2381 lines
64 KiB
C
2381 lines
64 KiB
C
/* $NetBSD: rrunner.c,v 1.6 1998/07/07 02:02:53 thorpej Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code contributed to The NetBSD Foundation by Kevin M. Lahey
|
|
* of the Numerical Aerospace Simulation Facility, NASA Ames Research
|
|
* Center.
|
|
*
|
|
* Partially based on a HIPPI driver written by Essential Communications
|
|
* Corporation. Thanks to Jason Thorpe, Matt Jacob, and Fred Templin
|
|
* for invaluable advice and encouragement!
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_ns.h"
|
|
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/select.h>
|
|
#include <sys/device.h>
|
|
#include <sys/proc.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/route.h>
|
|
|
|
#include <net/if_hippi.h>
|
|
#include <net/if_media.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/if_inarp.h>
|
|
#endif
|
|
|
|
#ifdef NS
|
|
#include <netns/ns.h>
|
|
#include <netns/ns_if.h>
|
|
#endif
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#include <net/bpfdesc.h>
|
|
#endif
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/intr.h>
|
|
|
|
#include <dev/ic/rrunnerreg.h>
|
|
#include <dev/ic/rrunnervar.h>
|
|
|
|
/*
|
|
#define ESH_PRINTF
|
|
*/
|
|
|
|
/* Autoconfig defintion of driver back-end */
|
|
extern struct cfdriver esh_cd;
|
|
|
|
struct esh_softc *esh_softc_debug; /* for gdb */
|
|
u_int32_t write_len;
|
|
u_int32_t max_write_len;
|
|
|
|
void eshinit __P((struct esh_softc *));
|
|
int eshioctl __P((struct ifnet *, u_long, caddr_t));
|
|
void eshread __P((struct esh_softc *, u_int16_t, int));
|
|
void eshreset __P((struct esh_softc *));
|
|
void eshstart __P((struct ifnet *));
|
|
static int eshstatus __P((struct esh_softc *));
|
|
void eshstop __P((struct esh_softc *));
|
|
static void eshshutdown __P((void *));
|
|
void eshwatchdog __P((struct ifnet *));
|
|
|
|
static void esh_send __P((struct esh_softc *));
|
|
static void esh_send2 __P((struct esh_softc *));
|
|
static void esh_send_cmd __P((struct esh_softc *,
|
|
u_int8_t, u_int8_t, u_int8_t));
|
|
static void esh_write_addr __P((bus_space_tag_t, bus_space_handle_t,
|
|
bus_addr_t, bus_addr_t));
|
|
static void esh_init_snap_ring __P((struct esh_softc *));
|
|
static void esh_fill_snap_ring __P((struct esh_softc *));
|
|
static void esh_reset_runcode __P((struct esh_softc *));
|
|
static void eshstart_cleanup __P((struct esh_softc *, u_int16_t, int));
|
|
static u_int32_t esh_read_eeprom __P((struct esh_softc *, u_int32_t));
|
|
static int esh_write_eeprom __P((struct esh_softc *,
|
|
u_int32_t, u_int32_t));
|
|
static void esh_print_ring __P((struct esh_softc *, char *,
|
|
struct esh_ring_ctl *, int));
|
|
static void esh_dma_sync __P((struct esh_softc *, void *,
|
|
int, int, int, int, int, int));
|
|
|
|
#ifdef ESH_PRINTF
|
|
static int esh_check __P((struct esh_softc *));
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Back-end attach and configure. Allocate DMA space and initialize
|
|
* all structures.
|
|
*/
|
|
|
|
void
|
|
eshconfig(sc)
|
|
struct esh_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
u_int32_t misc_host_ctl;
|
|
u_int32_t misc_local_ctl;
|
|
u_int32_t header_format;
|
|
u_int32_t ula_tmp;
|
|
bus_size_t size;
|
|
int rseg;
|
|
int error;
|
|
int i;
|
|
|
|
sc->sc_flags = 0;
|
|
|
|
/*
|
|
* Allocate and divvy up some host side memory that can hold
|
|
* data structures that will be DMA'ed over to the NIC
|
|
*/
|
|
|
|
sc->sc_dma_size = sizeof(struct rr_gen_info) +
|
|
sizeof(struct rr_ring_ctl) * RR_ULP_COUNT +
|
|
max(sizeof(struct rr_descr) * RR_SEND_RING_SIZE,
|
|
sizeof(struct rr2_descr) * RR2_SEND_RING_SIZE) +
|
|
max(sizeof(struct rr_descr) * RR_SNAP_RECV_RING_SIZE,
|
|
sizeof(struct rr2_descr) * RR2_SNAP_RECV_RING_SIZE) +
|
|
sizeof(struct rr_event) * RR_EVENT_RING_SIZE;
|
|
|
|
/* Configure the interface */
|
|
|
|
error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_dma_size,
|
|
0, RR_DMA_BOUNDRY, &sc->sc_dmaseg, 1,
|
|
&rseg, BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
printf("%s: couldn't allocate space for host-side"
|
|
"data structures\n", sc->sc_dev.dv_xname);
|
|
return;
|
|
}
|
|
|
|
if (rseg > 1) {
|
|
printf("%s: contiguous memory not available\n",
|
|
sc->sc_dev.dv_xname);
|
|
goto bad_dmamem_map;
|
|
}
|
|
|
|
error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, rseg,
|
|
sc->sc_dma_size, &sc->sc_dma_addr,
|
|
BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
|
|
if (error) {
|
|
printf("%s: couldn't map memory for host-side structures\n",
|
|
sc->sc_dev.dv_xname);
|
|
goto bad_dmamem_map;
|
|
}
|
|
|
|
if (bus_dmamap_create(sc->sc_dmat, sc->sc_dma_size,
|
|
1, sc->sc_dma_size, RR_DMA_BOUNDRY,
|
|
BUS_DMA_ALLOCNOW | BUS_DMA_NOWAIT,
|
|
&sc->sc_dma)) {
|
|
printf("%s: couldn't create DMA map\n", sc->sc_dev.dv_xname);
|
|
goto bad_dmamap_create;
|
|
}
|
|
|
|
|
|
if (bus_dmamap_load(sc->sc_dmat, sc->sc_dma, sc->sc_dma_addr,
|
|
sc->sc_dma_size, NULL, BUS_DMA_NOWAIT)) {
|
|
printf("%s: couldn't load DMA map\n", sc->sc_dev.dv_xname);
|
|
goto bad_dmamap_load;
|
|
}
|
|
|
|
bzero(sc->sc_dma_addr, sc->sc_dma_size);
|
|
|
|
sc->sc_gen_info_dma = sc->sc_dma->dm_segs->ds_addr;
|
|
sc->sc_gen_info = (struct rr_gen_info *) sc->sc_dma_addr;
|
|
size = sizeof(struct rr_gen_info);
|
|
|
|
sc->sc_recv_ring_table_dma = sc->sc_dma->dm_segs->ds_addr + size;
|
|
sc->sc_recv_ring_table =
|
|
(struct rr_ring_ctl *) (sc->sc_dma_addr + size);
|
|
size += sizeof(struct rr_ring_ctl) * RR_ULP_COUNT;
|
|
|
|
sc->sc_send_ring_dma = sc->sc_dma->dm_segs->ds_addr + size;
|
|
sc->sc_send_ring = (struct rr_descr *) (sc->sc_dma_addr + size);
|
|
sc->sc2_send_ring = (struct rr2_descr *) (sc->sc_dma_addr + size);
|
|
size += max(sizeof(struct rr_descr) * RR_SEND_RING_SIZE,
|
|
sizeof(struct rr2_descr) * RR2_SEND_RING_SIZE);
|
|
|
|
sc->sc_snap_recv_ring_dma = sc->sc_dma->dm_segs->ds_addr + size;
|
|
sc->sc_snap_recv_ring = (struct rr_descr *) (sc->sc_dma_addr + size);
|
|
sc->sc2_snap_recv_ring = (struct rr2_descr *) (sc->sc_dma_addr + size);
|
|
size += max(sizeof(struct rr_descr) * RR_SNAP_RECV_RING_SIZE,
|
|
sizeof(struct rr2_descr) * RR2_SNAP_RECV_RING_SIZE);
|
|
|
|
sc->sc_event_ring_dma = sc->sc_dma->dm_segs->ds_addr + size;
|
|
sc->sc_event_ring = (struct rr_event *) (sc->sc_dma_addr + size);
|
|
size += sizeof(struct rr_event) * RR_EVENT_RING_SIZE;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (size > sc->sc_dmaseg.ds_len) {
|
|
printf("%s: bogus size calculation\n", sc->sc_dev.dv_xname);
|
|
goto bad_other;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Allocate DMA maps for transfers. We do this here and now so we
|
|
* won't have to wait for them in the middle of sending something.
|
|
*
|
|
* XXX: Note that we only allocate space for one segment at a time.
|
|
* With IP, we will be mapping mbufs (bus_dmamap_load_mbuf was
|
|
* not finished at the time of this writing), so we'll only need
|
|
* room for a cluster at a time. We'll need to change this later,
|
|
* but allocating 256 or more segments for each dmamap seemed
|
|
* a little over the top!
|
|
*/
|
|
|
|
for (i = 0; i < max(RR_SEND_RING_SIZE, RR2_SEND_RING_SIZE); i++)
|
|
if (bus_dmamap_create(sc->sc_dmat, RR_DMA_MAX, 1,
|
|
RR_DMA_MAX, RR_DMA_BOUNDRY,
|
|
BUS_DMA_ALLOCNOW | BUS_DMA_NOWAIT,
|
|
&sc->sc_send.ec_dma[i])) {
|
|
printf("%s: failed bus_dmamap_create\n",
|
|
sc->sc_dev.dv_xname);
|
|
for (i--; i >= 0; i--)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
sc->sc_send.ec_dma[i]);
|
|
goto bad_other;
|
|
}
|
|
sc->sc_send.ec_descr = sc->sc_send_ring;
|
|
sc->sc_send.ec2_descr = sc->sc2_send_ring;
|
|
|
|
for (i = 0; i < RR_MAX_SNAP_RECV_RING_SIZE; i++)
|
|
if (bus_dmamap_create(sc->sc_dmat, RR_DMA_MAX, 1, RR_DMA_MAX,
|
|
RR_DMA_BOUNDRY,
|
|
BUS_DMA_ALLOCNOW | BUS_DMA_NOWAIT,
|
|
&sc->sc_snap_recv.ec_dma[i])) {
|
|
printf("%s: failed bus_dmamap_create\n",
|
|
sc->sc_dev.dv_xname);
|
|
for (i--; i >= 0; i--)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
sc->sc_snap_recv.ec_dma[i]);
|
|
goto bad_ring_dmamap_create;
|
|
}
|
|
|
|
/*
|
|
* If this is a coldboot, the NIC RunCode should be operational.
|
|
* If it is a warmboot, it may or may not be operational.
|
|
* Just to be sure, we'll stop the RunCode and reset everything.
