1274 lines
34 KiB
C
1274 lines
34 KiB
C
/* $NetBSD: acpi_pci_link.c,v 1.21 2014/04/14 01:56:18 jakllsch Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2002 Mitsuru IWASAKI <iwasaki@jp.freebsd.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: acpi_pci_link.c,v 1.21 2014/04/14 01:56:18 jakllsch Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/systm.h>
|
|
|
|
#include <dev/acpi/acpireg.h>
|
|
#include <dev/acpi/acpivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
|
|
#include "opt_acpi.h"
|
|
|
|
|
|
#define _COMPONENT ACPI_BUS_COMPONENT
|
|
ACPI_MODULE_NAME ("acpi_pci_link")
|
|
|
|
MALLOC_DECLARE(M_ACPI);
|
|
|
|
#define NUM_ISA_INTERRUPTS 16
|
|
#define NUM_ACPI_INTERRUPTS 256
|
|
|
|
#define PCI_INVALID_IRQ 255
|
|
#define PCI_INTERRUPT_VALID(x) ((x) != PCI_INVALID_IRQ && (x) != 0)
|
|
|
|
#define ACPI_SERIAL_BEGIN(x)
|
|
#define ACPI_SERIAL_END(x)
|
|
|
|
/*
|
|
* An ACPI PCI link device may contain multiple links. Each link has its
|
|
* own ACPI resource. _PRT entries specify which link is being used via
|
|
* the Source Index.
|
|
*
|
|
* XXX: A note about Source Indices and DPFs: Currently we assume that
|
|
* the DPF start and end tags are not counted towards the index that
|
|
* Source Index corresponds to. Also, we assume that when DPFs are in use
|
|
* they various sets overlap in terms of Indices. Here's an example
|
|
* resource list indicating these assumptions:
|
|
*
|
|
* Resource Index
|
|
* -------- -----
|
|
* I/O Port 0
|
|
* Start DPF -
|
|
* IRQ 1
|
|
* MemIO 2
|
|
* Start DPF -
|
|
* IRQ 1
|
|
* MemIO 2
|
|
* End DPF -
|
|
* DMA Channel 3
|
|
*
|
|
* The XXX is because I'm not sure if this is a valid assumption to make.
|
|
*/
|
|
|
|
/* States during DPF processing. */
|
|
#define DPF_OUTSIDE 0
|
|
#define DPF_FIRST 1
|
|
#define DPF_IGNORE 2
|
|
|
|
struct link;
|
|
|
|
struct acpi_pci_link_softc {
|
|
int pl_num_links;
|
|
int pl_crs_bad;
|
|
struct link *pl_links;
|
|
char pl_name[32];
|
|
ACPI_HANDLE pl_handle;
|
|
TAILQ_ENTRY(acpi_pci_link_softc) pl_list;
|
|
};
|
|
|
|
static TAILQ_HEAD(, acpi_pci_link_softc) acpi_pci_linkdevs =
|
|
TAILQ_HEAD_INITIALIZER(acpi_pci_linkdevs);
|
|
|
|
|
|
struct link {
|
|
struct acpi_pci_link_softc *l_sc;
|
|
uint8_t l_bios_irq;
|
|
uint8_t l_irq;
|
|
uint8_t l_trig;
|
|
uint8_t l_pol;
|
|
uint8_t l_initial_irq;
|
|
int l_res_index;
|
|
int l_num_irqs;
|
|
int *l_irqs;
|
|
int l_references;
|
|
int l_dev_count;
|
|
pcitag_t *l_devices;
|
|
int l_routed:1;
|
|
int l_isa_irq:1;
|
|
ACPI_RESOURCE l_prs_template;
|
|
};
|
|
|
|
struct link_count_request {
|
|
int in_dpf;
|
|
int count;
|
|
};
|
|
|
|
struct link_res_request {
|
|
struct acpi_pci_link_softc *sc;
|
|
int in_dpf;
|
|
int res_index;
|
|
int link_index;
|
|
};
|
|
|
|
static int pci_link_interrupt_weights[NUM_ACPI_INTERRUPTS];
|
|
static int pci_link_bios_isa_irqs;
|
|
|
|
static ACPI_STATUS acpi_count_irq_resources(ACPI_RESOURCE *, void *);
|
|
static ACPI_STATUS link_add_crs(ACPI_RESOURCE *, void *);
|
|
static ACPI_STATUS link_add_prs(ACPI_RESOURCE *, void *);
|
|
static int link_valid_irq(struct link *, int);
|
|
static void acpi_pci_link_dump(struct acpi_pci_link_softc *);
|
|
static int acpi_pci_link_attach(struct acpi_pci_link_softc *);
|
|
static uint8_t acpi_pci_link_search_irq(struct acpi_pci_link_softc *, int, int,
|
|
int);
|
|
static struct link *acpi_pci_link_lookup(struct acpi_pci_link_softc *, int);
|
|
static ACPI_STATUS acpi_pci_link_srs(struct acpi_pci_link_softc *,
|
|
ACPI_BUFFER *);
|
|
static ACPI_STATUS acpi_AppendBufferResource(ACPI_BUFFER *, ACPI_RESOURCE *);
|
|
|
|
static ACPI_STATUS
|
|
acpi_count_irq_resources(ACPI_RESOURCE *res, void *context)
|
|
{
|
|
struct link_count_request *req;
|
|
|
|
req = (struct link_count_request *)context;
|
|
switch (res->Type) {
|
|
case ACPI_RESOURCE_TYPE_START_DEPENDENT:
|
|
switch (req->in_dpf) {
|
|
case DPF_OUTSIDE:
|
|
/* We've started the first DPF. */
|
|
req->in_dpf = DPF_FIRST;
|
|
break;
|
|
case DPF_FIRST:
|
|
/* We've started the second DPF. */
|
|
req->in_dpf = DPF_IGNORE;
|
|
break;
|
|
}
|
|
break;
|
|
case ACPI_RESOURCE_TYPE_END_DEPENDENT:
|
|
/* We are finished with DPF parsing. */
|
|
KASSERT(req->in_dpf != DPF_OUTSIDE);
|
|
req->in_dpf = DPF_OUTSIDE;
|
|
break;
|
|
case ACPI_RESOURCE_TYPE_IRQ:
|
|
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
|
|
/*
|
|
* Don't count resources if we are in a DPF set that we are
|
|
* ignoring.
