NetBSD/sys/arch/alpha/pci/pci_bwx_bus_mem_chipdep.c
2001-09-04 16:14:49 +00:00

805 lines
22 KiB
C

/* $NetBSD: pci_bwx_bus_mem_chipdep.c,v 1.16 2001/09/04 16:14:49 thorpej Exp $ */
/*-
* Copyright (c) 1997, 1998, 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1995, 1996 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Chris G. Demetriou
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* Common PCI Chipset "bus I/O" functions, for chipsets which have to
* deal with only a single PCI interface chip in a machine.
*
* uses:
* CHIP name of the 'chip' it's being compiled for.
* CHIP_MEM_BASE Mem space base to use.
* CHIP_MEM_EX_STORE
* If defined, device-provided static storage area
* for the memory space extent. If this is
* defined, CHIP_MEM_EX_STORE_SIZE must also be
* defined. If this is not defined, a static area
* will be declared.
* CHIP_MEM_EX_STORE_SIZE
* Size of the device-provided static storage area
* for the memory space extent.
*/
#include <sys/extent.h>
#include <machine/bwx.h>
#define __C(A,B) __CONCAT(A,B)
#define __S(S) __STRING(S)
/* mapping/unmapping */
int __C(CHIP,_mem_map) __P((void *, bus_addr_t, bus_size_t, int,
bus_space_handle_t *, int));
void __C(CHIP,_mem_unmap) __P((void *, bus_space_handle_t,
bus_size_t, int));
int __C(CHIP,_mem_subregion) __P((void *, bus_space_handle_t,
bus_size_t, bus_size_t, bus_space_handle_t *));
int __C(CHIP,_mem_translate) __P((void *, bus_addr_t, bus_size_t,
int, struct alpha_bus_space_translation *));
int __C(CHIP,_mem_get_window) __P((void *, int,
struct alpha_bus_space_translation *));
/* allocation/deallocation */
int __C(CHIP,_mem_alloc) __P((void *, bus_addr_t, bus_addr_t,
bus_size_t, bus_size_t, bus_addr_t, int, bus_addr_t *,
bus_space_handle_t *));
void __C(CHIP,_mem_free) __P((void *, bus_space_handle_t,
bus_size_t));
/* get kernel virtual address */
void * __C(CHIP,_mem_vaddr) __P((void *, bus_space_handle_t));
/* mmap for user */
paddr_t __C(CHIP,_mem_mmap) __P((void *, bus_addr_t, off_t, int, int));
/* barrier */
inline void __C(CHIP,_mem_barrier) __P((void *, bus_space_handle_t,
bus_size_t, bus_size_t, int));
/* read (single) */
inline u_int8_t __C(CHIP,_mem_read_1) __P((void *, bus_space_handle_t,
bus_size_t));
inline u_int16_t __C(CHIP,_mem_read_2) __P((void *, bus_space_handle_t,
bus_size_t));
inline u_int32_t __C(CHIP,_mem_read_4) __P((void *, bus_space_handle_t,
bus_size_t));
inline u_int64_t __C(CHIP,_mem_read_8) __P((void *, bus_space_handle_t,
bus_size_t));
/* read multiple */
void __C(CHIP,_mem_read_multi_1) __P((void *, bus_space_handle_t,
bus_size_t, u_int8_t *, bus_size_t));
void __C(CHIP,_mem_read_multi_2) __P((void *, bus_space_handle_t,
bus_size_t, u_int16_t *, bus_size_t));
void __C(CHIP,_mem_read_multi_4) __P((void *, bus_space_handle_t,
bus_size_t, u_int32_t *, bus_size_t));
void __C(CHIP,_mem_read_multi_8) __P((void *, bus_space_handle_t,
bus_size_t, u_int64_t *, bus_size_t));
/* read region */
void __C(CHIP,_mem_read_region_1) __P((void *, bus_space_handle_t,
bus_size_t, u_int8_t *, bus_size_t));
void __C(CHIP,_mem_read_region_2) __P((void *, bus_space_handle_t,
bus_size_t, u_int16_t *, bus_size_t));
void __C(CHIP,_mem_read_region_4) __P((void *, bus_space_handle_t,