|
|
*/
|
|
|
|
/* Halt the processor (preserve NO_SWAP, if set) */
|
|
|
|
misc_host_ctl = bus_space_read_4(iot, ioh, RR_MISC_HOST_CTL);
|
|
bus_space_write_4(iot, ioh, RR_MISC_HOST_CTL,
|
|
(misc_host_ctl & RR_MH_NO_SWAP) | RR_MH_HALT_PROC);
|
|
|
|
/* Make the EEPROM readable */
|
|
|
|
misc_local_ctl = bus_space_read_4(iot, ioh, RR_MISC_LOCAL_CTL);
|
|
bus_space_write_4(iot, ioh, RR_MISC_LOCAL_CTL,
|
|
misc_local_ctl & ~(RR_LC_FAST_PROM | RR_LC_ADD_SRAM |
|
|
RR_LC_PARITY_ON));
|
|
|
|
/* Extract interesting information from the EEPROM: */
|
|
|
|
header_format = esh_read_eeprom(sc, RR_EE_HEADER_FORMAT);
|
|
if (header_format != RR_EE_HEADER_FORMAT_MAGIC) {
|
|
printf("%s: bogus EEPROM header format value %x\n",
|
|
sc->sc_dev.dv_xname, header_format);
|
|
goto bad_other;
|
|
}
|
|
|
|
/*
|
|
* As it is now, the runcode version in the EEPROM doesn't
|
|
* reflect the actual runcode version number. That is only
|
|
* available once the runcode starts up. We should probably
|
|
* change the firmware update code to modify this value,
|
|
* but Essential itself doesn't do it right now.
|
|
*/
|
|
|
|
sc->sc_sram_size = 4 * esh_read_eeprom(sc, RR_EE_SRAM_SIZE);
|
|
sc->sc_runcode_start = esh_read_eeprom(sc, RR_EE_RUNCODE_START);
|
|
sc->sc_runcode_version = esh_read_eeprom(sc, RR_EE_RUNCODE_VERSION);
|
|
|
|
sc->sc_pci_latency = esh_read_eeprom(sc, RR_EE_PCI_LATENCY);
|
|
sc->sc_pci_lat_gnt = esh_read_eeprom(sc, RR_EE_PCI_LAT_GNT);
|
|
|
|
/* General tuning values */
|
|
|
|
sc->sc_tune.rt_mode_and_status =
|
|
esh_read_eeprom(sc, RR_EE_MODE_AND_STATUS);
|
|
sc->sc_tune.rt_conn_retry_count =
|
|
esh_read_eeprom(sc, RR_EE_CONN_RETRY_COUNT);
|
|
sc->sc_tune.rt_conn_retry_timer =
|
|
esh_read_eeprom(sc, RR_EE_CONN_RETRY_TIMER);
|
|
sc->sc_tune.rt_conn_timeout =
|
|
esh_read_eeprom(sc, RR_EE_CONN_TIMEOUT);
|
|
sc->sc_tune.rt_interrupt_timer =
|
|
esh_read_eeprom(sc, RR_EE_INTERRUPT_TIMER);
|
|
sc->sc_tune.rt_tx_timeout =
|
|
esh_read_eeprom(sc, RR_EE_TX_TIMEOUT);
|
|
sc->sc_tune.rt_rx_timeout =
|
|
esh_read_eeprom(sc, RR_EE_RX_TIMEOUT);
|
|
sc->sc_tune.rt_stats_timer =
|
|
esh_read_eeprom(sc, RR_EE_STATS_TIMER);
|
|
sc->sc_tune.rt_stats_timer = ESH_STATS_TIMER_DEFAULT;
|
|
|
|
/* DMA tuning values */
|
|
|
|
sc->sc_tune.rt_pci_state =
|
|
esh_read_eeprom(sc, RR_EE_PCI_STATE);
|
|
sc->sc_tune.rt_dma_write_state =
|
|
esh_read_eeprom(sc, RR_EE_DMA_WRITE_STATE);
|
|
sc->sc_tune.rt_dma_read_state =
|
|
esh_read_eeprom(sc, RR_EE_DMA_READ_STATE);
|
|
sc->sc_tune.rt_driver_param =
|
|
esh_read_eeprom(sc, RR_EE_DRIVER_PARAM);
|
|
|
|
/*
|
|
* Snag the ULA. The first two bytes are reserved.
|
|
* We don't really use it immediately, but it would be good to
|
|
* have for building IPv6 addresses, etc.
|
|
*/
|
|
|
|
ula_tmp = esh_read_eeprom(sc, RR_EE_ULA_HI);
|
|
sc->sc_ula[0] = (ula_tmp >> 8) & 0xff;
|
|
sc->sc_ula[1] = ula_tmp & 0xff;
|
|
|
|
ula_tmp = esh_read_eeprom(sc, RR_EE_ULA_LO);
|
|
sc->sc_ula[2] = (ula_tmp >> 24) & 0xff;
|
|
sc->sc_ula[3] = (ula_tmp >> 16) & 0xff;
|
|
sc->sc_ula[4] = (ula_tmp >> 8) & 0xff;
|
|
sc->sc_ula[5] = ula_tmp & 0xff;
|
|
|
|
/* Reset EEPROM readability */
|
|
|
|
bus_space_write_4(iot, ioh, RR_MISC_LOCAL_CTL, misc_local_ctl);
|
|
|
|
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
|
|
ifp->if_softc = sc;
|
|
ifp->if_start = eshstart;
|
|
ifp->if_ioctl = eshioctl;
|
|
ifp->if_watchdog = eshwatchdog;
|
|
ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS | IFF_NOARP;
|
|
|
|
if_attach(ifp);
|
|
hippi_ifattach(ifp, sc->sc_ula);
|
|
|
|
/* Some more configuration? */
|
|
|
|
sc->sc_misaligned_bufs = sc->sc_bad_lens = 0;
|
|
|
|
#if NBPFILTER > 0
|
|
bpfattach(&sc->sc_if.if_bpf, ifp, DLT_HIPPI,
|
|
sizeof(struct hippi_header));
|
|
#endif
|
|
return;
|
|
|
|
bad_ring_dmamap_create:
|
|
for (i = 0; i < RR_MAX_SEND_RING_SIZE; i++)
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_send.ec_dma[i]);
|
|
bad_other:
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_dma);
|
|
bad_dmamap_load:
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_dma);
|
|
bad_dmamap_create:
|
|
bus_dmamem_unmap(sc->sc_dmat, sc->sc_dma_addr, sc->sc_dma_size);
|
|
bad_dmamem_map:
|
|
bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, rseg);
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* Bring device up.
|
|
*
|
|
* Assume that the on-board processor has already been stopped,
|
|
* the rings have been cleared of valid buffers, and everything
|
|
* is pretty much as it was when the system started.
|
|
*
|
|
* Stop the processor (just for good measure), clear the SRAM,
|
|
* reload the boot code, and start it all up again, with the PC
|
|
* pointing at the boot code. Once the boot code has had a chance
|
|
* to come up, adjust all of the appropriate parameters, and send
|
|
* the 'start firmware' command.
|
|
*
|
|
* The NIC won't actually be up until it gets an interrupt with an
|
|
* event indicating things are up.
|
|
*/
|
|
|
|
void
|
|
eshinit(sc)
|
|
register struct esh_softc *sc;
|
|
{
|
|
register struct ifnet *ifp = &sc->sc_if;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
struct rr_ring_ctl *ring;
|
|
u_int32_t misc_host_ctl;
|
|
u_int32_t misc_local_ctl;
|
|
u_int32_t value;
|
|
u_int32_t mode;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma, 0, sc->sc_dma_size,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
/* Halt the processor (preserve NO_SWAP, if set) */
|
|
|
|
misc_host_ctl = bus_space_read_4(iot, ioh, RR_MISC_HOST_CTL);
|
|
bus_space_write_4(iot, ioh, RR_MISC_HOST_CTL,
|
|
(misc_host_ctl & RR_MH_NO_SWAP)
|
|
| RR_MH_HALT_PROC | RR_MH_CLEAR_INT);
|
|
|
|
/* Make the EEPROM readable */
|
|
|
|
misc_local_ctl = bus_space_read_4(iot, ioh, RR_MISC_LOCAL_CTL);
|
|
bus_space_write_4(iot, ioh, RR_MISC_LOCAL_CTL,
|
|
misc_local_ctl & ~(RR_LC_FAST_PROM |
|
|
RR_LC_ADD_SRAM |
|
|
RR_LC_PARITY_ON));
|
|
|
|
/* Reset DMA */
|
|
|
|
bus_space_write_4(iot, ioh, RR_RX_STATE, RR_RS_RESET);
|
|
bus_space_write_4(iot, ioh, RR_TX_STATE, 0);
|
|
bus_space_write_4(iot, ioh, RR_DMA_READ_STATE, RR_DR_RESET);
|
|
bus_space_write_4(iot, ioh, RR_DMA_WRITE_STATE, RR_DW_RESET);
|
|
bus_space_write_4(iot, ioh, RR_PCI_STATE, 0);
|
|
bus_space_write_4(iot, ioh, RR_TIMER, 0);
|
|
bus_space_write_4(iot, ioh, RR_TIMER_REF, 0);
|
|
|
|
/*
|
|
* Reset the assist register that the documentation suggests
|
|
* resetting. Too bad that the docs don't mention anything
|
|
* else about the register!
