NetBSD/sys/dev/marvell/gt.c

1027 lines
27 KiB
C

/* $NetBSD: gt.c,v 1.13 2007/01/29 01:52:44 hubertf Exp $ */
/*
* Copyright (c) 2002 Allegro Networks, Inc., Wasabi Systems, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Allegro Networks, Inc., and Wasabi Systems, Inc.
* 4. The name of Allegro Networks, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
* 5. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY ALLEGRO NETWORKS, INC. AND
* WASABI SYSTEMS, INC. ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL EITHER ALLEGRO NETWORKS, INC. OR WASABI SYSTEMS, INC.
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* gt.c -- GT system controller driver
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: gt.c,v 1.13 2007/01/29 01:52:44 hubertf Exp $");
#include "opt_marvell.h"
#include "locators.h"
#include <sys/param.h>
#include <sys/types.h>
#include <sys/extent.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#define _BUS_SPACE_PRIVATE
#define _BUS_DMA_PRIVATE
#include <machine/bus.h>
#include <powerpc/spr.h>
#include <powerpc/oea/hid.h>
#include <dev/marvell/gtreg.h>
#include <dev/marvell/gtintrreg.h>
#include <dev/marvell/gtvar.h>
#include <dev/marvell/gtethreg.h>
#ifdef DEBUG
#include <sys/systm.h> /* for Debugger() */
#endif
#if ((GT_MPP_WATCHDOG & 0xf0f0f0f0) != 0)
# error /* unqualified: configuration botch! */
#endif
#if ((GT_MPP_WATCHDOG & GT_MPP_INTERRUPTS) != 0)
# error /* conflict: configuration botch! */
#endif
static void gt_comm_intr_enb(struct gt_softc *);
static void gt_devbus_intr_enb(struct gt_softc *);
#ifdef GT_ECC
static void gt_ecc_intr_enb(struct gt_softc *);
#endif
void gt_init_hostid (struct gt_softc *);
void gt_init_interrupt (struct gt_softc *);
static int gt_comm_intr (void *);
void gt_watchdog_init(struct gt_softc *);
void gt_watchdog_enable(void);
void gt_watchdog_disable(void);
void gt_watchdog_reset(void);
extern struct cfdriver gt_cd;
static int gtfound = 0;
static struct gt_softc *gt_watchdog_sc = 0;
static int gt_watchdog_state = 0;
int
gt_cfprint (void *aux, const char *pnp)
{
struct gt_attach_args *ga = aux;
if (pnp) {
aprint_normal("%s at %s", ga->ga_name, pnp);
}
aprint_normal(" unit %d", ga->ga_unit);
return (UNCONF);
}
static int
gt_cfsearch(struct device *parent, struct cfdata *cf,
const int *ldesc, void *aux)
{
struct gt_softc *gt = (struct gt_softc *) parent;
struct gt_attach_args ga;
ga.ga_name = cf->cf_name;
ga.ga_dmat = gt->gt_dmat;
ga.ga_memt = gt->gt_memt;
ga.ga_memh = gt->gt_memh;
ga.ga_unit = cf->cf_loc[GTCF_UNIT];
if (config_match(parent, cf, &ga) > 0)
config_attach(parent, cf, &ga, gt_cfprint);
return (0);
}
void
gt_attach_common(struct gt_softc *gt)
{
uint32_t cpucfg, cpumode, cpumstr;
#ifdef DEBUG
uint32_t loaddr, hiaddr;
#endif
gtfound = 1;
cpumode = gt_read(gt, GT_CPU_Mode);
aprint_normal(": id %d", GT_CPUMode_MultiGTID_GET(cpumode));
if (cpumode & GT_CPUMode_MultiGT)
aprint_normal (" (multi)");
switch (GT_CPUMode_CPUType_GET(cpumode)) {
case 4: aprint_normal(", 60x bus"); break;
case 5: aprint_normal(", MPX bus"); break;
default: aprint_normal(", %#x(?) bus", GT_CPUMode_CPUType_GET(cpumode)); break;
}
cpumstr = gt_read(gt, GT_CPU_Master_Ctl);
cpumstr &= ~(GT_CPUMstrCtl_CleanBlock|GT_CPUMstrCtl_FlushBlock);
#if 0
cpumstr |= GT_CPUMstrCtl_CleanBlock|GT_CPUMstrCtl_FlushBlock;
#endif
gt_write(gt, GT_CPU_Master_Ctl, cpumstr);
switch (cpumstr & (GT_CPUMstrCtl_CleanBlock|GT_CPUMstrCtl_FlushBlock)) {
