl);
|
||
if (TREE_CODE (ext_type) == FUNCTION_TYPE
|
||
&& comptypes (TREE_TYPE (TREE_TYPE (decl1)),
|
||
TREE_TYPE (ext_type)))
|
||
{
|
||
current_function_prototype_locus
|
||
= DECL_SOURCE_LOCATION (ext_decl);
|
||
current_function_prototype_built_in
|
||
= C_DECL_BUILTIN_PROTOTYPE (ext_decl);
|
||
current_function_prototype_arg_types
|
||
= TYPE_ARG_TYPES (ext_type);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Optionally warn of old-fashioned def with no previous prototype. */
|
||
if (warn_strict_prototypes
|
||
&& old_decl != error_mark_node
|
||
&& TYPE_ARG_TYPES (TREE_TYPE (decl1)) == 0
|
||
&& C_DECL_ISNT_PROTOTYPE (old_decl))
|
||
warning (OPT_Wstrict_prototypes,
|
||
"function declaration isn%'t a prototype");
|
||
/* Optionally warn of any global def with no previous prototype. */
|
||
else if (warn_missing_prototypes
|
||
&& old_decl != error_mark_node
|
||
&& TREE_PUBLIC (decl1)
|
||
&& !MAIN_NAME_P (DECL_NAME (decl1))
|
||
&& C_DECL_ISNT_PROTOTYPE (old_decl))
|
||
warning (OPT_Wmissing_prototypes, "no previous prototype for %q+D", decl1);
|
||
/* Optionally warn of any def with no previous prototype
|
||
if the function has already been used. */
|
||
else if (warn_missing_prototypes
|
||
&& old_decl != 0
|
||
&& old_decl != error_mark_node
|
||
&& TREE_USED (old_decl)
|
||
&& TYPE_ARG_TYPES (TREE_TYPE (old_decl)) == 0)
|
||
warning (OPT_Wmissing_prototypes,
|
||
"%q+D was used with no prototype before its definition", decl1);
|
||
/* Optionally warn of any global def with no previous declaration. */
|
||
else if (warn_missing_declarations
|
||
&& TREE_PUBLIC (decl1)
|
||
&& old_decl == 0
|
||
&& !MAIN_NAME_P (DECL_NAME (decl1)))
|
||
warning (OPT_Wmissing_declarations, "no previous declaration for %q+D",
|
||
decl1);
|
||
/* Optionally warn of any def with no previous declaration
|
||
if the function has already been used. */
|
||
else if (warn_missing_declarations
|
||
&& old_decl != 0
|
||
&& old_decl != error_mark_node
|
||
&& TREE_USED (old_decl)
|
||
&& C_DECL_IMPLICIT (old_decl))
|
||
warning (OPT_Wmissing_declarations,
|
||
"%q+D was used with no declaration before its definition", decl1);
|
||
|
||
/* This is a definition, not a reference.
|
||
So normally clear DECL_EXTERNAL.
|
||
However, `extern inline' acts like a declaration
|
||
except for defining how to inline. So set DECL_EXTERNAL in that case. */
|
||
DECL_EXTERNAL (decl1) = current_extern_inline;
|
||
|
||
/* This function exists in static storage.
|
||
(This does not mean `static' in the C sense!) */
|
||
TREE_STATIC (decl1) = 1;
|
||
|
||
/* A nested function is not global. */
|
||
if (current_function_decl != 0)
|
||
TREE_PUBLIC (decl1) = 0;
|
||
|
||
/* This is the earliest point at which we might know the assembler
|
||
name of the function. Thus, if it's set before this, die horribly. */
|
||
gcc_assert (!DECL_ASSEMBLER_NAME_SET_P (decl1));
|
||
|
||
/* If #pragma weak was used, mark the decl weak now. */
|
||
if (current_scope == file_scope)
|
||
maybe_apply_pragma_weak (decl1);
|
||
|
||
/* Warn for unlikely, improbable, or stupid declarations of `main'. */
|
||
if (warn_main > 0 && MAIN_NAME_P (DECL_NAME (decl1)))
|
||
{
|
||
tree args;
|
||
int argct = 0;
|
||
|
||
if (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (decl1)))
|
||
!= integer_type_node)
|
||
pedwarn ("return type of %q+D is not %<int%>", decl1);
|
||
|
||
for (args = TYPE_ARG_TYPES (TREE_TYPE (decl1)); args;
|
||
args = TREE_CHAIN (args))
|
||
{
|
||
tree type = args ? TREE_VALUE (args) : 0;
|
||
|
||
if (type == void_type_node)
|
||
break;
|
||
|
||
++argct;
|
||
switch (argct)
|
||
{
|
||
case 1:
|
||
if (TYPE_MAIN_VARIANT (type) != integer_type_node)
|
||
pedwarn ("first argument of %q+D should be %<int%>", decl1);
|
||
break;
|
||
|
||
case 2:
|
||
if (TREE_CODE (type) != POINTER_TYPE
|
||
|| TREE_CODE (TREE_TYPE (type)) != POINTER_TYPE
|
||
|| (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (type)))
|
||
!= char_type_node))
|
||
pedwarn ("second argument of %q+D should be %<char **%>",
|
||
decl1);
|
||
break;
|
||
|
||
case 3:
|
||
if (TREE_CODE (type) != POINTER_TYPE
|
||
|| TREE_CODE (TREE_TYPE (type)) != POINTER_TYPE
|
||
|| (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (type)))
|
||
!= char_type_node))
|
||
pedwarn ("third argument of %q+D should probably be "
|
||
"%<char **%>", decl1);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* It is intentional that this message does not mention the third
|
||
argument because it's only mentioned in an appendix of the
|
||
standard. */
|
||
if (argct > 0 && (argct < 2 || argct > 3))
|
||
pedwarn ("%q+D takes only zero or two arguments", decl1);
|
||
|
||
if (!TREE_PUBLIC (decl1))
|
||
pedwarn ("%q+D is normally a non-static function", decl1);
|
||
}
|
||
|
||
/* Record the decl so that the function name is defined.
|
||
If we already have a decl for this name, and it is a FUNCTION_DECL,
|
||
use the old decl. */
|
||
|
||
current_function_decl = pushdecl (decl1);
|
||
|
||
push_scope ();
|
||
declare_parm_level ();
|
||
|
||
restype = TREE_TYPE (TREE_TYPE (current_function_decl));
|
||
/* Promote the value to int before returning it. */
|
||
if (c_promoting_integer_type_p (restype))
|
||
{
|
||
/* It retains unsignedness if not really getting wider. */
|
||
if (TYPE_UNSIGNED (restype)
|
||
&& (TYPE_PRECISION (restype)
|
||
== TYPE_PRECISION (integer_type_node)))
|
||
restype = unsigned_type_node;
|
||
else
|
||
restype = integer_type_node;
|
||
}
|
||
|
||
resdecl = build_decl (RESULT_DECL, NULL_TREE, restype);
|
||
DECL_ARTIFICIAL (resdecl) = 1;
|
||
DECL_IGNORED_P (resdecl) = 1;
|
||
DECL_RESULT (current_function_decl) = resdecl;
|
||
|
||
start_fname_decls ();
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Subroutine of store_parm_decls which handles new-style function
|
||
definitions (prototype format). The parms already have decls, so we
|
||
need only record them as in effect and complain if any redundant
|
||
old-style parm decls were written. */
|
||
static void
|
||
store_parm_decls_newstyle (tree fndecl, const struct c_arg_info *arg_info)
|
||
{
|
||
tree decl;
|
||
|
||
if (current_scope->bindings)
|
||
{
|
||
error ("%Jold-style parameter declarations in prototyped "
|
||
"function definition", fndecl);
|
||
|
||
/* Get rid of the old-style declarations. */
|
||
pop_scope ();
|
||
push_scope ();
|
||
}
|
||
/* Don't issue this warning for nested functions, and don't issue this
|
||
warning if we got here because ARG_INFO_TYPES was error_mark_node
|
||
(this happens when a function definition has just an ellipsis in
|
||
its parameter list). */
|
||
else if (!in_system_header && !current_function_scope
|
||
&& arg_info->types != error_mark_node)
|
||
warning (OPT_Wtraditional,
|
||
"%Jtraditional C rejects ISO C style function definitions",
|
||
fndecl);
|
||
|
||
/* Now make all the parameter declarations visible in the function body.