|
|
*/
|
|
if (req->in_dpf != DPF_IGNORE)
|
|
req->count++;
|
|
}
|
|
return (AE_OK);
|
|
}
|
|
|
|
static ACPI_STATUS
|
|
link_add_crs(ACPI_RESOURCE *res, void *context)
|
|
{
|
|
struct link_res_request *req;
|
|
struct link *link;
|
|
|
|
req = (struct link_res_request *)context;
|
|
switch (res->Type) {
|
|
case ACPI_RESOURCE_TYPE_START_DEPENDENT:
|
|
switch (req->in_dpf) {
|
|
case DPF_OUTSIDE:
|
|
/* We've started the first DPF. */
|
|
req->in_dpf = DPF_FIRST;
|
|
break;
|
|
case DPF_FIRST:
|
|
/* We've started the second DPF. */
|
|
panic(
|
|
"%s: Multiple dependent functions within a current resource",
|
|
__func__);
|
|
break;
|
|
}
|
|
break;
|
|
case ACPI_RESOURCE_TYPE_END_DEPENDENT:
|
|
/* We are finished with DPF parsing. */
|
|
KASSERT(req->in_dpf != DPF_OUTSIDE);
|
|
req->in_dpf = DPF_OUTSIDE;
|
|
break;
|
|
case ACPI_RESOURCE_TYPE_IRQ:
|
|
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
|
|
KASSERT(req->link_index < req->sc->pl_num_links);
|
|
link = &req->sc->pl_links[req->link_index];
|
|
link->l_res_index = req->res_index;
|
|
req->link_index++;
|
|
req->res_index++;
|
|
|
|
/*
|
|
* Only use the current value if there's one IRQ. Some
|
|
* systems return multiple IRQs (which is nonsense for _CRS)
|
|
* when the link hasn't been programmed.
|
|
*/
|
|
if (res->Type == ACPI_RESOURCE_TYPE_IRQ) {
|
|
if (res->Data.Irq.InterruptCount == 1) {
|
|
link->l_irq = res->Data.Irq.Interrupts[0];
|
|
link->l_trig = res->Data.Irq.Triggering;
|
|
link->l_pol = res->Data.Irq.Polarity;
|
|
}
|
|
} else if (res->Data.ExtendedIrq.InterruptCount == 1) {
|
|
link->l_irq = res->Data.ExtendedIrq.Interrupts[0];
|
|
link->l_trig = res->Data.ExtendedIrq.Triggering;
|
|
link->l_pol = res->Data.ExtendedIrq.Polarity;
|
|
}
|
|
|
|
/*
|
|
* An IRQ of zero means that the link isn't routed.
|
|
*/
|
|
if (link->l_irq == 0)
|
|
link->l_irq = PCI_INVALID_IRQ;
|
|
break;
|
|
default:
|
|
req->res_index++;
|
|
}
|
|
return (AE_OK);
|
|
}
|
|
|
|
/*
|
|
* Populate the set of possible IRQs for each device.
|
|
*/
|
|
static ACPI_STATUS
|
|
link_add_prs(ACPI_RESOURCE *res, void *context)
|
|
{
|
|
struct link_res_request *req;
|
|
struct link *link;
|
|
uint8_t *irqs = NULL;
|
|
uint32_t *ext_irqs = NULL;
|
|
int i, is_ext_irq = 1;
|
|
|
|
req = (struct link_res_request *)context;
|
|
switch (res->Type) {
|
|
case ACPI_RESOURCE_TYPE_START_DEPENDENT:
|
|
switch (req->in_dpf) {
|
|
case DPF_OUTSIDE:
|
|
/* We've started the first DPF. */
|
|
req->in_dpf = DPF_FIRST;
|
|
break;
|
|
case DPF_FIRST:
|
|
/* We've started the second DPF. */
|
|
req->in_dpf = DPF_IGNORE;
|
|
break;
|
|
}
|
|
break;
|
|
case ACPI_RESOURCE_TYPE_END_DEPENDENT:
|
|
/* We are finished with DPF parsing. */
|
|
KASSERT(req->in_dpf != DPF_OUTSIDE);
|
|
req->in_dpf = DPF_OUTSIDE;
|
|
break;
|
|
case ACPI_RESOURCE_TYPE_IRQ:
|
|
is_ext_irq = 0;
|
|
/* fall through */
|
|
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
|
|
/*
|
|
* Don't parse resources if we are in a DPF set that we are
|
|
* ignoring.
|
|
*/
|
|
if (req->in_dpf == DPF_IGNORE)
|
|
break;
|
|
|
|
KASSERT(req->link_index < req->sc->pl_num_links);
|
|
link = &req->sc->pl_links[req->link_index];
|
|
if (link->l_res_index == -1) {
|
|
KASSERT(req->sc->pl_crs_bad);
|
|
link->l_res_index = req->res_index;
|
|
}
|
|
req->link_index++;
|
|
req->res_index++;
|
|
|
|
/*
|
|
* Stash a copy of the resource for later use when
|
|
* doing _SRS.
|
|
*
|
|
* Note that in theory res->Length may exceed the size
|
|
* of ACPI_RESOURCE, due to variable length lists in
|
|
* subtypes. However, all uses of l_prs_template only
|
|
* rely on lists lengths of zero or one, for which
|
|
* sizeof(ACPI_RESOURCE) is sufficient space anyway.
|
|
* We cannot read longer than Length bytes, in case we
|
|
* read off the end of mapped memory. So we read
|
|
* whichever length is shortest, Length or
|
|
* sizeof(ACPI_RESOURCE).
|
|
*/
|
|
KASSERT(res->Length >= ACPI_RS_SIZE_MIN);
|
|
|
|
memset(&link->l_prs_template, 0, sizeof(link->l_prs_template));
|
|
memcpy(&link->l_prs_template, res,
|
|
MIN(res->Length, sizeof(link->l_prs_template)));
|
|
|
|
if (is_ext_irq) {
|
|
link->l_num_irqs =
|
|
res->Data.ExtendedIrq.InterruptCount;
|
|
link->l_trig = res->Data.ExtendedIrq.Triggering;
|
|
link->l_pol = res->Data.ExtendedIrq.Polarity;
|
|
ext_irqs = res->Data.ExtendedIrq.Interrupts;
|
|
} else {
|
|
link->l_num_irqs = res->Data.Irq.InterruptCount;
|
|
link->l_trig = res->Data.Irq.Triggering;
|
|
link->l_pol = res->Data.Irq.Polarity;
|
|
irqs = res->Data.Irq.Interrupts;
|
|
}
|
|
if (link->l_num_irqs == 0)
|
|
break;
|
|
|
|
/*
|
|
* Save a list of the valid IRQs. Also, if all of the
|
|
* valid IRQs are ISA IRQs, then mark this link as
|
|
* routed via an ISA interrupt.