|
|
*/
|
|
|
|
bus_space_write_4(iot, ioh, 0x15C, 1);
|
|
|
|
/* Clear BIST, set the PC to the start of the code and let 'er rip */
|
|
|
|
value = bus_space_read_4(iot, ioh, RR_PCI_BIST);
|
|
bus_space_write_4(iot, ioh, RR_PCI_BIST, (value & ~0xff) | 8);
|
|
|
|
sc->sc_bist_write(sc, 0);
|
|
esh_reset_runcode(sc);
|
|
|
|
bus_space_write_4(iot, ioh, RR_PROC_PC, sc->sc_runcode_start);
|
|
bus_space_write_4(iot, ioh, RR_PROC_BREAKPT, 0x00000001);
|
|
|
|
misc_host_ctl &= ~RR_MH_HALT_PROC;
|
|
bus_space_write_4(iot, ioh, RR_MISC_HOST_CTL, misc_host_ctl);
|
|
|
|
delay(1000); /* Need 500 us, but we'll give it more */
|
|
|
|
value = sc->sc_bist_read(sc);
|
|
|
|
#ifdef ESH_PRINTF
|
|
printf("%s: BIST is %x\n", sc->sc_dev.dv_xname, value);
|
|
eshstatus(sc);
|
|
#endif
|
|
|
|
/* RunCode is up. Initialize NIC */
|
|
|
|
esh_write_addr(iot, ioh, RR_GEN_INFO_PTR, sc->sc_gen_info_dma);
|
|
esh_write_addr(iot, ioh, RR_RECV_RING_PTR, sc->sc_recv_ring_table_dma);
|
|
|
|
sc->sc_event_consumer = 0;
|
|
bus_space_write_4(iot, ioh, RR_EVENT_CONSUMER, sc->sc_event_consumer);
|
|
sc->sc_event_producer = bus_space_read_4(iot, ioh, RR_EVENT_PRODUCER);
|
|
sc->sc_cmd_producer = RR_INIT_CMD;
|
|
sc->sc_cmd_consumer = 0;
|
|
|
|
mode = bus_space_read_4(iot, ioh, RR_MODE_AND_STATUS);
|
|
mode |= (RR_MS_WARNINGS |
|
|
RR_MS_ERR_TERM |
|
|
RR_MS_NO_RESTART |
|
|
RR_MS_SWAP_DATA);
|
|
bus_space_write_4(iot, ioh, RR_MODE_AND_STATUS, mode);
|
|
|
|
/* Set tuning parameters */
|
|
|
|
bus_space_write_4(iot, ioh, RR_CONN_RETRY_COUNT,
|
|
sc->sc_tune.rt_conn_retry_count);
|
|
bus_space_write_4(iot, ioh, RR_CONN_RETRY_TIMER,
|
|
sc->sc_tune.rt_conn_retry_timer);
|
|
bus_space_write_4(iot, ioh, RR_CONN_TIMEOUT,
|
|
sc->sc_tune.rt_conn_timeout);
|
|
bus_space_write_4(iot, ioh, RR_INTERRUPT_TIMER,
|
|
sc->sc_tune.rt_interrupt_timer);
|
|
bus_space_write_4(iot, ioh, RR_TX_TIMEOUT,
|
|
sc->sc_tune.rt_tx_timeout);
|
|
bus_space_write_4(iot, ioh, RR_RX_TIMEOUT,
|
|
sc->sc_tune.rt_rx_timeout);
|
|
bus_space_write_4(iot, ioh, RR_STATS_TIMER,
|
|
sc->sc_tune.rt_stats_timer);
|
|
bus_space_write_4(iot, ioh, RR_PCI_STATE,
|
|
sc->sc_tune.rt_pci_state);
|
|
bus_space_write_4(iot, ioh, RR_DMA_WRITE_STATE,
|
|
sc->sc_tune.rt_dma_write_state);
|
|
bus_space_write_4(iot, ioh, RR_DMA_READ_STATE,
|
|
sc->sc_tune.rt_dma_read_state);
|
|
|
|
sc->sc_runcode_version =
|
|
bus_space_read_4(iot, ioh, RR_RUNCODE_VERSION);
|
|
sc->sc_version = sc->sc_runcode_version >> 16;
|
|
if (sc->sc_version != 1 && sc->sc_version != 2) {
|
|
printf("%s: bad version number %d in runcode\n",
|
|
sc->sc_dev.dv_xname, sc->sc_version);
|
|
return;
|
|
}
|
|
|
|
if (sc->sc_version == 1) {
|
|
sc->sc_options = 0;
|
|
} else {
|
|
value = bus_space_read_4(iot, ioh, RR_ULA);
|
|
sc->sc_options = value >> 16;
|
|
}
|
|
|
|
printf("%s: startup runcode version %d.%d.%d, options %x\n",
|
|
sc->sc_dev.dv_xname,
|
|
sc->sc_version,
|
|
(sc->sc_runcode_version >> 8) & 0xff,
|
|
sc->sc_runcode_version & 0xff,
|
|
sc->sc_options);
|
|
|
|
/* Initialize the general ring information */
|
|
|
|
bzero(sc->sc_recv_ring_table,
|
|
sizeof(struct rr_ring_ctl) * RR_ULP_COUNT);
|
|
|
|
ring = &sc->sc_gen_info->ri_event_ring_ctl;
|
|
ring->rr_ring_addr = sc->sc_event_ring_dma;
|
|
ring->rr_entry_size = sizeof(struct rr_event);
|
|
ring->rr_free_bufs = RR_EVENT_RING_SIZE / 4;
|
|
ring->rr_entries = RR_EVENT_RING_SIZE;
|
|
ring->rr_prod_index = 0;
|
|
|
|
ring = &sc->sc_gen_info->ri_cmd_ring_ctl;
|
|
ring->rr_free_bufs = 8;
|
|
ring->rr_entry_size = sizeof(union rr_cmd);
|
|
ring->rr_prod_index = RR_INIT_CMD;
|
|
|
|
ring = &sc->sc_gen_info->ri_send_ring_ctl;
|
|
ring->rr_ring_addr = sc->sc_send_ring_dma;
|
|
if (sc->sc_version == 1) {
|
|
ring->rr_free_bufs = RR_RR_DONT_COMPLAIN;
|
|
} else {
|
|
ring->rr_free_bufs = 0;
|
|
}
|
|
|
|
if (sc->sc_options & RR_OP_LONG_TX) {
|
|
ring->rr_entries = RR2_SEND_RING_SIZE;
|
|
ring->rr_entry_size = sizeof(struct rr2_descr);
|
|
} else {
|
|
ring->rr_entries = RR_SEND_RING_SIZE;
|
|
ring->rr_entry_size = sizeof(struct rr_descr);
|
|
}
|
|
|
|
ring->rr_prod_index = sc->sc_send.ec_producer =
|
|
sc->sc_send.ec_consumer = 0;
|
|
|
|
sc->sc_snap_recv.ec_descr = sc->sc_snap_recv_ring;
|
|
sc->sc_snap_recv.ec2_descr = sc->sc2_snap_recv_ring;
|
|
sc->sc_snap_recv.ec_consumer = sc->sc_snap_recv.ec_producer = 0;
|
|
|
|
/* Initialize the ring of descriptors as necessary */
|
|
|
|
if (sc->sc_version == 2 && (sc->sc_options & RR_OP_LONG_TX)) {
|
|
int i;
|
|
for (i = 0; i < RR2_SEND_RING_SIZE; i++)
|
|
sc->sc_snap_recv.ec2_descr[i].rd_dma_state = RR_DM_TX;
|
|
}
|
|
|
|
#ifdef ESH_PRINTF
|
|
eshstatus(sc);
|
|
#endif
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma, 0, sc->sc_dma_size,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
esh_send_cmd(sc, RR_CC_START_RUNCODE, 0, 0);
|
|
|
|
#ifdef ESH_PRINTF
|
|
eshstatus(sc);
|
|
#endif
|
|
|
|
/* Set up the watchdog to make sure something happens! */
|
|
|
|
sc->sc_watchdog = 0;
|
|
ifp->if_timer = 5;
|
|
|
|
/*
|
|
* Can't actually turn on interface until we see some events,
|
|
* so set initialized flag, but don't start sending.
|
|
*/
|
|
|
|
sc->sc_flags = ESH_FL_INITIALIZED;
|
|
}
|
|
|
|
|
|
/*
|
|
* Handle interrupts. We only get interrupts to indicate that there
|
|
* are events to process, so this is all just event handling code.
|
|
*/
|
|
|
|
int
|
|
eshintr(arg)
|
|
void *arg;
|
|
{
|
|
register struct esh_softc *sc = arg;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
u_int32_t rc_offsets;
|
|
u_int32_t misc_host_ctl;
|
|
int rc_send_consumer = 0; /* shut up compiler */
|
|
int rc_snap_ring_consumer = 0; /* ditto */
|
|
int start_consumer;
|
|
int ret = 0;
|
|
|
|
/* Check to see if this is our interrupt. */
|
|
|
|
misc_host_ctl = bus_space_read_4(iot, ioh, RR_MISC_HOST_CTL);
|
|
if ((misc_host_ctl & RR_MH_INTERRUPT) == 0)
|
|
return 0;
|
|
|
|
rc_offsets = bus_space_read_4(iot, ioh, RR_EVENT_PRODUCER);
|
|
sc->sc_event_producer = rc_offsets & 0xff;
|
|
if (sc->sc_version == 2) {
|
|
rc_send_consumer = (rc_offsets >> 8) & 0xff;
|
|
rc_snap_ring_consumer = (rc_offsets >> 16) & 0xff;
|
|
}
|
|
start_consumer = sc->sc_event_consumer;
|
|
|
|
/* Take care of synchronizing DMA with entries we read... */
|
|
|
|
esh_dma_sync(sc, sc->sc_event_ring,
|
|
start_consumer, sc->sc_event_producer,
|
|
RR_EVENT_RING_SIZE, sizeof(struct rr_event), 0,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
while (sc->sc_event_consumer != sc->sc_event_producer) {
|
|
struct rr_event *event =
|
|
&sc->sc_event_ring[sc->sc_event_consumer];
|
|
|
|
#ifdef ESH_PRINTF
|
|
printf("%s: event code %x, index %x\n", sc->sc_dev.dv_xname,
|
|
event->re_code, event->re_index);
|
|
#endif
|
|
ret = 1; /* some action was taken by card */
|
|
|
|
switch(event->re_code) {
|
|
case RR_EC_RUNCODE_UP:
|
|
printf("%s: firmware up\n", sc->sc_dev.dv_xname);
|
|
sc->sc_flags |= ESH_FL_RUNCODE_UP;
|
|
esh_send_cmd(sc, RR_CC_WATCHDOG, 0, 0);
|
|
esh_send_cmd(sc, RR_CC_UPDATE_STATS, 0, 0);
|
|
esh_init_snap_ring(sc);
|
|
break;
|
|
|
|
case RR_EC_WATCHDOG:
|
|
/*
|
|
* Record the watchdog event.
|
|
* This is checked by eshwatchdog
|
|
*/
|
|
|
|
sc->sc_watchdog = 1;
|
|
break;
|
|
|
|
case RR_EC_SET_CMD_CONSUMER:
|
|
sc->sc_cmd_consumer = event->re_index;
|
|
break;
|
|
|
|
case RR_EC_LINK_ON:
|
|
printf("%s: link up\n", sc->sc_dev.dv_xname);
|
|
sc->sc_flags |= ESH_FL_LINK_UP;
|
|
|
|
esh_send_cmd(sc, RR_CC_WATCHDOG, 0, 0);
|
|
esh_send_cmd(sc, RR_CC_UPDATE_STATS, 0, 0);
|
|
if ((sc->sc_flags) & ESH_FL_RRING_UP) {
|
|
/* Interface is now `running', with no output active. */
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
/* Attempt to start output, if any. */
|
|
eshstart(ifp);
|
|
}
|
|
break;
|
|
|
|
case RR_EC_LINK_OFF:
|
|
sc->sc_flags &= ~ESH_FL_LINK_UP;
|
|
break;
|
|
|
|
/*
|
|
* These are all unexpected. We need to handle all
|
|
* of them, though.
|
|
*/
|
|
|
|
#define CALLOUT(a) case a: \
|
|
printf("Event " #a " received -- ring %x index %x timestamp %x\n", \
|
|
event->re_ring, event->re_index, event->re_timestamp); \
|
|
break;
|
|
|
|
case RR_EC_INVALID_CMD:
|
|
case RR_EC_INTERNAL_ERROR:
|
|
case RR2_EC_INTERNAL_ERROR:
|
|
case RR_EC_BAD_SEND_RING:
|
|
case RR_EC_BAD_SEND_BUF:
|
|
case RR_EC_BAD_SEND_DESC:
|
|
case RR_EC_RING_ENABLE_ERR:
|
|
case RR_EC_RING_DISABLED:
|
|
case RR_EC_RECV_RING_FLUSH:
|
|
case RR_EC_RECV_ERROR_INFO:
|
|
case RR_EC_BAD_RECV_BUF:
|
|
case RR_EC_BAD_RECV_DESC:
|
|
case RR_EC_BAD_RECV_RING:
|
|
case RR_EC_UNIMPLEMENTED:
|
|
printf("%s: unexpected event %x;"
|
|
"shutting down interface\n",
|
|
sc->sc_dev.dv_xname, event->re_code);
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
eshstatus(sc);
|
|
break;
|
|
|
|
CALLOUT(RR_EC_OUT_OF_BUF);
|
|
CALLOUT(RR_EC_NO_RING_FOR_ULP);
|
|
CALLOUT(RR_EC_REJECTING); /* dropping packets */
|
|
#undef CALLOUT
|
|
|
|
/* Send events */
|
|
|
|
case RR_EC_PACKET_SENT: /* not used in firmware 2.x */
|
|
ifp->if_opackets++;
|
|
/* FALLTHROUGH */
|
|
|
|
case RR_EC_SET_SND_CONSUMER:
|
|
assert(sc->sc_version == 1);
|
|
/* FALLTHROUGH */
|
|
|
|
case RR_EC_SEND_RING_LOW:
|
|
eshstart_cleanup(sc, event->re_index, 0);
|
|
break;
|
|
|
|
|
|
case RR_EC_CONN_REJECT:
|
|
case RR_EC_CAMPON_TIMEOUT:
|
|
case RR_EC_CONN_TIMEOUT:
|
|
case RR_EC_DISCONN_ERR:
|
|
case RR_EC_INTERNAL_PARITY:
|
|
case RR_EC_TX_IDLE:
|
|
case RR_EC_SEND_LINK_OFF:
|
|
eshstart_cleanup(sc, event->re_index, event->re_code);
|
|
break;
|
|
|
|
/* Receive events */
|
|
|
|
case RR_EC_RING_ENABLED:
|
|
sc->sc_flags |= ESH_FL_RRING_UP;
|
|
assert(event->re_ring == HIPPI_ULP_802);
|
|
|
|
/* XXX: need to pass in rc consumer: */
|
|
esh_fill_snap_ring(sc);
|
|
|
|
if (sc->sc_flags & ESH_FL_LINK_UP) {
|
|
/*
|
|
* Interface is now `running', with no
|
|
* output active.