|
||
We can bypass most of the grunt work of pushdecl. */
|
||
for (decl = arg_info->parms; decl; decl = TREE_CHAIN (decl))
|
||
{
|
||
DECL_CONTEXT (decl) = current_function_decl;
|
||
if (DECL_NAME (decl))
|
||
{
|
||
bind (DECL_NAME (decl), decl, current_scope,
|
||
/*invisible=*/false, /*nested=*/false);
|
||
if (!TREE_USED (decl))
|
||
warn_if_shadowing (decl);
|
||
}
|
||
else
|
||
error ("%Jparameter name omitted", decl);
|
||
}
|
||
|
||
/* Record the parameter list in the function declaration. */
|
||
DECL_ARGUMENTS (fndecl) = arg_info->parms;
|
||
|
||
/* Now make all the ancillary declarations visible, likewise. */
|
||
for (decl = arg_info->others; decl; decl = TREE_CHAIN (decl))
|
||
{
|
||
DECL_CONTEXT (decl) = current_function_decl;
|
||
if (DECL_NAME (decl))
|
||
bind (DECL_NAME (decl), decl, current_scope,
|
||
/*invisible=*/false, /*nested=*/false);
|
||
}
|
||
|
||
/* And all the tag declarations. */
|
||
for (decl = arg_info->tags; decl; decl = TREE_CHAIN (decl))
|
||
if (TREE_PURPOSE (decl))
|
||
bind (TREE_PURPOSE (decl), TREE_VALUE (decl), current_scope,
|
||
/*invisible=*/false, /*nested=*/false);
|
||
}
|
||
|
||
/* Subroutine of store_parm_decls which handles old-style function
|
||
definitions (separate parameter list and declarations). */
|
||
|
||
static void
|
||
store_parm_decls_oldstyle (tree fndecl, const struct c_arg_info *arg_info)
|
||
{
|
||
struct c_binding *b;
|
||
tree parm, decl, last;
|
||
tree parmids = arg_info->parms;
|
||
struct pointer_set_t *seen_args = pointer_set_create ();
|
||
|
||
if (!in_system_header)
|
||
warning (OPT_Wold_style_definition, "%Jold-style function definition",
|
||
fndecl);
|
||
|
||
/* Match each formal parameter name with its declaration. Save each
|
||
decl in the appropriate TREE_PURPOSE slot of the parmids chain. */
|
||
for (parm = parmids; parm; parm = TREE_CHAIN (parm))
|
||
{
|
||
if (TREE_VALUE (parm) == 0)
|
||
{
|
||
error ("%Jparameter name missing from parameter list", fndecl);
|
||
TREE_PURPOSE (parm) = 0;
|
||
continue;
|
||
}
|
||
|
||
b = I_SYMBOL_BINDING (TREE_VALUE (parm));
|
||
if (b && B_IN_CURRENT_SCOPE (b))
|
||
{
|
||
decl = b->decl;
|
||
/* If we got something other than a PARM_DECL it is an error. */
|
||
if (TREE_CODE (decl) != PARM_DECL)
|
||
error ("%q+D declared as a non-parameter", decl);
|
||
/* If the declaration is already marked, we have a duplicate
|
||
name. Complain and ignore the duplicate. */
|
||
else if (pointer_set_contains (seen_args, decl))
|
||
{
|
||
error ("multiple parameters named %q+D", decl);
|
||
TREE_PURPOSE (parm) = 0;
|
||
continue;
|
||
}
|
||
/* If the declaration says "void", complain and turn it into
|
||
an int. */
|
||
else if (VOID_TYPE_P (TREE_TYPE (decl)))
|
||
{
|
||
error ("parameter %q+D declared with void type", decl);
|
||
TREE_TYPE (decl) = integer_type_node;
|
||
DECL_ARG_TYPE (decl) = integer_type_node;
|
||
layout_decl (decl, 0);
|
||
}
|
||
warn_if_shadowing (decl);
|
||
}
|
||
/* If no declaration found, default to int. */
|
||
else
|
||
{
|
||
decl = build_decl (PARM_DECL, TREE_VALUE (parm), integer_type_node);
|
||
DECL_ARG_TYPE (decl) = TREE_TYPE (decl);
|
||
DECL_SOURCE_LOCATION (decl) = DECL_SOURCE_LOCATION (fndecl);
|
||
pushdecl (decl);
|
||
warn_if_shadowing (decl);
|
||
|
||
if (flag_isoc99)
|
||
pedwarn ("type of %q+D defaults to %<int%>", decl);
|
||
else if (extra_warnings)
|
||
warning (OPT_Wextra, "type of %q+D defaults to %<int%>", decl);
|
||
}
|
||
|
||
TREE_PURPOSE (parm) = decl;
|
||
pointer_set_insert (seen_args, decl);
|
||
}
|
||
|
||
/* Now examine the parms chain for incomplete declarations
|
||
and declarations with no corresponding names. */
|
||
|
||
for (b = current_scope->bindings; b; b = b->prev)
|
||
{
|
||
parm = b->decl;
|
||
if (TREE_CODE (parm) != PARM_DECL)
|
||
continue;
|
||
|
||
if (TREE_TYPE (parm) != error_mark_node
|
||
&& !COMPLETE_TYPE_P (TREE_TYPE (parm)))
|
||
{
|
||
error ("parameter %q+D has incomplete type", parm);
|
||
TREE_TYPE (parm) = error_mark_node;
|
||
}
|
||
|
||
if (!pointer_set_contains (seen_args, parm))
|
||
{
|
||
error ("declaration for parameter %q+D but no such parameter", parm);
|
||
|
||
/* Pretend the parameter was not missing.
|
||
This gets us to a standard state and minimizes
|
||
further error messages. */
|
||
parmids = chainon (parmids, tree_cons (parm, 0, 0));
|
||
}
|
||
}
|
||
|
||
/* Chain the declarations together in the order of the list of
|
||
names. Store that chain in the function decl, replacing the
|
||
list of names. Update the current scope to match. */
|
||
DECL_ARGUMENTS (fndecl) = 0;
|
||
|
||
for (parm = parmids; parm; parm = TREE_CHAIN (parm))
|
||
if (TREE_PURPOSE (parm))
|
||
break;
|
||
if (parm && TREE_PURPOSE (parm))
|
||
{
|
||
last = TREE_PURPOSE (parm);
|
||
DECL_ARGUMENTS (fndecl) = last;
|
||
|
||
for (parm = TREE_CHAIN (parm); parm; parm = TREE_CHAIN (parm))
|
||
if (TREE_PURPOSE (parm))
|
||
{
|
||
TREE_CHAIN (last) = TREE_PURPOSE (parm);
|
||
last = TREE_PURPOSE (parm);
|
||
}
|
||
TREE_CHAIN (last) = 0;
|
||
}
|
||
|
||
pointer_set_destroy (seen_args);
|
||
|
||
/* If there was a previous prototype,
|
||
set the DECL_ARG_TYPE of each argument according to
|
||
the type previously specified, and report any mismatches. */
|
||
|
||
if (current_function_prototype_arg_types)
|
||
{
|
||
tree type;
|
||
for (parm = DECL_ARGUMENTS (fndecl),
|
||
type = current_function_prototype_arg_types;
|
||
parm || (type && (TYPE_MAIN_VARIANT (TREE_VALUE (type))
|
||
!= void_type_node));
|
||
parm = TREE_CHAIN (parm), type = TREE_CHAIN (type))
|
||
{
|
||
if (parm == 0 || type == 0
|
||
|| TYPE_MAIN_VARIANT (TREE_VALUE (type)) == void_type_node)
|
||
{
|
||
if (current_function_prototype_built_in)
|
||
warning (0, "number of arguments doesn%'t match "
|
||
"built-in prototype");
|
||
else
|
||
{
|
||
error ("number of arguments doesn%'t match prototype");
|
||
error ("%Hprototype declaration",
|
||
¤t_function_prototype_locus);
|
||
}
|
||
break;
|
||
}
|
||
/* Type for passing arg must be consistent with that
|
||
declared for the arg. ISO C says we take the unqualified
|
||
type for parameters declared with qualified type. */
|
||
if (!comptypes (TYPE_MAIN_VARIANT (DECL_ARG_TYPE (parm)),
|
||
TYPE_MAIN_VARIANT (TREE_VALUE (type))))
|
||
{
|
||
if (TYPE_MAIN_VARIANT (TREE_TYPE (parm))
|
||
== TYPE_MAIN_VARIANT (TREE_VALUE (type)))
|
||
{
|
||
/* Adjust argument to match prototype. E.g. a previous
|
||
`int foo(float);' prototype causes
|
||
`int foo(x) float x; {...}' to be treated like
|
||
`int foo(float x) {...}'. This is particularly
|
||
useful for argument types like uid_t. */
|
||
DECL_ARG_TYPE (parm) = TREE_TYPE (parm);
|
||
|
||
if (targetm.calls.promote_prototypes (TREE_TYPE (current_function_decl))
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (parm))
|
||
&& TYPE_PRECISION (TREE_TYPE (parm))
|
||
< TYPE_PRECISION (integer_type_node))
|
||
DECL_ARG_TYPE (parm) = integer_type_node;
|
||
|
||
if (pedantic)
|
||
{
|
||
/* ??? Is it possible to get here with a
|
||
built-in prototype or will it always have
|
||
been diagnosed as conflicting with an
|
||
old-style definition and discarded? */
|
||