|
|
*/
|
|
link->l_isa_irq = TRUE;
|
|
link->l_irqs = malloc(sizeof(int) * link->l_num_irqs,
|
|
M_ACPI, M_WAITOK | M_ZERO);
|
|
for (i = 0; i < link->l_num_irqs; i++) {
|
|
if (is_ext_irq) {
|
|
link->l_irqs[i] = ext_irqs[i];
|
|
if (ext_irqs[i] >= NUM_ISA_INTERRUPTS)
|
|
link->l_isa_irq = FALSE;
|
|
} else {
|
|
link->l_irqs[i] = irqs[i];
|
|
if (irqs[i] >= NUM_ISA_INTERRUPTS)
|
|
link->l_isa_irq = FALSE;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
if (req->in_dpf == DPF_IGNORE)
|
|
break;
|
|
if (req->sc->pl_crs_bad)
|
|
aprint_normal("%s: Warning: possible resource %d "
|
|
"will be lost during _SRS\n", req->sc->pl_name,
|
|
req->res_index);
|
|
req->res_index++;
|
|
}
|
|
return (AE_OK);
|
|
}
|
|
|
|
static int
|
|
link_valid_irq(struct link *link, int irq)
|
|
{
|
|
int i;
|
|
|
|
/* Invalid interrupts are never valid. */
|
|
if (!PCI_INTERRUPT_VALID(irq))
|
|
return (FALSE);
|
|
|
|
/* Any interrupt in the list of possible interrupts is valid. */
|
|
for (i = 0; i < link->l_num_irqs; i++)
|
|
if (link->l_irqs[i] == irq)
|
|
return (TRUE);
|
|
|
|
/*
|
|
* For links routed via an ISA interrupt, if the SCI is routed via
|
|
* an ISA interrupt, the SCI is always treated as a valid IRQ.
|
|
*/
|
|
if (link->l_isa_irq && AcpiGbl_FADT.SciInterrupt == irq &&
|
|
irq < NUM_ISA_INTERRUPTS)
|
|
return (TRUE);
|
|
|
|
/* If the interrupt wasn't found in the list it is not valid. */
|
|
return (FALSE);
|
|
}
|
|
|
|
void
|
|
acpi_pci_link_state(void)
|
|
{
|
|
struct acpi_pci_link_softc *sc;
|
|
|
|
TAILQ_FOREACH(sc, &acpi_pci_linkdevs, pl_list) {
|
|
acpi_pci_link_dump(sc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
acpi_pci_link_dump(struct acpi_pci_link_softc *sc)
|
|
{
|
|
struct link *link;
|
|
int i, j;
|
|
|
|
printf("Link Device %s:\n", sc->pl_name);
|
|
printf("Index IRQ Rtd Ref IRQs\n");
|
|
for (i = 0; i < sc->pl_num_links; i++) {
|
|
link = &sc->pl_links[i];
|
|
printf("%5d %3d %c %3d ", i, link->l_irq,
|
|
link->l_routed ? 'Y' : 'N', link->l_references);
|
|
if (link->l_num_irqs == 0)
|
|
printf(" none");
|
|
else for (j = 0; j < link->l_num_irqs; j++)
|
|
printf(" %d", link->l_irqs[j]);
|
|
printf(" polarity %u trigger %u\n", link->l_pol, link->l_trig);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
static int
|
|
acpi_pci_link_attach(struct acpi_pci_link_softc *sc)
|
|
{
|
|
struct link_count_request creq;
|
|
struct link_res_request rreq;
|
|
ACPI_STATUS status;
|
|
int i;
|
|
|
|
ACPI_SERIAL_BEGIN(pci_link);
|
|
|
|
/*
|
|
* Count the number of current resources so we know how big of
|
|
* a link array to allocate. On some systems, _CRS is broken,
|
|
* so for those systems try to derive the count from _PRS instead.
|
|
*/
|
|
creq.in_dpf = DPF_OUTSIDE;
|
|
creq.count = 0;
|
|
status = AcpiWalkResources(sc->pl_handle, "_CRS",
|
|
acpi_count_irq_resources, &creq);
|
|
sc->pl_crs_bad = ACPI_FAILURE(status);
|
|
if (sc->pl_crs_bad) {
|
|
creq.in_dpf = DPF_OUTSIDE;
|
|
creq.count = 0;
|
|
status = AcpiWalkResources(sc->pl_handle, "_PRS",
|
|
acpi_count_irq_resources, &creq);
|
|
if (ACPI_FAILURE(status)) {
|
|
aprint_error("%s: Unable to parse _CRS or _PRS: %s\n",
|
|
sc->pl_name, AcpiFormatException(status));
|
|
ACPI_SERIAL_END(pci_link);
|
|
return (ENXIO);
|
|
}
|
|
}
|
|
sc->pl_num_links = creq.count;
|
|
if (creq.count == 0) {
|
|
ACPI_SERIAL_END(pci_link);
|
|
return (0);
|
|
}
|
|
sc->pl_links = malloc(sizeof(struct link) * sc->pl_num_links,
|
|
M_ACPI, M_WAITOK | M_ZERO);
|
|
|
|
/* Initialize the child links. */
|
|
for (i = 0; i < sc->pl_num_links; i++) {
|
|
sc->pl_links[i].l_irq = PCI_INVALID_IRQ;
|
|
sc->pl_links[i].l_bios_irq = PCI_INVALID_IRQ;
|
|
sc->pl_links[i].l_sc = sc;
|
|
sc->pl_links[i].l_isa_irq = FALSE;
|
|
sc->pl_links[i].l_res_index = -1;
|
|
sc->pl_links[i].l_dev_count = 0;
|
|
sc->pl_links[i].l_devices = NULL;
|
|
}
|
|
|
|
/* Try to read the current settings from _CRS if it is valid. */
|
|
if (!sc->pl_crs_bad) {
|
|
rreq.in_dpf = DPF_OUTSIDE;
|
|
rreq.link_index = 0;
|
|
rreq.res_index = 0;
|
|
rreq.sc = sc;
|
|
status = AcpiWalkResources(sc->pl_handle, "_CRS",
|
|
link_add_crs, &rreq);
|
|
if (ACPI_FAILURE(status)) {
|
|
aprint_error("%s: Unable to parse _CRS: %s\n",
|
|
sc->pl_name, AcpiFormatException(status));
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Try to read the possible settings from _PRS. Note that if the
|
|
* _CRS is toast, we depend on having a working _PRS. However, if
|
|
* _CRS works, then it is ok for _PRS to be missing.
