NetBSD/sys/net/npf/npf_portmap.c

580 lines
14 KiB
C

/*-
* Copyright (c) 2019 Mindaugas Rasiukevicius <rmind at noxt eu>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* NPF port map mechanism.
*
* The port map is a bitmap used to track TCP/UDP ports used for
* translation. Port maps are per IP addresses, therefore multiple
* NAT policies operating on the same IP address will share the
* same port map.
*/
#ifdef _KERNEL
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: npf_portmap.c,v 1.7 2020/08/28 06:35:50 riastradh Exp $");
#include <sys/param.h>
#include <sys/types.h>
#include <sys/atomic.h>
#include <sys/bitops.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/cprng.h>
#include <sys/thmap.h>
#endif
#include "npf_impl.h"
/*
* Port map uses two-level bitmaps with compression to efficiently
* represent the maximum of 65536 (2^16) values.
*
* Level 0: 64 chunks each representing 1048 bits in two modes:
*
* a) If PORTMAP_L1_TAG, then up to 5 values are packed in the
* 64-bit integer using 12 bits for each value, starting from the
* most significant bits. The four 4 least significant bits are
* unused or reserved for pointer tagging.
*
* b) If there are more than 5 values, then PORTMAP_L1_TAG is set
* and the value serves as a pointer to the second level bitmap.
*
* Level 1: 16 chunks each representing 64 bits in plain uint64_t.
*/
#define PORTMAP_MAX_BITS (65536U)
#define PORTMAP_MASK (PORTMAP_MAX_BITS - 1)
#define PORTMAP_L0_SHIFT (10) // or 11
#define PORTMAP_L0_MASK ((1U << PORTMAP_L0_SHIFT) - 1)
#define PORTMAP_L0_WORDS (PORTMAP_MAX_BITS >> PORTMAP_L0_SHIFT)
#define PORTMAP_L1_SHIFT (6)
#define PORTMAP_L1_MASK ((1U << PORTMAP_L1_SHIFT) - 1)
#define PORTMAP_L1_WORDS \
((PORTMAP_MAX_BITS / PORTMAP_L0_WORDS) >> PORTMAP_L1_SHIFT)
#define PORTMAP_L1_TAG (UINT64_C(1)) // use level 1
#define PORTMAP_L1_GET(p) ((void *)((uintptr_t)(p) & ~(uintptr_t)3))
CTASSERT(sizeof(uint64_t) >= sizeof(uintptr_t));
typedef struct {
volatile uint64_t bits1[PORTMAP_L1_WORDS];
} bitmap_l1_t;
typedef struct bitmap {
npf_addr_t addr;
volatile uint64_t bits0[PORTMAP_L0_WORDS];
LIST_ENTRY(bitmap) entry;
unsigned addr_len;
} bitmap_t;
#define NPF_PORTMAP_MINPORT 1024
#define NPF_PORTMAP_MAXPORT 65535
struct npf_portmap {
thmap_t * addr_map;
LIST_HEAD(, bitmap) bitmap_list;
kmutex_t list_lock;
int min_port;
int max_port;
};
static kmutex_t portmap_lock;
void
npf_portmap_sysinit(void)
{
mutex_init(&portmap_lock, MUTEX_DEFAULT, IPL_SOFTNET);
}
void
npf_portmap_sysfini(void)
{
mutex_destroy(&portmap_lock);
}
void
npf_portmap_init(npf_t *npf)
{
npf_portmap_t *pm = npf_portmap_create(
NPF_PORTMAP_MINPORT, NPF_PORTMAP_MAXPORT);
npf_param_t param_map[] = {
{
"portmap.min_port",
&pm->min_port,
.default_val = NPF_PORTMAP_MINPORT,
.min = 1024, .max = 65535
},
{
"portmap.max_port",
&pm->max_port,
.default_val = 49151, // RFC 6335
.min = 1024, .max = 65535
}
};
npf_param_register(npf, param_map, __arraycount(param_map));
npf->portmap = pm;
}
void
npf_portmap_fini(npf_t *npf)
{
npf_portmap_destroy(npf->portmap);
npf->portmap = NULL; // diagnostic
}
npf_portmap_t *
npf_portmap_create(int min_port, int max_port)
{
npf_portmap_t *pm;
pm = kmem_zalloc(sizeof(npf_portmap_t), KM_SLEEP);
mutex_init(&pm->list_lock, MUTEX_DEFAULT, IPL_SOFTNET);
pm->addr_map = thmap_create(0, NULL, THMAP_NOCOPY);
pm->min_port = min_port;
pm->max_port = max_port;
return pm;
}
void
npf_portmap_destroy(npf_portmap_t *pm)
{
npf_portmap_flush(pm);
KASSERT(LIST_EMPTY(&pm->bitmap_list));
thmap_destroy(pm->addr_map);
mutex_destroy(&pm->list_lock);
kmem_free(pm, sizeof(npf_portmap_t));
}
/////////////////////////////////////////////////////////////////////////
#if defined(_LP64)
#define __npf_atomic_cas_64 atomic_cas_64
#else
static uint64_t
__npf_atomic_cas_64(volatile uint64_t *ptr, uint64_t old, uint64_t new)
{
uint64_t prev;
mutex_enter(&portmap_lock);
prev = *ptr;
if (prev == old) {
*ptr = new;
}
mutex_exit(&portmap_lock);
return prev;
}
#endif
/*
* bitmap_word_isset: test whether the bit value is in the packed array.