if (current_function_prototype_built_in)
|
||
warning (0, "promoted argument %qD "
|
||
"doesn%'t match built-in prototype", parm);
|
||
else
|
||
{
|
||
pedwarn ("promoted argument %qD "
|
||
"doesn%'t match prototype", parm);
|
||
pedwarn ("%Hprototype declaration",
|
||
¤t_function_prototype_locus);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (current_function_prototype_built_in)
|
||
warning (0, "argument %qD doesn%'t match "
|
||
"built-in prototype", parm);
|
||
else
|
||
{
|
||
error ("argument %qD doesn%'t match prototype", parm);
|
||
error ("%Hprototype declaration",
|
||
¤t_function_prototype_locus);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
TYPE_ACTUAL_ARG_TYPES (TREE_TYPE (fndecl)) = 0;
|
||
}
|
||
|
||
/* Otherwise, create a prototype that would match. */
|
||
|
||
else
|
||
{
|
||
tree actual = 0, last = 0, type;
|
||
|
||
for (parm = DECL_ARGUMENTS (fndecl); parm; parm = TREE_CHAIN (parm))
|
||
{
|
||
type = tree_cons (NULL_TREE, DECL_ARG_TYPE (parm), NULL_TREE);
|
||
if (last)
|
||
TREE_CHAIN (last) = type;
|
||
else
|
||
actual = type;
|
||
last = type;
|
||
}
|
||
type = tree_cons (NULL_TREE, void_type_node, NULL_TREE);
|
||
if (last)
|
||
TREE_CHAIN (last) = type;
|
||
else
|
||
actual = type;
|
||
|
||
/* We are going to assign a new value for the TYPE_ACTUAL_ARG_TYPES
|
||
of the type of this function, but we need to avoid having this
|
||
affect the types of other similarly-typed functions, so we must
|
||
first force the generation of an identical (but separate) type
|
||
node for the relevant function type. The new node we create
|
||
will be a variant of the main variant of the original function
|
||
type. */
|
||
|
||
TREE_TYPE (fndecl) = build_variant_type_copy (TREE_TYPE (fndecl));
|
||
|
||
TYPE_ACTUAL_ARG_TYPES (TREE_TYPE (fndecl)) = actual;
|
||
}
|
||
}
|
||
|
||
/* Store parameter declarations passed in ARG_INFO into the current
|
||
function declaration. */
|
||
|
||
void
|
||
store_parm_decls_from (struct c_arg_info *arg_info)
|
||
{
|
||
current_function_arg_info = arg_info;
|
||
store_parm_decls ();
|
||
}
|
||
|
||
/* Store the parameter declarations into the current function declaration.
|
||
This is called after parsing the parameter declarations, before
|
||
digesting the body of the function.
|
||
|
||
For an old-style definition, construct a prototype out of the old-style
|
||
parameter declarations and inject it into the function's type. */
|
||
|
||
void
|
||
store_parm_decls (void)
|
||
{
|
||
tree fndecl = current_function_decl;
|
||
bool proto;
|
||
|
||
/* The argument information block for FNDECL. */
|
||
struct c_arg_info *arg_info = current_function_arg_info;
|
||
current_function_arg_info = 0;
|
||
|
||
/* True if this definition is written with a prototype. Note:
|
||
despite C99 6.7.5.3p14, we can *not* treat an empty argument
|
||
list in a function definition as equivalent to (void) -- an
|
||
empty argument list specifies the function has no parameters,
|
||
but only (void) sets up a prototype for future calls. */
|
||
proto = arg_info->types != 0;
|
||
|
||
if (proto)
|
||
store_parm_decls_newstyle (fndecl, arg_info);
|
||
else
|
||
store_parm_decls_oldstyle (fndecl, arg_info);
|
||
|
||
/* The next call to push_scope will be a function body. */
|
||
|
||
next_is_function_body = true;
|
||
|
||
/* Write a record describing this function definition to the prototypes
|
||
file (if requested). */
|
||
|
||
gen_aux_info_record (fndecl, 1, 0, proto);
|
||
|
||
/* Initialize the RTL code for the function. */
|
||
allocate_struct_function (fndecl);
|
||
|
||
/* Begin the statement tree for this function. */
|
||
DECL_SAVED_TREE (fndecl) = push_stmt_list ();
|
||
|
||
/* ??? Insert the contents of the pending sizes list into the function
|
||
to be evaluated. The only reason left to have this is
|
||
void foo(int n, int array[n++])
|
||
because we throw away the array type in favor of a pointer type, and
|
||
thus won't naturally see the SAVE_EXPR containing the increment. All
|
||
other pending sizes would be handled by gimplify_parameters. */
|
||
{
|
||
tree t;
|
||
for (t = nreverse (get_pending_sizes ()); t ; t = TREE_CHAIN (t))
|
||
add_stmt (TREE_VALUE (t));
|
||
}
|
||
|
||
/* Even though we're inside a function body, we still don't want to
|
||
call expand_expr to calculate the size of a variable-sized array.
|
||
We haven't necessarily assigned RTL to all variables yet, so it's
|
||
not safe to try to expand expressions involving them. */
|
||
cfun->x_dont_save_pending_sizes_p = 1;
|
||
}
|
||
|
||
/* Handle attribute((warn_unused_result)) on FNDECL and all its nested
|
||
functions. */
|
||
|
||
static void
|
||
c_warn_unused_result_recursively (tree fndecl)
|
||
{
|
||
struct cgraph_node *cgn;
|
||
|
||
/* Handle attribute((warn_unused_result)). Relies on gimple input. */
|
||
c_warn_unused_result (&DECL_SAVED_TREE (fndecl));
|
||
|
||
/* Finalize all nested functions now. */
|
||
cgn = cgraph_node (fndecl);
|
||
for (cgn = cgn->nested; cgn ; cgn = cgn->next_nested)
|
||
c_warn_unused_result_recursively (cgn->decl);
|
||
}
|
||
|
||
/* Finish up a function declaration and compile that function
|
||
all the way to assembler language output. The free the storage
|
||
for the function definition.
|
||
|
||
This is called after parsing the body of the function definition. */
|
||
|
||
void
|
||
finish_function (void)
|
||
{
|
||
tree fndecl = current_function_decl;
|
||
|
||
label_context_stack_se = label_context_stack_se->next;
|
||
label_context_stack_vm = label_context_stack_vm->next;
|
||
|
||
if (TREE_CODE (fndecl) == FUNCTION_DECL
|
||
&& targetm.calls.promote_prototypes (TREE_TYPE (fndecl)))
|
||
{
|
||
tree args = DECL_ARGUMENTS (fndecl);
|
||
for (; args; args = TREE_CHAIN (args))
|
||
{
|
||
tree type = TREE_TYPE (args);
|
||
if (INTEGRAL_TYPE_P (type)
|
||
&& TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node))
|
||
DECL_ARG_TYPE (args) = integer_type_node;
|
||
}
|
||
}
|
||
|
||
if (DECL_INITIAL (fndecl) && DECL_INITIAL (fndecl) != error_mark_node)
|
||
BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
|
||
|
||
/* Must mark the RESULT_DECL as being in this function. */
|
||
|
||
if (DECL_RESULT (fndecl) && DECL_RESULT (fndecl) != error_mark_node)
|
||
DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
|
||
|
||
if (MAIN_NAME_P (DECL_NAME (fndecl)) && flag_hosted)
|
||
{
|
||
if (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (fndecl)))
|
||
!= integer_type_node)
|
||
{
|
||
/* If warn_main is 1 (-Wmain) or 2 (-Wall), we have already warned.
|
||
If warn_main is -1 (-Wno-main) we don't want to be warned. */
|
||
if (!warn_main)
|
||
pedwarn ("return type of %q+D is not %<int%>", fndecl);
|
||
}
|
||
else
|
||
{
|
||
if (flag_isoc99)
|
||
{
|
||
tree stmt = c_finish_return (integer_zero_node);
|
||
#ifdef USE_MAPPED_LOCATION
|
||
/* Hack. We don't want the middle-end to warn that this return
|
||
is unreachable, so we mark its location as special. Using
|
||
UNKNOWN_LOCATION has the problem that it gets clobbered in
|
||
annotate_one_with_locus. A cleaner solution might be to
|
||
ensure ! should_carry_locus_p (stmt), but that needs a flag.