bus_size_t, u_int32_t *, bus_size_t));
void __C(CHIP,_mem_read_region_8) __P((void *, bus_space_handle_t,
bus_size_t, u_int64_t *, bus_size_t));
/* write (single) */
inline void __C(CHIP,_mem_write_1) __P((void *, bus_space_handle_t,
bus_size_t, u_int8_t));
inline void __C(CHIP,_mem_write_2) __P((void *, bus_space_handle_t,
bus_size_t, u_int16_t));
inline void __C(CHIP,_mem_write_4) __P((void *, bus_space_handle_t,
bus_size_t, u_int32_t));
inline void __C(CHIP,_mem_write_8) __P((void *, bus_space_handle_t,
bus_size_t, u_int64_t));
/* write multiple */
void __C(CHIP,_mem_write_multi_1) __P((void *, bus_space_handle_t,
bus_size_t, const u_int8_t *, bus_size_t));
void __C(CHIP,_mem_write_multi_2) __P((void *, bus_space_handle_t,
bus_size_t, const u_int16_t *, bus_size_t));
void __C(CHIP,_mem_write_multi_4) __P((void *, bus_space_handle_t,
bus_size_t, const u_int32_t *, bus_size_t));
void __C(CHIP,_mem_write_multi_8) __P((void *, bus_space_handle_t,
bus_size_t, const u_int64_t *, bus_size_t));
/* write region */
void __C(CHIP,_mem_write_region_1) __P((void *, bus_space_handle_t,
bus_size_t, const u_int8_t *, bus_size_t));
void __C(CHIP,_mem_write_region_2) __P((void *, bus_space_handle_t,
bus_size_t, const u_int16_t *, bus_size_t));
void __C(CHIP,_mem_write_region_4) __P((void *, bus_space_handle_t,
bus_size_t, const u_int32_t *, bus_size_t));
void __C(CHIP,_mem_write_region_8) __P((void *, bus_space_handle_t,
bus_size_t, const u_int64_t *, bus_size_t));
/* set multiple */
void __C(CHIP,_mem_set_multi_1) __P((void *, bus_space_handle_t,
bus_size_t, u_int8_t, bus_size_t));
void __C(CHIP,_mem_set_multi_2) __P((void *, bus_space_handle_t,
bus_size_t, u_int16_t, bus_size_t));
void __C(CHIP,_mem_set_multi_4) __P((void *, bus_space_handle_t,
bus_size_t, u_int32_t, bus_size_t));
void __C(CHIP,_mem_set_multi_8) __P((void *, bus_space_handle_t,
bus_size_t, u_int64_t, bus_size_t));
/* set region */
void __C(CHIP,_mem_set_region_1) __P((void *, bus_space_handle_t,
bus_size_t, u_int8_t, bus_size_t));
void __C(CHIP,_mem_set_region_2) __P((void *, bus_space_handle_t,
bus_size_t, u_int16_t, bus_size_t));
void __C(CHIP,_mem_set_region_4) __P((void *, bus_space_handle_t,
bus_size_t, u_int32_t, bus_size_t));
void __C(CHIP,_mem_set_region_8) __P((void *, bus_space_handle_t,
bus_size_t, u_int64_t, bus_size_t));
/* copy */
void __C(CHIP,_mem_copy_region_1) __P((void *, bus_space_handle_t,
bus_size_t, bus_space_handle_t, bus_size_t, bus_size_t));
void __C(CHIP,_mem_copy_region_2) __P((void *, bus_space_handle_t,
bus_size_t, bus_space_handle_t, bus_size_t, bus_size_t));
void __C(CHIP,_mem_copy_region_4) __P((void *, bus_space_handle_t,
bus_size_t, bus_space_handle_t, bus_size_t, bus_size_t));
void __C(CHIP,_mem_copy_region_8) __P((void *, bus_space_handle_t,
bus_size_t, bus_space_handle_t, bus_size_t, bus_size_t));
#ifndef CHIP_MEM_EX_STORE
static long
__C(CHIP,_mem_ex_storage)[EXTENT_FIXED_STORAGE_SIZE(8) / sizeof(long)];
#define CHIP_MEM_EX_STORE(v) (__C(CHIP,_mem_ex_storage))
#define CHIP_MEM_EX_STORE_SIZE(v) (sizeof __C(CHIP,_mem_ex_storage))
#endif
void
__C(CHIP,_bus_mem_init)(t, v)
bus_space_tag_t t;
void *v;
{
struct extent *ex;
/*
* Initialize the bus space tag.