|
|
*/
|
|
rreq.in_dpf = DPF_OUTSIDE;
|
|
rreq.link_index = 0;
|
|
rreq.res_index = 0;
|
|
rreq.sc = sc;
|
|
status = AcpiWalkResources(sc->pl_handle, "_PRS",
|
|
link_add_prs, &rreq);
|
|
if (ACPI_FAILURE(status) &&
|
|
(status != AE_NOT_FOUND || sc->pl_crs_bad)) {
|
|
aprint_error("%s: Unable to parse _PRS: %s\n",
|
|
sc->pl_name, AcpiFormatException(status));
|
|
goto fail;
|
|
}
|
|
if (boothowto & AB_VERBOSE) {
|
|
aprint_normal("%s: Links after initial probe:\n", sc->pl_name);
|
|
acpi_pci_link_dump(sc);
|
|
}
|
|
|
|
/* Verify initial IRQs if we have _PRS. */
|
|
if (status != AE_NOT_FOUND)
|
|
for (i = 0; i < sc->pl_num_links; i++)
|
|
if (!link_valid_irq(&sc->pl_links[i],
|
|
sc->pl_links[i].l_irq))
|
|
sc->pl_links[i].l_irq = PCI_INVALID_IRQ;
|
|
if (boothowto & AB_VERBOSE) {
|
|
printf("%s: Links after initial validation:\n", sc->pl_name);
|
|
acpi_pci_link_dump(sc);
|
|
}
|
|
|
|
/* Save initial IRQs. */
|
|
for (i = 0; i < sc->pl_num_links; i++)
|
|
sc->pl_links[i].l_initial_irq = sc->pl_links[i].l_irq;
|
|
|
|
/*
|
|
* Try to disable this link. If successful, set the current IRQ to
|
|
* zero and flags to indicate this link is not routed. If we can't
|
|
* run _DIS (i.e., the method doesn't exist), assume the initial
|
|
* IRQ was routed by the BIOS.
|
|
*/
|
|
if (ACPI_SUCCESS(AcpiEvaluateObject(sc->pl_handle, "_DIS", NULL,
|
|
NULL)))
|
|
for (i = 0; i < sc->pl_num_links; i++)
|
|
sc->pl_links[i].l_irq = PCI_INVALID_IRQ;
|
|
else
|
|
for (i = 0; i < sc->pl_num_links; i++)
|
|
if (PCI_INTERRUPT_VALID(sc->pl_links[i].l_irq))
|
|
sc->pl_links[i].l_routed = TRUE;
|
|
if (boothowto & AB_VERBOSE) {
|
|
printf("%s: Links after disable:\n", sc->pl_name);
|
|
acpi_pci_link_dump(sc);
|
|
}
|
|
ACPI_SERIAL_END(pci_link);
|
|
return (0);
|
|
fail:
|
|
ACPI_SERIAL_END(pci_link);
|
|
for (i = 0; i < sc->pl_num_links; i++) {
|
|
if (sc->pl_links[i].l_irqs != NULL)
|
|
free(sc->pl_links[i].l_irqs, M_ACPI);
|
|
if (sc->pl_links[i].l_devices != NULL)
|
|
free(sc->pl_links[i].l_devices, M_ACPI);
|
|
}
|
|
free(sc->pl_links, M_ACPI);
|
|
return (ENXIO);
|
|
}
|
|
|
|
static void
|
|
acpi_pci_link_add_functions(struct acpi_pci_link_softc *sc, struct link *link,
|
|
int bus, int device, int pin)
|
|
{
|
|
uint32_t value;
|
|
uint8_t func, maxfunc, ipin;
|
|
pcitag_t tag;
|
|
|
|
tag = pci_make_tag(acpi_softc->sc_pc, bus, device, 0);
|
|
/* See if we have a valid device at function 0. */
|
|
value = pci_conf_read(acpi_softc->sc_pc, tag, PCI_BHLC_REG);
|
|
if (PCI_HDRTYPE_TYPE(value) > PCI_HDRTYPE_PCB)
|
|
return;
|
|
if (PCI_HDRTYPE_MULTIFN(value))
|
|
maxfunc = 7;
|
|
else
|
|
maxfunc = 0;
|
|
|
|
/* Scan all possible functions at this device. */
|
|
for (func = 0; func <= maxfunc; func++) {
|
|
tag = pci_make_tag(acpi_softc->sc_pc, bus, device, func);
|
|
value = pci_conf_read(acpi_softc->sc_pc, tag, PCI_ID_REG);
|
|
if (PCI_VENDOR(value) == 0xffff)
|
|
continue;
|
|
value = pci_conf_read(acpi_softc->sc_pc, tag,
|
|
PCI_INTERRUPT_REG);
|
|
ipin = PCI_INTERRUPT_PIN(value);
|
|
/*
|
|
* See if it uses the pin in question. Note that the passed
|
|
* in pin uses 0 for A, .. 3 for D whereas the intpin
|
|
* register uses 0 for no interrupt, 1 for A, .. 4 for D.
|
|
*/
|
|
if (ipin != pin + 1)
|
|
continue;
|
|
|
|
link->l_devices = realloc(link->l_devices,
|
|
sizeof(pcitag_t) * (link->l_dev_count + 1),
|
|
M_ACPI, M_WAITOK);
|
|
link->l_devices[link->l_dev_count] = tag;
|
|
++link->l_dev_count;
|
|
}
|
|
}
|
|
|
|
static uint8_t
|
|
acpi_pci_link_search_irq(struct acpi_pci_link_softc *sc, int bus, int device,
|
|
int pin)
|
|
{
|
|
uint32_t value;
|
|
uint8_t func, maxfunc, ipin, iline;
|
|
pcitag_t tag;
|
|
|
|
tag = pci_make_tag(acpi_softc->sc_pc, bus, device, 0);
|
|
/* See if we have a valid device at function 0. */
|
|
value = pci_conf_read(acpi_softc->sc_pc, tag, PCI_BHLC_REG);
|
|
if (PCI_HDRTYPE_TYPE(value) > PCI_HDRTYPE_PCB)
|
|
return (PCI_INVALID_IRQ);
|
|
if (PCI_HDRTYPE_MULTIFN(value))
|
|
maxfunc = 7;
|
|
else
|
|
maxfunc = 0;
|
|
|
|
/* Scan all possible functions at this device. */
|
|
for (func = 0; func <= maxfunc; func++) {
|
|
tag = pci_make_tag(acpi_softc->sc_pc, bus, device, func);
|
|
value = pci_conf_read(acpi_softc->sc_pc, tag, PCI_ID_REG);
|
|
if (PCI_VENDOR(value) == 0xffff)
|
|
continue;
|
|
value = pci_conf_read(acpi_softc->sc_pc, tag,
|
|
PCI_INTERRUPT_REG);
|
|
ipin = PCI_INTERRUPT_PIN(value);
|
|
iline = PCI_INTERRUPT_LINE(value);
|
|
|
|
/*
|
|
* See if it uses the pin in question. Note that the passed
|
|
* in pin uses 0 for A, .. 3 for D whereas the intpin
|
|
* register uses 0 for no interrupt, 1 for A, .. 4 for D.
