NetBSD/sys/net/npf/npf_nat.c

932 lines
24 KiB
C

/* $NetBSD: npf_nat.c,v 1.40 2016/03/18 10:09:46 mrg Exp $ */
/*-
* Copyright (c) 2014 Mindaugas Rasiukevicius <rmind at netbsd org>
* Copyright (c) 2010-2013 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This material is based upon work partially supported by The
* NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* NPF network address port translation (NAPT) and other forms of NAT.
* Described in RFC 2663, RFC 3022, etc.
*
* Overview
*
* There are few mechanisms: NAT policy, port map and translation.
* NAT module has a separate ruleset, where rules contain associated
* NAT policy, thus flexible filter criteria can be used.
*
* Translation types
*
* There are two types of translation: outbound (NPF_NATOUT) and
* inbound (NPF_NATIN). It should not be confused with connection
* direction. See npf_nat_which() for the description of how the
* addresses are rewritten.
*
* It should be noted that bi-directional NAT is a combined outbound
* and inbound translation, therefore constructed as two policies.
*
* NAT policies and port maps
*
* NAT (translation) policy is applied when a packet matches the rule.
* Apart from filter criteria, NAT policy has a translation IP address
* and associated port map. Port map is a bitmap used to reserve and
* use unique TCP/UDP ports for translation. Port maps are unique to
* the IP addresses, therefore multiple NAT policies with the same IP
* will share the same port map.
*
* Connections, translation entries and their life-cycle
*
* NAT module relies on connection tracking module. Each translated
* connection has an associated translation entry (npf_nat_t), which
* contains information used for backwards stream translation, i.e.
* original IP address with port and translation port, allocated from
* the port map. Each NAT entry is associated with the policy, which
* contains translation IP address. Allocated port is returned to the
* port map and NAT entry is destroyed when connection expires.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: npf_nat.c,v 1.40 2016/03/18 10:09:46 mrg Exp $");
#include <sys/param.h>
#include <sys/types.h>
#include <sys/atomic.h>
#include <sys/bitops.h>
#include <sys/condvar.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/pool.h>
#include <sys/proc.h>
#include <sys/cprng.h>
#include <net/pfil.h>
#include <netinet/in.h>
#include "npf_impl.h"
#include "npf_conn.h"
/*
* NPF portmap structure.
*/
typedef struct {
u_int p_refcnt;
uint32_t p_bitmap[0];
} npf_portmap_t;
/* Portmap range: [ 1024 .. 65535 ] */
#define PORTMAP_FIRST (1024)
#define PORTMAP_SIZE ((65536 - PORTMAP_FIRST) / 32)
#define PORTMAP_FILLED ((uint32_t)~0U)
#define PORTMAP_MASK (31)
#define PORTMAP_SHIFT (5)
#define PORTMAP_MEM_SIZE \
(sizeof(npf_portmap_t) + (PORTMAP_SIZE * sizeof(uint32_t)))
/*
* NAT policy structure.
*/
struct npf_natpolicy {
kmutex_t n_lock;
LIST_HEAD(, npf_nat) n_nat_list;
volatile u_int n_refcnt;
npf_portmap_t * n_portmap;
uint64_t n_id;
/*
* Translation type, flags and address. Optionally, prefix
* for the NPTv6 and translation port. Translation algorithm
* and related data (for NPTv6, the adjustment value).
*
* NPF_NP_CMP_START mark starts here.
*/
int n_type;
u_int n_flags;
u_int n_alen;
npf_addr_t n_taddr;
npf_netmask_t n_tmask;
in_port_t n_tport;
u_int n_algo;
union {
uint16_t n_npt66_adj;
};
};
#define NPF_NP_CMP_START offsetof(npf_natpolicy_t, n_type)
#define NPF_NP_CMP_SIZE (sizeof(npf_natpolicy_t) - NPF_NP_CMP_START)
/*
* NAT translation entry for a connection.
*/
struct npf_nat {
/* Associated NAT policy. */
npf_natpolicy_t * nt_natpolicy;
/*
* Original address and port (for backwards translation).
* Translation port (for redirects).
*/
npf_addr_t nt_oaddr;
in_port_t nt_oport;
in_port_t nt_tport;
/* ALG (if any) associated with this NAT entry. */
npf_alg_t * nt_alg;
uintptr_t nt_alg_arg;
LIST_ENTRY(npf_nat) nt_entry;
npf_conn_t * nt_conn;
};
static pool_cache_t nat_cache __read_mostly;
/*
* npf_nat_sys{init,fini}: initialise/destroy NAT subsystem structures.
*/
void
npf_nat_sysinit(void)
{
nat_cache = pool_cache_init(sizeof(npf_nat_t), coherency_unit,
0, 0, "npfnatpl", NULL, IPL_NET, NULL, NULL, NULL);
KASSERT(nat_cache != NULL);
}
void
npf_nat_sysfini(void)
{
/* All NAT policies should already be destroyed. */
pool_cache_destroy(nat_cache);
}
/*
* npf_nat_newpolicy: create a new NAT policy.
*
* => Shares portmap if policy is on existing translation address.