*/
/* cookie */
t->abs_cookie = v;
/* mapping/unmapping */
t->abs_map = __C(CHIP,_mem_map);
t->abs_unmap = __C(CHIP,_mem_unmap);
t->abs_subregion = __C(CHIP,_mem_subregion);
t->abs_translate = __C(CHIP,_mem_translate);
t->abs_get_window = __C(CHIP,_mem_get_window);
/* allocation/deallocation */
t->abs_alloc = __C(CHIP,_mem_alloc);
t->abs_free = __C(CHIP,_mem_free);
/* get kernel virtual address */
t->abs_vaddr = __C(CHIP,_mem_vaddr);
/* mmap for user */
t->abs_mmap = __C(CHIP,_mem_mmap);
/* barrier */
t->abs_barrier = __C(CHIP,_mem_barrier);
/* read (single) */
t->abs_r_1 = __C(CHIP,_mem_read_1);
t->abs_r_2 = __C(CHIP,_mem_read_2);
t->abs_r_4 = __C(CHIP,_mem_read_4);
t->abs_r_8 = __C(CHIP,_mem_read_8);
/* read multiple */
t->abs_rm_1 = __C(CHIP,_mem_read_multi_1);
t->abs_rm_2 = __C(CHIP,_mem_read_multi_2);
t->abs_rm_4 = __C(CHIP,_mem_read_multi_4);
t->abs_rm_8 = __C(CHIP,_mem_read_multi_8);
/* read region */
t->abs_rr_1 = __C(CHIP,_mem_read_region_1);
t->abs_rr_2 = __C(CHIP,_mem_read_region_2);
t->abs_rr_4 = __C(CHIP,_mem_read_region_4);
t->abs_rr_8 = __C(CHIP,_mem_read_region_8);
/* write (single) */
t->abs_w_1 = __C(CHIP,_mem_write_1);
t->abs_w_2 = __C(CHIP,_mem_write_2);
t->abs_w_4 = __C(CHIP,_mem_write_4);
t->abs_w_8 = __C(CHIP,_mem_write_8);
/* write multiple */
t->abs_wm_1 = __C(CHIP,_mem_write_multi_1);
t->abs_wm_2 = __C(CHIP,_mem_write_multi_2);
t->abs_wm_4 = __C(CHIP,_mem_write_multi_4);
t->abs_wm_8 = __C(CHIP,_mem_write_multi_8);
/* write region */
t->abs_wr_1 = __C(CHIP,_mem_write_region_1);
t->abs_wr_2 = __C(CHIP,_mem_write_region_2);
t->abs_wr_4 = __C(CHIP,_mem_write_region_4);
t->abs_wr_8 = __C(CHIP,_mem_write_region_8);
/* set multiple */
t->abs_sm_1 = __C(CHIP,_mem_set_multi_1);
t->abs_sm_2 = __C(CHIP,_mem_set_multi_2);
t->abs_sm_4 = __C(CHIP,_mem_set_multi_4);
t->abs_sm_8 = __C(CHIP,_mem_set_multi_8);
/* set region */
t->abs_sr_1 = __C(CHIP,_mem_set_region_1);
t->abs_sr_2 = __C(CHIP,_mem_set_region_2);
t->abs_sr_4 = __C(CHIP,_mem_set_region_4);
t->abs_sr_8 = __C(CHIP,_mem_set_region_8);
/* copy */
t->abs_c_1 = __C(CHIP,_mem_copy_region_1);
t->abs_c_2 = __C(CHIP,_mem_copy_region_2);
t->abs_c_4 = __C(CHIP,_mem_copy_region_4);
t->abs_c_8 = __C(CHIP,_mem_copy_region_8);
ex = extent_create(__S(__C(CHIP,_bus_mem)), 0x0UL, 0xffffffffUL,
M_DEVBUF, (caddr_t)CHIP_MEM_EX_STORE(v), CHIP_MEM_EX_STORE_SIZE(v),
EX_NOWAIT|EX_NOCOALESCE);
CHIP_MEM_EXTENT(v) = ex;
}
int
__C(CHIP,_mem_translate)(v, memaddr, memlen, flags, abst)
void *v;
bus_addr_t memaddr;
bus_size_t memlen;
int flags;
struct alpha_bus_space_translation *abst;
{
/* XXX */
return (EOPNOTSUPP);
}
int
__C(CHIP,_mem_get_window)(v, window, abst)
void *v;
int window;