case 0: break;
case GT_CPUMstrCtl_CleanBlock: aprint_normal(", snoop=clean"); break;
case GT_CPUMstrCtl_FlushBlock: aprint_normal(", snoop=flush"); break;
case GT_CPUMstrCtl_CleanBlock|GT_CPUMstrCtl_FlushBlock:
aprint_normal(", snoop=clean&flush"); break;
}
aprint_normal(" wdog=%#x,%#x\n",
gt_read(gt, GT_WDOG_Config),
gt_read(gt, GT_WDOG_Value));
#if DEBUG
loaddr = GT_LowAddr_GET(gt_read(gt, GT_SCS0_Low_Decode));
hiaddr = GT_HighAddr_GET(gt_read(gt, GT_SCS0_High_Decode));
aprint_normal("%s: scs[0]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
loaddr = GT_LowAddr_GET(gt_read(gt, GT_SCS1_Low_Decode));
hiaddr = GT_HighAddr_GET(gt_read(gt, GT_SCS1_High_Decode));
aprint_normal("%s: scs[1]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
loaddr = GT_LowAddr_GET(gt_read(gt, GT_SCS2_Low_Decode));
hiaddr = GT_HighAddr_GET(gt_read(gt, GT_SCS2_High_Decode));
aprint_normal("%s: scs[2]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
loaddr = GT_LowAddr_GET(gt_read(gt, GT_SCS3_Low_Decode));
hiaddr = GT_HighAddr_GET(gt_read(gt, GT_SCS3_High_Decode));
aprint_normal("%s: scs[3]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
loaddr = GT_LowAddr_GET(gt_read(gt, GT_CS0_Low_Decode));
hiaddr = GT_HighAddr_GET(gt_read(gt, GT_CS0_High_Decode));
aprint_normal("%s: cs[0]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
loaddr = GT_LowAddr_GET(gt_read(gt, GT_CS1_Low_Decode));
hiaddr = GT_HighAddr_GET(gt_read(gt, GT_CS1_High_Decode));
aprint_normal("%s: cs[1]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
loaddr = GT_LowAddr_GET(gt_read(gt, GT_CS2_Low_Decode));
hiaddr = GT_HighAddr_GET(gt_read(gt, GT_CS2_High_Decode));
aprint_normal("%s: cs[2]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
loaddr = GT_LowAddr_GET(gt_read(gt, GT_CS3_Low_Decode));
hiaddr = GT_HighAddr_GET(gt_read(gt, GT_CS3_High_Decode));
aprint_normal("%s: cs[3]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
loaddr = GT_LowAddr_GET(gt_read(gt, GT_BootCS_Low_Decode));
hiaddr = GT_HighAddr_GET(gt_read(gt, GT_BootCS_High_Decode));
aprint_normal("%s: bootcs=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI0_IO_Low_Decode));
hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI0_IO_High_Decode));
aprint_normal("%s: pci0io=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
loaddr = gt_read(gt, GT_PCI0_IO_Remap);
aprint_normal("remap=%#010x\n", loaddr);
loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI0_Mem0_Low_Decode));
hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI0_Mem0_High_Decode));
aprint_normal("%s: pci0mem[0]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
loaddr = gt_read(gt, GT_PCI0_Mem0_Remap_Low);
hiaddr = gt_read(gt, GT_PCI0_Mem0_Remap_High);
aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI0_Mem1_Low_Decode));
hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI0_Mem1_High_Decode));
aprint_normal("%s: pci0mem[1]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
loaddr = gt_read(gt, GT_PCI0_Mem1_Remap_Low);
hiaddr = gt_read(gt, GT_PCI0_Mem1_Remap_High);
aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI0_Mem2_Low_Decode));
hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI0_Mem2_High_Decode));
aprint_normal("%s: pci0mem[2]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
loaddr = gt_read(gt, GT_PCI0_Mem2_Remap_Low);
hiaddr = gt_read(gt, GT_PCI0_Mem2_Remap_High);
aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI0_Mem3_Low_Decode));
hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI0_Mem3_High_Decode));
aprint_normal("%s: pci0mem[3]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
loaddr = gt_read(gt, GT_PCI0_Mem3_Remap_Low);
hiaddr = gt_read(gt, GT_PCI0_Mem3_Remap_High);
aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI1_IO_Low_Decode));
hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI1_IO_High_Decode));
aprint_normal("%s: pci1io=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
loaddr = gt_read(gt, GT_PCI1_IO_Remap);
aprint_normal("remap=%#010x\n", loaddr);
loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI1_Mem0_Low_Decode));
hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI1_Mem0_High_Decode));
aprint_normal("%s: pci1mem[0]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
loaddr = gt_read(gt, GT_PCI1_Mem0_Remap_Low);
hiaddr = gt_read(gt, GT_PCI1_Mem0_Remap_High);
aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI1_Mem1_Low_Decode));
hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI1_Mem1_High_Decode));
aprint_normal("%s: pci1mem[1]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
loaddr = gt_read(gt, GT_PCI1_Mem1_Remap_Low);
hiaddr = gt_read(gt, GT_PCI1_Mem1_Remap_High);
aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI1_Mem2_Low_Decode));
hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI1_Mem2_High_Decode));
aprint_normal("%s: pci1mem[2]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
loaddr = gt_read(gt, GT_PCI1_Mem2_Remap_Low);
hiaddr = gt_read(gt, GT_PCI1_Mem2_Remap_High);
aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI1_Mem3_Low_Decode));
hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI1_Mem3_High_Decode));
aprint_normal("%s: pci1mem[3]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
loaddr = gt_read(gt, GT_PCI1_Mem3_Remap_Low);
hiaddr = gt_read(gt, GT_PCI1_Mem3_Remap_High);
aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
loaddr = GT_LowAddr_GET(gt_read(gt, GT_Internal_Decode));
aprint_normal("%s: internal=%#10x-%#10x\n", gt->gt_dev.dv_xname,
loaddr, loaddr+256*1024);
loaddr = GT_LowAddr_GET(gt_read(gt, GT_CPU0_Low_Decode));
hiaddr = GT_HighAddr_GET(gt_read(gt, GT_CPU0_High_Decode));
aprint_normal("%s: cpu0=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
loaddr = GT_LowAddr_GET(gt_read(gt, GT_CPU1_Low_Decode));
hiaddr = GT_HighAddr_GET(gt_read(gt, GT_CPU1_High_Decode));
aprint_normal("%s: cpu1=%#10x-%#10x", gt->gt_dev.dv_xname, loaddr, hiaddr);
#endif
aprint_normal("%s:", gt->gt_dev.dv_xname);
cpucfg = gt_read(gt, GT_CPU_Cfg);
cpucfg |= GT_CPUCfg_ConfSBDis; /* per errata #46 */
cpucfg |= GT_CPUCfg_AACKDelay; /* per restriction #18 */
gt_write(gt, GT_CPU_Cfg, cpucfg);
if (cpucfg & GT_CPUCfg_Pipeline)
aprint_normal(" pipeline");
if (cpucfg & GT_CPUCfg_AACKDelay)
aprint_normal(" aack-delay");
if (cpucfg & GT_CPUCfg_RdOOO)
aprint_normal(" read-ooo");
if (cpucfg & GT_CPUCfg_IOSBDis)
aprint_normal(" io-sb-dis");
if (cpucfg & GT_CPUCfg_ConfSBDis)
aprint_normal(" conf-sb-dis");
if (cpucfg & GT_CPUCfg_ClkSync)
aprint_normal(" clk-sync");
aprint_normal("\n");
gt_init_hostid(gt);
gt_watchdog_init(gt);
gt_init_interrupt(gt);
#ifdef GT_ECC
gt_ecc_intr_enb(gt);
#endif
gt_comm_intr_enb(gt);
gt_devbus_intr_enb(gt);
gt_watchdog_disable();
config_search_ia(gt_cfsearch, &gt->gt_dev, "gt", NULL);
gt_watchdog_service();
gt_watchdog_enable();
}
void