|
|
*/
|
|
if (ipin != pin + 1)
|
|
continue;
|
|
aprint_verbose(
|
|
"%s: ACPI: Found matching pin for %d.%d.INT%c"
|
|
" at func %d: %d\n",
|
|
sc->pl_name, bus, device, pin + 'A', func, iline);
|
|
if (PCI_INTERRUPT_VALID(iline))
|
|
return (iline);
|
|
}
|
|
return (PCI_INVALID_IRQ);
|
|
}
|
|
|
|
/*
|
|
* Find the link structure that corresponds to the resource index passed in
|
|
* via 'source_index'.
|
|
*/
|
|
static struct link *
|
|
acpi_pci_link_lookup(struct acpi_pci_link_softc *sc, int source_index)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < sc->pl_num_links; i++)
|
|
if (sc->pl_links[i].l_res_index == source_index)
|
|
return (&sc->pl_links[i]);
|
|
return (NULL);
|
|
}
|
|
|
|
void
|
|
acpi_pci_link_add_reference(void *v, int index, int bus, int slot, int pin)
|
|
{
|
|
struct acpi_pci_link_softc *sc = v;
|
|
struct link *link;
|
|
uint8_t bios_irq;
|
|
|
|
/* Bump the reference count. */
|
|
ACPI_SERIAL_BEGIN(pci_link);
|
|
link = acpi_pci_link_lookup(sc, index);
|
|
if (link == NULL) {
|
|
printf("%s: apparently invalid index %d\n", sc->pl_name, index);
|
|
ACPI_SERIAL_END(pci_link);
|
|
return;
|
|
}
|
|
link->l_references++;
|
|
acpi_pci_link_add_functions(sc, link, bus, slot, pin);
|
|
if (link->l_routed)
|
|
pci_link_interrupt_weights[link->l_irq]++;
|
|
|
|
/*
|
|
* The BIOS only routes interrupts via ISA IRQs using the ATPICs
|
|
* (8259As). Thus, if this link is routed via an ISA IRQ, go
|
|
* look to see if the BIOS routed an IRQ for this link at the
|
|
* indicated (bus, slot, pin). If so, we prefer that IRQ for
|
|
* this link and add that IRQ to our list of known-good IRQs.
|
|
* This provides a good work-around for link devices whose _CRS
|
|
* method is either broken or bogus. We only use the value
|
|
* returned by _CRS if we can't find a valid IRQ via this method
|
|
* in fact.
|
|
*
|
|
* If this link is not routed via an ISA IRQ (because we are using
|
|
* APIC for example), then don't bother looking up the BIOS IRQ
|
|
* as if we find one it won't be valid anyway.
|
|
*/
|
|
if (!link->l_isa_irq) {
|
|
ACPI_SERIAL_END(pci_link);
|
|
return;
|
|
}
|
|
|
|
/* Try to find a BIOS IRQ setting from any matching devices. */
|
|
bios_irq = acpi_pci_link_search_irq(sc, bus, slot, pin);
|
|
if (!PCI_INTERRUPT_VALID(bios_irq)) {
|
|
ACPI_SERIAL_END(pci_link);
|
|
return;
|
|
}
|
|
|
|
/* Validate the BIOS IRQ. */
|
|
if (!link_valid_irq(link, bios_irq)) {
|
|
printf("%s: BIOS IRQ %u for %d.%d.INT%c is invalid\n",
|
|
sc->pl_name, bios_irq, (int)bus, slot, pin + 'A');
|
|
} else if (!PCI_INTERRUPT_VALID(link->l_bios_irq)) {
|
|
link->l_bios_irq = bios_irq;
|
|
if (bios_irq < NUM_ISA_INTERRUPTS)
|
|
pci_link_bios_isa_irqs |= (1 << bios_irq);
|
|
if (bios_irq != link->l_initial_irq &&
|
|
PCI_INTERRUPT_VALID(link->l_initial_irq))
|
|
printf(
|
|
"%s: BIOS IRQ %u does not match initial IRQ %u\n",
|
|
sc->pl_name, bios_irq, link->l_initial_irq);
|
|
} else if (bios_irq != link->l_bios_irq)
|
|
printf(
|
|
"%s: BIOS IRQ %u for %d.%d.INT%c does not match "
|
|
"previous BIOS IRQ %u\n",
|
|
sc->pl_name, bios_irq, (int)bus, slot, pin + 'A',
|
|
link->l_bios_irq);
|
|
ACPI_SERIAL_END(pci_link);
|
|
}
|
|
|
|
static ACPI_STATUS
|
|
acpi_pci_link_srs_from_crs(struct acpi_pci_link_softc *sc, ACPI_BUFFER *srsbuf)
|
|
{
|
|
ACPI_RESOURCE *resource, *end, newres, *resptr;
|
|
ACPI_BUFFER crsbuf;
|
|
ACPI_STATUS status;
|
|
struct link *link;
|
|
int i, in_dpf;
|
|
|
|
/* Fetch the _CRS. */
|
|
crsbuf.Pointer = NULL;
|
|
crsbuf.Length = ACPI_ALLOCATE_LOCAL_BUFFER;
|
|
status = AcpiGetCurrentResources(sc->pl_handle, &crsbuf);
|
|
if (ACPI_SUCCESS(status) && crsbuf.Pointer == NULL)
|
|
status = AE_NO_MEMORY;
|
|
if (ACPI_FAILURE(status)) {
|
|
aprint_verbose("%s: Unable to fetch current resources: %s\n",
|
|
sc->pl_name, AcpiFormatException(status));
|
|
return (status);
|
|
}
|
|
|
|
/* Fill in IRQ resources via link structures. */
|
|
srsbuf->Pointer = NULL;
|
|
link = sc->pl_links;
|
|
i = 0;
|
|
in_dpf = DPF_OUTSIDE;
|
|
resource = (ACPI_RESOURCE *)crsbuf.Pointer;
|
|
end = (ACPI_RESOURCE *)((char *)crsbuf.Pointer + crsbuf.Length);
|
|
for (;;) {
|
|
switch (resource->Type) {
|
|
case ACPI_RESOURCE_TYPE_START_DEPENDENT:
|
|
switch (in_dpf) {
|
|
case DPF_OUTSIDE:
|
|
/* We've started the first DPF. */
|
|
in_dpf = DPF_FIRST;
|
|
break;
|
|
case DPF_FIRST:
|
|
/* We've started the second DPF. */
|
|
panic(
|
|
"%s: Multiple dependent functions within a current resource",
|