struct alpha_bus_space_translation *abst;
{
switch (window) {
case 0:
abst->abst_bus_start = 0;
abst->abst_bus_end = 0xffffffffUL;
abst->abst_sys_start = CHIP_MEM_SYS_START(v);
abst->abst_sys_end = CHIP_MEM_SYS_START(v) + abst->abst_bus_end;
abst->abst_addr_shift = 0;
abst->abst_size_shift = 0;
abst->abst_flags = ABST_DENSE|ABST_BWX;
break;
default:
panic(__S(__C(CHIP,_mem_get_window)) ": invalid window %d",
window);
}
return (0);
}
int
__C(CHIP,_mem_map)(v, memaddr, memsize, flags, memhp, acct)
void *v;
bus_addr_t memaddr;
bus_size_t memsize;
int flags;
bus_space_handle_t *memhp;
int acct;
{
int prefetchable = flags & BUS_SPACE_MAP_PREFETCHABLE;
int linear = flags & BUS_SPACE_MAP_LINEAR;
int error;
/* Requests for linear unprefetchable space can't be satisfied. */
if (linear && !prefetchable)
return (EOPNOTSUPP);
if (acct == 0)
goto mapit;
#ifdef EXTENT_DEBUG
printf("mem: allocating 0x%lx to 0x%lx\n", memaddr,
memaddr + memsize - 1);
#endif
error = extent_alloc_region(CHIP_MEM_EXTENT(v), memaddr, memsize,
EX_NOWAIT | (CHIP_EX_MALLOC_SAFE(v) ? EX_MALLOCOK : 0));
if (error) {
#ifdef EXTENT_DEBUG
printf("mem: allocation failed (%d)\n", error);
extent_print(CHIP_MEM_EXTENT(v));
#endif
return (error);
}
mapit:
*memhp = ALPHA_PHYS_TO_K0SEG(CHIP_MEM_SYS_START(v)) + memaddr;
return (0);
}
void
__C(CHIP,_mem_unmap)(v, memh, memsize, acct)
void *v;
bus_space_handle_t memh;
bus_size_t memsize;
int acct;
{
bus_addr_t memaddr;
int error;
if (acct == 0)
return;
#ifdef EXTENT_DEBUG
printf("mem: freeing handle 0x%lx for 0x%lx\n", memh, memsize);
#endif
memaddr = memh - ALPHA_PHYS_TO_K0SEG(CHIP_MEM_SYS_START(v));
#ifdef EXTENT_DEBUG
printf("mem: freeing 0x%lx to 0x%lx\n", memaddr, memaddr + memsize - 1);
#endif
error = extent_free(CHIP_MEM_EXTENT(v), memaddr, memsize,
EX_NOWAIT | (CHIP_EX_MALLOC_SAFE(v) ? EX_MALLOCOK : 0));
if (error) {
printf("%s: WARNING: could not unmap 0x%lx-0x%lx (error %d)\n",
__S(__C(CHIP,_mem_unmap)), memaddr, memaddr + memsize - 1,
error);
#ifdef EXTENT_DEBUG
extent_print(CHIP_MEM_EXTENT(v));
#endif
}
}
int
__C(CHIP,_mem_subregion)(v, memh, offset, size, nmemh)
void *v;
bus_space_handle_t memh, *nmemh;
bus_size_t offset, size;
{
*nmemh = memh + offset;
return (0);
}
int
__C(CHIP,_mem_alloc)(v, rstart, rend, size, align, boundary, flags,
addrp, bshp)
void *v;
bus_addr_t rstart, rend, *addrp;
bus_size_t size, align, boundary;
int flags;
bus_space_handle_t *bshp;
{
int prefetchable = flags & BUS_SPACE_MAP_PREFETCHABLE;
int linear = flags & BUS_SPACE_MAP_LINEAR;
bus_addr_t memaddr;
int error;
/* Requests for linear unprefetchable space can't be satisfied. */
if (linear && !prefetchable)
return (EOPNOTSUPP);
/*
* Do the requested allocation.