|
|
*/
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
/* Attempt to start output, if any. */
|
|
eshstart(ifp);
|
|
}
|
|
break;
|
|
|
|
case RR_EC_RECV_RING_LOW:
|
|
case RR_EC_RECV_RING_OUT:
|
|
case RR_EC_SET_RECV_CONSUMER:
|
|
case RR_EC_PACKET_RECVED:
|
|
eshread(sc, event->re_index, 0);
|
|
break;
|
|
|
|
case RR_EC_PACKET_DISCARDED:
|
|
case RR_EC_PARITY_ERR:
|
|
case RR_EC_LLRC_ERR:
|
|
case RR_EC_PKT_LENGTH_ERR:
|
|
case RR_EC_IP_HDR_CKSUM_ERR:
|
|
case RR_EC_DATA_CKSUM_ERR:
|
|
case RR_EC_SHORT_BURST_ERR:
|
|
case RR_EC_RECV_LINK_OFF:
|
|
case RR_EC_FLAG_SYNC_ERR:
|
|
case RR_EC_FRAME_ERR:
|
|
case RR_EC_RECV_IDLE:
|
|
case RR_EC_STATE_TRANS_ERR:
|
|
case RR_EC_NO_READY_PULSE:
|
|
eshread(sc, event->re_index, event->re_code);
|
|
break;
|
|
|
|
/*
|
|
* Statistics events can be ignored for now. They might become
|
|
* necessary if we have to deliver stats on demand, rather than
|
|
* just returning the statistics block of memory.
|
|
*/
|
|
|
|
case RR_EC_STATS_UPDATE:
|
|
case RR_EC_STATS_RETRIEVED:
|
|
case RR_EC_TRACE:
|
|
break;
|
|
|
|
default:
|
|
printf("%s: Bogus event code %x, "
|
|
"ring %x, index %x, timestamp %x\n",
|
|
sc->sc_dev.dv_xname, event->re_code,
|
|
event->re_ring, event->re_index,
|
|
event->re_timestamp);
|
|
break;
|
|
}
|
|
|
|
sc->sc_event_consumer = NEXT_EVENT(sc->sc_event_consumer);
|
|
}
|
|
|
|
/* Do the receive and send ring processing for version 2 RunCode */
|
|
|
|
if (sc->sc_version == 2) {
|
|
if (sc->sc_send.ec_consumer != rc_send_consumer) {
|
|
eshstart_cleanup(sc, rc_send_consumer, 0);
|
|
ret = 1;
|
|
}
|
|
if (sc->sc_snap_recv.ec_consumer != rc_snap_ring_consumer) {
|
|
eshread(sc, rc_snap_ring_consumer, 0);
|
|
ret = 1;
|
|
}
|
|
rc_offsets = (sc->sc_snap_recv.ec_consumer << 16) |
|
|
(sc->sc_send.ec_consumer << 8) | sc->sc_event_consumer;
|
|
} else {
|
|
rc_offsets = sc->sc_event_consumer;
|
|
}
|
|
|
|
esh_dma_sync(sc, sc->sc_event_ring,
|
|
start_consumer, sc->sc_event_producer,
|
|
RR_EVENT_RING_SIZE, sizeof(struct rr_event), 0,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
/* Clear interrupt */
|
|
|
|
bus_space_write_4(iot, ioh, RR_EVENT_CONSUMER, rc_offsets);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
|
|
/*
|
|
* Start output on the interface. Always called as splnet().
|
|
* Check to see if there are any mbufs that didn't get sent the
|
|
* last time this was called. If there are none, get more mbufs
|
|
* and send 'em.
|
|
*
|
|
* For now, we only send one packet at a time.
|
|
*/
|
|
|
|
void
|
|
eshstart(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
register struct esh_softc *sc = ifp->if_softc;
|
|
struct mbuf *m, *m0;
|
|
u_int32_t m_write_len;
|
|
struct esh_ring_ctl *send = &sc->sc_send;
|
|
|
|
/* Don't transmit if interface is busy or not running */
|
|
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
|
|
return;
|
|
|
|
#ifdef ESH_PRINTF
|
|
if (esh_check(sc))
|
|
return;
|
|
#endif
|
|
|
|
/* If we have sent the current packet, get another */
|
|
if (!(m = send->ec_cur_mbuf)) {
|
|
struct mbuf *n, *n0;
|
|
|
|
IF_DEQUEUE(&ifp->if_snd, m);
|
|
if (m == 0) /* not really needed */
|
|
return;
|
|
|
|
#if NBPFILTER > 0
|
|
if (ifp->if_bpf) {
|
|
/*
|
|
* On output, the raw packet has a eight-byte CCI
|
|
* field prepended. On input, there is no such field.
|
|
* The bpf expects the packet to look the same in both
|
|
* places, so we temporarily lop off the prepended CCI
|
|
* field here, then replace it. Ugh.
|
|
*
|
|
* XXX: Need to use standard mbuf manipulation
|
|
* functions, first mbuf may be less than
|
|
* 8 bytes long.
|
|
*/
|
|
|
|
m->m_len -= 8;
|
|
m->m_data += 8;
|
|
m->m_pkthdr.len -= 8;
|
|
bpf_mtap(ifp->if_bpf, m);
|
|
m->m_len += 8;
|
|
m->m_data -= 8;
|
|
m->m_pkthdr.len += 8;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Version 1 over the firmware sent an event each
|
|
* time it sent out a packet. Later versions do not
|
|
* (which results in a considerable speedup), so we
|
|
* have to keep track here.
|
|
*/
|
|
|
|
if (sc->sc_version != 1)
|
|
sc->sc_if.if_opackets++;
|
|
m_write_len = write_len = m->m_pkthdr.len;
|
|
|
|
if (write_len > max_write_len)
|
|
max_write_len = write_len;
|
|
|
|
/*
|
|
* XXX: Ouch: The NIC can only send word-aligned
|
|
* buffers, and only the last buffer in the packet can
|
|
* have a length that is not a multiple of four!
|
|
*
|
|
* Here we traverse the packet, pick out the bogus mbufs,
|
|
* and fix 'em if possible. The fix is amazingly expensive,
|
|
* so we sure hope that this is a rare occurance (it seems to
|
|
* be). Note that we can really play pretty rough with this
|
|
* stuff, since the send routine doesn't need mbuf packet
|
|
* headers or any of that silly stuff...
|
|
*/
|
|
|
|
for (n0 = n = m; n; n = n->m_next) {
|
|
while (n && n->m_len == 0) {
|
|
MFREE(n, m0);
|
|
if (n == m)
|
|
n = n0 = m = m0;
|
|
else
|
|
n = n0->m_next = m0;
|
|
}
|
|
if (n == NULL)
|
|
break;
|
|
|
|
if (mtod(n, long) & 3 || (n->m_next && n->m_len & 3)) {
|
|
/* Gotta clean it up */
|
|
struct mbuf *o;
|
|
u_int32_t len;
|
|
|
|
sc->sc_misaligned_bufs++;
|
|
|
|
#ifdef ESH_PRINTF
|
|
assert(n != NULL);
|
|
printf("eshstart: adjusting misaligned "
|
|
"mbuf %p, len %x\n",
|
|
mtod(n, void *), n->m_len);
|
|
#endif
|
|
|
|
MGETHDR(o, M_DONTWAIT, MT_DATA);
|
|
if (!o)
|
|
goto bogosity;
|
|
|
|
MCLGET(o, M_DONTWAIT);
|
|
if (!(o->m_flags & M_EXT)) {
|
|
MFREE(o, m0);
|
|
goto bogosity;
|
|
}
|
|
|
|
/*
|
|
* XXX: Copy as much as we can into the
|
|
* cluster. For now we can't have more
|
|
* than a cluster in there. May change.
|
|
* I'd prefer not to get this
|
|
* down-n-dirty, but we have to be able
|
|
* to do this kind of funky copy.
|
|
*/
|
|
|
|
len = min(MCLBYTES, m_write_len);
|
|
#ifdef ESH_PRINTF
|
|
printf("eshstart: using len of %x,"
|
|
"o of %p\n",
|
|
len, mtod(o, void *));
|
|
assert(n->m_len <= len);
|
|
assert(len <= MCLBYTES);
|
|
#endif
|
|
m_copydata(n, 0, len, mtod(o, void *));
|
|
m_adj(n, len);
|
|
o->m_len = len;
|
|
o->m_next = n;
|
|
|
|
if (n == m)
|
|
m = o;
|
|
else
|
|
n0->m_next = o;
|
|
n = o;
|
|
}
|
|
n0 = n;
|
|
m_write_len -= n->m_len;
|
|
}
|
|
#ifdef ESH_PRINTF
|
|
printf("eshstart: m_write_len %d, m %p\n", m_write_len, m);
|
|
#endif
|
|
send->ec_cur_mbuf = send->ec_cur_pkt = m;
|
|
}
|
|
|
|
if (sc->sc_options & RR_OP_LONG_TX)
|
|
esh_send2(sc);
|
|
else
|
|
esh_send(sc);
|
|
return;
|
|
|
|
bogosity:
|
|
printf("%s: eshstart: unable to allocate cluster for "
|
|
"mbuf %p, len %x\n",
|
|
sc->sc_dev.dv_xname, mtod(m, void *), m->m_len);
|
|
m_freem(m);
|
|
send->ec_cur_mbuf = m = NULL;
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* Yeah, this is a little ugly. For some unknown reason, I've decided
|
|
* to try to make this driver work for HIPPI, and possibly Giga-E,
|
|
* or whatever else is annoying enough to use long descriptors.
|
|
* Just trying to switch on all the instances of ec_descr drove
|
|
* me nuts, so I broke out the function into esh_send and esh_send2.
|
|
* I'm still not convinced I shouldn't yank out all of the
|
|
* long descriptor stuff!
|
|
*/
|
|
|
|
static void
|
|
esh_send(sc)
|
|
struct esh_softc *sc;
|
|
{
|
|
struct esh_ring_ctl *send = &sc->sc_send;
|
|
struct mbuf *m = send->ec_cur_mbuf;
|
|
int start_producer = send->ec_producer;
|
|
|
|
#ifdef ESH_PRINTF
|
|
printf("esh_send: producer %x consumer %x m %p\n",
|
|
send->ec_producer, send->ec_consumer, m);
|
|
#endif
|
|
|
|
esh_dma_sync(sc, send->ec_descr,
|
|
send->ec_producer, send->ec_consumer,
|
|
RR_SEND_RING_SIZE, sizeof(struct rr_descr), 1,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
while (NEXT_SEND(send->ec_producer) != send->ec_consumer && m) {
|
|
int offset = send->ec_producer;
|
|
int error;
|
|
|
|
send->ec_m[offset] = m;
|
|
error = bus_dmamap_load(sc->sc_dmat, send->ec_dma[offset],
|
|
mtod(m, void *), m->m_len,
|
|
NULL, BUS_DMA_NOWAIT);
|
|
if (error)
|
|
panic("%s: eshstart: bus_dmamap_load failed "
|
|
"descr %x err %d\n",
|
|
sc->sc_dev.dv_xname, offset, error);
|
|
|
|
/*
|
|
* In this implementation, we should only see one segment
|
|
* per DMA.