gt_init_hostid(struct gt_softc *gt)
{
hostid = 1; /* XXX: Used by i2c; needs work -- AKB */
}
void
gt_init_interrupt(struct gt_softc *gt)
{
u_int32_t mppirpts = GT_MPP_INTERRUPTS; /* from config */
u_int32_t r;
u_int32_t mppbit;
u_int32_t mask;
u_int32_t mppsel;
u_int32_t regoff;
gt_write(gt, ICR_CIM_LO, 0);
gt_write(gt, ICR_CIM_HI, 0);
/*
* configure the GPP interrupts:
* - set the configured MPP pins in GPP mode
* - set the configured GPP pins to input, active low, interrupt enbl
*/
#ifdef DEBUG
printf("%s: mpp cfg ", gt->gt_dev.dv_xname);
for (regoff = GT_MPP_Control0; regoff <= GT_MPP_Control3; regoff += 4)
printf("%#x ", gt_read(gt, regoff));
printf(", mppirpts 0x%x\n", mppirpts);
#endif
mppbit = 0x1;
for (regoff = GT_MPP_Control0; regoff <= GT_MPP_Control3; regoff += 4) {
mask = 0;
for (mppsel = 0xf; mppsel; mppsel <<= 4) {
if (mppirpts & mppbit)
mask |= mppsel;
mppbit <<= 1;
}
if (mask) {
r = gt_read(gt, regoff);
r &= ~mask;
gt_write(gt, regoff, r);
}
}
r = gt_read(gt, GT_GPP_IO_Control);
r &= ~mppirpts;
gt_write(gt, GT_GPP_IO_Control, r);
r = gt_read(gt, GT_GPP_Level_Control);
r |= mppirpts;
gt_write(gt, GT_GPP_Level_Control, r);
r = gt_read(gt, GT_GPP_Interrupt_Mask);
r |= mppirpts;
gt_write(gt, GT_GPP_Interrupt_Mask, r);
}
uint32_t
gt_read_mpp (void)
{
return gt_read((struct gt_softc *)gt_cd.cd_devs[0], GT_GPP_Value);
}
#if 0
int
gt_bs_extent_init(struct discovery_bus_space *bs, char *name)
{
u_long start, end;
int i, j, error;
if (bs->bs_nregion == 0) {
bs->bs_extent = extent_create(name, 0xffffffffUL, 0xffffffffUL,
M_DEVBUF, NULL, 0, EX_NOCOALESCE|EX_WAITOK);
KASSERT(bs->bs_extent != NULL);
return 0;
}
/*
* Find the top and bottoms of this bus space.
*/
start = bs->bs_regions[0].br_start;
end = bs->bs_regions[0].br_end;
#ifdef DEBUG
if (gtpci_debug > 1)
printf("gtpci_bs_extent_init: %s: region %d: %#lx-%#lx\n",
name, 0, bs->bs_regions[0].br_start,
bs->bs_regions[0].br_end);
#endif
for (i = 1; i < bs->bs_nregion; i++) {
if (bs->bs_regions[i].br_start < start)
start = bs->bs_regions[i].br_start;
if (bs->bs_regions[i].br_end > end)
end = bs->bs_regions[i].br_end;
#ifdef DEBUG
if (gtpci_debug > 1)
printf("gtpci_bs_extent_init: %s: region %d:"
" %#lx-%#lx\n",
name, i, bs->bs_regions[i].br_start,
bs->bs_regions[i].br_end);
#endif
}
/*
* Now that we have the top and bottom limits of this
* bus space, create the extent map that will manage this
* space for us.
*/
#ifdef DEBUG
if (gtpci_debug > 1)
printf("gtpci_bs_extent_init: %s: create: %#lx-%#lx\n",
name, start, end);
#endif
bs->bs_extent = extent_create(name, start, end, M_DEVBUF,
NULL, 0, EX_NOCOALESCE|EX_WAITOK);
KASSERT(bs->bs_extent != NULL);
/* If there was more than one bus space region, then there
* might gaps in between them. Allocate the gap so that
* they will not be legal addresses in the extent.
*/
for (i = 0; i < bs->bs_nregion && bs->bs_nregion > 1; i++) {
/* Initial start is "infinity" and the inital end is
* is the end of this bus region.
*/
start = ~0UL;
end = bs->bs_regions[i].br_end;
/* For each region, if it starts after this region but less
* than the saved start, use its start address. If the start
* address is one past the end address, then we're done
*/
for (j = 0; j < bs->bs_nregion && start > end + 1; j++) {
if (i == j)
continue;
if (bs->bs_regions[j].br_start > end &&
bs->bs_regions[j].br_start < start)
start = bs->bs_regions[j].br_start;
}
/*
* If we found a gap, allocate it away.