*/
#ifdef EXTENT_DEBUG
printf("mem: allocating from 0x%lx to 0x%lx\n", rstart, rend);
#endif
error = extent_alloc_subregion(CHIP_MEM_EXTENT(v), rstart, rend,
size, align, boundary,
EX_FAST | EX_NOWAIT | (CHIP_EX_MALLOC_SAFE(v) ? EX_MALLOCOK : 0),
&memaddr);
if (error) {
#ifdef EXTENT_DEBUG
printf("mem: allocation failed (%d)\n", error);
extent_print(CHIP_MEM_EXTENT(v));
#endif
}
#ifdef EXTENT_DEBUG
printf("mem: allocated 0x%lx to 0x%lx\n", memaddr, memaddr + size - 1);
#endif
*addrp = memaddr;
*bshp = ALPHA_PHYS_TO_K0SEG(CHIP_MEM_SYS_START(v)) + memaddr;
return (0);
}
void
__C(CHIP,_mem_free)(v, bsh, size)
void *v;
bus_space_handle_t bsh;
bus_size_t size;
{
/* Unmap does all we need to do. */
__C(CHIP,_mem_unmap)(v, bsh, size, 1);
}
void *
__C(CHIP,_mem_vaddr)(v, bsh)
void *v;
bus_space_handle_t bsh;
{
/*
* We get linear access only with BUS_SPACE_MAP_PREFETCHABLE,
* so it should be OK if the caller doesn't use BWX instructions.
*/
return ((void *)bsh);
}
paddr_t
__C(CHIP,_mem_mmap)(v, addr, off, prot, flags)
void *v;
bus_addr_t addr;
off_t off;
int prot;
int flags;
{
return (alpha_btop(CHIP_MEM_SYS_START(v) + addr + off));
}
inline void
__C(CHIP,_mem_barrier)(v, h, o, l, f)
void *v;
bus_space_handle_t h;
bus_size_t o, l;
int f;
{
if ((f & BUS_SPACE_BARRIER_READ) != 0)
alpha_mb();
else if ((f & BUS_SPACE_BARRIER_WRITE) != 0)
alpha_wmb();
}
inline u_int8_t
__C(CHIP,_mem_read_1)(v, memh, off)
void *v;
bus_space_handle_t memh;
bus_size_t off;
{
bus_addr_t addr;
addr = memh + off;
alpha_mb();
return (alpha_ldbu((u_int8_t *)addr));
}
inline u_int16_t
__C(CHIP,_mem_read_2)(v, memh, off)
void *v;
bus_space_handle_t memh;
bus_size_t off;
{
bus_addr_t addr;
addr = memh + off;
#ifdef DIAGNOSTIC
if (addr & 1)
panic(__S(__C(CHIP,_mem_read_2)) ": addr 0x%lx not aligned",
addr);
#endif
alpha_mb();
return (alpha_ldwu((u_int16_t *)addr));
}
inline u_int32_t
__C(CHIP,_mem_read_4)(v, memh, off)
void *v;
bus_space_handle_t memh;
bus_size_t off;
{
bus_addr_t addr;
addr = memh + off;
#ifdef DIAGNOSTIC
if (addr & 3)
panic(__S(__C(CHIP,_mem_read_4)) ": addr 0x%lx not aligned",
addr);
#endif
alpha_mb();
return (*(u_int32_t *)addr);
}
inline u_int64_t
__C(CHIP,_mem_read_8)(v, memh, off)
void *v;
bus_space_handle_t memh;
bus_size_t off;
{
