954 lines
24 KiB
C
954 lines
24 KiB
C
/* $NetBSD: pci.c,v 1.116 2008/04/09 17:01:53 dyoung Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1995, 1996, 1997, 1998
|
|
* Christopher G. Demetriou. All rights reserved.
|
|
* Copyright (c) 1994 Charles M. Hannum. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Charles M. Hannum.
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* PCI bus autoconfiguration.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: pci.c,v 1.116 2008/04/09 17:01:53 dyoung Exp $");
|
|
|
|
#include "opt_pci.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/device.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcidevs.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <net/if.h>
|
|
|
|
#include "locators.h"
|
|
|
|
static bool pci_child_register(device_t);
|
|
|
|
#ifdef PCI_CONFIG_DUMP
|
|
int pci_config_dump = 1;
|
|
#else
|
|
int pci_config_dump = 0;
|
|
#endif
|
|
|
|
int pciprint(void *, const char *);
|
|
|
|
#ifdef PCI_MACHDEP_ENUMERATE_BUS
|
|
#define pci_enumerate_bus PCI_MACHDEP_ENUMERATE_BUS
|
|
#else
|
|
int pci_enumerate_bus(struct pci_softc *, const int *,
|
|
int (*)(struct pci_attach_args *), struct pci_attach_args *);
|
|
#endif
|
|
|
|
/*
|
|
* Important note about PCI-ISA bridges:
|
|
*
|
|
* Callbacks are used to configure these devices so that ISA/EISA bridges
|
|
* can attach their child busses after PCI configuration is done.
|
|
*
|
|
* This works because:
|
|
* (1) there can be at most one ISA/EISA bridge per PCI bus, and
|
|
* (2) any ISA/EISA bridges must be attached to primary PCI
|
|
* busses (i.e. bus zero).
|
|
*
|
|
* That boils down to: there can only be one of these outstanding
|
|
* at a time, it is cleared when configuring PCI bus 0 before any
|
|
* subdevices have been found, and it is run after all subdevices
|
|
* of PCI bus 0 have been found.
|
|
*
|
|
* This is needed because there are some (legacy) PCI devices which
|
|
* can show up as ISA/EISA devices as well (the prime example of which
|
|
* are VGA controllers). If you attach ISA from a PCI-ISA/EISA bridge,
|
|
* and the bridge is seen before the video board is, the board can show
|
|
* up as an ISA device, and that can (bogusly) complicate the PCI device's
|
|
* attach code, or make the PCI device not be properly attached at all.
|
|
*
|
|
* We use the generic config_defer() facility to achieve this.
|
|
*/
|
|
|
|
int
|
|
pcirescan(device_t self, const char *ifattr, const int *locators)
|
|
{
|
|
struct pci_softc *sc = device_private(self);
|
|
|
|
KASSERT(ifattr && !strcmp(ifattr, "pci"));
|
|
KASSERT(locators);
|
|
|
|
pci_enumerate_bus(sc, locators, NULL, NULL);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
pcimatch(device_t parent, cfdata_t cf, void *aux)
|
|
{
|
|
struct pcibus_attach_args *pba = aux;
|
|
|
|
/* Check the locators */
|
|
if (cf->cf_loc[PCIBUSCF_BUS] != PCIBUSCF_BUS_DEFAULT &&
|
|
cf->cf_loc[PCIBUSCF_BUS] != pba->pba_bus)
|
|
return (0);
|
|
|
|
/* sanity */
|
|
if (pba->pba_bus < 0 || pba->pba_bus > 255)
|
|
return (0);
|
|
|
|
/*
|
|
* XXX check other (hardware?) indicators
|
|
*/
|
|
|
|
return (1);
|
|
}
|
|
|
|