|
||
*/
|
||
SET_EXPR_LOCATION (stmt, BUILTINS_LOCATION);
|
||
#else
|
||
/* Hack. We don't want the middle-end to warn that this
|
||
return is unreachable, so put the statement on the
|
||
special line 0. */
|
||
annotate_with_file_line (stmt, input_filename, 0);
|
||
#endif
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Tie off the statement tree for this function. */
|
||
DECL_SAVED_TREE (fndecl) = pop_stmt_list (DECL_SAVED_TREE (fndecl));
|
||
|
||
finish_fname_decls ();
|
||
|
||
/* Complain if there's just no return statement. */
|
||
if (warn_return_type
|
||
&& TREE_CODE (TREE_TYPE (TREE_TYPE (fndecl))) != VOID_TYPE
|
||
&& !current_function_returns_value && !current_function_returns_null
|
||
/* Don't complain if we are no-return. */
|
||
&& !current_function_returns_abnormally
|
||
/* Don't warn for main(). */
|
||
&& !MAIN_NAME_P (DECL_NAME (fndecl))
|
||
/* Or if they didn't actually specify a return type. */
|
||
&& !C_FUNCTION_IMPLICIT_INT (fndecl)
|
||
/* Normally, with -Wreturn-type, flow will complain. Unless we're an
|
||
inline function, as we might never be compiled separately. */
|
||
&& DECL_INLINE (fndecl))
|
||
{
|
||
warning (OPT_Wreturn_type,
|
||
"no return statement in function returning non-void");
|
||
TREE_NO_WARNING (fndecl) = 1;
|
||
}
|
||
|
||
/* With just -Wextra, complain only if function returns both with
|
||
and without a value. */
|
||
if (extra_warnings
|
||
&& current_function_returns_value
|
||
&& current_function_returns_null)
|
||
warning (OPT_Wextra, "this function may return with or without a value");
|
||
|
||
/* Store the end of the function, so that we get good line number
|
||
info for the epilogue. */
|
||
cfun->function_end_locus = input_location;
|
||
|
||
/* If we don't have ctors/dtors sections, and this is a static
|
||
constructor or destructor, it must be recorded now. */
|
||
if (DECL_STATIC_CONSTRUCTOR (fndecl)
|
||
&& !targetm.have_ctors_dtors)
|
||
static_ctors = tree_cons (NULL_TREE, fndecl, static_ctors);
|
||
if (DECL_STATIC_DESTRUCTOR (fndecl)
|
||
&& !targetm.have_ctors_dtors)
|
||
static_dtors = tree_cons (NULL_TREE, fndecl, static_dtors);
|
||
|
||
/* Finalize the ELF visibility for the function. */
|
||
c_determine_visibility (fndecl);
|
||
|
||
/* Genericize before inlining. Delay genericizing nested functions
|
||
until their parent function is genericized. Since finalizing
|
||
requires GENERIC, delay that as well. */
|
||
|
||
if (DECL_INITIAL (fndecl) && DECL_INITIAL (fndecl) != error_mark_node
|
||
&& !undef_nested_function)
|
||
{
|
||
if (!decl_function_context (fndecl))
|
||
{
|
||
c_genericize (fndecl);
|
||
c_warn_unused_result_recursively (fndecl);
|
||
|
||
/* ??? Objc emits functions after finalizing the compilation unit.
|
||
This should be cleaned up later and this conditional removed. */
|
||
if (cgraph_global_info_ready)
|
||
{
|
||
c_expand_body (fndecl);
|
||
return;
|
||
}
|
||
|
||
cgraph_finalize_function (fndecl, false);
|
||
}
|
||
else
|
||
{
|
||
/* Register this function with cgraph just far enough to get it
|
||
added to our parent's nested function list. Handy, since the
|
||
C front end doesn't have such a list. */
|
||
(void) cgraph_node (fndecl);
|
||
}
|
||
}
|
||
|
||
if (!decl_function_context (fndecl))
|
||
undef_nested_function = false;
|
||
|
||
/* We're leaving the context of this function, so zap cfun.
|
||
It's still in DECL_STRUCT_FUNCTION, and we'll restore it in
|
||
tree_rest_of_compilation. */
|
||
cfun = NULL;
|
||
current_function_decl = NULL;
|
||
}
|
||
|
||
/* Generate the RTL for the body of FNDECL. */
|
||
|
||
void
|
||
c_expand_body (tree fndecl)
|
||
{
|
||
|
||
if (!DECL_INITIAL (fndecl)
|
||
|| DECL_INITIAL (fndecl) == error_mark_node)
|
||
return;
|
||
|
||
tree_rest_of_compilation (fndecl);
|
||
|
||
if (DECL_STATIC_CONSTRUCTOR (fndecl)
|
||
&& targetm.have_ctors_dtors)
|
||
targetm.asm_out.constructor (XEXP (DECL_RTL (fndecl), 0),
|
||
DEFAULT_INIT_PRIORITY);
|
||
if (DECL_STATIC_DESTRUCTOR (fndecl)
|
||
&& targetm.have_ctors_dtors)
|
||
targetm.asm_out.destructor (XEXP (DECL_RTL (fndecl), 0),
|
||
DEFAULT_INIT_PRIORITY);
|
||
}
|
||
|
||
/* Check the declarations given in a for-loop for satisfying the C99
|
||
constraints. */
|
||
void
|
||
check_for_loop_decls (void)
|
||
{
|
||
struct c_binding *b;
|
||
|
||
if (!flag_isoc99)
|
||
{
|
||
/* If we get here, declarations have been used in a for loop without
|
||
the C99 for loop scope. This doesn't make much sense, so don't
|
||
allow it. */
|
||
error ("%<for%> loop initial declaration used outside C99 mode");
|
||
return;
|
||
}
|
||
/* C99 subclause 6.8.5 paragraph 3:
|
||
|
||
[#3] The declaration part of a for statement shall only
|
||
declare identifiers for objects having storage class auto or
|
||
register.
|
||
|
||
It isn't clear whether, in this sentence, "identifiers" binds to
|
||
"shall only declare" or to "objects" - that is, whether all identifiers
|
||
declared must be identifiers for objects, or whether the restriction
|
||
only applies to those that are. (A question on this in comp.std.c
|
||
in November 2000 received no answer.) We implement the strictest
|
||
interpretation, to avoid creating an extension which later causes
|
||
problems. */
|
||
|
||
for (b = current_scope->bindings; b; b = b->prev)
|
||
{
|
||
tree id = b->id;
|
||
tree decl = b->decl;
|
||
|
||
if (!id)
|
||
continue;
|
||
|
||
switch (TREE_CODE (decl))
|
||
{
|
||
case VAR_DECL:
|
||
if (TREE_STATIC (decl))
|
||
error ("declaration of static variable %q+D in %<for%> loop "
|
||
"initial declaration", decl);
|
||
else if (DECL_EXTERNAL (decl))
|
||
error ("declaration of %<extern%> variable %q+D in %<for%> loop "
|
||
"initial declaration", decl);
|
||
break;
|
||
|
||
case RECORD_TYPE:
|
||
error ("%<struct %E%> declared in %<for%> loop initial declaration",
|
||
id);
|
||
break;
|
||
case UNION_TYPE:
|
||
error ("%<union %E%> declared in %<for%> loop initial declaration",
|
||
id);
|
||
break;
|
||
case ENUMERAL_TYPE:
|
||
error ("%<enum %E%> declared in %<for%> loop initial declaration",
|
||
id);
|
||
break;
|
||
default:
|
||
error ("declaration of non-variable %q+D in %<for%> loop "
|
||
"initial declaration", decl);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Save and reinitialize the variables
|
||
used during compilation of a C function. */
|
||
|
||
void
|
||
c_push_function_context (struct function *f)
|
||
{
|
||
struct language_function *p;
|
||
p = GGC_NEW (struct language_function);
|
||
f->language = p;
|
||
|
||
p->base.x_stmt_tree = c_stmt_tree;
|
||
p->x_break_label = c_break_label;
|
||
p->x_cont_label = c_cont_label;
|
||
p->x_switch_stack = c_switch_stack;
|
||
p->arg_info = current_function_arg_info;
|
||
p->returns_value = current_function_returns_value;
|
||
p->returns_null = current_function_returns_null;
|
||
p->returns_abnormally = current_function_returns_abnormally;
|
||
p->warn_about_return_type = warn_about_return_type;
|
||
p->extern_inline = current_extern_inline;