*
* => Return true if any value equals the bit number value.
*
* Packed array: 60 MSB bits, 5 values, 12 bits each.
*
* Reference: "Bit Twiddling Hacks" by S.E. Anderson, Stanford.
* Based on the hasvalue() and haszero() ideas. Since values are
* represented by upper 60 bits, we shift right by 4.
*/
static bool
bitmap_word_isset(uint64_t x, unsigned bit)
{
uint64_t m, r;
bit++;
KASSERT((x & PORTMAP_L1_TAG) == 0);
KASSERT(bit <= (PORTMAP_L0_MASK + 1));
m = (x >> 4) ^ (UINT64_C(0x1001001001001) * bit);
r = (m - UINT64_C(0x1001001001001)) & (~m & UINT64_C(0x800800800800800));
return r != 0;
}
/*
* bitmap_word_cax: compare-and-xor on packed array elements.
*/
static uint64_t
bitmap_word_cax(uint64_t x, int exp, int bit)
{
unsigned e = exp + 1;
/*
* We need to distinguish "no value" from zero. Just add one,
* since we use 12 bits to represent 11 bit values.
*/
bit++;
KASSERT((unsigned)bit <= (PORTMAP_L0_MASK + 1));
KASSERT((x & PORTMAP_L1_TAG) == 0);
if (((x >> 52) & 0xfff) == e)
return x ^ ((uint64_t)bit << 52);
if (((x >> 40) & 0xfff) == e)
return x ^ ((uint64_t)bit << 40);
if (((x >> 28) & 0xfff) == e)
return x ^ ((uint64_t)bit << 28);
if (((x >> 16) & 0xfff) == e)
return x ^ ((uint64_t)bit << 16);
if (((x >> 4) & 0xfff) == e)
return x ^ ((uint64_t)bit << 4);
return 0;
}
static unsigned
bitmap_word_unpack(uint64_t x, unsigned bitvals[static 5])
{
unsigned n = 0;
uint64_t v;
KASSERT((x & PORTMAP_L1_TAG) == 0);
if ((v = ((x >> 52)) & 0xfff) != 0)
bitvals[n++] = v - 1;
if ((v = ((x >> 40)) & 0xfff) != 0)
bitvals[n++] = v - 1;
if ((v = ((x >> 28)) & 0xfff) != 0)
bitvals[n++] = v - 1;
if ((v = ((x >> 16)) & 0xfff) != 0)
bitvals[n++] = v - 1;
if ((v = ((x >> 4)) & 0xfff) != 0)
bitvals[n++] = v - 1;
return n;
}
#if 0
static bool
bitmap_isset(const bitmap_t *bm, unsigned bit)
{
unsigned i, chunk_bit;
uint64_t bval, b;
bitmap_l1_t *bm1;
KASSERT(bit < PORTMAP_MAX_BITS);
i = bit >> PORTMAP_L0_SHIFT;
bval = atomic_load_relaxed(&bm->bits0[i]);
/*
* Empty check. Note: we can test the whole word against zero,
* since zero bit values in the packed array result in bits set.