void
|
|
pciattach(device_t parent, device_t self, void *aux)
|
|
{
|
|
struct pcibus_attach_args *pba = aux;
|
|
struct pci_softc *sc = device_private(self);
|
|
int io_enabled, mem_enabled, mrl_enabled, mrm_enabled, mwi_enabled;
|
|
const char *sep = "";
|
|
static const int wildcard[PCICF_NLOCS] = {
|
|
PCICF_DEV_DEFAULT, PCICF_FUNCTION_DEFAULT
|
|
};
|
|
|
|
sc->sc_dev = self;
|
|
|
|
pci_attach_hook(parent, self, pba);
|
|
|
|
aprint_naive("\n");
|
|
aprint_normal("\n");
|
|
|
|
io_enabled = (pba->pba_flags & PCI_FLAGS_IO_ENABLED);
|
|
mem_enabled = (pba->pba_flags & PCI_FLAGS_MEM_ENABLED);
|
|
mrl_enabled = (pba->pba_flags & PCI_FLAGS_MRL_OKAY);
|
|
mrm_enabled = (pba->pba_flags & PCI_FLAGS_MRM_OKAY);
|
|
mwi_enabled = (pba->pba_flags & PCI_FLAGS_MWI_OKAY);
|
|
|
|
if (io_enabled == 0 && mem_enabled == 0) {
|
|
aprint_error_dev(self, "no spaces enabled!\n");
|
|
goto fail;
|
|
}
|
|
|
|
#define PRINT(str) \
|
|
do { \
|
|
aprint_verbose("%s%s", sep, str); \
|
|
sep = ", "; \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
aprint_verbose_dev(self, "");
|
|
|
|
if (io_enabled)
|
|
PRINT("i/o space");
|
|
if (mem_enabled)
|
|
PRINT("memory space");
|
|
aprint_verbose(" enabled");
|
|
|
|
if (mrl_enabled || mrm_enabled || mwi_enabled) {
|
|
if (mrl_enabled)
|
|
PRINT("rd/line");
|
|
if (mrm_enabled)
|
|
PRINT("rd/mult");
|
|
if (mwi_enabled)
|
|
PRINT("wr/inv");
|
|
aprint_verbose(" ok");
|
|
}
|
|
|
|
aprint_verbose("\n");
|
|
|
|
#undef PRINT
|
|
|
|
sc->sc_iot = pba->pba_iot;
|
|
sc->sc_memt = pba->pba_memt;
|
|
sc->sc_dmat = pba->pba_dmat;
|
|
sc->sc_dmat64 = pba->pba_dmat64;
|
|
sc->sc_pc = pba->pba_pc;
|
|
sc->sc_bus = pba->pba_bus;
|
|
sc->sc_bridgetag = pba->pba_bridgetag;
|
|
sc->sc_maxndevs = pci_bus_maxdevs(pba->pba_pc, pba->pba_bus);
|
|
sc->sc_intrswiz = pba->pba_intrswiz;
|
|
sc->sc_intrtag = pba->pba_intrtag;
|
|
sc->sc_flags = pba->pba_flags;
|
|
|
|
device_pmf_driver_set_child_register(sc->sc_dev, pci_child_register);
|
|
|
|
pcirescan(sc->sc_dev, "pci", wildcard);
|
|
|
|
fail:
|
|
if (!pmf_device_register(self, NULL, NULL))
|
|
aprint_error_dev(self, "couldn't establish power handler\n");
|
|
}
|
|
|
|
int
|
|
pcidetach(device_t self, int flags)
|
|
{
|
|
int rc;
|
|
|
|
if ((rc = config_detach_children(self, flags)) != 0)
|
|
return rc;
|
|
pmf_device_deregister(self);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
pciprint(void *aux, const char *pnp)
|
|
{
|
|
struct pci_attach_args *pa = aux;
|
|
char devinfo[256];
|
|
const struct pci_quirkdata *qd;
|
|
|
|
if (pnp) {
|
|
pci_devinfo(pa->pa_id, pa->pa_class, 1, devinfo, sizeof(devinfo));
|
|
aprint_normal("%s at %s", devinfo, pnp);
|
|
}
|
|
aprint_normal(" dev %d function %d", pa->pa_device, pa->pa_function);
|
|
if (pci_config_dump) {
|
|
printf(": ");
|
|
pci_conf_print(pa->pa_pc, pa->pa_tag, NULL);
|
|
if (!pnp)
|
|
pci_devinfo(pa->pa_id, pa->pa_class, 1, devinfo, sizeof(devinfo));
|
|
printf("%s at %s", devinfo, pnp ? pnp : "?");
|
|
printf(" dev %d function %d (", pa->pa_device, pa->pa_function);
|
|
#ifdef __i386__
|
|
printf("tag %#lx, intrtag %#lx, intrswiz %#lx, intrpin %#lx",
|
|