alpha_mb();
/* XXX XXX XXX */
panic("%s not implemented", __S(__C(CHIP,_mem_read_8)));
}
#define CHIP_mem_read_multi_N(BYTES,TYPE) \
void \
__C(__C(CHIP,_mem_read_multi_),BYTES)(v, h, o, a, c) \
void *v; \
bus_space_handle_t h; \
bus_size_t o, c; \
TYPE *a; \
{ \
\
while (c-- > 0) { \
__C(CHIP,_mem_barrier)(v, h, o, sizeof *a, \
BUS_SPACE_BARRIER_READ); \
*a++ = __C(__C(CHIP,_mem_read_),BYTES)(v, h, o); \
} \
}
CHIP_mem_read_multi_N(1,u_int8_t)
CHIP_mem_read_multi_N(2,u_int16_t)
CHIP_mem_read_multi_N(4,u_int32_t)
CHIP_mem_read_multi_N(8,u_int64_t)
#define CHIP_mem_read_region_N(BYTES,TYPE) \
void \
__C(__C(CHIP,_mem_read_region_),BYTES)(v, h, o, a, c) \
void *v; \
bus_space_handle_t h; \
bus_size_t o, c; \
TYPE *a; \
{ \
\
while (c-- > 0) { \
*a++ = __C(__C(CHIP,_mem_read_),BYTES)(v, h, o); \
o += sizeof *a; \
} \
}
CHIP_mem_read_region_N(1,u_int8_t)
CHIP_mem_read_region_N(2,u_int16_t)
CHIP_mem_read_region_N(4,u_int32_t)
CHIP_mem_read_region_N(8,u_int64_t)
inline void
__C(CHIP,_mem_write_1)(v, memh, off, val)
void *v;
bus_space_handle_t memh;
bus_size_t off;
u_int8_t val;
{
bus_addr_t addr;
addr = memh + off;
alpha_stb((u_int8_t *)addr, val);
alpha_mb();
}
inline void
__C(CHIP,_mem_write_2)(v, memh, off, val)
void *v;
bus_space_handle_t memh;
bus_size_t off;
u_int16_t val;
{
bus_addr_t addr;
addr = memh + off;
#ifdef DIAGNOSTIC
if (addr & 1)
panic(__S(__C(CHIP,_mem_write_2)) ": addr 0x%lx not aligned",
addr);
#endif
alpha_stw((u_int16_t *)addr, val);
alpha_mb();
}
inline void
__C(CHIP,_mem_write_4)(v, memh, off, val)
void *v;
bus_space_handle_t memh;
bus_size_t off;
u_int32_t val;
{
bus_addr_t addr;
addr = memh + off;
#ifdef DIAGNOSTIC
if (addr & 3)
panic(__S(__C(CHIP,_mem_write_4)) ": addr 0x%lx not aligned",
addr);
#endif
*(u_int32_t *)addr = val;
alpha_mb();
}
inline void
__C(CHIP,_mem_write_8)(v, memh, off, val)
void *v;
bus_space_handle_t memh;
bus_size_t off;
u_int64_t val;
{
/* XXX XXX XXX */
panic("%s not implemented", __S(__C(CHIP,_mem_write_8)));
alpha_mb();
}
#define CHIP_mem_write_multi_N(BYTES,TYPE) \
void \
__C(__C(CHIP,_mem_write_multi_),BYTES)(v, h, o, a, c) \
void *v; \
bus_space_handle_t h; \
bus_size_t o, c; \
const TYPE *a; \
{ \
\
while (c-- > 0) { \