|
|
*/
|
|
|
|
assert(send->ec_dma[offset]->dm_nsegs == 1);
|
|
|
|
send->ec_descr[offset].rd_buffer_addr =
|
|
send->ec_dma[offset]->dm_segs->ds_addr;
|
|
send->ec_descr[offset].rd_length =
|
|
send->ec_dma[offset]->dm_segs->ds_len;
|
|
send->ec_descr[offset].rd_control = 0;
|
|
|
|
if (m == send->ec_cur_pkt) {
|
|
/* Start of the mbuf... */
|
|
send->ec_descr[offset].rd_control |=
|
|
RR_CT_PACKET_START;
|
|
}
|
|
|
|
if (!m->m_next) {
|
|
send->ec_descr[offset].rd_control |= RR_CT_PACKET_END;
|
|
}
|
|
|
|
#ifdef ESH_PRINTF
|
|
printf("esh_send: offset %x buf addr %x len %d "
|
|
"control %x m->m_len %d\n",
|
|
offset,
|
|
send->ec_descr[offset].rd_buffer_addr,
|
|
send->ec_descr[offset].rd_length,
|
|
send->ec_descr[offset].rd_control, m->m_len);
|
|
#endif
|
|
|
|
/*
|
|
* When we have bus_dmamap_load_mbuf, this can be done once at
|
|
* the end of the load.
|
|
*/
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, send->ec_dma[offset], 0, m->m_len,
|
|
BUS_DMASYNC_PREWRITE);
|
|
m = m->m_next;
|
|
send->ec_producer = NEXT_SEND(send->ec_producer);
|
|
}
|
|
|
|
esh_dma_sync(sc, send->ec_descr,
|
|
start_producer, send->ec_consumer,
|
|
RR_SEND_RING_SIZE, sizeof(struct rr_descr), 1,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
#ifdef ESH_PRINTF
|
|
if (m) printf("eshstart: couldn't fit packet in send ring!\n");
|
|
#endif
|
|
|
|
send->ec_cur_mbuf = m;
|
|
if (sc->sc_version == 1) {
|
|
esh_send_cmd(sc, RR_CC_SET_SEND_PRODUCER,
|
|
0, send->ec_producer);
|
|
} else {
|
|
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
|
|
RR_SEND_PRODUCER, send->ec_producer);
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
static void
|
|
esh_send2(sc)
|
|
struct esh_softc *sc;
|
|
{
|
|
struct esh_ring_ctl *send = &sc->sc_send;
|
|
struct mbuf *m = send->ec_cur_mbuf;
|
|
int start_producer = send->ec_producer;
|
|
|
|
esh_dma_sync(sc, send->ec2_descr,
|
|
start_producer, send->ec_consumer,
|
|
RR2_SEND_RING_SIZE, sizeof(struct rr2_descr), 1,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
while (NEXT_SEND2(send->ec_producer) != send->ec_consumer && m) {
|
|
int offset = send->ec_producer;
|
|
int error;
|
|
|
|
send->ec_m[offset] = m;
|
|
error = bus_dmamap_load(sc->sc_dmat, send->ec_dma[offset],
|
|
mtod(m, void *), m->m_len,
|
|
NULL, BUS_DMA_NOWAIT);
|
|
if (error)
|
|
panic("%s: eshstart: bus_dmamap_load failed "
|
|
"descr %x err %d\n",
|
|
sc->sc_dev.dv_xname, offset, error);
|
|
|
|
/*
|
|
* In this implementation, we should only see one segment
|
|
* per DMA
|
|
*/
|
|
|
|
assert(send->ec_dma[offset]->dm_nsegs == 1);
|
|
|
|
/* Load into the descriptors */
|
|
|
|
send->ec2_descr[offset].rd_buffer_addr =
|
|
send->ec_dma[offset]->dm_segs->ds_addr;
|
|
send->ec2_descr[offset].rd_length =
|
|
send->ec_dma[offset]->dm_segs->ds_len;
|
|
send->ec2_descr[offset].rd_control = 0;
|
|
if (m == send->ec_cur_pkt) {
|
|
/* Start of the mbuf... */
|
|
send->ec2_descr[offset].rd_control |=
|
|
RR2_CT_PACKET_START;
|
|
}
|
|
|
|
if (!m->m_next) {
|
|
send->ec2_descr[offset].rd_control |=
|
|
RR2_CT_PACKET_END;
|
|
}
|
|
|
|
/*
|
|
* When we have bus_dmamap_load_mbuf, this can be done once at
|
|
* the end of the load.
|
|
*/
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, send->ec_dma[offset], 0, m->m_len,
|
|
BUS_DMASYNC_PREWRITE);
|
|
m = m->m_next;
|
|
send->ec_producer = NEXT_SEND2(send->ec_producer);
|
|
}
|
|
|
|
esh_dma_sync(sc, send->ec2_descr,
|
|
start_producer, send->ec_consumer,
|
|
RR2_SEND_RING_SIZE, sizeof(struct rr2_descr), 1,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
#ifdef ESH_PRINTF
|
|
if (m) printf("eshstart: couldn't fit packet in send ring!\n");
|
|
#endif
|
|
|
|
send->ec_cur_mbuf = m;
|
|
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
|
|
RR_SEND_PRODUCER, send->ec_producer);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Cleanup for the send routine. When the NIC sends us an event to
|
|
* let us know that it has consumed our buffers, we need to free the
|
|
* buffers and increment our count.
|
|
*/
|
|
|
|
static void
|
|
eshstart_cleanup(sc, consumer, error)
|
|
register struct esh_softc *sc;
|
|
u_int16_t consumer;
|
|
int error;
|
|
{
|
|
struct esh_ring_ctl *send = &sc->sc_send;
|
|
struct mbuf *m0; /* garbage for MFREE */
|
|
int start_consumer = send->ec_consumer;
|
|
int offset;
|
|
|
|
#ifdef ESH_PRINTF
|
|
printf("eshstart_cleanup: consumer %x, send->consumer %x\n",
|
|
consumer, send->ec_consumer);
|
|
#endif
|
|
|
|
if (sc->sc_options & RR_OP_LONG_TX)
|
|
esh_dma_sync(sc, send->ec2_descr,
|
|
send->ec_consumer, consumer,
|
|
RR2_SEND_RING_SIZE, sizeof(struct rr2_descr), 0,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
else
|
|
esh_dma_sync(sc, send->ec_descr,
|
|
send->ec_consumer, consumer,
|
|
RR_SEND_RING_SIZE, sizeof(struct rr_descr), 0,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
while (send->ec_consumer != consumer) {
|
|
offset = send->ec_consumer;
|
|
assert(send->ec_dma[offset]->dm_nsegs);
|
|
assert(send->ec_m[offset]);
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, send->ec_dma[offset],
|
|
0, send->ec_m[offset]->m_len,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, send->ec_dma[offset]);
|
|
MFREE(send->ec_m[offset], m0);
|
|
send->ec_m[offset] = NULL;
|
|
send->ec_dma[offset]->dm_nsegs = 0;
|
|
if (sc->sc_options & RR_OP_LONG_TX) {
|
|
send->ec2_descr[offset].rd_length = 0;
|
|
send->ec_consumer = NEXT_SEND2(send->ec_consumer);
|
|
} else {
|
|
send->ec_descr[offset].rd_length = 0;
|
|
send->ec_consumer = NEXT_SEND(send->ec_consumer);
|
|
}
|
|
}
|
|
|
|
if (sc->sc_options & RR_OP_LONG_TX)
|
|
esh_dma_sync(sc, send->ec2_descr,
|
|
start_consumer, consumer,
|
|
RR2_SEND_RING_SIZE, sizeof(struct rr2_descr), 0,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
else
|
|
esh_dma_sync(sc, send->ec_descr,
|
|
start_consumer, consumer,
|
|
RR_SEND_RING_SIZE, sizeof(struct rr_descr), 0,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
eshstart(&sc->sc_if);
|
|
}
|
|
|
|
|
|
/*
|
|
* Read in the current valid entries from the ring and forward
|
|
* them to the upper layer protocols. It is possible that we
|
|
* haven't received the whole packet yet, in which case we just
|
|
* add each of the buffers into the packet until we have the whole
|
|
* thing.
|
|
*/
|
|
|
|
void
|
|
eshread(sc, consumer, error)
|
|
register struct esh_softc *sc;
|
|
u_int16_t consumer;
|
|
int error;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
struct esh_ring_ctl *recv = &sc->sc_snap_recv;
|
|
struct hippi_header *hh;
|
|
int start_consumer = recv->ec_consumer;
|
|
u_int16_t control;
|
|
|
|
if (error)
|
|
recv->ec_error = error;
|
|
|
|
if (sc->sc_options & RR_OP_LONG_TX)
|
|
esh_dma_sync(sc, recv->ec2_descr,
|
|
start_consumer, consumer,
|
|
RR2_SNAP_RECV_RING_SIZE,
|
|
sizeof(struct rr2_descr), 0,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
else
|
|
esh_dma_sync(sc, recv->ec_descr,
|
|
start_consumer, consumer,
|
|
RR_SNAP_RECV_RING_SIZE,
|
|
sizeof(struct rr_descr), 0,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
while (recv->ec_consumer != consumer) {
|
|
u_int16_t offset = recv->ec_consumer;
|
|
struct mbuf *m;
|
|
|
|
m = recv->ec_m[offset];
|
|
if (sc->sc_options & RR_OP_LONG_RX) {
|
|
m->m_len = recv->ec2_descr[offset].rd_length;
|
|
control = recv->ec2_descr[offset].rd_control;
|
|
} else {
|
|
m->m_len = recv->ec_descr[offset].rd_length;
|
|
control = recv->ec_descr[offset].rd_control;
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, recv->ec_dma[offset], 0, m->m_len,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_dmat, recv->ec_dma[offset]);
|
|
|
|
#ifdef ESH_PRINTF
|
|
printf("eshread: offset %x addr %p len %x flags %x\n",
|
|
offset, mtod(m, void *), m->m_len, control);
|
|
#endif
|
|
if (control & RR_CT_PACKET_START || !recv->ec_cur_mbuf) {
|
|
if (recv->ec_cur_pkt) {
|
|
m_freem(recv->ec_cur_pkt);
|
|
recv->ec_cur_pkt = NULL;
|
|
printf("%s: possible skipped packet!\n",
|
|
sc->sc_dev.dv_xname);
|
|
}
|
|
recv->ec_cur_pkt = recv->ec_cur_mbuf = m;
|
|
/* allocated buffers all have pkthdrs... */
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len;
|
|
} else {
|
|
if (!recv->ec_cur_pkt)
|
|
panic("eshread: no cur_pkt");
|
|
|
|
recv->ec_cur_mbuf->m_next = m;
|
|
recv->ec_cur_mbuf = m;
|
|
recv->ec_cur_pkt->m_pkthdr.len += m->m_len;
|
|
}
|
|
|
|
recv->ec_m[offset] = NULL;
|
|
if (sc->sc_options & RR_OP_LONG_TX) {
|
|
recv->ec2_descr[offset].rd_length = 0;
|
|
recv->ec2_descr[offset].rd_buffer_addr = 0;
|
|
} else {
|
|
recv->ec_descr[offset].rd_length = 0;
|
|
recv->ec_descr[offset].rd_buffer_addr = 0;
|
|
}
|
|
|
|
/* Note that we can START and END on the same buffer */
|
|
|
|
if (control & RR_CT_PACKET_END) { /* XXX: RR2_ matches */
|
|
m = recv->ec_cur_pkt;
|
|
if (!error && !recv->ec_error) {
|
|
/* We have a complete packet, send it up
|
|
* the stack...