|
||
}
|
||
|
||
/* Restore the variables used during compilation of a C function. */
|
||
|
||
void
|
||
c_pop_function_context (struct function *f)
|
||
{
|
||
struct language_function *p = f->language;
|
||
|
||
if (DECL_STRUCT_FUNCTION (current_function_decl) == 0
|
||
&& DECL_SAVED_TREE (current_function_decl) == NULL_TREE)
|
||
{
|
||
/* Stop pointing to the local nodes about to be freed. */
|
||
/* But DECL_INITIAL must remain nonzero so we know this
|
||
was an actual function definition. */
|
||
DECL_INITIAL (current_function_decl) = error_mark_node;
|
||
DECL_ARGUMENTS (current_function_decl) = 0;
|
||
}
|
||
|
||
c_stmt_tree = p->base.x_stmt_tree;
|
||
c_break_label = p->x_break_label;
|
||
c_cont_label = p->x_cont_label;
|
||
c_switch_stack = p->x_switch_stack;
|
||
current_function_arg_info = p->arg_info;
|
||
current_function_returns_value = p->returns_value;
|
||
current_function_returns_null = p->returns_null;
|
||
current_function_returns_abnormally = p->returns_abnormally;
|
||
warn_about_return_type = p->warn_about_return_type;
|
||
current_extern_inline = p->extern_inline;
|
||
|
||
f->language = NULL;
|
||
}
|
||
|
||
/* Copy the DECL_LANG_SPECIFIC data associated with DECL. */
|
||
|
||
void
|
||
c_dup_lang_specific_decl (tree decl)
|
||
{
|
||
struct lang_decl *ld;
|
||
|
||
if (!DECL_LANG_SPECIFIC (decl))
|
||
return;
|
||
|
||
ld = GGC_NEW (struct lang_decl);
|
||
memcpy (ld, DECL_LANG_SPECIFIC (decl), sizeof (struct lang_decl));
|
||
DECL_LANG_SPECIFIC (decl) = ld;
|
||
}
|
||
|
||
/* The functions below are required for functionality of doing
|
||
function at once processing in the C front end. Currently these
|
||
functions are not called from anywhere in the C front end, but as
|
||
these changes continue, that will change. */
|
||
|
||
/* Returns the stmt_tree (if any) to which statements are currently
|
||
being added. If there is no active statement-tree, NULL is
|
||
returned. */
|
||
|
||
stmt_tree
|
||
current_stmt_tree (void)
|
||
{
|
||
return &c_stmt_tree;
|
||
}
|
||
|
||
/* Nonzero if TYPE is an anonymous union or struct type. Always 0 in
|
||
C. */
|
||
|
||
int
|
||
anon_aggr_type_p (tree ARG_UNUSED (node))
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
/* Return the global value of T as a symbol. */
|
||
|
||
tree
|
||
identifier_global_value (tree t)
|
||
{
|
||
struct c_binding *b;
|
||
|
||
for (b = I_SYMBOL_BINDING (t); b; b = b->shadowed)
|
||
if (B_IN_FILE_SCOPE (b) || B_IN_EXTERNAL_SCOPE (b))
|
||
return b->decl;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Record a builtin type for C. If NAME is non-NULL, it is the name used;
|
||
otherwise the name is found in ridpointers from RID_INDEX. */
|
||
|
||
void
|
||
record_builtin_type (enum rid rid_index, const char *name, tree type)
|
||
{
|
||
tree id, decl;
|
||
if (name == 0)
|
||
id = ridpointers[(int) rid_index];
|
||
else
|
||
id = get_identifier (name);
|
||
decl = build_decl (TYPE_DECL, id, type);
|
||
pushdecl (decl);
|
||
if (debug_hooks->type_decl)
|
||
debug_hooks->type_decl (decl, false);
|
||
}
|
||
|
||
/* Build the void_list_node (void_type_node having been created). */
|
||
tree
|
||
build_void_list_node (void)
|
||
{
|
||
tree t = build_tree_list (NULL_TREE, void_type_node);
|
||
return t;
|
||
}
|
||
|
||
/* Return a c_parm structure with the given SPECS, ATTRS and DECLARATOR. */
|
||
|
||
struct c_parm *
|
||
build_c_parm (struct c_declspecs *specs, tree attrs,
|
||
struct c_declarator *declarator)
|
||
{
|
||
struct c_parm *ret = XOBNEW (&parser_obstack, struct c_parm);
|
||
ret->specs = specs;
|
||
ret->attrs = attrs;
|
||
ret->declarator = declarator;
|
||
return ret;
|
||
}
|
||
|
||
/* Return a declarator with nested attributes. TARGET is the inner
|
||
declarator to which these attributes apply. ATTRS are the
|
||
attributes. */
|
||
|
||
struct c_declarator *
|
||
build_attrs_declarator (tree attrs, struct c_declarator *target)
|
||
{
|
||
struct c_declarator *ret = XOBNEW (&parser_obstack, struct c_declarator);
|
||
ret->kind = cdk_attrs;
|
||
ret->declarator = target;
|
||
ret->u.attrs = attrs;
|
||
return ret;
|
||
}
|
||
|
||
/* Return a declarator for a function with arguments specified by ARGS
|
||
and return type specified by TARGET. */
|
||
|
||
struct c_declarator *
|
||
build_function_declarator (struct c_arg_info *args,
|
||
struct c_declarator *target)
|
||
{
|
||
struct c_declarator *ret = XOBNEW (&parser_obstack, struct c_declarator);
|
||
ret->kind = cdk_function;
|
||
ret->declarator = target;
|
||
ret->u.arg_info = args;
|
||
return ret;
|
||
}
|
||
|
||
/* Return a declarator for the identifier IDENT (which may be
|
||
NULL_TREE for an abstract declarator). */
|
||
|
||
struct c_declarator *
|
||
build_id_declarator (tree ident)
|
||
{
|
||
struct c_declarator *ret = XOBNEW (&parser_obstack, struct c_declarator);
|
||
ret->kind = cdk_id;
|
||
ret->declarator = 0;
|
||
ret->u.id = ident;
|
||
/* Default value - may get reset to a more precise location. */
|
||
ret->id_loc = input_location;
|
||
return ret;
|
||
}
|
||
|
||
/* Return something to represent absolute declarators containing a *.
|
||
TARGET is the absolute declarator that the * contains.
|
||
TYPE_QUALS_ATTRS is a structure for type qualifiers and attributes
|
||
to apply to the pointer type. */
|
||
|
||
struct c_declarator *
|
||
make_pointer_declarator (struct c_declspecs *type_quals_attrs,
|
||
struct c_declarator *target)
|
||
{
|
||
tree attrs;
|
||
int quals = 0;
|
||
struct c_declarator *itarget = target;
|
||
struct c_declarator *ret = XOBNEW (&parser_obstack, struct c_declarator);
|
||
if (type_quals_attrs)
|
||
{
|
||
attrs = type_quals_attrs->attrs;
|
||
quals = quals_from_declspecs (type_quals_attrs);
|
||
if (attrs != NULL_TREE)
|
||
itarget = build_attrs_declarator (attrs, target);
|
||
}
|
||
ret->kind = cdk_pointer;
|
||
ret->declarator = itarget;
|
||
ret->u.pointer_quals = quals;
|
||
return ret;
|
||
}
|
||
|
||
/* Return a pointer to a structure for an empty list of declaration
|
||
specifiers. */
|
||
|
||
struct c_declspecs *
|
||
build_null_declspecs (void)
|
||
{
|
||
struct c_declspecs *ret = XOBNEW (&parser_obstack, struct c_declspecs);
|
||
ret->type = 0;
|
||
ret->decl_attr = 0;
|
||
ret->attrs = 0;
|
||
ret->typespec_word = cts_none;
|
||
ret->storage_class = csc_none;
|
||
ret->declspecs_seen_p = false;
|
||
ret->type_seen_p = false;
|
||
ret->non_sc_seen_p = false;
|
||
ret->typedef_p = false;
|
||
ret->tag_defined_p = false;
|
||
ret->explicit_signed_p = false;
|
||
ret->deprecated_p = false;
|
||
ret->default_int_p = false;
|
||
ret->long_p = false;
|
||
ret->long_long_p = false;
|
||
ret->short_p = false;
|
||
ret->signed_p = false;
|
||
ret->unsigned_p = false;
|
||
ret->complex_p = false;
|
||
ret->inline_p = false;
|
||
ret->thread_p = false;
|
||
ret->const_p = false;
|
||
ret->volatile_p = false;
|
||
ret->restrict_p = false;
|
||
return ret;
|
||
}
|
||
|
||
/* Add the type qualifier QUAL to the declaration specifiers SPECS,