*/
if (bval == 0)
return false;
/* Level 0 check. */
chunk_bit = bit & PORTMAP_L0_MASK;
if ((bval & PORTMAP_L1_TAG) == 0)
return bitmap_word_isset(bval, chunk_bit);
/* Level 1 check. */
bm1 = PORTMAP_L1_GET(bval);
KASSERT(bm1 != NULL);
i = chunk_bit >> PORTMAP_L1_SHIFT;
b = UINT64_C(1) << (chunk_bit & PORTMAP_L1_MASK);
return (bm1->bits1[i] & b) != 0;
}
#endif
static bool
bitmap_set(bitmap_t *bm, unsigned bit)
{
unsigned i, chunk_bit;
uint64_t bval, b, oval, nval;
bitmap_l1_t *bm1;
again:
KASSERT(bit < PORTMAP_MAX_BITS);
i = bit >> PORTMAP_L0_SHIFT;
chunk_bit = bit & PORTMAP_L0_MASK;
bval = bm->bits0[i];
if ((bval & PORTMAP_L1_TAG) == 0) {
unsigned n = 0, bitvals[5];
uint64_t bm1p;
if (bitmap_word_isset(bval, chunk_bit)) {
return false;
}
/*
* Look for a zero-slot and put a value there.
*/
if ((nval = bitmap_word_cax(bval, -1, chunk_bit)) != 0) {
KASSERT((nval & PORTMAP_L1_TAG) == 0);
if (__npf_atomic_cas_64(&bm->bits0[i], bval, nval) != bval) {
goto again;
}
return true;
}
/*
* Full: allocate L1 block and copy over the current
* values into the level.
*/
bm1 = kmem_intr_zalloc(sizeof(bitmap_l1_t), KM_NOSLEEP);
if (bm1 == NULL) {
return false; // error
}
n = bitmap_word_unpack(bval, bitvals);
while (n--) {
const unsigned v = bitvals[n];
const unsigned off = v >> PORTMAP_L1_SHIFT;
KASSERT(v <= PORTMAP_L0_MASK);
KASSERT(off < (sizeof(uint64_t) * CHAR_BIT));
bm1->bits1[off] |= UINT64_C(1) << (v & PORTMAP_L1_MASK);
}
/*
* Attempt to set the L1 structure. Note: there is no
* ABA problem since the we compare the actual values.
* Note: CAS serves as a memory barrier.
*/
bm1p = (uintptr_t)bm1;
KASSERT((bm1p & PORTMAP_L1_TAG) == 0);
bm1p |= PORTMAP_L1_TAG;
if (__npf_atomic_cas_64(&bm->bits0[i], bval, bm1p) != bval) {
kmem_intr_free(bm1, sizeof(bitmap_l1_t));
goto again;
}
bval = bm1p;
}
bm1 = PORTMAP_L1_GET(bval);
KASSERT(bm1 != NULL);
i = chunk_bit >> PORTMAP_L1_SHIFT;
b = UINT64_C(1) << (chunk_bit & PORTMAP_L1_MASK);
oval = bm1->bits1[i];
if (oval & b) {
return false;
}
nval = oval | b;
if (__npf_atomic_cas_64(&bm1->bits1[i], oval, nval) != oval) {
goto again;
}
return true;
}
static bool
bitmap_clr(bitmap_t *bm, unsigned bit)
{
unsigned i, chunk_bit;
uint64_t bval, b, oval, nval;
bitmap_l1_t *bm1;
again:
KASSERT(bit < PORTMAP_MAX_BITS);
i = bit >> PORTMAP_L0_SHIFT;
chunk_bit = bit & PORTMAP_L0_MASK;
bval = bm->bits0[i];
if ((bval & PORTMAP_L1_TAG) == 0) {
if (!bitmap_word_isset(bval, chunk_bit)) {
return false;
}
nval = bitmap_word_cax(bval, chunk_bit, chunk_bit);
KASSERT((nval & PORTMAP_L1_TAG) == 0);
if (__npf_atomic_cas_64(&bm->bits0[i], bval, nval) != bval) {
goto again;
}
return true;
}
bm1 = PORTMAP_L1_GET(bval);
KASSERT(bm1 != NULL);
i = chunk_bit >> PORTMAP_L1_SHIFT;
b = UINT64_C(1) << (chunk_bit & PORTMAP_L1_MASK);
oval = bm1->bits1[i];
if ((oval & b) == 0) {
return false;
}
nval = oval & ~b;
if (__npf_atomic_cas_64(&bm1->bits1[i], oval, nval) != oval) {
goto again;
}
return true;
}
/////////////////////////////////////////////////////////////////////////
static bitmap_t *
npf_portmap_autoget(npf_portmap_t *pm, unsigned alen, const npf_addr_t *addr)
{
bitmap_t *bm;
KASSERT(pm && pm->addr_map);
KASSERT(alen && alen <= sizeof(npf_addr_t));
/* Lookup the port map for this address. */
bm = thmap_get(pm->addr_map, addr, alen);
if (bm == NULL) {
void *ret;
/*
* Allocate a new port map for this address and
* attempt to insert it.