|
|
*/
|
|
ifp->if_ipackets++;
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Check if there's a BPF listener on this
|
|
* interface. If so, hand off the raw packet
|
|
* to BPF.
|
|
*/
|
|
if (ifp->if_bpf) {
|
|
/*
|
|
* Incoming packets start with the FP
|
|
* data, so no alignment problems
|
|
* here...
|
|
*/
|
|
bpf_mtap(ifp->if_bpf, m);
|
|
}
|
|
#endif
|
|
m = m_pullup(m, sizeof(struct hippi_header *));
|
|
hh = mtod(m, struct hippi_header *);
|
|
m_adj(m, sizeof(struct hippi_header));
|
|
hippi_input(ifp, hh, m);
|
|
} else {
|
|
ifp->if_ierrors++;
|
|
recv->ec_error = 0;
|
|
m_freem(m);
|
|
}
|
|
recv->ec_cur_pkt = recv->ec_cur_mbuf = NULL;
|
|
}
|
|
|
|
if (sc->sc_options & RR_OP_LONG_RX) {
|
|
recv->ec2_descr[offset].rd_control = 0;
|
|
recv->ec_consumer = NEXT_RECV2(recv->ec_consumer);
|
|
} else {
|
|
recv->ec_descr[offset].rd_control = 0;
|
|
recv->ec_consumer = NEXT_RECV(recv->ec_consumer);
|
|
}
|
|
}
|
|
|
|
if (sc->sc_options & RR_OP_LONG_TX)
|
|
esh_dma_sync(sc, recv->ec2_descr,
|
|
start_consumer, consumer,
|
|
RR2_SNAP_RECV_RING_SIZE,
|
|
sizeof(struct rr2_descr), 0,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
else
|
|
esh_dma_sync(sc, recv->ec_descr,
|
|
start_consumer, consumer,
|
|
RR_SNAP_RECV_RING_SIZE,
|
|
sizeof(struct rr_descr), 0,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
esh_fill_snap_ring(sc);
|
|
}
|
|
|
|
|
|
/*
|
|
* Add the SNAP (IEEE 802) receive ring to the NIC. It is possible
|
|
* that we are doing this after resetting the card, in which case
|
|
* the structures have already been filled in and we may need to
|
|
* resume sending data.
|
|
*/
|
|
|
|
static void
|
|
esh_init_snap_ring(sc)
|
|
struct esh_softc *sc;
|
|
{
|
|
struct rr_ring_ctl *ring = sc->sc_recv_ring_table + HIPPI_ULP_802;
|
|
int i;
|
|
|
|
|
|
if (ring->rr_entry_size == 0) {
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma,
|
|
(caddr_t) ring - (caddr_t) sc->sc_dma_addr,
|
|
sizeof(ring),
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
ring->rr_ring_addr = sc->sc_snap_recv_ring_dma;
|
|
ring->rr_free_bufs = RR_SNAP_RECV_RING_SIZE / 4;
|
|
if (sc->sc_options & RR_OP_LONG_RX) {
|
|
ring->rr_entries = RR2_SNAP_RECV_RING_SIZE;
|
|
ring->rr_entry_size = sizeof(struct rr2_descr);
|
|
} else {
|
|
ring->rr_entries = RR_SNAP_RECV_RING_SIZE;
|
|
ring->rr_entry_size = sizeof(struct rr_descr);
|
|
}
|
|
ring->rr_prod_index = sc->sc_snap_recv.ec_producer = 0;
|
|
ring->rr_mode = RR_RR_IP;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma,
|
|
(caddr_t) ring - (caddr_t) sc->sc_dma_addr,
|
|
sizeof(ring),
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
} else {
|
|
printf("%s: snap receive ring already initialized!\n",
|
|
sc->sc_dev.dv_xname);
|
|
}
|
|
|
|
if (sc->sc_options & RR_OP_LONG_RX) {
|
|
struct rr2_descr *d = sc->sc2_snap_recv_ring;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma,
|
|
(caddr_t) d - (caddr_t) sc->sc_dma_addr,
|
|
sizeof(struct rr2_descr) *
|
|
RR2_SNAP_RECV_RING_SIZE,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
bzero(d, sizeof(struct rr2_descr) * RR2_SNAP_RECV_RING_SIZE);
|
|
for (i = 0; i < RR2_SNAP_RECV_RING_SIZE; i++)
|
|
d[i].rd_dma_state = RR_DM_RX;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma,
|
|
(caddr_t) d - (caddr_t) sc->sc_dma_addr,
|
|
sizeof(struct rr2_descr) *
|
|
RR2_SNAP_RECV_RING_SIZE,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
esh_send_cmd(sc, RR_CC_ENABLE_RING, HIPPI_ULP_802,
|
|
sc->sc_snap_recv.ec_producer);
|
|
}
|
|
|
|
/*
|
|
* Fill in the snap ring with more mbuf buffers so that we can
|
|
* receive traffic.
|
|
*/
|
|
|
|
static void
|
|
esh_fill_snap_ring(sc)
|
|
struct esh_softc *sc;
|
|
{
|
|
struct esh_ring_ctl *recv = &sc->sc_snap_recv;
|
|
int count = 0;
|
|
int start_producer = recv->ec_producer;
|
|
int error;
|
|
|
|
if (sc->sc_options & RR_OP_LONG_TX)
|
|
esh_dma_sync(sc, recv->ec2_descr,
|
|
recv->ec_producer, recv->ec_consumer,
|
|
RR2_SNAP_RECV_RING_SIZE,
|
|
sizeof(struct rr2_descr), 1,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
else
|
|
esh_dma_sync(sc, recv->ec_descr,
|
|
recv->ec_producer, recv->ec_consumer,
|
|
RR_SNAP_RECV_RING_SIZE,
|
|
sizeof(struct rr_descr), 1,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
while (((sc->sc_options & RR_OP_LONG_RX) ?
|
|
NEXT_RECV2(recv->ec_producer) :
|
|
NEXT_RECV(recv->ec_producer)) != recv->ec_consumer) {
|
|
int offset = recv->ec_producer;
|
|
struct mbuf *m, *m0;
|
|
|
|
count++;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (!m)
|
|
break;
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
MFREE(m, m0);
|
|
break;
|
|
}
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, recv->ec_dma[offset],
|
|
mtod(m, void *), MCLBYTES,
|
|
NULL, BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
printf("%s: esh_fill_recv_ring: bus_dmamap_load "
|
|
"failed\toffset %x, error code %d\n",
|
|
sc->sc_dev.dv_xname, offset, error);
|
|
MFREE(m, m0);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* In this implementation, we should only see one segment
|
|
* per DMA.
|
|
*/
|
|
|
|
assert(recv->ec_dma[offset]->dm_nsegs == 1);
|
|
|
|
/*
|
|
* Load into the descriptors.
|
|
*/
|
|
|
|
if (sc->sc_options & RR_OP_LONG_RX) {
|
|
recv->ec2_descr[offset].rd_buffer_addr =
|
|
recv->ec_dma[offset]->dm_segs->ds_addr;
|
|
recv->ec2_descr[offset].rd_length =
|
|
recv->ec_dma[offset]->dm_segs->ds_len;
|
|
recv->ec2_descr[offset].rd_control = 0;
|
|
} else {
|
|
recv->ec_descr[offset].rd_ring =
|
|
(sc->sc_version == 1) ? HIPPI_ULP_802 : 0;
|
|
recv->ec_descr[offset].rd_buffer_addr =
|
|
recv->ec_dma[offset]->dm_segs->ds_addr;
|
|
recv->ec_descr[offset].rd_length =
|
|
recv->ec_dma[offset]->dm_segs->ds_len;
|
|
recv->ec_descr[offset].rd_control = 0;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, recv->ec_dma[offset], 0, MCLBYTES,
|
|
BUS_DMASYNC_PREREAD);
|
|
|
|
recv->ec_m[offset] = m;
|
|
|
|
if (sc->sc_options & RR_OP_LONG_RX)
|
|
recv->ec_producer = NEXT_RECV2(recv->ec_producer);
|
|
else
|
|
recv->ec_producer = NEXT_RECV(recv->ec_producer);
|
|
}
|
|
|
|
if (sc->sc_options & RR_OP_LONG_TX)
|
|
esh_dma_sync(sc, recv->ec2_descr,
|
|
start_producer, recv->ec_consumer,
|
|
RR2_SNAP_RECV_RING_SIZE,
|
|
sizeof(struct rr2_descr), 1,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
else
|
|
esh_dma_sync(sc, recv->ec_descr,
|
|
start_producer, recv->ec_consumer,
|
|
RR_SNAP_RECV_RING_SIZE,
|
|
sizeof(struct rr_descr), 1,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
if (sc->sc_version == 1)
|
|
esh_send_cmd(sc, RR_CC_SET_RECV_PRODUCER, HIPPI_ULP_802,
|
|
recv->ec_producer);
|
|
else
|
|
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
|
|
RR_SNAP_RECV_PRODUCER, recv->ec_producer);
|
|
}
|
|
|
|
|
|
int
|
|
eshioctl(ifp, cmd, data)
|
|
register struct ifnet *ifp;
|
|
u_long cmd;
|
|
caddr_t data;
|
|
{
|
|
int error = 0;
|
|
struct esh_softc *sc = ifp->if_softc;
|
|
struct ifaddr *ifa = (struct ifaddr *)data;
|
|
struct ifdrv *ifd = (struct ifdrv *) data;
|
|
struct rr_eeprom rr_eeprom;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
u_int32_t misc_host_ctl;
|
|
u_int32_t misc_local_ctl;
|
|
u_int32_t address;
|
|
u_int32_t value;
|
|
u_int32_t offset;
|
|
u_int32_t length;
|
|
u_long len;
|
|
int s, i;
|
|
|
|
s = splnet();
|
|
|
|
while (sc->sc_flags & ESH_FL_EEPROM_BUSY) {
|
|
error = tsleep((void *)&sc->sc_flags, PCATCH | PRIBIO,
|
|
"esheeprom", 0);
|
|
if (error != 0)
|
|
goto ioctl_done;
|
|
}
|
|
|
|
switch (cmd) {
|
|
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
|
|
switch (ifa->ifa_addr->sa_family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
/* The driver doesn't really care about IP addresses */
|
|
break;
|
|
#endif
|
|
#ifdef NS
|
|
case AF_NS:
|
|
{
|
|
register struct ns_addr *ina =
|
|
&IA_SNS(ifa)->sns_addr;
|
|
|
|
if (ns_nullhost(*ina))
|
|
ina->x_host = *(union ns_host *)
|
|
LLADDR(ifp->if_sadl);
|
|
else
|
|
bcopy(ina->x_host.c_host,
|
|
LLADDR(ifp->if_sadl),
|
|
ifp->if_addrlen);
|
|
/* Set new address. */
|
|
eshinit(sc);
|
|
break;
|
|
}
|
|
#endif
|
|
default:
|
|
eshinit(sc);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFFLAGS:
|
|
if ((ifp->if_flags & IFF_UP) == 0 &&
|
|
(ifp->if_flags & IFF_RUNNING) != 0) {
|
|
/*
|
|
* If interface is marked down and it is running, then
|
|
* stop it.