*(long *)&pa->pa_tag, *(long *)&pa->pa_intrtag,
|
|
(long)pa->pa_intrswiz, (long)pa->pa_intrpin);
|
|
#else
|
|
printf("intrswiz %#lx, intrpin %#lx",
|
|
(long)pa->pa_intrswiz, (long)pa->pa_intrpin);
|
|
#endif
|
|
printf(", i/o %s, mem %s,",
|
|
pa->pa_flags & PCI_FLAGS_IO_ENABLED ? "on" : "off",
|
|
pa->pa_flags & PCI_FLAGS_MEM_ENABLED ? "on" : "off");
|
|
qd = pci_lookup_quirkdata(PCI_VENDOR(pa->pa_id),
|
|
PCI_PRODUCT(pa->pa_id));
|
|
if (qd == NULL) {
|
|
printf(" no quirks");
|
|
} else {
|
|
bitmask_snprintf(qd->quirks,
|
|
"\002\001multifn\002singlefn\003skipfunc0"
|
|
"\004skipfunc1\005skipfunc2\006skipfunc3"
|
|
"\007skipfunc4\010skipfunc5\011skipfunc6"
|
|
"\012skipfunc7",
|
|
devinfo, sizeof (devinfo));
|
|
printf(" quirks %s", devinfo);
|
|
}
|
|
printf(")");
|
|
}
|
|
return (UNCONF);
|
|
}
|
|
|
|
int
|
|
pci_probe_device(struct pci_softc *sc, pcitag_t tag,
|
|
int (*match)(struct pci_attach_args *), struct pci_attach_args *pap)
|
|
{
|
|
pci_chipset_tag_t pc = sc->sc_pc;
|
|
struct pci_attach_args pa;
|
|
pcireg_t id, csr, class, intr, bhlcr;
|
|
int ret, pin, bus, device, function;
|
|
int locs[PCICF_NLOCS];
|
|
device_t subdev;
|
|
|
|
pci_decompose_tag(pc, tag, &bus, &device, &function);
|
|
|
|
/* a driver already attached? */
|
|
if (sc->PCI_SC_DEVICESC(device, function) && !match)
|
|
return (0);
|
|
|
|
bhlcr = pci_conf_read(pc, tag, PCI_BHLC_REG);
|
|
if (PCI_HDRTYPE_TYPE(bhlcr) > 2)
|
|
return (0);
|
|
|
|
id = pci_conf_read(pc, tag, PCI_ID_REG);
|
|
csr = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG);
|
|
class = pci_conf_read(pc, tag, PCI_CLASS_REG);
|
|
|
|
/* Invalid vendor ID value? */
|
|
if (PCI_VENDOR(id) == PCI_VENDOR_INVALID)
|
|
return (0);
|
|
/* XXX Not invalid, but we've done this ~forever. */
|
|
if (PCI_VENDOR(id) == 0)
|
|
return (0);
|
|
|
|
pa.pa_iot = sc->sc_iot;
|
|
pa.pa_memt = sc->sc_memt;
|
|
pa.pa_dmat = sc->sc_dmat;
|
|
pa.pa_dmat64 = sc->sc_dmat64;
|
|
pa.pa_pc = pc;
|
|
pa.pa_bus = bus;
|
|
pa.pa_device = device;
|
|
pa.pa_function = function;
|
|
pa.pa_tag = tag;
|
|
pa.pa_id = id;
|
|
pa.pa_class = class;
|
|
|
|
/*
|
|
* Set up memory, I/O enable, and PCI command flags
|
|
* as appropriate.
|
|
*/
|
|
pa.pa_flags = sc->sc_flags;
|
|
if ((csr & PCI_COMMAND_IO_ENABLE) == 0)
|
|
pa.pa_flags &= ~PCI_FLAGS_IO_ENABLED;
|
|
if ((csr & PCI_COMMAND_MEM_ENABLE) == 0)
|
|
pa.pa_flags &= ~PCI_FLAGS_MEM_ENABLED;
|
|
|
|
/*
|
|
* If the cache line size is not configured, then
|
|
* clear the MRL/MRM/MWI command-ok flags.
|
|
*/
|
|
if (PCI_CACHELINE(bhlcr) == 0)
|
|
pa.pa_flags &= ~(PCI_FLAGS_MRL_OKAY|
|
|
PCI_FLAGS_MRM_OKAY|PCI_FLAGS_MWI_OKAY);
|
|
|
|
if (sc->sc_bridgetag == NULL) {
|
|
pa.pa_intrswiz = 0;
|
|
pa.pa_intrtag = tag;
|
|
} else {
|
|
pa.pa_intrswiz = sc->sc_intrswiz + device;
|
|
pa.pa_intrtag = sc->sc_intrtag;
|
|
}
|
|
|
|
intr = pci_conf_read(pc, tag, PCI_INTERRUPT_REG);
|
|
|
|
pin = PCI_INTERRUPT_PIN(intr);
|
|
pa.pa_rawintrpin = pin;
|
|
if (pin == PCI_INTERRUPT_PIN_NONE) {
|
|
/* no interrupt */
|
|
pa.pa_intrpin = 0;
|
|
} else {
|
|
/*
|
|
* swizzle it based on the number of busses we're
|
|
* behind and our device number.