|
__func__);
|
|
break;
|
|
}
|
|
resptr = NULL;
|
|
break;
|
|
case ACPI_RESOURCE_TYPE_END_DEPENDENT:
|
|
/* We are finished with DPF parsing. */
|
|
KASSERT(in_dpf != DPF_OUTSIDE);
|
|
in_dpf = DPF_OUTSIDE;
|
|
resptr = NULL;
|
|
break;
|
|
case ACPI_RESOURCE_TYPE_IRQ:
|
|
newres = link->l_prs_template;
|
|
resptr = &newres;
|
|
resptr->Data.Irq.InterruptCount = 1;
|
|
if (PCI_INTERRUPT_VALID(link->l_irq)) {
|
|
KASSERT(link->l_irq < NUM_ISA_INTERRUPTS);
|
|
resptr->Data.Irq.Interrupts[0] = link->l_irq;
|
|
resptr->Data.Irq.Triggering = link->l_trig;
|
|
resptr->Data.Irq.Polarity = link->l_pol;
|
|
} else
|
|
resptr->Data.Irq.Interrupts[0] = 0;
|
|
link++;
|
|
i++;
|
|
break;
|
|
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
|
|
newres = link->l_prs_template;
|
|
resptr = &newres;
|
|
resptr->Data.ExtendedIrq.InterruptCount = 1;
|
|
if (PCI_INTERRUPT_VALID(link->l_irq)) {
|
|
resptr->Data.ExtendedIrq.Interrupts[0] =
|
|
link->l_irq;
|
|
resptr->Data.ExtendedIrq.Triggering =
|
|
link->l_trig;
|
|
resptr->Data.ExtendedIrq.Polarity = link->l_pol;
|
|
} else
|
|
resptr->Data.ExtendedIrq.Interrupts[0] = 0;
|
|
link++;
|
|
i++;
|
|
break;
|
|
default:
|
|
resptr = resource;
|
|
}
|
|
if (resptr != NULL) {
|
|
status = acpi_AppendBufferResource(srsbuf, resptr);
|
|
if (ACPI_FAILURE(status)) {
|
|
printf("%s: Unable to build resources: %s\n",
|
|
sc->pl_name, AcpiFormatException(status));
|
|
if (srsbuf->Pointer != NULL)
|
|
ACPI_FREE(srsbuf->Pointer);
|
|
ACPI_FREE(crsbuf.Pointer);
|
|
return (status);
|
|
}
|
|
}
|
|
if (resource->Type == ACPI_RESOURCE_TYPE_END_TAG)
|
|
break;
|
|
resource = ACPI_NEXT_RESOURCE(resource);
|
|
if (resource >= end)
|
|
break;
|
|
}
|
|
ACPI_FREE(crsbuf.Pointer);
|
|
return (AE_OK);
|
|
}
|
|
|
|
static ACPI_STATUS
|
|
acpi_pci_link_srs_from_links(struct acpi_pci_link_softc *sc,
|
|
ACPI_BUFFER *srsbuf)
|
|
{
|
|
ACPI_RESOURCE newres;
|
|
ACPI_STATUS status;
|
|
struct link *link;
|
|
int i;
|
|
|
|
/* Start off with an empty buffer. */
|
|
srsbuf->Pointer = NULL;
|
|
link = sc->pl_links;
|
|
for (i = 0; i < sc->pl_num_links; i++) {
|
|
|
|
/* Add a new IRQ resource from each link. */
|
|
link = &sc->pl_links[i];
|
|
newres = link->l_prs_template;
|
|
if (newres.Type == ACPI_RESOURCE_TYPE_IRQ) {
|
|
|
|
/* Build an IRQ resource. */
|
|
newres.Data.Irq.InterruptCount = 1;
|
|
if (PCI_INTERRUPT_VALID(link->l_irq)) {
|
|
KASSERT(link->l_irq < NUM_ISA_INTERRUPTS);
|
|
newres.Data.Irq.Interrupts[0] = link->l_irq;
|
|
newres.Data.Irq.Triggering = link->l_trig;
|
|
newres.Data.Irq.Polarity = link->l_pol;
|
|
} else
|
|
newres.Data.Irq.Interrupts[0] = 0;
|
|
} else {
|
|
|
|
/* Build an ExtIRQ resuorce. */
|
|
newres.Data.ExtendedIrq.InterruptCount = 1;
|
|
if (PCI_INTERRUPT_VALID(link->l_irq)) {
|
|
newres.Data.ExtendedIrq.Interrupts[0] =
|
|
link->l_irq;
|
|
newres.Data.ExtendedIrq.Triggering =
|
|
link->l_trig;
|
|
newres.Data.ExtendedIrq.Polarity =
|
|
link->l_pol;
|
|
} else {
|
|
newres.Data.ExtendedIrq.Interrupts[0] = 0;
|
|
}
|
|
}
|
|
|
|
/* Add the new resource to the end of the _SRS buffer. */
|
|
status = acpi_AppendBufferResource(srsbuf, &newres);
|
|
if (ACPI_FAILURE(status)) {
|
|
printf("%s: Unable to build resources: %s\n",
|
|
sc->pl_name, AcpiFormatException(status));
|
|
if (srsbuf->Pointer != NULL)
|
|
ACPI_FREE(srsbuf->Pointer);
|
|
return (status);
|
|
}
|
|
}
|
|
return (AE_OK);
|
|
}
|
|
|
|
static ACPI_STATUS
|
|
acpi_pci_link_srs(struct acpi_pci_link_softc *sc, ACPI_BUFFER *srsbuf)
|
|
{
|
|
ACPI_STATUS status;
|
|
|
|
if (sc->pl_crs_bad)
|
|
status = acpi_pci_link_srs_from_links(sc, srsbuf);
|
|
else
|
|
status = acpi_pci_link_srs_from_crs(sc, srsbuf);
|
|
|
|
if (ACPI_FAILURE(status))
|
|
printf("%s: Unable to find link srs : %s\n",
|
|
sc->pl_name, AcpiFormatException(status));
|
|
|
|
/* Write out new resources via _SRS. */
|
|
return AcpiSetCurrentResources(sc->pl_handle, srsbuf);
|
|
}
|
|
|
|
static ACPI_STATUS
|
|
acpi_pci_link_route_irqs(struct acpi_pci_link_softc *sc, int *irq, int *pol,
|
|
int *trig)
|
|
{
|
|
ACPI_RESOURCE *resource, *end;
|
|
ACPI_BUFFER srsbuf;
|
|
ACPI_STATUS status;
|
|
struct link *link;
|
|
int i, is_ext = 0;
|
|
|
|
status = acpi_pci_link_srs(sc, &srsbuf);
|
|
if (ACPI_FAILURE(status)) {
|
|
printf("%s: _SRS failed: %s\n",
|
|
sc->pl_name, AcpiFormatException(status));
|
|
return (status);
|
|
}
|
|
/*
|
|
* Perform acpi_config_intr() on each IRQ resource if it was just
|
|
* routed for the first time.
