a80fb12074
http://mail-index.netbsd.org/current-users/2019/02/24/msg035220.html: Convert the mutex to spin-lock at IPL_NET (but it is excessive) and convert the memory allocations in that code path to KM_NOSLEEP.
454 lines
10 KiB
C
454 lines
10 KiB
C
/*-
|
|
* Copyright (c) 2016 Mindaugas Rasiukevicius <rmind at noxt eu>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Longest Prefix Match (LPM) library supporting IPv4 and IPv6.
|
|
*
|
|
* Algorithm:
|
|
*
|
|
* Each prefix gets its own hash map and all added prefixes are saved
|
|
* in a bitmap. On a lookup, we perform a linear scan of hash maps,
|
|
* iterating through the added prefixes only. Usually, there are only
|
|
* a few unique prefixes used and such simple algorithm is very efficient.
|
|
* With many IPv6 prefixes, the linear scan might become a bottleneck.
|
|
*/
|
|
|
|
#if defined(_KERNEL)
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: lpm.c,v 1.6 2019/06/12 14:36:32 christos Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kmem.h>
|
|
#else
|
|
#include <sys/socket.h>
|
|
#include <arpa/inet.h>
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdbool.h>
|
|
#include <stddef.h>
|
|
#include <string.h>
|
|
#include <strings.h>
|
|
#include <errno.h>
|
|
#include <assert.h>
|
|
#define kmem_alloc(a, b) malloc(a)
|
|
#define kmem_free(a, b) free(a)
|
|
#define kmem_zalloc(a, b) calloc(a, 1)
|
|
#endif
|
|
|
|
#include "lpm.h"
|
|
|
|
#define LPM_MAX_PREFIX (128)
|
|
#define LPM_MAX_WORDS (LPM_MAX_PREFIX >> 5)
|
|
#define LPM_TO_WORDS(x) ((x) >> 2)
|
|
#define LPM_HASH_STEP (8)
|
|
#define LPM_LEN_IDX(len) ((len) >> 4)
|
|
|
|
#ifdef DEBUG
|
|
#define ASSERT assert
|
|
#else
|
|
#define ASSERT(x)
|
|
#endif
|
|
|
|
typedef struct lpm_ent {
|
|
struct lpm_ent *next;
|
|
void * val;
|
|
unsigned len;
|
|
uint8_t key[];
|
|
} lpm_ent_t;
|
|
|
|
typedef struct {
|
|
unsigned hashsize;
|
|
unsigned nitems;
|
|
lpm_ent_t ** bucket;
|
|
} lpm_hmap_t;
|
|
|
|
struct lpm {
|
|
uint32_t bitmask[LPM_MAX_WORDS];
|
|
int flags;
|
|
void * defvals[2];
|
|
lpm_hmap_t prefix[LPM_MAX_PREFIX + 1];
|
|
};
|
|
|
|
static const uint32_t zero_address[LPM_MAX_WORDS];
|
|
|
|
lpm_t *
|
|
lpm_create(int flags)
|
|
{
|
|
lpm_t *lpm = kmem_zalloc(sizeof(*lpm), KM_SLEEP);
|
|
lpm->flags = flags;
|
|
return lpm;
|
|
}
|
|
|
|
void
|
|
lpm_clear(lpm_t *lpm, lpm_dtor_t dtor, void *arg)
|
|
{
|
|
for (unsigned n = 0; n <= LPM_MAX_PREFIX; n++) {
|
|
lpm_hmap_t *hmap = &lpm->prefix[n];
|
|
|
|
if (!hmap->hashsize) {
|
|
KASSERT(!hmap->bucket);
|
|
continue;
|
|
}
|
|
for (unsigned i = 0; i < hmap->hashsize; i++) {
|
|
lpm_ent_t *entry = hmap->bucket[i];
|
|
|
|
while (entry) {
|
|
lpm_ent_t *next = entry->next;
|
|
|
|
if (dtor) {
|
|
dtor(arg, entry->key,
|
|
entry->len, entry->val);
|
|
}
|
|
kmem_free(entry,
|
|
offsetof(lpm_ent_t, key[entry->len]));
|
|
entry = next;
|
|
}
|
|
}
|
|
kmem_free(hmap->bucket, hmap->hashsize * sizeof(lpm_ent_t *));
|
|
hmap->bucket = NULL;
|
|
hmap->hashsize = 0;
|
|
hmap->nitems = 0;
|
|
}
|
|
if (dtor) {
|
|
dtor(arg, zero_address, 4, lpm->defvals[0]);
|
|
dtor(arg, zero_address, 16, lpm->defvals[1]);
|
|
}
|
|
memset(lpm->bitmask, 0, sizeof(lpm->bitmask));
|
|
memset(lpm->defvals, 0, sizeof(lpm->defvals));
|
|
}
|
|
|
|
void
|
|
lpm_destroy(lpm_t *lpm)
|
|
{
|
|
lpm_clear(lpm, NULL, NULL);
|
|
kmem_free(lpm, sizeof(*lpm));
|
|
}
|
|
|
|
/*
|
|
* fnv1a_hash: Fowler-Noll-Vo hash function (FNV-1a variant).