*/
if (start != ~0UL && start != end + 1) {
#ifdef DEBUG
if (gtpci_debug > 1)
printf("gtpci_bs_extent_init: %s: alloc(hole): %#lx-%#lx\n",
name, end + 1, start - 1);
#endif
error = extent_alloc_region(bs->bs_extent, end + 1,
start - (end + 1), EX_NOWAIT);
KASSERT(error == 0);
}
}
return 1;
}
#endif
/*
* unknown board, enable everything
*/
# define GT_CommUnitIntr_DFLT GT_CommUnitIntr_S0|GT_CommUnitIntr_S1 \
|GT_CommUnitIntr_E0|GT_CommUnitIntr_E1 \
|GT_CommUnitIntr_E2
static const char * const gt_comm_subunit_name[8] = {
"ethernet 0",
"ethernet 1",
"ethernet 2",
"(reserved)",
"MPSC 0",
"MPSC 1",
"(reserved)",
"(sel)",
};
static int
gt_comm_intr(void *arg)
{
struct gt_softc *gt = (struct gt_softc *)arg;
u_int32_t cause;
u_int32_t addr;
unsigned int mask;
int i;
cause = gt_read(gt, GT_CommUnitIntr_Cause);
gt_write(gt, GT_CommUnitIntr_Cause, ~cause);
addr = gt_read(gt, GT_CommUnitIntr_ErrAddr);
printf("%s: Comm Unit irpt, cause %#x addr %#x\n",
gt->gt_dev.dv_xname, cause, addr);
cause &= GT_CommUnitIntr_DFLT;
if (cause == 0)
return 0;
mask = 0x7;
for (i=0; i<7; i++) {
if (cause & mask) {
printf("%s: Comm Unit %s:", gt->gt_dev.dv_xname,
gt_comm_subunit_name[i]);
if (cause & 1)
printf(" AddrMiss");
if (cause & 2)
printf(" AccProt");
if (cause & 4)
printf(" WrProt");
printf("\n");
}
cause >>= 4;
}
return 1;
}
/*
* gt_comm_intr_init - enable GT-64260 Comm Unit interrupts
*/
static void
gt_comm_intr_enb(struct gt_softc *gt)
{
u_int32_t cause;
cause = gt_read(gt, GT_CommUnitIntr_Cause);
if (cause)
gt_write(gt, GT_CommUnitIntr_Cause, ~cause);
gt_write(gt, GT_CommUnitIntr_Mask, GT_CommUnitIntr_DFLT);
(void)gt_read(gt, GT_CommUnitIntr_ErrAddr);
intr_establish(IRQ_COMM, IST_LEVEL, IPL_GTERR, gt_comm_intr, gt);
printf("%s: Comm Unit irpt at %d\n", gt->gt_dev.dv_xname, IRQ_COMM);
}
#ifdef GT_ECC
static char *gt_ecc_intr_str[4] = {
"(none)",
"single bit",
"double bit",
"(reserved)"
};
static int
gt_ecc_intr(void *arg)
{
struct gt_softc *gt = (struct gt_softc *)arg;
u_int32_t addr;
u_int32_t dlo;
u_int32_t dhi;
u_int32_t rec;
u_int32_t calc;
u_int32_t count;
int err;
count = gt_read(gt, GT_ECC_Count);
dlo = gt_read(gt, GT_ECC_Data_Lo);
dhi = gt_read(gt, GT_ECC_Data_Hi);
rec = gt_read(gt, GT_ECC_Rec);
calc = gt_read(gt, GT_ECC_Calc);
addr = gt_read(gt, GT_ECC_Addr); /* read last! */
gt_write(gt, GT_ECC_Addr, 0); /* clear irpt */
err = addr & 0x3;
printf("%s: ECC error: %s: "
"addr %#x data %#x.%#x rec %#x calc %#x cnt %#x\n",
gt->gt_dev.dv_xname, gt_ecc_intr_str[err],
addr, dhi, dlo, rec, calc, count);
if (err == 2)
panic("ecc");
return (err == 1);
}
/*
* gt_ecc_intr_enb - enable GT-64260 ECC interrupts
*/
static void
gt_ecc_intr_enb(struct gt_softc *gt)
{
u_int32_t ctl;
ctl = gt_read(gt, GT_ECC_Ctl);
ctl |= 1 << 16; /* XXX 1-bit threshold == 1 */