|
|
*/
|
|
eshstop(sc);
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
} else if ((ifp->if_flags & IFF_UP) != 0 &&
|
|
(ifp->if_flags & IFF_RUNNING) == 0) {
|
|
/*
|
|
* If interface is marked up and it is stopped, then
|
|
* start it. But wait -- if the interface has
|
|
* just been reset, and is coming up again,
|
|
* don't reset it again! There aren't yet
|
|
* any flags we care about.
|
|
*
|
|
* The sc->sc_flags is set to INITIALIZED when
|
|
* the NIC has been reset; the RUNCODE_UP
|
|
* flag gets added when it actually comes up.
|
|
* If it fails to come up in five seconds,
|
|
* it'll get shut down anyway.
|
|
*/
|
|
|
|
if (sc->sc_flags != ESH_FL_INITIALIZED) {
|
|
eshreset(sc);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case SIOCSDRVSPEC: /* Driver-specific configuration calls */
|
|
cmd = ifd->ifd_cmd;
|
|
len = ifd->ifd_len;
|
|
data = ifd->ifd_data;
|
|
|
|
/* XXX: these functions need to check for suser! */
|
|
|
|
switch (cmd) {
|
|
case EIOCGTUNE:
|
|
if (len != sizeof(struct rr_tuning))
|
|
error = EMSGSIZE;
|
|
else {
|
|
error = copyout((caddr_t) &sc->sc_tune, data,
|
|
sizeof(struct rr_tuning));
|
|
}
|
|
break;
|
|
|
|
case EIOCSTUNE:
|
|
if ((ifp->if_flags & IFF_UP) == 0) {
|
|
if (len != sizeof(struct rr_tuning)) {
|
|
error = EMSGSIZE;
|
|
} else {
|
|
error = copyin(data,
|
|
(caddr_t) &sc->sc_tune,
|
|
sizeof(struct rr_tuning));
|
|
}
|
|
} else {
|
|
error = EBUSY;
|
|
}
|
|
break;
|
|
|
|
case EIOCGSTATS:
|
|
if (len != sizeof(struct rr_stats))
|
|
error = EMSGSIZE;
|
|
else
|
|
error = copyout((caddr_t) &sc->sc_gen_info->ri_stats,
|
|
data, sizeof(struct rr_stats));
|
|
break;
|
|
|
|
case EIOCGEEPROM:
|
|
case EIOCSEEPROM:
|
|
if ((ifp->if_flags & IFF_UP) != 0) {
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
|
|
if (len != sizeof(struct rr_eeprom)) {
|
|
error = EMSGSIZE;
|
|
break;
|
|
}
|
|
|
|
error = copyin(data, (caddr_t) &rr_eeprom,
|
|
sizeof(rr_eeprom));
|
|
if (error != 0)
|
|
break;
|
|
|
|
offset = rr_eeprom.ifr_offset;
|
|
length = rr_eeprom.ifr_length;
|
|
|
|
if (length > RR_EE_MAX_LEN * sizeof(u_int32_t)) {
|
|
error = EFBIG;
|
|
break;
|
|
}
|
|
|
|
if (offset + length >
|
|
RR_EE_MAX_LEN * sizeof(u_int32_t)) {
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
|
|
if (offset % 4 || length % 4) {
|
|
error = EIO;
|
|
break;
|
|
}
|
|
|
|
/* Halt the processor (preserve NO_SWAP, if set) */
|
|
|
|
misc_host_ctl = bus_space_read_4(iot, ioh,
|
|
RR_MISC_HOST_CTL);
|
|
bus_space_write_4(iot, ioh, RR_MISC_HOST_CTL,
|
|
(misc_host_ctl & RR_MH_NO_SWAP) |
|
|
RR_MH_HALT_PROC);
|
|
|
|
/* Make the EEPROM accessable */
|
|
|
|
misc_local_ctl = bus_space_read_4(iot, ioh,
|
|
RR_MISC_LOCAL_CTL);
|
|
value = misc_local_ctl &
|
|
~(RR_LC_FAST_PROM | RR_LC_ADD_SRAM |
|
|
RR_LC_PARITY_ON);
|
|
if (cmd == EIOCSEEPROM) /* make writeable! */
|
|
value |= RR_LC_WRITE_PROM;
|
|
bus_space_write_4(iot, ioh, RR_MISC_LOCAL_CTL, value);
|
|
|
|
if (cmd == EIOCSEEPROM) {
|
|
printf("%s: writing EEPROM\n",
|
|
sc->sc_dev.dv_xname);
|
|
sc->sc_flags |= ESH_FL_EEPROM_BUSY;
|
|
splx(s);
|
|
}
|
|
|
|
/* Do that EEPROM voodoo that you do so well... */
|
|
|
|
address = offset * RR_EE_BYTE_LEN;
|
|
for (i = 0; i < length; i += 4) {
|
|
if (cmd == EIOCGEEPROM) {
|
|
value = esh_read_eeprom(sc, address);
|
|
address += RR_EE_WORD_LEN;
|
|
if (copyout(&value,
|
|
(caddr_t) rr_eeprom.ifr_buffer + i,
|
|
sizeof(u_int32_t)) != 0) {
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
} else {
|
|
if (copyin((caddr_t) rr_eeprom.ifr_buffer + i,
|
|
&value,
|
|
sizeof(u_int32_t)) != 0) {
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
if (esh_write_eeprom(sc,
|
|
address,
|
|
value) != 0) {
|
|
error = EIO;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Have to give up control now and
|
|
* then, so sleep for a clock tick.
|
|
* Might be good to figure out how
|
|
* long a tick is, so that we could
|
|
* intelligently chose the frequency
|
|
* of these pauses.
|
|
*/
|
|
|
|
if (i % 40 == 0) {
|
|
tsleep((void *)&sc->sc_flags,
|
|
PRIBIO, "eshweeprom", 1);
|
|
}
|
|
|
|
address += RR_EE_WORD_LEN;
|
|
}
|
|
}
|
|
|
|
bus_space_write_4(iot, ioh, RR_MISC_LOCAL_CTL,
|
|
misc_local_ctl);
|
|
if (cmd == EIOCSEEPROM) {
|
|
sc->sc_flags &= ~ESH_FL_EEPROM_BUSY;
|
|
wakeup((void *)&sc->sc_flags);
|
|
s = splnet();
|
|
printf("%s: done writing EEPROM\n",
|
|
sc->sc_dev.dv_xname);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
ioctl_done:
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
|
|
void
|
|
eshreset(sc)
|
|
struct esh_softc *sc;
|
|
{
|
|
int s;
|
|
|
|
s = splnet();
|
|
eshstop(sc);
|
|
eshinit(sc);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* The NIC expects a watchdog command every 10 seconds. If it doesn't
|
|
* get the watchdog, it figures the host is dead and stops. When it does
|
|
* get the command, it'll generate a watchdog event to let the host know
|
|
* that it is still alive. We watch for this.
|
|
*/
|
|
|
|
void
|
|
eshwatchdog(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct esh_softc *sc = ifp->if_softc;
|
|
|
|
if (!sc->sc_watchdog) {
|
|
printf("%s: watchdog timer expired. "
|
|
"Should reset interface!\n",
|
|
sc->sc_dev.dv_xname);
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
eshstatus(sc);
|
|
} else {
|
|
sc->sc_watchdog = 0;
|
|
|
|
esh_send_cmd(sc, RR_CC_WATCHDOG, 0, 0);
|
|
ifp->if_timer = 5;
|
|
|
|
if (ifp->if_flags & IFF_LINK1) {
|
|
esh_send_cmd(sc, RR_CC_UPDATE_STATS, 0, 0);
|
|
eshstatus(sc);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Stop the NIC and throw away packets that have started to be sent,
|
|
* but didn't make it all the way. Re-adjust the various queue
|
|
* pointers to account for this.
|
|
*/
|
|
|
|
void
|
|
eshstop(sc)
|
|
register struct esh_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
struct rr_ring_ctl *ring;
|
|
struct esh_ring_ctl *ring_ctl;
|
|
u_int32_t misc_host_ctl;
|
|
|
|
if (!(sc->sc_flags & ESH_FL_INITIALIZED))
|
|
return;
|
|
|
|
/* Just shut it all down. This isn't pretty, but it works */
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma, 0, sc->sc_dma_size,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
misc_host_ctl = bus_space_read_4(iot, ioh, RR_MISC_HOST_CTL);
|
|
bus_space_write_4(iot, ioh, RR_MISC_HOST_CTL,
|
|
(misc_host_ctl & RR_MH_NO_SWAP) | RR_MH_HALT_PROC);
|
|
|
|
ring = sc->sc_recv_ring_table + HIPPI_ULP_802;
|
|
ring_ctl = &sc->sc_snap_recv;
|
|
|
|
while (ring_ctl->ec_consumer != ring_ctl->ec_producer) {
|
|
struct mbuf *m0;
|
|
u_int16_t offset = ring_ctl->ec_consumer;
|
|
|
|
bus_dmamap_unload(sc->sc_dmat, ring_ctl->ec_dma[offset]);
|
|
MFREE(ring_ctl->ec_m[offset], m0);
|
|
ring_ctl->ec_m[offset] = NULL;
|
|
if (sc->sc_options & RR_OP_LONG_RX)
|
|
ring_ctl->ec_consumer =
|
|
NEXT_RECV2(ring_ctl->ec_consumer);
|
|
else
|
|
ring_ctl->ec_consumer =
|
|
NEXT_RECV(ring_ctl->ec_consumer);
|
|
}
|
|
|
|
ring = &sc->sc_gen_info->ri_send_ring_ctl;
|
|
ring_ctl = &sc->sc_send;
|
|
|
|
while (ring_ctl->ec_consumer != ring_ctl->ec_producer) {
|
|
struct mbuf *m0;
|
|
u_int16_t offset = ring_ctl->ec_consumer;
|
|
|
|
bus_dmamap_unload(sc->sc_dmat, ring_ctl->ec_dma[offset]);
|
|
MFREE(ring_ctl->ec_m[offset], m0);
|
|
ring_ctl->ec_m[offset] = NULL;
|
|
if (sc->sc_options & RR_OP_LONG_TX)
|
|
ring_ctl->ec_consumer =
|
|
NEXT_SEND2(ring_ctl->ec_consumer);
|
|
else
|
|
ring_ctl->ec_consumer =
|
|
NEXT_SEND(ring_ctl->ec_consumer);
|
|
}
|
|
|
|
sc->sc_flags = 0;
|
|
ifp->if_timer = 0; /* turn off watchdog timer */
|
|
}
|
|
|
|
|
|
/*
|
|
* Before reboots, reset card completely.
|
|
*/
|
|
|
|
static void
|
|
eshshutdown(arg)
|
|
void *arg;
|
|
{
|
|
register struct esh_softc *sc = arg;
|
|
int i;
|
|
|
|
esh_print_ring(sc, "Shutting Down:", &sc->sc_send, 0);
|
|
esh_reset_runcode(sc);
|
|
esh_init_snap_ring(sc);
|
|
eshstop(sc);
|
|
eshstatus(sc);
|
|
eshshutdown(sc);
|
|
for (i = 0; i < RR_SEND_RING_SIZE; i++)
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_send.ec_dma[i]);
|
|
|
|
for (i = 0; i < RR_SNAP_RECV_RING_SIZE; i++)
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_snap_recv.ec_dma[i]);
|
|
}
|
|
|
|
|
|
/*
|
|
* Read a value from the eeprom. This expects that the NIC has already
|
|
* been tweaked to put it into the right state for reading from the
|
|
* EEPROM -- the HALT bit is set in the MISC_HOST_CTL register,
|
|
* and the FAST_PROM, ADD_SRAM, and PARITY flags have been cleared
|
|
* in the MISC_LOCAL_CTL register.