*/
bm = kmem_intr_zalloc(sizeof(bitmap_t), KM_NOSLEEP);
if (bm == NULL) {
return NULL;
}
memcpy(&bm->addr, addr, alen);
bm->addr_len = alen;
int s = splsoftnet();
ret = thmap_put(pm->addr_map, &bm->addr, alen, bm);
splx(s);
if (ret == bm) {
/* Success: insert the bitmap into the list. */
mutex_enter(&pm->list_lock);
LIST_INSERT_HEAD(&pm->bitmap_list, bm, entry);
mutex_exit(&pm->list_lock);
} else {
/* Race: use an existing bitmap. */
kmem_free(bm, sizeof(bitmap_t));
bm = ret;
}
}
return bm;
}
/*
* npf_portmap_flush: free all bitmaps and remove all addresses.
*
* => Concurrent calls to this routine are not allowed; therefore no
* need to acquire locks.
*/
void
npf_portmap_flush(npf_portmap_t *pm)
{
bitmap_t *bm;
while ((bm = LIST_FIRST(&pm->bitmap_list)) != NULL) {
for (unsigned i = 0; i < PORTMAP_L0_WORDS; i++) {
uintptr_t bm1 = bm->bits0[i];
if (bm1 & PORTMAP_L1_TAG) {
bitmap_l1_t *bm1p = PORTMAP_L1_GET(bm1);
kmem_intr_free(bm1p, sizeof(bitmap_l1_t));
}
bm->bits0[i] = UINT64_C(0);
}
LIST_REMOVE(bm, entry);
thmap_del(pm->addr_map, &bm->addr, bm->addr_len);
kmem_intr_free(bm, sizeof(bitmap_t));
}
/* Note: the caller ensures there are no active references. */
thmap_gc(pm->addr_map, thmap_stage_gc(pm->addr_map));
}
/*
* npf_portmap_get: allocate and return a port from the given portmap.
*
* => Returns the port value in network byte-order.
* => Zero indicates a failure.
*/
in_port_t
npf_portmap_get(npf_portmap_t *pm, int alen, const npf_addr_t *addr)
{
const unsigned min_port = atomic_load_relaxed(&pm->min_port);
const unsigned max_port = atomic_load_relaxed(&pm->max_port);
const unsigned port_delta = max_port - min_port + 1;
unsigned bit, target;
bitmap_t *bm;
/* Sanity check: the user might set incorrect parameters. */
if (__predict_false(min_port > max_port)) {
return 0;
}
bm = npf_portmap_autoget(pm, alen, addr);
if (__predict_false(bm == NULL)) {
/* No memory. */
return 0;
}
/* Randomly select a port. */
target = min_port + (cprng_fast32() % port_delta);
bit = target;
next:
if (bitmap_set(bm, bit)) {
/* Success. */
return htons(bit);
}
bit = min_port + ((bit + 1) % port_delta);
if (target != bit) {
/* Next.. */
goto next;
}
/* No space. */
return 0;
}
/*
* npf_portmap_take: allocate a specific port in the portmap.
*/
bool
npf_portmap_take(npf_portmap_t *pm, int alen,
const npf_addr_t *addr, in_port_t port)
{
bitmap_t *bm = npf_portmap_autoget(pm, alen, addr);
port = ntohs(port);
if (!bm || port < pm->min_port || port > pm->max_port) {
/* Out of memory / invalid port. */
return false;
}
return bitmap_set(bm, port);
}
/*
* npf_portmap_put: release the port, making it available in the portmap.
*
* => The port value should be in network byte-order.
*/
void
npf_portmap_put(npf_portmap_t *pm, int alen,
const npf_addr_t *addr, in_port_t port)
{
bitmap_t *bm;
bm = npf_portmap_autoget(pm, alen, addr);
if (bm) {
port = ntohs(port);
bitmap_clr(bm, port);
}
}