gt_write(gt, GT_ECC_Ctl, ctl);
(void)gt_read(gt, GT_ECC_Data_Lo);
(void)gt_read(gt, GT_ECC_Data_Hi);
(void)gt_read(gt, GT_ECC_Rec);
(void)gt_read(gt, GT_ECC_Calc);
(void)gt_read(gt, GT_ECC_Addr); /* read last! */
gt_write(gt, GT_ECC_Addr, 0); /* clear irpt */
intr_establish(IRQ_ECC, IST_LEVEL, IPL_GTERR, gt_ecc_intr, gt);
printf("%s: ECC irpt at %d\n", gt->gt_dev.dv_xname, IRQ_ECC);
}
#endif /* GT_ECC */
#ifndef GT_MPP_WATCHDOG
void
gt_watchdog_init(struct gt_softc *gt)
{
u_int32_t r;
unsigned int omsr;
omsr = extintr_disable();
printf("%s: watchdog", gt->gt_dev.dv_xname);
/*
* handle case where firmware started watchdog
*/
r = gt_read(gt, GT_WDOG_Config);
printf(" status %#x,%#x:",
r, gt_read(gt, GT_WDOG_Value));
if ((r & 0x80000000) != 0) {
gt_watchdog_sc = gt; /* enabled */
gt_watchdog_state = 1;
printf(" firmware-enabled\n");
gt_watchdog_service();
return;
} else {
printf(" firmware-disabled\n");
}
extintr_restore(omsr);
}
#else /* GT_MPP_WATCHDOG */
void
gt_watchdog_init(struct gt_softc *gt)
{
u_int32_t mpp_watchdog = GT_MPP_WATCHDOG; /* from config */
u_int32_t r;
u_int32_t cfgbits;
u_int32_t mppbits;
u_int32_t mppmask=0;
u_int32_t regoff;
unsigned int omsr;
printf("%s: watchdog", gt->gt_dev.dv_xname);
if (mpp_watchdog == 0) {
printf(" not configured\n");
return;
}
#if 0
if (afw_wdog_ctl == 1) {
printf(" admin disabled\n");
return;
}
#endif
omsr = extintr_disable();
/*
* if firmware started watchdog, we disable and start
* from scratch to get it in a known state.
*
* on GT-64260A we always see 0xffffffff
* in both the GT_WDOG_Config_Enb and GT_WDOG_Value regsiters.
* Use AFW-supplied flag to determine run state.
*/
r = gt_read(gt, GT_WDOG_Config);
if (r != ~0) {
if ((r & GT_WDOG_Config_Enb) != 0) {
gt_write(gt, GT_WDOG_Config,
(GT_WDOG_Config_Ctl1a | GT_WDOG_Preset_DFLT));
gt_write(gt, GT_WDOG_Config,
(GT_WDOG_Config_Ctl1b | GT_WDOG_Preset_DFLT));
}
} else {
#if 0
if (afw_wdog_state == 1) {
gt_write(gt, GT_WDOG_Config,
(GT_WDOG_Config_Ctl1a | GT_WDOG_Preset_DFLT));
gt_write(gt, GT_WDOG_Config,
(GT_WDOG_Config_Ctl1b | GT_WDOG_Preset_DFLT));
}
#endif
}
/*
* "the watchdog timer can be activated only after
* configuring two MPP pins to act as WDE and WDNMI"
*/
mppbits = 0;
cfgbits = 0x3;
for (regoff = GT_MPP_Control0; regoff <= GT_MPP_Control3; regoff += 4) {
if ((mpp_watchdog & cfgbits) == cfgbits) {
mppbits = 0x99;
mppmask = 0xff;
break;
}
cfgbits <<= 2;
if ((mpp_watchdog & cfgbits) == cfgbits) {
mppbits = 0x9900;
mppmask = 0xff00;
break;
}
cfgbits <<= 6; /* skip unqualified bits */
}
if (mppbits == 0) {
printf(" config error\n");
extintr_restore(omsr);
return;
}
r = gt_read(gt, regoff);
r &= ~mppmask;
r |= mppbits;
gt_write(gt, regoff, r);
printf(" mpp %#x %#x", regoff, mppbits);
gt_write(gt, GT_WDOG_Value, GT_WDOG_NMI_DFLT);
gt_write(gt, GT_WDOG_Config,