|
|
*
|
|
* The EEPROM layout is a little weird. There is a valid byte every
|
|
* eight bytes. Words are then smeared out over 32 bytes.
|
|
* All addresses listed here are the actual starting addresses.
|
|
*/
|
|
|
|
static u_int32_t
|
|
esh_read_eeprom(sc, addr)
|
|
struct esh_softc *sc;
|
|
u_int32_t addr;
|
|
{
|
|
int i;
|
|
u_int32_t tmp;
|
|
u_int32_t value = 0;
|
|
|
|
/* If the offset hasn't been added, add it. Otherwise pass through */
|
|
|
|
if (!(addr & RR_EE_OFFSET))
|
|
addr += RR_EE_OFFSET;
|
|
|
|
for (i = 0; i < 4; i++, addr += RR_EE_BYTE_LEN) {
|
|
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
|
|
RR_WINDOW_BASE, addr);
|
|
tmp = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
|
|
RR_WINDOW_DATA);
|
|
value = (value << 8) | ((tmp >> 24) & 0xff);
|
|
}
|
|
return value;
|
|
}
|
|
|
|
|
|
/*
|
|
* Write a value to the eeprom. Just like esh_read_eeprom, this routine
|
|
* expects that the NIC has already been tweaked to put it into the right
|
|
* state for reading from the EEPROM. Things are further complicated
|
|
* in that we need to read each byte after we write it to ensure that
|
|
* the new value has been successfully written. It can take as long
|
|
* as 1ms (!) to write a byte.
|
|
*/
|
|
|
|
static int
|
|
esh_write_eeprom(sc, addr, value)
|
|
struct esh_softc *sc;
|
|
u_int32_t addr;
|
|
u_int32_t value;
|
|
{
|
|
int i, j;
|
|
u_int32_t shifted_value, tmp;
|
|
|
|
/* If the offset hasn't been added, add it. Otherwise pass through */
|
|
|
|
if (!(addr & RR_EE_OFFSET))
|
|
addr += RR_EE_OFFSET;
|
|
|
|
for (i = 0; i < 4; i++, addr += RR_EE_BYTE_LEN) {
|
|
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
|
|
RR_WINDOW_BASE, addr);
|
|
|
|
/*
|
|
* Get the byte out of value, starting with the top, and
|
|
* put it into the top byte of the word to write.
|
|
*/
|
|
|
|
shifted_value = ((value >> ((3 - i) * 8)) & 0xff) << 24;
|
|
bus_space_write_4(sc->sc_iot, sc->sc_ioh, RR_WINDOW_DATA,
|
|
shifted_value);
|
|
for (j = 0; j < 50; j++) {
|
|
tmp = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
|
|
RR_WINDOW_DATA);
|
|
if (tmp == shifted_value)
|
|
break;
|
|
delay(500); /* 50us break * 20 = 1ms */
|
|
}
|
|
if (tmp != shifted_value)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Send a command to the NIC. If there is no room in the command ring,
|
|
* panic.
|
|
*/
|
|
|
|
static void
|
|
esh_send_cmd(sc, cmd, ring, index)
|
|
struct esh_softc *sc;
|
|
u_int8_t cmd;
|
|
u_int8_t ring;
|
|
u_int8_t index;
|
|
{
|
|
union rr_cmd c;
|
|
|
|
#define NEXT_CMD(i) (((i) + 0x10 - 1) & 0x0f)
|
|
|
|
if (ring && ring != 4)
|
|
printf("esh_send_cmd: bogus ring %x\n", ring);
|
|
|
|
c.l = 0;
|
|
|
|
c.b.rc_code = cmd;
|
|
c.b.rc_ring = ring;
|
|
c.b.rc_index = index;
|
|
|
|
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
|
|
RR_COMMAND_RING + sizeof(c) * sc->sc_cmd_producer,
|
|
c.l);
|
|
|
|
#ifdef ESH_PRINTF
|
|
/* avoid annoying messages when possible */
|
|
if (cmd != RR_CC_WATCHDOG)
|
|
printf("esh_send_cmd: cmd %x ring %x index %x slot %x\n",
|
|
cmd, ring, index, sc->sc_cmd_producer);
|
|
#endif
|
|
|
|
sc->sc_cmd_producer = NEXT_CMD(sc->sc_cmd_producer);
|
|
}
|
|
|
|
|
|
/*
|
|
* Write an address to the device.
|
|
* XXX: This belongs in bus-dependent land!
|
|
*/
|
|
|
|
static void
|
|
esh_write_addr(iot, ioh, addr, value)
|
|
bus_space_tag_t iot;
|
|
bus_space_handle_t ioh;
|
|
bus_addr_t addr;
|
|
bus_addr_t value;
|
|
{
|
|
bus_space_write_4(iot, ioh, addr, 0);
|
|
bus_space_write_4(iot, ioh, addr + sizeof(u_int32_t), value);
|
|
}
|
|
|
|
|
|
/* Copy the RunCode from EEPROM to SRAM. Ughly. */
|
|
|
|
static void
|
|
esh_reset_runcode(sc)
|
|
struct esh_softc *sc;
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
u_int32_t value;
|
|
u_int32_t len;
|
|
u_int32_t i;
|
|
u_int32_t segments;
|
|
u_int32_t ee_addr;
|
|
u_int32_t rc_addr;
|
|
u_int32_t sram_addr;
|
|
|
|
/* Zero the SRAM */
|
|
|
|
for (i = 0; i < sc->sc_sram_size; i += 4) {
|
|
bus_space_write_4(iot, ioh, RR_WINDOW_BASE, i);
|
|
bus_space_write_4(iot, ioh, RR_WINDOW_DATA, 0);
|
|
}
|
|
|
|
/* Find the address of the segment description section */
|
|
|
|
rc_addr = esh_read_eeprom(sc, RR_EE_RUNCODE_SEGMENTS);
|
|
segments = esh_read_eeprom(sc, rc_addr);
|
|
|
|
for (i = 0; i < segments; i++) {
|
|
rc_addr += RR_EE_WORD_LEN;
|
|
sram_addr = esh_read_eeprom(sc, rc_addr);
|
|
rc_addr += RR_EE_WORD_LEN;
|
|
len = esh_read_eeprom(sc, rc_addr);
|
|
rc_addr += RR_EE_WORD_LEN;
|
|
ee_addr = esh_read_eeprom(sc, rc_addr);
|
|
|
|
while (len--) {
|
|
value = esh_read_eeprom(sc, ee_addr);
|
|
bus_space_write_4(iot, ioh, RR_WINDOW_BASE, sram_addr);
|
|
bus_space_write_4(iot, ioh, RR_WINDOW_DATA, value);
|
|
|
|
ee_addr += RR_EE_WORD_LEN;
|
|
sram_addr += 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform bus DMA syncing operations on various rings.
|
|
* We have to worry about our relative position in the ring,
|
|
* and whether the ring has wrapped. All of this code should take
|
|
* care of those worries.
|
|
*/
|
|
|
|
static void
|
|
esh_dma_sync(sc, mem, start, end, entries, size, do_equal, ops)
|
|
struct esh_softc *sc;
|
|
void *mem;
|
|
int start;
|
|
int end;
|
|
int size;
|
|
int do_equal;
|
|
int ops;
|
|
{
|
|
int offset = mem - (void *) sc->sc_dma_addr;
|
|
|
|
if (start < end) {
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma,
|
|
offset + start * size,
|
|
(end - start) * size, ops);
|
|
} else if (do_equal || start != end) {
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma,
|
|
offset,
|
|
end * size, ops);
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma,
|
|
offset + start * size,
|
|
(entries - start) * size, ops);
|
|
}
|
|
}
|
|
|
|
/* ------------------------- debugging functions --------------------------- */
|
|
|
|
/*
|
|
* Print out status information about the NIC and the driver.
|
|
*/
|
|
|
|
static int
|
|
eshstatus(sc)
|
|
struct esh_softc *sc;
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
int i;
|
|
|
|
/* XXX: This looks pathetic, and should be improved! */
|
|
|
|
printf("%s: status -- fail1 %x fail2 %x\n",
|
|
sc->sc_dev.dv_xname,
|
|
bus_space_read_4(iot, ioh, RR_RUNCODE_FAIL1),
|
|
bus_space_read_4(iot, ioh, RR_RUNCODE_FAIL2));
|
|
printf("\tmisc host ctl %x misc local ctl %x\n",
|
|
bus_space_read_4(iot, ioh, RR_MISC_HOST_CTL),
|
|
bus_space_read_4(iot, ioh, RR_MISC_LOCAL_CTL));
|
|
printf("\toperating mode %x event producer %x\n",
|
|
bus_space_read_4(iot, ioh, RR_MODE_AND_STATUS),
|
|
bus_space_read_4(iot, ioh, RR_EVENT_PRODUCER));
|
|
printf("\tPC %x max rings %x\n",
|
|
bus_space_read_4(iot, ioh, RR_PROC_PC),
|
|
bus_space_read_4(iot, ioh, RR_MAX_RECV_RINGS));
|
|
printf("\tHIPPI tx state %x rx state %x\n",
|
|
bus_space_read_4(iot, ioh, RR_TX_STATE),
|
|
bus_space_read_4(iot, ioh, RR_RX_STATE));
|
|
printf("\tDMA write state %x read state %x\n",
|
|
bus_space_read_4(iot, ioh, RR_DMA_WRITE_STATE),
|
|
bus_space_read_4(iot, ioh, RR_DMA_READ_STATE));
|
|
printf("\tDMA write addr %x%x read addr %x%x\n",
|
|
bus_space_read_4(iot, ioh, RR_WRITE_HOST),
|
|
bus_space_read_4(iot, ioh, RR_WRITE_HOST + 4),
|
|
bus_space_read_4(iot, ioh, RR_READ_HOST),
|
|
bus_space_read_4(iot, ioh, RR_READ_HOST + 4));
|
|
|
|
for (i = 0; i < 64; i++)
|
|
if (sc->sc_gen_info->ri_stats.rs_stats[i])
|
|
printf("stat %x is %x\n", i * 4,
|
|
sc->sc_gen_info->ri_stats.rs_stats[i]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Print out the contents of a ring
|
|
*/
|
|
|
|
static void
|
|
esh_print_ring(sc, name, ring, size)
|
|
struct esh_softc *sc;
|
|
char *name;
|
|
struct esh_ring_ctl *ring;
|
|
int size;
|
|
{
|
|
int i;
|
|
|
|
printf("%s ring:\n\n", name);
|
|
|
|
for (i = 0; i < size; i++) {
|
|
printf("%2x %c%c addr: %8x len: %4x ring: %2x control %2x\n",
|
|
i,
|
|
(i == ring->ec_producer) ? 'P' : ' ',
|
|
(i == ring->ec_consumer) ? 'C' : ' ',
|
|
ring->ec_descr[i].rd_buffer_addr,
|
|
ring->ec_descr[i].rd_length,
|
|
ring->ec_descr[i].rd_ring,
|
|
ring->ec_descr[i].rd_control);
|
|
}
|
|
}
|
|
|
|
#ifdef ESH_PRINTF
|
|
|
|
/* Check to make sure that the NIC is still running */
|
|
|
|
static int
|
|
esh_check(sc)
|
|
struct esh_softc *sc;
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
|
|
if (bus_space_read_4(iot, ioh, RR_MISC_HOST_CTL) & RR_MH_HALT_PROC) {
|
|
printf("esh_check: NIC stopped\n");
|
|
eshstatus(sc);
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
#endif
|
|
|