|
|
*/
|
|
pa.pa_intrpin = /* XXX */
|
|
((pin + pa.pa_intrswiz - 1) % 4) + 1;
|
|
}
|
|
pa.pa_intrline = PCI_INTERRUPT_LINE(intr);
|
|
|
|
if (match != NULL) {
|
|
ret = (*match)(&pa);
|
|
if (ret != 0 && pap != NULL)
|
|
*pap = pa;
|
|
} else {
|
|
locs[PCICF_DEV] = device;
|
|
locs[PCICF_FUNCTION] = function;
|
|
|
|
subdev = config_found_sm_loc(sc->sc_dev, "pci", locs, &pa,
|
|
pciprint, config_stdsubmatch);
|
|
sc->PCI_SC_DEVICESC(device, function) = subdev;
|
|
ret = (subdev != NULL);
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
void
|
|
pcidevdetached(device_t self, device_t child)
|
|
{
|
|
struct pci_softc *psc = device_private(self);
|
|
int d, f;
|
|
|
|
d = device_locator(child, PCICF_DEV);
|
|
f = device_locator(child, PCICF_FUNCTION);
|
|
|
|
KASSERT(psc->PCI_SC_DEVICESC(d, f) == child);
|
|
|
|
psc->PCI_SC_DEVICESC(d, f) = 0;
|
|
}
|
|
|
|
CFATTACH_DECL2_NEW(pci, sizeof(struct pci_softc),
|
|
pcimatch, pciattach, pcidetach, NULL, pcirescan, pcidevdetached);
|
|
|
|
int
|
|
pci_get_capability(pci_chipset_tag_t pc, pcitag_t tag, int capid,
|
|
int *offset, pcireg_t *value)
|
|
{
|
|
pcireg_t reg;
|
|
unsigned int ofs;
|
|
|
|
reg = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG);
|
|
if (!(reg & PCI_STATUS_CAPLIST_SUPPORT))
|
|
return (0);
|
|
|
|
/* Determine the Capability List Pointer register to start with. */
|
|
reg = pci_conf_read(pc, tag, PCI_BHLC_REG);
|
|
switch (PCI_HDRTYPE_TYPE(reg)) {
|
|
case 0: /* standard device header */
|
|
case 1: /* PCI-PCI bridge header */
|
|
ofs = PCI_CAPLISTPTR_REG;
|
|
break;
|
|
case 2: /* PCI-CardBus Bridge header */
|
|
ofs = PCI_CARDBUS_CAPLISTPTR_REG;
|
|
break;
|
|
default:
|
|
return (0);
|
|
}
|
|
|
|
ofs = PCI_CAPLIST_PTR(pci_conf_read(pc, tag, ofs));
|
|
while (ofs != 0) {
|
|
#ifdef DIAGNOSTIC
|
|
if ((ofs & 3) || (ofs < 0x40))
|
|
panic("pci_get_capability");
|
|
#endif
|
|
reg = pci_conf_read(pc, tag, ofs);
|
|
if (PCI_CAPLIST_CAP(reg) == capid) {
|
|
if (offset)
|
|
*offset = ofs;
|
|
if (value)
|
|
*value = reg;
|
|
return (1);
|
|
}
|
|
ofs = PCI_CAPLIST_NEXT(reg);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
pci_find_device(struct pci_attach_args *pa,
|
|
int (*match)(struct pci_attach_args *))
|
|
{
|
|
extern struct cfdriver pci_cd;
|
|
device_t pcidev;
|
|
int i;
|
|
static const int wildcard[2] = {
|
|
PCICF_DEV_DEFAULT,
|
|
PCICF_FUNCTION_DEFAULT
|
|
};
|
|
|
|
for (i = 0; i < pci_cd.cd_ndevs; i++) {
|
|
pcidev = pci_cd.cd_devs[i];
|
|
if (pcidev != NULL &&
|
|
pci_enumerate_bus(device_private(pcidev), wildcard,
|
|
match, pa) != 0)
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
#ifndef PCI_MACHDEP_ENUMERATE_BUS
|
|
/*
|
|
* Generic PCI bus enumeration routine. Used unless machine-dependent
|
|
* code needs to provide something else.