|
|
*/
|
|
static uint32_t
|
|
fnv1a_hash(const void *buf, size_t len)
|
|
{
|
|
uint32_t hash = 2166136261UL;
|
|
const uint8_t *p = buf;
|
|
|
|
while (len--) {
|
|
hash ^= *p++;
|
|
hash *= 16777619U;
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
static bool
|
|
hashmap_rehash(lpm_hmap_t *hmap, unsigned size, int flags)
|
|
{
|
|
lpm_ent_t **bucket;
|
|
unsigned hashsize;
|
|
|
|
for (hashsize = 1; hashsize < size; hashsize <<= 1) {
|
|
continue;
|
|
}
|
|
bucket = kmem_zalloc(hashsize * sizeof(lpm_ent_t *), flags);
|
|
if (bucket == NULL)
|
|
return false;
|
|
for (unsigned n = 0; n < hmap->hashsize; n++) {
|
|
lpm_ent_t *list = hmap->bucket[n];
|
|
|
|
while (list) {
|
|
lpm_ent_t *entry = list;
|
|
uint32_t hash = fnv1a_hash(entry->key, entry->len);
|
|
const unsigned i = hash & (hashsize - 1);
|
|
|
|
list = entry->next;
|
|
entry->next = bucket[i];
|
|
bucket[i] = entry;
|
|
}
|
|
}
|
|
if (hmap->bucket)
|
|
kmem_free(hmap->bucket, hmap->hashsize * sizeof(lpm_ent_t *));
|
|
hmap->bucket = bucket;
|
|
hmap->hashsize = hashsize;
|
|
return true;
|
|
}
|
|
|
|
static lpm_ent_t *
|
|
hashmap_insert(lpm_hmap_t *hmap, const void *key, size_t len, int flags)
|
|
{
|
|
const unsigned target = hmap->nitems + LPM_HASH_STEP;
|
|
const size_t entlen = offsetof(lpm_ent_t, key[len]);
|
|
uint32_t hash, i;
|
|
lpm_ent_t *entry;
|
|
|
|
if (hmap->hashsize < target && !hashmap_rehash(hmap, target, flags)) {
|
|
return NULL;
|
|
}
|
|
|
|
hash = fnv1a_hash(key, len);
|
|
i = hash & (hmap->hashsize - 1);
|
|
entry = hmap->bucket[i];
|
|
while (entry) {
|
|
if (entry->len == len && memcmp(entry->key, key, len) == 0) {
|
|
return entry;
|
|
}
|
|
entry = entry->next;
|
|
}
|
|
|
|
if ((entry = kmem_alloc(entlen, flags)) != NULL) {
|
|
memcpy(entry->key, key, len);
|
|
entry->next = hmap->bucket[i];
|
|
entry->len = len;
|
|
|
|
hmap->bucket[i] = entry;
|
|
hmap->nitems++;
|
|
}
|
|
return entry;
|
|
}
|
|
|
|
static lpm_ent_t *
|
|
hashmap_lookup(lpm_hmap_t *hmap, const void *key, size_t len)
|
|
{
|
|
const uint32_t hash = fnv1a_hash(key, len);
|
|
const unsigned i = hash & (hmap->hashsize - 1);
|
|
lpm_ent_t *entry;
|
|
|
|
if (hmap->hashsize == 0) {
|
|
return NULL;
|
|
}
|
|
entry = hmap->bucket[i];
|
|
|
|
while (entry) {
|
|
if (entry->len == len && memcmp(entry->key, key, len) == 0) {
|
|
return entry;