|
||
returning SPECS. */
|
||
|
||
struct c_declspecs *
|
||
declspecs_add_qual (struct c_declspecs *specs, tree qual)
|
||
{
|
||
enum rid i;
|
||
bool dupe = false;
|
||
specs->non_sc_seen_p = true;
|
||
specs->declspecs_seen_p = true;
|
||
gcc_assert (TREE_CODE (qual) == IDENTIFIER_NODE
|
||
&& C_IS_RESERVED_WORD (qual));
|
||
i = C_RID_CODE (qual);
|
||
switch (i)
|
||
{
|
||
case RID_CONST:
|
||
dupe = specs->const_p;
|
||
specs->const_p = true;
|
||
break;
|
||
case RID_VOLATILE:
|
||
dupe = specs->volatile_p;
|
||
specs->volatile_p = true;
|
||
break;
|
||
case RID_RESTRICT:
|
||
dupe = specs->restrict_p;
|
||
specs->restrict_p = true;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
if (dupe && pedantic && !flag_isoc99)
|
||
pedwarn ("duplicate %qE", qual);
|
||
return specs;
|
||
}
|
||
|
||
/* Add the type specifier TYPE to the declaration specifiers SPECS,
|
||
returning SPECS. */
|
||
|
||
struct c_declspecs *
|
||
declspecs_add_type (struct c_declspecs *specs, struct c_typespec spec)
|
||
{
|
||
tree type = spec.spec;
|
||
specs->non_sc_seen_p = true;
|
||
specs->declspecs_seen_p = true;
|
||
specs->type_seen_p = true;
|
||
if (TREE_DEPRECATED (type))
|
||
specs->deprecated_p = true;
|
||
|
||
/* Handle type specifier keywords. */
|
||
if (TREE_CODE (type) == IDENTIFIER_NODE && C_IS_RESERVED_WORD (type))
|
||
{
|
||
enum rid i = C_RID_CODE (type);
|
||
if (specs->type)
|
||
{
|
||
error ("two or more data types in declaration specifiers");
|
||
return specs;
|
||
}
|
||
if ((int) i <= (int) RID_LAST_MODIFIER)
|
||
{
|
||
/* "long", "short", "signed", "unsigned" or "_Complex". */
|
||
bool dupe = false;
|
||
switch (i)
|
||
{
|
||
case RID_LONG:
|
||
if (specs->long_long_p)
|
||
{
|
||
error ("%<long long long%> is too long for GCC");
|
||
break;
|
||
}
|
||
if (specs->long_p)
|
||
{
|
||
if (specs->typespec_word == cts_double)
|
||
{
|
||
error ("both %<long long%> and %<double%> in "
|
||
"declaration specifiers");
|
||
break;
|
||
}
|
||
if (pedantic && !flag_isoc99 && !in_system_header
|
||
&& warn_long_long)
|
||
pedwarn ("ISO C90 does not support %<long long%>");
|
||
specs->long_long_p = 1;
|
||
break;
|
||
}
|
||
if (specs->short_p)
|
||
error ("both %<long%> and %<short%> in "
|
||
"declaration specifiers");
|
||
else if (specs->typespec_word == cts_void)
|
||
error ("both %<long%> and %<void%> in "
|
||
"declaration specifiers");
|
||
else if (specs->typespec_word == cts_bool)
|
||
error ("both %<long%> and %<_Bool%> in "
|
||
"declaration specifiers");
|
||
else if (specs->typespec_word == cts_char)
|
||
error ("both %<long%> and %<char%> in "
|
||
"declaration specifiers");
|
||
else if (specs->typespec_word == cts_float)
|
||
error ("both %<long%> and %<float%> in "
|
||
"declaration specifiers");
|
||
else
|
||
specs->long_p = true;
|
||
break;
|
||
case RID_SHORT:
|
||
dupe = specs->short_p;
|
||
if (specs->long_p)
|
||
error ("both %<long%> and %<short%> in "
|
||
"declaration specifiers");
|
||
else if (specs->typespec_word == cts_void)
|
||
error ("both %<short%> and %<void%> in "
|
||
"declaration specifiers");
|
||
else if (specs->typespec_word == cts_bool)
|
||
error ("both %<short%> and %<_Bool%> in "
|
||
"declaration specifiers");
|
||
else if (specs->typespec_word == cts_char)
|
||
error ("both %<short%> and %<char%> in "
|
||
"declaration specifiers");
|
||
else if (specs->typespec_word == cts_float)
|
||
error ("both %<short%> and %<float%> in "
|
||
"declaration specifiers");
|
||
else if (specs->typespec_word == cts_double)
|
||
error ("both %<short%> and %<double%> in "
|
||
"declaration specifiers");
|
||
else
|
||
specs->short_p = true;
|
||
break;
|
||
case RID_SIGNED:
|
||
dupe = specs->signed_p;
|
||
if (specs->unsigned_p)
|
||
error ("both %<signed%> and %<unsigned%> in "
|
||
"declaration specifiers");
|
||
else if (specs->typespec_word == cts_void)
|
||
error ("both %<signed%> and %<void%> in "
|
||
"declaration specifiers");
|
||
else if (specs->typespec_word == cts_bool)
|
||
error ("both %<signed%> and %<_Bool%> in "
|
||
"declaration specifiers");
|
||
else if (specs->typespec_word == cts_float)
|
||
error ("both %<signed%> and %<float%> in "
|
||
"declaration specifiers");
|
||
else if (specs->typespec_word == cts_double)
|
||
error ("both %<signed%> and %<double%> in "
|
||
"declaration specifiers");
|
||
else
|
||
specs->signed_p = true;
|
||
break;
|
||
case RID_UNSIGNED:
|
||
dupe = specs->unsigned_p;
|
||
if (specs->signed_p)
|
||
error ("both %<signed%> and %<unsigned%> in "
|
||
"declaration specifiers");
|
||
else if (specs->typespec_word == cts_void)
|
||
error ("both %<unsigned%> and %<void%> in "
|
||
"declaration specifiers");
|
||
else if (specs->typespec_word == cts_bool)
|
||
error ("both %<unsigned%> and %<_Bool%> in "
|
||
"declaration specifiers");
|
||
else if (specs->typespec_word == cts_float)
|
||
error ("both %<unsigned%> and %<float%> in "
|
||
"declaration specifiers");
|
||
else if (specs->typespec_word == cts_double)
|
||
error ("both %<unsigned%> and %<double%> in "
|
||
"declaration specifiers");
|
||
else
|
||
specs->unsigned_p = true;
|
||
break;
|
||
case RID_COMPLEX:
|
||
dupe = specs->complex_p;
|
||
if (pedantic && !flag_isoc99 && !in_system_header)
|
||
pedwarn ("ISO C90 does not support complex types");
|
||
if (specs->typespec_word == cts_void)
|
||
error ("both %<complex%> and %<void%> in "
|
||
"declaration specifiers");
|
||
else if (specs->typespec_word == cts_bool)
|
||
error ("both %<complex%> and %<_Bool%> in "
|
||
"declaration specifiers");
|
||
else
|
||
specs->complex_p = true;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (dupe)
|
||
error ("duplicate %qE", type);
|
||
|
||
return specs;
|
||
}
|
||
else
|
||
{
|
||
/* "void", "_Bool", "char", "int", "float" or "double". */
|
||
if (specs->typespec_word != cts_none)
|
||
{
|
||
error ("two or more data types in declaration specifiers");
|
||
return specs;
|
||
}
|
||
switch (i)
|
||
{
|
||
case RID_VOID:
|
||
if (specs->long_p)
|
||
error ("both %<long%> and %<void%> in "
|
||
"declaration specifiers");
|
||
else if (specs->short_p)
|
||
error ("both %<short%> and %<void%> in "
|
||
"declaration specifiers");
|
||
else if (specs->signed_p)
|
||
error ("both %<signed%> and %<void%> in "
|
||
"declaration specifiers");
|
||
else if (specs->unsigned_p)
|
||
error ("both %<unsigned%> and %<void%> in "
|
||
"declaration specifiers");
|
||
else if (specs->complex_p)
|
||
error ("both %<complex%> and %<void%> in "
|
||
"declaration specifiers");
|
||
else
|
||
specs->typespec_word = cts_void;
|
||
return specs;
|
||
case RID_BOOL:
|
||
if (specs->long_p)
|
||
error ("both %<long%> and %<_Bool%> in "
|
||
"declaration specifiers");
|
||
else if (specs->short_p)
|
||
error ("both %<short%> and %<_Bool%> in "
|
||
"declaration specifiers");
|
||
else if (specs->signed_p)
|
||
error ("both %<signed%> and %<_Bool%> in "
|
||
"declaration specifiers");
|
||
else if (specs->unsigned_p)
|
||
error ("both %<unsigned%> and %<_Bool%> in "