(GT_WDOG_Config_Ctl1a | GT_WDOG_Preset_DFLT));
gt_write(gt, GT_WDOG_Config,
(GT_WDOG_Config_Ctl1b | GT_WDOG_Preset_DFLT));
r = gt_read(gt, GT_WDOG_Config),
printf(" status %#x,%#x: %s",
r, gt_read(gt, GT_WDOG_Value),
((r & GT_WDOG_Config_Enb) != 0) ? "enabled" : "botch");
if ((r & GT_WDOG_Config_Enb) != 0) {
register_t hid0;
gt_watchdog_sc = gt; /* enabled */
gt_watchdog_state = 1;
/*
* configure EMCP in HID0 in case it's not already set
*/
__asm volatile("sync");
hid0 = mfspr(SPR_HID0);
if ((hid0 & HID0_EMCP) == 0) {
hid0 |= HID0_EMCP;
__asm volatile("sync"); mtspr(SPR_HID0, hid0);
__asm volatile("sync"); hid0 = mfspr(SPR_HID0);
printf(", EMCP set");
}
}
printf("\n");
extintr_restore(omsr);
}
#endif /* GT_MPP_WATCHDOG */
#ifdef DEBUG
u_int32_t hid0_print(void);
u_int32_t
hid0_print()
{
u_int32_t hid0;
__asm volatile("sync; mfspr %0,1008;" : "=r"(hid0));
printf("hid0: %#x\n", hid0);
return hid0;
}
#endif
void
gt_watchdog_enable(void)
{
struct gt_softc *gt;
unsigned int omsr;
omsr = extintr_disable();
gt = gt_watchdog_sc;
if ((gt != NULL) && (gt_watchdog_state == 0)) {
gt_watchdog_state = 1;
gt_write(gt, GT_WDOG_Config,
(GT_WDOG_Config_Ctl1a | GT_WDOG_Preset_DFLT));
gt_write(gt, GT_WDOG_Config,
(GT_WDOG_Config_Ctl1b | GT_WDOG_Preset_DFLT));
}
extintr_restore(omsr);
}
void
gt_watchdog_disable(void)
{
struct gt_softc *gt;
unsigned int omsr;
omsr = extintr_disable();
gt = gt_watchdog_sc;
if ((gt != NULL) && (gt_watchdog_state != 0)) {
gt_watchdog_state = 0;
gt_write(gt, GT_WDOG_Config,
(GT_WDOG_Config_Ctl1a | GT_WDOG_Preset_DFLT));
gt_write(gt, GT_WDOG_Config,
(GT_WDOG_Config_Ctl1b | GT_WDOG_Preset_DFLT));
}
extintr_restore(omsr);
}
#ifdef DEBUG
int inhibit_watchdog_service = 0;
#endif
void
gt_watchdog_service(void)
{
struct gt_softc *gt = gt_watchdog_sc;
if ((gt == NULL) || (gt_watchdog_state == 0))
return; /* not enabled */
#ifdef DEBUG
if (inhibit_watchdog_service)
return;
#endif
gt_write(gt, GT_WDOG_Config,
(GT_WDOG_Config_Ctl2a | GT_WDOG_Preset_DFLT));
gt_write(gt, GT_WDOG_Config,
(GT_WDOG_Config_Ctl2b | GT_WDOG_Preset_DFLT));
}
/*
* gt_watchdog_reset - force a watchdog reset using Preset_VAL=0
*/
void
gt_watchdog_reset()
{
struct gt_softc *gt = gt_watchdog_sc;
u_int32_t r;
(void)extintr_disable();
r = gt_read(gt, GT_WDOG_Config);
gt_write(gt, GT_WDOG_Config, (GT_WDOG_Config_Ctl1a | 0));
gt_write(gt, GT_WDOG_Config, (GT_WDOG_Config_Ctl1b | 0));
if ((r & GT_WDOG_Config_Enb) != 0) {
/*
* was enabled, we just toggled it off, toggle on again
*/
gt_write(gt, GT_WDOG_Config,
(GT_WDOG_Config_Ctl1a | 0));
gt_write(gt, GT_WDOG_Config,
(GT_WDOG_Config_Ctl1b | 0));
}
for(;;);
}
static int
gt_devbus_intr(void *arg)
{
struct gt_softc *gt = (struct gt_softc *)arg;
u_int32_t cause;
u_int32_t addr;
cause = gt_read(gt, GT_DEVBUS_ICAUSE);