|
|
*/
|
|
int
|
|
pci_enumerate_bus(struct pci_softc *sc, const int *locators,
|
|
int (*match)(struct pci_attach_args *), struct pci_attach_args *pap)
|
|
{
|
|
pci_chipset_tag_t pc = sc->sc_pc;
|
|
int device, function, nfunctions, ret;
|
|
const struct pci_quirkdata *qd;
|
|
pcireg_t id, bhlcr;
|
|
pcitag_t tag;
|
|
#ifdef __PCI_BUS_DEVORDER
|
|
char devs[32];
|
|
int i;
|
|
#endif
|
|
|
|
#ifdef __PCI_BUS_DEVORDER
|
|
pci_bus_devorder(sc->sc_pc, sc->sc_bus, devs);
|
|
for (i = 0; (device = devs[i]) < 32 && device >= 0; i++)
|
|
#else
|
|
for (device = 0; device < sc->sc_maxndevs; device++)
|
|
#endif
|
|
{
|
|
if ((locators[PCICF_DEV] != PCICF_DEV_DEFAULT) &&
|
|
(locators[PCICF_DEV] != device))
|
|
continue;
|
|
|
|
tag = pci_make_tag(pc, sc->sc_bus, device, 0);
|
|
|
|
bhlcr = pci_conf_read(pc, tag, PCI_BHLC_REG);
|
|
if (PCI_HDRTYPE_TYPE(bhlcr) > 2)
|
|
continue;
|
|
|
|
id = pci_conf_read(pc, tag, PCI_ID_REG);
|
|
|
|
/* Invalid vendor ID value? */
|
|
if (PCI_VENDOR(id) == PCI_VENDOR_INVALID)
|
|
continue;
|
|
/* XXX Not invalid, but we've done this ~forever. */
|
|
if (PCI_VENDOR(id) == 0)
|
|
continue;
|
|
|
|
qd = pci_lookup_quirkdata(PCI_VENDOR(id), PCI_PRODUCT(id));
|
|
|
|
if (qd != NULL &&
|
|
(qd->quirks & PCI_QUIRK_MULTIFUNCTION) != 0)
|
|
nfunctions = 8;
|
|
else if (qd != NULL &&
|
|
(qd->quirks & PCI_QUIRK_MONOFUNCTION) != 0)
|
|
nfunctions = 1;
|
|
else
|
|
nfunctions = PCI_HDRTYPE_MULTIFN(bhlcr) ? 8 : 1;
|
|
|
|
for (function = 0; function < nfunctions; function++) {
|
|
if ((locators[PCICF_FUNCTION] != PCICF_FUNCTION_DEFAULT)
|
|
&& (locators[PCICF_FUNCTION] != function))
|
|
continue;
|
|
|
|
if (qd != NULL &&
|
|
(qd->quirks & PCI_QUIRK_SKIP_FUNC(function)) != 0)
|
|
continue;
|
|
tag = pci_make_tag(pc, sc->sc_bus, device, function);
|
|
ret = pci_probe_device(sc, tag, match, pap);
|
|
if (match != NULL && ret != 0)
|
|
return (ret);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
#endif /* PCI_MACHDEP_ENUMERATE_BUS */
|
|
|
|
|
|
/*
|
|
* Vital Product Data (PCI 2.2)
|
|
*/
|
|
|
|
int
|
|
pci_vpd_read(pci_chipset_tag_t pc, pcitag_t tag, int offset, int count,
|
|
pcireg_t *data)
|
|
{
|
|
uint32_t reg;
|
|
int ofs, i, j;
|
|
|
|
KASSERT(data != NULL);
|
|
KASSERT((offset + count) < 0x7fff);
|
|
|
|
if (pci_get_capability(pc, tag, PCI_CAP_VPD, &ofs, ®) == 0)
|
|
return (1);
|
|
|
|
for (i = 0; i < count; offset += sizeof(*data), i++) {
|
|
reg &= 0x0000ffff;
|
|
reg &= ~PCI_VPD_OPFLAG;
|
|
reg |= PCI_VPD_ADDRESS(offset);
|
|
pci_conf_write(pc, tag, ofs, reg);
|
|
|
|
/*
|
|
* PCI 2.2 does not specify how long we should poll
|
|
* for completion nor whether the operation can fail.
|
|
*/
|
|
j = 0;
|
|
do {
|
|
if (j++ == 20)
|
|
return (1);
|
|
delay(4);
|
|
reg = pci_conf_read(pc, tag, ofs);
|
|
} while ((reg & PCI_VPD_OPFLAG) == 0);
|
|
data[i] = pci_conf_read(pc, tag, PCI_VPD_DATAREG(ofs));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
pci_vpd_write(pci_chipset_tag_t pc, pcitag_t tag, int offset, int count,
|
|
pcireg_t *data)
|
|
{
|
|
pcireg_t reg;
|
|
int ofs, i, j;
|
|
|
|
KASSERT(data != NULL);
|
|
KASSERT((offset + count) < 0x7fff);
|
|
|
|
if (pci_get_capability(pc, tag, PCI_CAP_VPD, &ofs, ®) == 0)
|
|
return (1);
|
|
|
|
for (i = 0; i < count; offset += sizeof(*data), i++) {
|
|
pci_conf_write(pc, tag, PCI_VPD_DATAREG(ofs), data[i]);
|
|
|
|
reg &= 0x0000ffff;
|
|
reg |= PCI_VPD_OPFLAG;
|
|
reg |= PCI_VPD_ADDRESS(offset);
|
|
pci_conf_write(pc, tag, ofs, reg);
|
|
|
|
/*
|
|
* PCI 2.2 does not specify how long we should poll
|
|
* for completion nor whether the operation can fail.