|
|
*/
|
|
link = sc->pl_links;
|
|
i = 0;
|
|
resource = (ACPI_RESOURCE *)srsbuf.Pointer;
|
|
end = (ACPI_RESOURCE *)((char *)srsbuf.Pointer + srsbuf.Length);
|
|
for (;;) {
|
|
if (resource->Type == ACPI_RESOURCE_TYPE_END_TAG)
|
|
break;
|
|
switch (resource->Type) {
|
|
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
|
|
is_ext = 1;
|
|
/* FALLTHROUGH */
|
|
case ACPI_RESOURCE_TYPE_IRQ:
|
|
/*
|
|
* Only configure the interrupt and update the
|
|
* weights if this link has a valid IRQ and was
|
|
* previously unrouted.
|
|
*/
|
|
if (!link->l_routed &&
|
|
PCI_INTERRUPT_VALID(link->l_irq)) {
|
|
*trig = is_ext ?
|
|
resource->Data.ExtendedIrq.Triggering :
|
|
resource->Data.Irq.Triggering;
|
|
*pol = is_ext ?
|
|
resource->Data.ExtendedIrq.Polarity :
|
|
resource->Data.Irq.Polarity;
|
|
*irq = is_ext ?
|
|
resource->Data.ExtendedIrq.Interrupts[0] :
|
|
resource->Data.Irq.Interrupts[0];
|
|
link->l_routed = TRUE;
|
|
pci_link_interrupt_weights[link->l_irq] +=
|
|
link->l_references;
|
|
}
|
|
link++;
|
|
i++;
|
|
break;
|
|
}
|
|
resource = ACPI_NEXT_RESOURCE(resource);
|
|
if (resource >= end)
|
|
break;
|
|
}
|
|
ACPI_FREE(srsbuf.Pointer);
|
|
return (AE_OK);
|
|
}
|
|
|
|
/*
|
|
* Pick an IRQ to use for this unrouted link.
|
|
*/
|
|
static uint8_t
|
|
acpi_pci_link_choose_irq(struct acpi_pci_link_softc *sc, struct link *link)
|
|
{
|
|
u_int8_t best_irq, pos_irq;
|
|
int best_weight, pos_weight, i;
|
|
|
|
KASSERT(!link->l_routed);
|
|
KASSERT(!PCI_INTERRUPT_VALID(link->l_irq));
|
|
|
|
/*
|
|
* If we have a valid BIOS IRQ, use that. We trust what the BIOS
|
|
* says it routed over what _CRS says the link thinks is routed.
|
|
*/
|
|
if (PCI_INTERRUPT_VALID(link->l_bios_irq))
|
|
return (link->l_bios_irq);
|
|
|
|
/*
|
|
* If we don't have a BIOS IRQ but do have a valid IRQ from _CRS,
|
|
* then use that.
|
|
*/
|
|
if (PCI_INTERRUPT_VALID(link->l_initial_irq))
|
|
return (link->l_initial_irq);
|
|
|
|
/*
|
|
* Ok, we have no useful hints, so we have to pick from the
|
|
* possible IRQs. For ISA IRQs we only use interrupts that
|
|
* have already been used by the BIOS.
|
|
*/
|
|
best_irq = PCI_INVALID_IRQ;
|
|
best_weight = INT_MAX;
|
|
for (i = 0; i < link->l_num_irqs; i++) {
|
|
pos_irq = link->l_irqs[i];
|
|
if (pos_irq < NUM_ISA_INTERRUPTS &&
|
|
(pci_link_bios_isa_irqs & 1 << pos_irq) == 0)
|
|
continue;
|
|
pos_weight = pci_link_interrupt_weights[pos_irq];
|
|
if (pos_weight < best_weight) {
|
|
best_weight = pos_weight;
|
|
best_irq = pos_irq;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this is an ISA IRQ, try using the SCI if it is also an ISA
|
|
* interrupt as a fallback.
|
|
*/
|
|
if (link->l_isa_irq && !PCI_INTERRUPT_VALID(best_irq)) {
|
|
pos_irq = AcpiGbl_FADT.SciInterrupt;
|
|
pos_weight = pci_link_interrupt_weights[pos_irq];
|
|
if (pos_weight < best_weight) {
|
|
best_weight = pos_weight;
|
|
best_irq = pos_irq;
|
|
}
|
|
}
|
|
|
|
if (PCI_INTERRUPT_VALID(best_irq)) {
|
|
aprint_verbose("%s: Picked IRQ %u with weight %d\n",
|
|
sc->pl_name, best_irq, best_weight);
|
|
} else
|
|
printf("%s: Unable to choose an IRQ\n", sc->pl_name);
|
|
return (best_irq);
|
|
}
|
|
|
|
int
|
|
acpi_pci_link_route_interrupt(void *v, int index, int *irq, int *pol, int *trig)
|
|
{
|
|
struct acpi_pci_link_softc *sc = v;
|
|
struct link *link;
|
|
int i;
|
|
pcireg_t reg;
|
|
|
|
ACPI_SERIAL_BEGIN(pci_link);
|
|
link = acpi_pci_link_lookup(sc, index);
|
|
if (link == NULL)
|
|
panic("%s: apparently invalid index %d", __func__, index);
|
|
|
|
/*
|
|
* If this link device is already routed to an interrupt, just return
|
|
* the interrupt it is routed to.
|
|
*/
|
|
if (link->l_routed) {
|
|
KASSERT(PCI_INTERRUPT_VALID(link->l_irq));
|
|
ACPI_SERIAL_END(pci_link);
|
|
*irq = link->l_irq;
|
|
*pol = link->l_pol;
|
|
*trig = link->l_trig;
|
|
return (link->l_irq);
|
|
}
|
|
|
|
/* Choose an IRQ if we need one. */
|
|
if (PCI_INTERRUPT_VALID(link->l_irq)) {
|
|
*irq = link->l_irq;
|
|
*pol = link->l_pol;
|
|
*trig = link->l_trig;
|
|
goto done;
|
|
}
|
|
|
|
link->l_irq = acpi_pci_link_choose_irq(sc, link);
|
|
|
|
/*
|
|
* Try to route the interrupt we picked. If it fails, then
|
|
* assume the interrupt is not routed.
|
|
*/
|
|
if (!PCI_INTERRUPT_VALID(link->l_irq))
|
|
goto done;
|
|
|
|
acpi_pci_link_route_irqs(sc, irq, pol, trig);
|
|
if (!link->l_routed) {
|
|
link->l_irq = PCI_INVALID_IRQ;
|
|
goto done;
|
|
}
|
|
|
|
link->l_pol = *pol;
|
|
link->l_trig = *trig;
|
|
for (i = 0; i < link->l_dev_count; ++i) {
|
|
reg = pci_conf_read(acpi_softc->sc_pc, link->l_devices[i],
|
|
PCI_INTERRUPT_REG);
|
|
reg &= ~(PCI_INTERRUPT_LINE_MASK << PCI_INTERRUPT_LINE_SHIFT);
|
|
reg |= link->l_irq << PCI_INTERRUPT_LINE_SHIFT;
|
|
pci_conf_write(acpi_softc->sc_pc, link->l_devices[i],
|
|
PCI_INTERRUPT_REG, reg);
|
|
}
|
|
|
|
done:
|
|
ACPI_SERIAL_END(pci_link);
|
|
|
|
return (link->l_irq);
|
|
}
|
|
|
|
/*
|
|
* This is gross, but we abuse the identify routine to perform one-time
|
|
* SYSINIT() style initialization for the driver.