|
||
"declaration specifiers");
|
||
else if (specs->complex_p)
|
||
error ("both %<complex%> and %<_Bool%> in "
|
||
"declaration specifiers");
|
||
else
|
||
specs->typespec_word = cts_bool;
|
||
return specs;
|
||
case RID_CHAR:
|
||
if (specs->long_p)
|
||
error ("both %<long%> and %<char%> in "
|
||
"declaration specifiers");
|
||
else if (specs->short_p)
|
||
error ("both %<short%> and %<char%> in "
|
||
"declaration specifiers");
|
||
else
|
||
specs->typespec_word = cts_char;
|
||
return specs;
|
||
case RID_INT:
|
||
specs->typespec_word = cts_int;
|
||
return specs;
|
||
case RID_FLOAT:
|
||
if (specs->long_p)
|
||
error ("both %<long%> and %<float%> in "
|
||
"declaration specifiers");
|
||
else if (specs->short_p)
|
||
error ("both %<short%> and %<float%> in "
|
||
"declaration specifiers");
|
||
else if (specs->signed_p)
|
||
error ("both %<signed%> and %<float%> in "
|
||
"declaration specifiers");
|
||
else if (specs->unsigned_p)
|
||
error ("both %<unsigned%> and %<float%> in "
|
||
"declaration specifiers");
|
||
else
|
||
specs->typespec_word = cts_float;
|
||
return specs;
|
||
case RID_DOUBLE:
|
||
if (specs->long_long_p)
|
||
error ("both %<long long%> and %<double%> in "
|
||
"declaration specifiers");
|
||
else if (specs->short_p)
|
||
error ("both %<short%> and %<double%> in "
|
||
"declaration specifiers");
|
||
else if (specs->signed_p)
|
||
error ("both %<signed%> and %<double%> in "
|
||
"declaration specifiers");
|
||
else if (specs->unsigned_p)
|
||
error ("both %<unsigned%> and %<double%> in "
|
||
"declaration specifiers");
|
||
else
|
||
specs->typespec_word = cts_double;
|
||
return specs;
|
||
default:
|
||
/* ObjC reserved word "id", handled below. */
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now we have a typedef (a TYPE_DECL node), an identifier (some
|
||
form of ObjC type, cases such as "int" and "long" being handled
|
||
above), a TYPE (struct, union, enum and typeof specifiers) or an
|
||
ERROR_MARK. In none of these cases may there have previously
|
||
been any type specifiers. */
|
||
if (specs->type || specs->typespec_word != cts_none
|
||
|| specs->long_p || specs->short_p || specs->signed_p
|
||
|| specs->unsigned_p || specs->complex_p)
|
||
error ("two or more data types in declaration specifiers");
|
||
else if (TREE_CODE (type) == TYPE_DECL)
|
||
{
|
||
if (TREE_TYPE (type) == error_mark_node)
|
||
; /* Allow the type to default to int to avoid cascading errors. */
|
||
else
|
||
{
|
||
specs->type = TREE_TYPE (type);
|
||
specs->decl_attr = DECL_ATTRIBUTES (type);
|
||
specs->typedef_p = true;
|
||
specs->explicit_signed_p = C_TYPEDEF_EXPLICITLY_SIGNED (type);
|
||
}
|
||
}
|
||
else if (TREE_CODE (type) == IDENTIFIER_NODE)
|
||
{
|
||
tree t = lookup_name (type);
|
||
if (!t || TREE_CODE (t) != TYPE_DECL)
|
||
error ("%qE fails to be a typedef or built in type", type);
|
||
else if (TREE_TYPE (t) == error_mark_node)
|
||
;
|
||
else
|
||
specs->type = TREE_TYPE (t);
|
||
}
|
||
else if (TREE_CODE (type) != ERROR_MARK)
|
||
{
|
||
if (spec.kind == ctsk_tagdef || spec.kind == ctsk_tagfirstref)
|
||
specs->tag_defined_p = true;
|
||
if (spec.kind == ctsk_typeof)
|
||
specs->typedef_p = true;
|
||
specs->type = type;
|
||
}
|
||
|
||
return specs;
|
||
}
|
||
|
||
/* Add the storage class specifier or function specifier SCSPEC to the
|
||
declaration specifiers SPECS, returning SPECS. */
|
||
|
||
struct c_declspecs *
|
||
declspecs_add_scspec (struct c_declspecs *specs, tree scspec)
|
||
{
|
||
enum rid i;
|
||
enum c_storage_class n = csc_none;
|
||
bool dupe = false;
|
||
specs->declspecs_seen_p = true;
|
||
gcc_assert (TREE_CODE (scspec) == IDENTIFIER_NODE
|
||
&& C_IS_RESERVED_WORD (scspec));
|
||
i = C_RID_CODE (scspec);
|
||
if (extra_warnings && specs->non_sc_seen_p)
|
||
warning (OPT_Wextra, "%qE is not at beginning of declaration", scspec);
|
||
switch (i)
|
||
{
|
||
case RID_INLINE:
|
||
/* C99 permits duplicate inline. Although of doubtful utility,
|
||
it seems simplest to permit it in gnu89 mode as well, as
|
||
there is also little utility in maintaining this as a
|
||
difference between gnu89 and C99 inline. */
|
||
dupe = false;
|
||
specs->inline_p = true;
|
||
break;
|
||
case RID_THREAD:
|
||
dupe = specs->thread_p;
|
||
if (specs->storage_class == csc_auto)
|
||
error ("%<__thread%> used with %<auto%>");
|
||
else if (specs->storage_class == csc_register)
|
||
error ("%<__thread%> used with %<register%>");
|
||
else if (specs->storage_class == csc_typedef)
|
||
error ("%<__thread%> used with %<typedef%>");
|
||
else
|
||
specs->thread_p = true;
|
||
break;
|
||
case RID_AUTO:
|
||
n = csc_auto;
|
||
break;
|
||
case RID_EXTERN:
|
||
n = csc_extern;
|
||
/* Diagnose "__thread extern". */
|
||
if (specs->thread_p)
|
||
error ("%<__thread%> before %<extern%>");
|
||
break;
|
||
case RID_REGISTER:
|
||
n = csc_register;
|
||
break;
|
||
case RID_STATIC:
|
||
n = csc_static;
|
||
/* Diagnose "__thread static". */
|
||
if (specs->thread_p)
|
||
error ("%<__thread%> before %<static%>");
|
||
break;
|
||
case RID_TYPEDEF:
|
||
n = csc_typedef;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
if (n != csc_none && n == specs->storage_class)
|
||
dupe = true;
|
||
if (dupe)
|
||
error ("duplicate %qE", scspec);
|
||
if (n != csc_none)
|
||
{
|
||
if (specs->storage_class != csc_none && n != specs->storage_class)
|
||
{
|
||
error ("multiple storage classes in declaration specifiers");
|
||
}
|
||
else
|
||
{
|
||
specs->storage_class = n;
|
||
if (n != csc_extern && n != csc_static && specs->thread_p)
|
||
{
|
||
error ("%<__thread%> used with %qE", scspec);
|
||
specs->thread_p = false;
|
||
}
|
||
}
|
||
}
|
||
return specs;
|
||
}
|
||
|
||
/* Add the attributes ATTRS to the declaration specifiers SPECS,
|
||
returning SPECS. */
|
||
|
||
struct c_declspecs *
|
||
declspecs_add_attrs (struct c_declspecs *specs, tree attrs)
|
||
{
|
||
specs->attrs = chainon (attrs, specs->attrs);
|
||
specs->declspecs_seen_p = true;
|
||
return specs;
|
||
}
|
||
|
||
/* Combine "long", "short", "signed", "unsigned" and "_Complex" type
|
||
specifiers with any other type specifier to determine the resulting
|
||
type. This is where ISO C checks on complex types are made, since
|
||
"_Complex long" is a prefix of the valid ISO C type "_Complex long
|
||
double". */
|
||
|
||
struct c_declspecs *
|
||
finish_declspecs (struct c_declspecs *specs)
|
||
{
|
||
/* If a type was specified as a whole, we have no modifiers and are
|
||
done. */
|
||
if (specs->type != NULL_TREE)
|
||
{
|
||
gcc_assert (!specs->long_p && !specs->long_long_p && !specs->short_p
|
||
&& !specs->signed_p && !specs->unsigned_p
|
||
&& !specs->complex_p);
|
||
return specs;
|
||
}
|
||
|
||
/* If none of "void", "_Bool", "char", "int", "float" or "double"
|
||
has been specified, treat it as "int" unless "_Complex" is
|
||
present and there are no other specifiers. If we just have
|
||
"_Complex", it is equivalent to "_Complex double", but e.g.