|
|
*/
|
|
j = 0;
|
|
do {
|
|
if (j++ == 20)
|
|
return (1);
|
|
delay(1);
|
|
reg = pci_conf_read(pc, tag, ofs);
|
|
} while (reg & PCI_VPD_OPFLAG);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
pci_dma64_available(struct pci_attach_args *pa)
|
|
{
|
|
#ifdef _PCI_HAVE_DMA64
|
|
if (BUS_DMA_TAG_VALID(pa->pa_dmat64) &&
|
|
((uint64_t)physmem << PAGE_SHIFT) > 0xffffffffULL)
|
|
return 1;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
pci_conf_capture(pci_chipset_tag_t pc, pcitag_t tag,
|
|
struct pci_conf_state *pcs)
|
|
{
|
|
int off;
|
|
|
|
for (off = 0; off < 16; off++)
|
|
pcs->reg[off] = pci_conf_read(pc, tag, (off * 4));
|
|
|
|
return;
|
|
}
|
|
|
|
void
|
|
pci_conf_restore(pci_chipset_tag_t pc, pcitag_t tag,
|
|
struct pci_conf_state *pcs)
|
|
{
|
|
int off;
|
|
pcireg_t val;
|
|
|
|
for (off = 15; off >= 0; off--) {
|
|
val = pci_conf_read(pc, tag, (off * 4));
|
|
if (val != pcs->reg[off])
|
|
pci_conf_write(pc, tag, (off * 4), pcs->reg[off]);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Power Management Capability (Rev 2.2)
|
|
*/
|
|
static int
|
|
pci_get_powerstate_int(pci_chipset_tag_t pc, pcitag_t tag , pcireg_t *state,
|
|
int offset)
|
|
{
|
|
pcireg_t value, now;
|
|
|
|
value = pci_conf_read(pc, tag, offset + PCI_PMCSR);
|
|
now = value & PCI_PMCSR_STATE_MASK;
|
|
switch (now) {
|
|
case PCI_PMCSR_STATE_D0:
|
|
case PCI_PMCSR_STATE_D1:
|
|
case PCI_PMCSR_STATE_D2:
|
|
case PCI_PMCSR_STATE_D3:
|
|
*state = now;
|
|
return 0;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
}
|
|
|
|
int
|
|
pci_get_powerstate(pci_chipset_tag_t pc, pcitag_t tag , pcireg_t *state)
|
|
{
|
|
int offset;
|
|
pcireg_t value;
|
|
|
|
if (!pci_get_capability(pc, tag, PCI_CAP_PWRMGMT, &offset, &value))
|
|
return EOPNOTSUPP;
|
|
|
|
return pci_get_powerstate_int(pc, tag, state, offset);
|
|
}
|
|
|
|
static int
|
|
pci_set_powerstate_int(pci_chipset_tag_t pc, pcitag_t tag, pcireg_t state,
|
|
int offset, pcireg_t cap_reg)
|
|
{
|
|
pcireg_t value, cap, now;
|
|
|
|
cap = cap_reg >> PCI_PMCR_SHIFT;
|
|
value = pci_conf_read(pc, tag, offset + PCI_PMCSR);
|
|
now = value & PCI_PMCSR_STATE_MASK;
|
|
value &= ~PCI_PMCSR_STATE_MASK;
|
|
|
|
if (now == state)
|
|
return 0;
|
|
switch (state) {
|
|
case PCI_PMCSR_STATE_D0:
|
|
break;
|
|
case PCI_PMCSR_STATE_D1:
|
|
if (now == PCI_PMCSR_STATE_D2 || now == PCI_PMCSR_STATE_D3) {
|
|
printf("invalid transition from %d to D1\n", (int)now);
|
|
return EINVAL;
|
|
}
|
|
if (!(cap & PCI_PMCR_D1SUPP)) {
|
|
printf("D1 not supported\n");
|
|
return EOPNOTSUPP;
|
|
}
|
|
break;
|
|
case PCI_PMCSR_STATE_D2:
|
|
if (now == PCI_PMCSR_STATE_D3) {
|
|
printf("invalid transition from %d to D2\n", (int)now);
|
|
return EINVAL;
|
|
}
|
|
if (!(cap & PCI_PMCR_D2SUPP)) {
|
|
printf("D2 not supported\n");
|
|
return EOPNOTSUPP;
|
|
}
|
|
break;
|
|
case PCI_PMCSR_STATE_D3:
|
|
break;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
value |= state;
|
|
pci_conf_write(pc, tag, offset + PCI_PMCSR, value);
|
|
/* delay according to pcipm1.2, ch. 5.6.1 */
|
|
if (state == PCI_PMCSR_STATE_D3 || now == PCI_PMCSR_STATE_D3)
|
|
DELAY(10000);
|
|
else if (state == PCI_PMCSR_STATE_D2 || now == PCI_PMCSR_STATE_D2)
|
|
DELAY(200);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