|
|
}
|
|
entry = entry->next;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
hashmap_remove(lpm_hmap_t *hmap, const void *key, size_t len)
|
|
{
|
|
const uint32_t hash = fnv1a_hash(key, len);
|
|
const unsigned i = hash & (hmap->hashsize - 1);
|
|
lpm_ent_t *prev = NULL, *entry;
|
|
|
|
if (hmap->hashsize == 0) {
|
|
return -1;
|
|
}
|
|
entry = hmap->bucket[i];
|
|
|
|
while (entry) {
|
|
if (entry->len == len && memcmp(entry->key, key, len) == 0) {
|
|
if (prev) {
|
|
prev->next = entry->next;
|
|
} else {
|
|
hmap->bucket[i] = entry->next;
|
|
}
|
|
kmem_free(entry, offsetof(lpm_ent_t, key[len]));
|
|
return 0;
|
|
}
|
|
prev = entry;
|
|
entry = entry->next;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* compute_prefix: given the address and prefix length, compute and
|
|
* return the address prefix.
|
|
*/
|
|
static inline void
|
|
compute_prefix(const unsigned nwords, const uint32_t *addr,
|
|
unsigned preflen, uint32_t *prefix)
|
|
{
|
|
uint32_t addr2[4];
|
|
|
|
if ((uintptr_t)addr & 3) {
|
|
/* Unaligned address: just copy for now. */
|
|
memcpy(addr2, addr, nwords * 4);
|
|
addr = addr2;
|
|
}
|
|
for (unsigned i = 0; i < nwords; i++) {
|
|
if (preflen == 0) {
|
|
prefix[i] = 0;
|
|
continue;
|
|
}
|
|
if (preflen < 32) {
|
|
uint32_t mask = htonl(0xffffffff << (32 - preflen));
|
|
prefix[i] = addr[i] & mask;
|
|
preflen = 0;
|
|
} else {
|
|
prefix[i] = addr[i];
|
|
preflen -= 32;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* lpm_insert: insert the CIDR into the LPM table.
|
|
*
|
|
* => Returns zero on success and -1 on failure.
|
|
*/
|
|
int
|
|
lpm_insert(lpm_t *lpm, const void *addr,
|
|
size_t len, unsigned preflen, void *val)
|
|
{
|
|
const unsigned nwords = LPM_TO_WORDS(len);
|
|
uint32_t prefix[LPM_MAX_WORDS];
|
|
lpm_ent_t *entry;
|
|
KASSERT(len == 4 || len == 16);
|
|
|
|
if (preflen == 0) {
|
|
/* 0-length prefix is a special case. */
|
|
lpm->defvals[LPM_LEN_IDX(len)] = val;
|
|
return 0;
|
|
}
|
|
compute_prefix(nwords, addr, preflen, prefix);
|
|
entry = hashmap_insert(&lpm->prefix[preflen], prefix, len, lpm->flags);
|
|
if (entry) {
|
|
const unsigned n = --preflen >> 5;
|
|
lpm->bitmask[n] |= 0x80000000U >> (preflen & 31);
|
|
entry->val = val;
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* lpm_remove: remove the specified prefix.