|
||
"_Complex short" is equivalent to "_Complex short int". */
|
||
if (specs->typespec_word == cts_none)
|
||
{
|
||
if (specs->long_p || specs->short_p
|
||
|| specs->signed_p || specs->unsigned_p)
|
||
{
|
||
specs->typespec_word = cts_int;
|
||
}
|
||
else if (specs->complex_p)
|
||
{
|
||
specs->typespec_word = cts_double;
|
||
if (pedantic)
|
||
pedwarn ("ISO C does not support plain %<complex%> meaning "
|
||
"%<double complex%>");
|
||
}
|
||
else
|
||
{
|
||
specs->typespec_word = cts_int;
|
||
specs->default_int_p = true;
|
||
/* We don't diagnose this here because grokdeclarator will
|
||
give more specific diagnostics according to whether it is
|
||
a function definition. */
|
||
}
|
||
}
|
||
|
||
/* If "signed" was specified, record this to distinguish "int" and
|
||
"signed int" in the case of a bit-field with
|
||
-funsigned-bitfields. */
|
||
specs->explicit_signed_p = specs->signed_p;
|
||
|
||
/* Now compute the actual type. */
|
||
switch (specs->typespec_word)
|
||
{
|
||
case cts_void:
|
||
gcc_assert (!specs->long_p && !specs->short_p
|
||
&& !specs->signed_p && !specs->unsigned_p
|
||
&& !specs->complex_p);
|
||
specs->type = void_type_node;
|
||
break;
|
||
case cts_bool:
|
||
gcc_assert (!specs->long_p && !specs->short_p
|
||
&& !specs->signed_p && !specs->unsigned_p
|
||
&& !specs->complex_p);
|
||
specs->type = boolean_type_node;
|
||
break;
|
||
case cts_char:
|
||
gcc_assert (!specs->long_p && !specs->short_p);
|
||
gcc_assert (!(specs->signed_p && specs->unsigned_p));
|
||
if (specs->signed_p)
|
||
specs->type = signed_char_type_node;
|
||
else if (specs->unsigned_p)
|
||
specs->type = unsigned_char_type_node;
|
||
else
|
||
specs->type = char_type_node;
|
||
if (specs->complex_p)
|
||
{
|
||
if (pedantic)
|
||
pedwarn ("ISO C does not support complex integer types");
|
||
specs->type = build_complex_type (specs->type);
|
||
}
|
||
break;
|
||
case cts_int:
|
||
gcc_assert (!(specs->long_p && specs->short_p));
|
||
gcc_assert (!(specs->signed_p && specs->unsigned_p));
|
||
if (specs->long_long_p)
|
||
specs->type = (specs->unsigned_p
|
||
? long_long_unsigned_type_node
|
||
: long_long_integer_type_node);
|
||
else if (specs->long_p)
|
||
specs->type = (specs->unsigned_p
|
||
? long_unsigned_type_node
|
||
: long_integer_type_node);
|
||
else if (specs->short_p)
|
||
specs->type = (specs->unsigned_p
|
||
? short_unsigned_type_node
|
||
: short_integer_type_node);
|
||
else
|
||
specs->type = (specs->unsigned_p
|
||
? unsigned_type_node
|
||
: integer_type_node);
|
||
if (specs->complex_p)
|
||
{
|
||
if (pedantic)
|
||
pedwarn ("ISO C does not support complex integer types");
|
||
specs->type = build_complex_type (specs->type);
|
||
}
|
||
break;
|
||
case cts_float:
|
||
gcc_assert (!specs->long_p && !specs->short_p
|
||
&& !specs->signed_p && !specs->unsigned_p);
|
||
specs->type = (specs->complex_p
|
||
? complex_float_type_node
|
||
: float_type_node);
|
||
break;
|
||
case cts_double:
|
||
gcc_assert (!specs->long_long_p && !specs->short_p
|
||
&& !specs->signed_p && !specs->unsigned_p);
|
||
if (specs->long_p)
|
||
{
|
||
specs->type = (specs->complex_p
|
||
? complex_long_double_type_node
|
||
: long_double_type_node);
|
||
}
|
||
else
|
||
{
|
||
specs->type = (specs->complex_p
|
||
? complex_double_type_node
|
||
: double_type_node);
|
||
}
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return specs;
|
||
}
|
||
|
||
/* Synthesize a function which calls all the global ctors or global
|
||
dtors in this file. This is only used for targets which do not
|
||
support .ctors/.dtors sections. FIXME: Migrate into cgraph. */
|
||
static void
|
||
build_cdtor (int method_type, tree cdtors)
|
||
{
|
||
tree body = 0;
|
||
|
||
if (!cdtors)
|
||
return;
|
||
|
||
for (; cdtors; cdtors = TREE_CHAIN (cdtors))
|
||
append_to_statement_list (build_function_call (TREE_VALUE (cdtors), 0),
|
||
&body);
|
||
|
||
cgraph_build_static_cdtor (method_type, body, DEFAULT_INIT_PRIORITY);
|
||
}
|
||
|
||
/* A subroutine of c_write_global_declarations. Perform final processing
|
||
on one file scope's declarations (or the external scope's declarations),
|
||
GLOBALS. */
|
||
|
||
static void
|
||
c_write_global_declarations_1 (tree globals)
|
||
{
|
||
tree decl;
|
||
bool reconsider;
|
||
|
||
/* Process the decls in the order they were written. */
|
||
for (decl = globals; decl; decl = TREE_CHAIN (decl))
|
||
{
|
||
/* Check for used but undefined static functions using the C
|
||
standard's definition of "used", and set TREE_NO_WARNING so
|
||
that check_global_declarations doesn't repeat the check. */
|
||
if (TREE_CODE (decl) == FUNCTION_DECL
|
||
&& DECL_INITIAL (decl) == 0
|
||
&& DECL_EXTERNAL (decl)
|
||
&& !TREE_PUBLIC (decl)
|
||
&& C_DECL_USED (decl))
|
||
{
|
||
pedwarn ("%q+F used but never defined", decl);
|
||
TREE_NO_WARNING (decl) = 1;
|
||
}
|
||
|
||
wrapup_global_declaration_1 (decl);
|
||
}
|
||
|
||
do
|
||
{
|
||
reconsider = false;
|
||
for (decl = globals; decl; decl = TREE_CHAIN (decl))
|
||
reconsider |= wrapup_global_declaration_2 (decl);
|
||
}
|
||
while (reconsider);
|
||
|
||
for (decl = globals; decl; decl = TREE_CHAIN (decl))
|
||
check_global_declaration_1 (decl);
|
||
}
|
||
|
||
/* A subroutine of c_write_global_declarations Emit debug information for each
|
||
of the declarations in GLOBALS. */
|
||
|
||
static void
|
||
c_write_global_declarations_2 (tree globals)
|
||
{
|
||
tree decl;
|
||
|
||
for (decl = globals; decl ; decl = TREE_CHAIN (decl))
|
||
debug_hooks->global_decl (decl);
|
||
}
|
||
|
||
/* Preserve the external declarations scope across a garbage collect. */
|
||
static GTY(()) tree ext_block;
|
||
|
||
void
|
||
c_write_global_declarations (void)
|
||
{
|
||
tree t;
|
||
|
||
/* We don't want to do this if generating a PCH. */
|
||
if (pch_file)
|
||
return;
|
||
|
||
/* Don't waste time on further processing if -fsyntax-only or we've
|
||
encountered errors. */
|
||
if (flag_syntax_only || errorcount || sorrycount || cpp_errors (parse_in))
|
||
return;
|
||
|
||
/* Close the external scope. */
|
||
ext_block = pop_scope ();
|
||
external_scope = 0;
|
||
gcc_assert (!current_scope);
|
||
|
||
if (ext_block)
|
||
{
|
||
tree tmp = BLOCK_VARS (ext_block);
|
||
int flags;
|
||
FILE * stream = dump_begin (TDI_tu, &flags);
|
||
if (stream && tmp)
|
||
{
|
||
dump_node (tmp, flags & ~TDF_SLIM, stream);
|
||
dump_end (TDI_tu, stream);
|
||
}
|
||
}
|
||
|
||
/* Process all file scopes in this compilation, and the external_scope,
|
||
through wrapup_global_declarations and check_global_declarations. */
|
||
for (t = all_translation_units; t; t = TREE_CHAIN (t))
|
||
c_write_global_declarations_1 (BLOCK_VARS (DECL_INITIAL (t)));
|
||
c_write_global_declarations_1 (BLOCK_VARS (ext_block));
|
||
|
||
/* Generate functions to call static constructors and destructors
|
||
for targets that do not support .ctors/.dtors sections. These
|
||
functions have magic names which are detected by collect2. */
|
||
build_cdtor ('I', static_ctors); static_ctors = 0;
|
||
build_cdtor ('D', static_dtors); static_dtors = 0;
|
||
|
||
/* We're done parsing; proceed to optimize and emit assembly.
|
||
FIXME: shouldn't be the front end's responsibility to call this. */
|
||
cgraph_optimize ();
|
||
|
||
/* After cgraph has had a chance to emit everything that's going to
|
||
be emitted, output debug information for globals. */
|
||
if (errorcount == 0 && sorrycount == 0)
|
||
{
|
||
timevar_push (TV_SYMOUT);
|
||
for (t = all_translation_units; t; t = TREE_CHAIN (t))
|
||
c_write_global_declarations_2 (BLOCK_VARS (DECL_INITIAL (t)));
|
||
c_write_global_declarations_2 (BLOCK_VARS (ext_block));
|
||
timevar_pop (TV_SYMOUT);
|
||
}
|
||
|
||
ext_block = NULL;
|
||
}
|
||
|
||
#include "gt-c-decl.h"
|