addr = gt_read(gt, GT_DEVBUS_ERR_ADDR);
gt_write(gt, GT_DEVBUS_ICAUSE, 0); /* clear irpt */
if (cause & GT_DEVBUS_DBurstErr) {
printf("%s: Device Bus error: burst violation",
gt->gt_dev.dv_xname);
if ((cause & GT_DEVBUS_Sel) == 0)
printf(", addr %#x", addr);
printf("\n");
}
if (cause & GT_DEVBUS_DRdyErr) {
printf("%s: Device Bus error: ready timer expired",
gt->gt_dev.dv_xname);
if ((cause & GT_DEVBUS_Sel) != 0)
printf(", addr %#x\n", addr);
printf("\n");
}
return (cause != 0);
}
/*
* gt_ecc_intr_enb - enable GT-64260 ECC interrupts
*/
static void
gt_devbus_intr_enb(struct gt_softc *gt)
{
gt_write(gt, GT_DEVBUS_IMASK,
GT_DEVBUS_DBurstErr|GT_DEVBUS_DRdyErr);
(void)gt_read(gt, GT_DEVBUS_ERR_ADDR); /* clear addr */
gt_write(gt, GT_ECC_Addr, 0); /* clear irpt */
intr_establish(IRQ_DEV, IST_LEVEL, IPL_GTERR, gt_devbus_intr, gt);
printf("%s: Device Bus Error irpt at %d\n",
gt->gt_dev.dv_xname, IRQ_DEV);
}
int
gt_mii_read(
struct device *child,
struct device *parent,
int phy,
int reg)
{
struct gt_softc * const gt = (struct gt_softc *) parent;
uint32_t data;
int count = 10000;
do {
DELAY(10);
data = gt_read(gt, ETH_ESMIR);
} while ((data & ETH_ESMIR_Busy) && count-- > 0);
if (count == 0) {
printf("%s: mii read for phy %d reg %d busied out\n",
child->dv_xname, phy, reg);
return ETH_ESMIR_Value_GET(data);
}
gt_write(gt, ETH_ESMIR, ETH_ESMIR_READ(phy, reg));
count = 10000;
do {
DELAY(10);
data = gt_read(gt, ETH_ESMIR);
} while ((data & ETH_ESMIR_ReadValid) == 0 && count-- > 0);
if (count == 0)
printf("%s: mii read for phy %d reg %d timed out\n",
child->dv_xname, phy, reg);
#if defined(GTMIIDEBUG)
printf("%s: mii_read(%d, %d): %#x data %#x\n",
child->dv_xname, phy, reg,
data, ETH_ESMIR_Value_GET(data));
#endif
return ETH_ESMIR_Value_GET(data);
}
void
gt_mii_write (
struct device *child,
struct device *parent,
int phy, int reg,
int value)
{
struct gt_softc * const gt = (struct gt_softc *) parent;
uint32_t data;
int count = 10000;
do {
DELAY(10);
data = gt_read(gt, ETH_ESMIR);
} while ((data & ETH_ESMIR_Busy) && count-- > 0);
if (count == 0) {
printf("%s: mii write for phy %d reg %d busied out (busy)\n",
child->dv_xname, phy, reg);
return;
}
gt_write(gt, ETH_ESMIR,
ETH_ESMIR_WRITE(phy, reg, value));
count = 10000;
do {
DELAY(10);
data = gt_read(gt, ETH_ESMIR);
} while ((data & ETH_ESMIR_Busy) && count-- > 0);
if (count == 0)
printf("%s: mii write for phy %d reg %d timed out\n",
child->dv_xname, phy, reg);
#if defined(GTMIIDEBUG)
printf("%s: mii_write(%d, %d, %#x)\n",
child->dv_xname, phy, reg, value);
#endif
}
/*
* Since the memory and pci spaces are mapped 1:1 we just need
* to return unity here
*/
bus_addr_t
gt_dma_phys_to_bus_mem(bus_dma_tag_t t, bus_addr_t a)
{
return a;
}
bus_addr_t
gt_dma_bus_mem_to_phys(bus_dma_tag_t t, bus_addr_t a)
{
return a;
}