|
|
*/
|
|
static void
|
|
acpi_pci_link_init(struct acpi_pci_link_softc *sc)
|
|
{
|
|
ACPI_BUFFER buf;
|
|
|
|
/*
|
|
* If the SCI is an ISA IRQ, add it to the bitmask of known good
|
|
* ISA IRQs.
|
|
*
|
|
* XXX: If we are using the APIC, the SCI might have been
|
|
* rerouted to an APIC pin in which case this is invalid. However,
|
|
* if we are using the APIC, we also shouldn't be having any PCI
|
|
* interrupts routed via ISA IRQs, so this is probably ok.
|
|
*/
|
|
if (AcpiGbl_FADT.SciInterrupt < NUM_ISA_INTERRUPTS)
|
|
pci_link_bios_isa_irqs |= (1 << AcpiGbl_FADT.SciInterrupt);
|
|
|
|
buf.Length = sizeof (sc->pl_name);
|
|
buf.Pointer = sc->pl_name;
|
|
|
|
if (ACPI_FAILURE(AcpiGetName(sc->pl_handle, ACPI_SINGLE_NAME, &buf)))
|
|
snprintf(sc->pl_name, sizeof (sc->pl_name), "%s",
|
|
"ACPI link device");
|
|
|
|
acpi_pci_link_attach(sc);
|
|
}
|
|
|
|
void *
|
|
acpi_pci_link_devbyhandle(ACPI_HANDLE handle)
|
|
{
|
|
struct acpi_pci_link_softc *sc;
|
|
|
|
TAILQ_FOREACH(sc, &acpi_pci_linkdevs, pl_list) {
|
|
if (sc->pl_handle == handle)
|
|
return sc;
|
|
}
|
|
|
|
sc = malloc(sizeof (*sc), M_ACPI, M_NOWAIT | M_ZERO);
|
|
if (sc == NULL)
|
|
return NULL;
|
|
|
|
sc->pl_handle = handle;
|
|
|
|
acpi_pci_link_init(sc);
|
|
|
|
TAILQ_INSERT_TAIL(&acpi_pci_linkdevs, sc, pl_list);
|
|
|
|
return (void *)sc;
|
|
}
|
|
|
|
void
|
|
acpi_pci_link_resume(void)
|
|
{
|
|
struct acpi_pci_link_softc *sc;
|
|
ACPI_BUFFER srsbuf;
|
|
|
|
TAILQ_FOREACH(sc, &acpi_pci_linkdevs, pl_list) {
|
|
ACPI_SERIAL_BEGIN(pci_link);
|
|
if (ACPI_SUCCESS(acpi_pci_link_srs(sc, &srsbuf)))
|
|
ACPI_FREE(srsbuf.Pointer);
|
|
ACPI_SERIAL_END(pci_link);
|
|
}
|
|
}
|
|
|
|
ACPI_HANDLE
|
|
acpi_pci_link_handle(void *v)
|
|
{
|
|
struct acpi_pci_link_softc *sc = v;
|
|
|
|
return sc->pl_handle;
|
|
}
|
|
|
|
char *
|
|
acpi_pci_link_name(void *v)
|
|
{
|
|
struct acpi_pci_link_softc *sc = v;
|
|
|
|
return sc->pl_name;
|
|
}
|
|
|
|
|
|
/*
|
|
* Append an ACPI_RESOURCE to an ACPI_BUFFER.
|
|
*
|
|
* Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER
|
|
* provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible
|
|
* backing block. If the ACPI_RESOURCE is NULL, return an empty set of
|
|
* resources.
|
|
*/
|
|
#define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512
|
|
|
|
static ACPI_STATUS
|
|
acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res)
|
|
{
|
|
ACPI_RESOURCE *rp;
|
|
void *newp;
|
|
|
|
/* Initialise the buffer if necessary. */
|
|
if (buf->Pointer == NULL) {
|
|
buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE;
|
|
if ((buf->Pointer = ACPI_ALLOCATE(buf->Length)) == NULL)
|
|
return (AE_NO_MEMORY);
|
|
rp = (ACPI_RESOURCE *)buf->Pointer;
|
|
rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
|
|
rp->Length = 0;
|
|
}
|
|
|
|
if (res == NULL)
|
|
return (AE_OK);
|
|
|
|
/*
|
|
* Scan the current buffer looking for the terminator.
|
|
* This will either find the terminator or hit the end
|
|
* of the buffer and return an error.
|
|
*/
|
|
rp = (ACPI_RESOURCE *)buf->Pointer;
|
|
for (;;) {
|
|
/* Range check, don't go outside the buffer */
|
|
if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer +
|
|
buf->Length))
|
|
return (AE_BAD_PARAMETER);
|
|
if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
|
|
break;
|
|
rp = ACPI_NEXT_RESOURCE(rp);
|
|
}
|
|
|
|
/*
|
|
* Check the size of the buffer and expand if required.
|
|
*
|
|
* Required size is:
|
|
* size of existing resources before terminator +
|
|
* size of new resource and header +
|
|
* size of terminator.
|
|
*
|
|
* Note that this loop should really only run once, unless
|
|
* for some reason we are stuffing a *really* huge resource.
|
|
*/
|
|
while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) +
|
|
res->Length + ACPI_RS_SIZE_NO_DATA +
|
|
ACPI_RS_SIZE_MIN) >= buf->Length) {
|
|
if ((newp = ACPI_ALLOCATE(buf->Length * 2)) == NULL)
|
|
return (AE_NO_MEMORY);
|
|
memcpy(newp, buf->Pointer, buf->Length);
|
|
rp = (ACPI_RESOURCE *)((u_int8_t *)newp +
|
|
((u_int8_t *)rp - (u_int8_t *)buf->Pointer));
|
|
ACPI_FREE(buf->Pointer);
|
|
buf->Pointer = newp;
|
|
buf->Length += buf->Length;
|
|
}
|
|
|
|
/* Insert the new resource. */
|
|
memcpy(rp, res, res->Length);
|
|
|
|
/* And add the terminator. */
|
|
rp = ACPI_NEXT_RESOURCE(rp);
|
|
rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
|
|
rp->Length = 0;
|
|
|
|
return (AE_OK);
|
|
}
|