pci_set_powerstate(pci_chipset_tag_t pc, pcitag_t tag, pcireg_t state)
|
|
{
|
|
int offset;
|
|
pcireg_t value;
|
|
|
|
if (!pci_get_capability(pc, tag, PCI_CAP_PWRMGMT, &offset, &value)) {
|
|
printf("pci_set_powerstate not supported\n");
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
return pci_set_powerstate_int(pc, tag, state, offset, value);
|
|
}
|
|
|
|
int
|
|
pci_activate(pci_chipset_tag_t pc, pcitag_t tag, device_t dev,
|
|
int (*wakefun)(pci_chipset_tag_t, pcitag_t, device_t, pcireg_t))
|
|
{
|
|
pcireg_t pmode;
|
|
int error;
|
|
|
|
if ((error = pci_get_powerstate(pc, tag, &pmode)))
|
|
return error;
|
|
|
|
switch (pmode) {
|
|
case PCI_PMCSR_STATE_D0:
|
|
break;
|
|
case PCI_PMCSR_STATE_D3:
|
|
if (wakefun == NULL) {
|
|
/*
|
|
* The card has lost all configuration data in
|
|
* this state, so punt.
|
|
*/
|
|
aprint_error_dev(dev,
|
|
"unable to wake up from power state D3\n");
|
|
return EOPNOTSUPP;
|
|
}
|
|
/*FALLTHROUGH*/
|
|
default:
|
|
if (wakefun) {
|
|
error = (*wakefun)(pc, tag, dev, pmode);
|
|
if (error)
|
|
return error;
|
|
}
|
|
aprint_normal_dev(dev, "waking up from power state D%d\n",
|
|
pmode);
|
|
if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
|
|
return error;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
pci_activate_null(pci_chipset_tag_t pc, pcitag_t tag,
|
|
device_t dev, pcireg_t state)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/* I have disabled this code for now. --dyoung
|
|
*
|
|
* Insofar as I understand what the PCI retry timeout is [1],
|
|
* I see no justification for any driver to disable when it
|
|
* attaches/resumes a device.
|
|
*
|
|
* A PCI bus bridge may tell a bus master to retry its transaction
|
|
* at a later time if the resources to complete the transaction
|
|
* are not immediately available. Taking a guess, PCI bus masters
|
|
* that implement a PCI retry timeout register count down from the
|
|
* retry timeout to 0 while it retries a delayed PCI transaction.
|
|
* When it reaches 0, it stops retrying. A PCI master is *never*
|
|
* supposed to stop retrying a delayed transaction, though.
|
|
*
|
|
* Incidentally, I initially suspected that writing 0 to the register
|
|
* would not disable *retries*, but would disable the timeout.
|
|
* That is, any device whose retry timeout was set to 0 would
|
|
* *never* timeout. However, I found out, by using PCI debug
|
|
* facilities on the AMD Elan SC520, that if I write 0 to the retry
|
|
* timeout register on an ath(4) MiniPCI card, the card really does
|
|
* not retry transactions.
|
|
*
|
|
* Some uses of this register have mentioned "interference" with
|
|
* a CPU's "C3 sleep state." It seems to me that if a bus master
|
|
* is properly put to sleep, it will neither initiate new transactions,
|
|
* nor retry delayed transactions, so disabling retries should not
|
|
* be necessary.
|
|
*
|
|
* [1] The timeout does not appear to be documented in any PCI
|
|
* standard, and we have no documentation of it for the devices by
|
|
* Atheros, and others, that supposedly implement it.
|
|
*/
|
|
void
|
|
pci_disable_retry(pci_chipset_tag_t pc, pcitag_t tag)
|
|
{
|
|
#if 0
|
|
pcireg_t retry;
|
|
|
|
/*
|
|
* Disable retry timeout to keep PCI Tx retries from
|
|
* interfering with ACPI C3 CPU state.