|
|
*/
|
|
int
|
|
lpm_remove(lpm_t *lpm, const void *addr, size_t len, unsigned preflen)
|
|
{
|
|
const unsigned nwords = LPM_TO_WORDS(len);
|
|
uint32_t prefix[LPM_MAX_WORDS];
|
|
KASSERT(len == 4 || len == 16);
|
|
|
|
if (preflen == 0) {
|
|
lpm->defvals[LPM_LEN_IDX(len)] = NULL;
|
|
return 0;
|
|
}
|
|
compute_prefix(nwords, addr, preflen, prefix);
|
|
return hashmap_remove(&lpm->prefix[preflen], prefix, len);
|
|
}
|
|
|
|
/*
|
|
* lpm_lookup: find the longest matching prefix given the IP address.
|
|
*
|
|
* => Returns the associated value on success or NULL on failure.
|
|
*/
|
|
void *
|
|
lpm_lookup(lpm_t *lpm, const void *addr, size_t len)
|
|
{
|
|
const unsigned nwords = LPM_TO_WORDS(len);
|
|
unsigned i, n = nwords;
|
|
uint32_t prefix[LPM_MAX_WORDS];
|
|
|
|
while (n--) {
|
|
uint32_t bitmask = lpm->bitmask[n];
|
|
|
|
while ((i = ffs(bitmask)) != 0) {
|
|
const unsigned preflen = (32 * n) + (32 - --i);
|
|
lpm_hmap_t *hmap = &lpm->prefix[preflen];
|
|
lpm_ent_t *entry;
|
|
|
|
compute_prefix(nwords, addr, preflen, prefix);
|
|
entry = hashmap_lookup(hmap, prefix, len);
|
|
if (entry) {
|
|
return entry->val;
|
|
}
|
|
bitmask &= ~(1U << i);
|
|
}
|
|
}
|
|
return lpm->defvals[LPM_LEN_IDX(len)];
|
|
}
|
|
|
|
/*
|
|
* lpm_lookup_prefix: return the value associated with a prefix
|
|
*
|
|
* => Returns the associated value on success or NULL on failure.
|
|
*/
|
|
void *
|
|
lpm_lookup_prefix(lpm_t *lpm, const void *addr, size_t len, unsigned preflen)
|
|
{
|
|
const unsigned nwords = LPM_TO_WORDS(len);
|
|
uint32_t prefix[LPM_MAX_WORDS];
|
|
lpm_ent_t *entry;
|
|
KASSERT(len == 4 || len == 16);
|
|
|
|
if (preflen == 0) {
|
|
return lpm->defvals[LPM_LEN_IDX(len)];
|
|
}
|
|
compute_prefix(nwords, addr, preflen, prefix);
|
|
entry = hashmap_lookup(&lpm->prefix[preflen], prefix, len);
|
|
if (entry) {
|
|
return entry->val;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
#if !defined(_KERNEL)
|
|
/*
|
|
* lpm_strtobin: convert CIDR string to the binary IP address and mask.
|
|
*
|
|
* => The address will be in the network byte order.
|
|
* => Returns 0 on success or -1 on failure.
|
|
*/
|
|
int
|
|
lpm_strtobin(const char *cidr, void *addr, size_t *len, unsigned *preflen)
|
|
{
|
|
char *p, buf[INET6_ADDRSTRLEN];
|
|
|
|
strncpy(buf, cidr, sizeof(buf));
|
|
buf[sizeof(buf) - 1] = '\0';
|
|
|
|
if ((p = strchr(buf, '/')) != NULL) {
|
|
const ptrdiff_t off = p - buf;
|
|
*preflen = atoi(&buf[off + 1]);
|
|
buf[off] = '\0';
|
|
} else {
|
|
*preflen = LPM_MAX_PREFIX;
|
|
}
|
|
|
|
if (inet_pton(AF_INET6, buf, addr) == 1) {
|
|
*len = 16;
|
|
return 0;
|
|
}
|
|
if (inet_pton(AF_INET, buf, addr) == 1) {
|
|
if (*preflen == LPM_MAX_PREFIX) {
|
|
*preflen = 32;
|
|
}
|
|
*len = 4;
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
#endif
|