__C(__C(CHIP,_mem_write_),BYTES)(v, h, o, *a++); \
__C(CHIP,_mem_barrier)(v, h, o, sizeof *a, \
BUS_SPACE_BARRIER_WRITE); \
} \
}
CHIP_mem_write_multi_N(1,u_int8_t)
CHIP_mem_write_multi_N(2,u_int16_t)
CHIP_mem_write_multi_N(4,u_int32_t)
CHIP_mem_write_multi_N(8,u_int64_t)
#define CHIP_mem_write_region_N(BYTES,TYPE) \
void \
__C(__C(CHIP,_mem_write_region_),BYTES)(v, h, o, a, c) \
void *v; \
bus_space_handle_t h; \
bus_size_t o, c; \
const TYPE *a; \
{ \
\
while (c-- > 0) { \
__C(__C(CHIP,_mem_write_),BYTES)(v, h, o, *a++); \
o += sizeof *a; \
} \
}
CHIP_mem_write_region_N(1,u_int8_t)
CHIP_mem_write_region_N(2,u_int16_t)
CHIP_mem_write_region_N(4,u_int32_t)
CHIP_mem_write_region_N(8,u_int64_t)
#define CHIP_mem_set_multi_N(BYTES,TYPE) \
void \
__C(__C(CHIP,_mem_set_multi_),BYTES)(v, h, o, val, c) \
void *v; \
bus_space_handle_t h; \
bus_size_t o, c; \
TYPE val; \
{ \
\
while (c-- > 0) { \
__C(__C(CHIP,_mem_write_),BYTES)(v, h, o, val); \
__C(CHIP,_mem_barrier)(v, h, o, sizeof val, \
BUS_SPACE_BARRIER_WRITE); \
} \
}
CHIP_mem_set_multi_N(1,u_int8_t)
CHIP_mem_set_multi_N(2,u_int16_t)
CHIP_mem_set_multi_N(4,u_int32_t)
CHIP_mem_set_multi_N(8,u_int64_t)
#define CHIP_mem_set_region_N(BYTES,TYPE) \
void \
__C(__C(CHIP,_mem_set_region_),BYTES)(v, h, o, val, c) \
void *v; \
bus_space_handle_t h; \
bus_size_t o, c; \
TYPE val; \
{ \
\
while (c-- > 0) { \
__C(__C(CHIP,_mem_write_),BYTES)(v, h, o, val); \
o += sizeof val; \
} \
}
CHIP_mem_set_region_N(1,u_int8_t)
CHIP_mem_set_region_N(2,u_int16_t)
CHIP_mem_set_region_N(4,u_int32_t)
CHIP_mem_set_region_N(8,u_int64_t)
#define CHIP_mem_copy_region_N(BYTES) \
void \
__C(__C(CHIP,_mem_copy_region_),BYTES)(v, h1, o1, h2, o2, c) \
void *v; \
bus_space_handle_t h1, h2; \
bus_size_t o1, o2, c; \
{ \
bus_size_t o; \
\
if ((h1 + o1) >= (h2 + o2)) { \
/* src after dest: copy forward */ \
for (o = 0; c != 0; c--, o += BYTES) { \
__C(__C(CHIP,_mem_write_),BYTES)(v, h2, o2 + o, \
__C(__C(CHIP,_mem_read_),BYTES)(v, h1, o1 + o)); \
} \
} else { \
/* dest after src: copy backwards */ \
for (o = (c - 1) * BYTES; c != 0; c--, o -= BYTES) { \
__C(__C(CHIP,_mem_write_),BYTES)(v, h2, o2 + o, \
__C(__C(CHIP,_mem_read_),BYTES)(v, h1, o1 + o)); \
} \
} \
}
CHIP_mem_copy_region_N(1)
CHIP_mem_copy_region_N(2)
CHIP_mem_copy_region_N(4)
CHIP_mem_copy_region_N(8)