|
|
*/
|
|
retry = pci_conf_read(pc, tag, PCI_RETRY_TIMEOUT_REG);
|
|
retry &= ~PCI_RETRY_TIMEOUT_REG_MASK;
|
|
pci_conf_write(pc, tag, PCI_RETRY_TIMEOUT_REG, retry);
|
|
#endif
|
|
}
|
|
|
|
struct pci_child_power {
|
|
struct pci_conf_state p_pciconf;
|
|
pci_chipset_tag_t p_pc;
|
|
pcitag_t p_tag;
|
|
bool p_has_pm;
|
|
int p_pm_offset;
|
|
pcireg_t p_pm_cap;
|
|
pcireg_t p_class;
|
|
};
|
|
|
|
static bool
|
|
pci_child_suspend(device_t dv PMF_FN_ARGS)
|
|
{
|
|
struct pci_child_power *priv = device_pmf_bus_private(dv);
|
|
pcireg_t ocsr, csr;
|
|
|
|
pci_conf_capture(priv->p_pc, priv->p_tag, &priv->p_pciconf);
|
|
|
|
if (!priv->p_has_pm)
|
|
return true; /* ??? hopefully handled by ACPI */
|
|
if (PCI_CLASS(priv->p_class) == PCI_CLASS_DISPLAY)
|
|
return true; /* XXX */
|
|
|
|
/* disable decoding and busmastering, see pcipm1.2 ch. 8.2.1 */
|
|
ocsr = pci_conf_read(priv->p_pc, priv->p_tag, PCI_COMMAND_STATUS_REG);
|
|
csr = ocsr & ~(PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE
|
|
| PCI_COMMAND_MASTER_ENABLE);
|
|
pci_conf_write(priv->p_pc, priv->p_tag, PCI_COMMAND_STATUS_REG, csr);
|
|
if (pci_set_powerstate_int(priv->p_pc, priv->p_tag,
|
|
PCI_PMCSR_STATE_D3, priv->p_pm_offset, priv->p_pm_cap)) {
|
|
pci_conf_write(priv->p_pc, priv->p_tag,
|
|
PCI_COMMAND_STATUS_REG, ocsr);
|
|
aprint_error_dev(dv, "unsupported state, continuing.\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
pci_child_resume(device_t dv PMF_FN_ARGS)
|
|
{
|
|
struct pci_child_power *priv = device_pmf_bus_private(dv);
|
|
|
|
if (priv->p_has_pm &&
|
|
pci_set_powerstate_int(priv->p_pc, priv->p_tag,
|
|
PCI_PMCSR_STATE_D0, priv->p_pm_offset, priv->p_pm_cap)) {
|
|
aprint_error_dev(dv, "unsupported state, continuing.\n");
|
|
return false;
|
|
}
|
|
|
|
pci_conf_restore(priv->p_pc, priv->p_tag, &priv->p_pciconf);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
pci_child_shutdown(device_t dv, int how)
|
|
{
|
|
struct pci_child_power *priv = device_pmf_bus_private(dv);
|
|
pcireg_t csr;
|
|
|
|
/* disable busmastering */
|
|
csr = pci_conf_read(priv->p_pc, priv->p_tag, PCI_COMMAND_STATUS_REG);
|
|
csr &= ~PCI_COMMAND_MASTER_ENABLE;
|
|
pci_conf_write(priv->p_pc, priv->p_tag, PCI_COMMAND_STATUS_REG, csr);
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
pci_child_deregister(device_t dv)
|
|
{
|
|
struct pci_child_power *priv = device_pmf_bus_private(dv);
|
|
|
|
free(priv, M_DEVBUF);
|
|
}
|
|
|
|
static bool
|
|
pci_child_register(device_t child)
|
|
{
|
|
device_t self = device_parent(child);
|
|
struct pci_softc *sc = device_private(self);
|
|
struct pci_child_power *priv;
|
|
int device, function, off;
|
|
pcireg_t reg;
|
|
|
|
priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK);
|
|
|
|
device = device_locator(child, PCICF_DEV);
|
|
function = device_locator(child, PCICF_FUNCTION);
|
|
|
|
priv->p_pc = sc->sc_pc;
|
|
priv->p_tag = pci_make_tag(priv->p_pc, sc->sc_bus, device,
|
|
function);
|
|
priv->p_class = pci_conf_read(priv->p_pc, priv->p_tag, PCI_CLASS_REG);
|
|
|
|
if (pci_get_capability(priv->p_pc, priv->p_tag,
|
|
PCI_CAP_PWRMGMT, &off, ®)) {
|
|
priv->p_has_pm = true;
|
|
priv->p_pm_offset = off;
|
|
priv->p_pm_cap = reg;
|
|
} else {
|
|
priv->p_has_pm = false;
|
|
priv->p_pm_offset = -1;
|
|
}
|
|
|
|
device_pmf_bus_register(child, priv, pci_child_suspend,
|
|
pci_child_resume, pci_child_shutdown, pci_child_deregister);
|
|
|
|
return true;
|
|
}
|