*/
npf_natpolicy_t *
npf_nat_newpolicy(prop_dictionary_t natdict, npf_ruleset_t *rset)
{
npf_natpolicy_t *np;
prop_object_t obj;
npf_portmap_t *pm;
np = kmem_zalloc(sizeof(npf_natpolicy_t), KM_SLEEP);
/* The translation type, flags and policy ID. */
prop_dictionary_get_int32(natdict, "type", &np->n_type);
prop_dictionary_get_uint32(natdict, "flags", &np->n_flags);
prop_dictionary_get_uint64(natdict, "nat-policy", &np->n_id);
/* Should be exclusively either inbound or outbound NAT. */
if (((np->n_type == NPF_NATIN) ^ (np->n_type == NPF_NATOUT)) == 0) {
goto err;
}
mutex_init(&np->n_lock, MUTEX_DEFAULT, IPL_SOFTNET);
LIST_INIT(&np->n_nat_list);
/* Translation IP, mask and port (if applicable). */
obj = prop_dictionary_get(natdict, "nat-ip");
np->n_alen = prop_data_size(obj);
if (np->n_alen == 0 || np->n_alen > sizeof(npf_addr_t)) {
goto err;
}
memcpy(&np->n_taddr, prop_data_data_nocopy(obj), np->n_alen);
prop_dictionary_get_uint8(natdict, "nat-mask", &np->n_tmask);
prop_dictionary_get_uint16(natdict, "nat-port", &np->n_tport);
prop_dictionary_get_uint32(natdict, "nat-algo", &np->n_algo);
switch (np->n_algo) {
case NPF_ALGO_NPT66:
prop_dictionary_get_uint16(natdict, "npt66-adj",
&np->n_npt66_adj);
break;
default:
if (np->n_tmask != NPF_NO_NETMASK)
goto err;
break;
}
/* Determine if port map is needed. */
np->n_portmap = NULL;
if ((np->n_flags & NPF_NAT_PORTMAP) == 0) {
/* No port map. */
return np;
}
/*
* Inspect NAT policies in the ruleset for port map sharing.
* Note that npf_ruleset_sharepm() will increase the reference count.
*/
if (!npf_ruleset_sharepm(rset, np)) {
/* Allocate a new port map for the NAT policy. */
pm = kmem_zalloc(PORTMAP_MEM_SIZE, KM_SLEEP);
pm->p_refcnt = 1;
KASSERT((uintptr_t)pm->p_bitmap == (uintptr_t)pm + sizeof(*pm));
np->n_portmap = pm;
} else {
KASSERT(np->n_portmap != NULL);
KASSERT(np->n_portmap->p_refcnt > 0);
}
return np;
err:
mutex_destroy(&np->n_lock);
kmem_free(np, sizeof(npf_natpolicy_t));
return NULL;
}
int
npf_nat_policyexport(const npf_natpolicy_t *np, prop_dictionary_t natdict)
{
prop_data_t d;
prop_dictionary_set_int32(natdict, "type", np->n_type);
prop_dictionary_set_uint32(natdict, "flags", np->n_flags);
d = prop_data_create_data(&np->n_taddr, np->n_alen);
prop_dictionary_set_and_rel(natdict, "nat-ip", d);
prop_dictionary_set_uint8(natdict, "nat-mask", np->n_tmask);
prop_dictionary_set_uint16(natdict, "nat-port", np->n_tport);
prop_dictionary_set_uint32(natdict, "nat-algo", np->n_algo);
switch (np->n_algo) {
case NPF_ALGO_NPT66:
prop_dictionary_set_uint16(natdict, "npt66-adj", np->n_npt66_adj);
break;
}
prop_dictionary_set_uint64(natdict, "nat-policy", np->n_id);
return 0;
}
/*
* npf_nat_freepolicy: free NAT policy and, on last reference, free portmap.
*
* => Called from npf_rule_free() during the reload via npf_ruleset_destroy().
*/
void
npf_nat_freepolicy(npf_natpolicy_t *np)
{
npf_portmap_t *pm = np->n_portmap;
npf_conn_t *con;
npf_nat_t *nt;
/*
* Disassociate all entries from the policy. At this point,
* new entries can no longer be created for this policy.
*/
while (np->n_refcnt) {
mutex_enter(&np->n_lock);
LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
con = nt->nt_conn;
KASSERT(con != NULL);
npf_conn_expire(con);
}
mutex_exit(&np->n_lock);
/* Kick the worker - all references should be going away. */
npf_worker_signal();
kpause("npfgcnat", false, 1, NULL);
}
KASSERT(LIST_EMPTY(&np->n_nat_list));
KASSERT(pm == NULL || pm->p_refcnt > 0);
/* Destroy the port map, on last reference. */
if (pm && atomic_dec_uint_nv(&pm->p_refcnt) == 0) {
KASSERT((np->n_flags & NPF_NAT_PORTMAP) != 0);
kmem_free(pm, PORTMAP_MEM_SIZE);
}
mutex_destroy(&np->n_lock);
kmem_free(np, sizeof(npf_natpolicy_t));
}
void
npf_nat_freealg(npf_natpolicy_t *np, npf_alg_t *alg)
{
npf_nat_t *nt;
mutex_enter(&np->n_lock);
LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
if (nt->nt_alg == alg)
nt->nt_alg = NULL;
}
mutex_exit(&np->n_lock);
}
/*
* npf_nat_cmppolicy: compare two NAT policies.
*
* => Return 0 on match, and non-zero otherwise.
*/
bool
npf_nat_cmppolicy(npf_natpolicy_t *np, npf_natpolicy_t *mnp)
{
const void *np_raw, *mnp_raw;
/*
* Compare the relevant NAT policy information (in raw form),
* which is enough for matching criterion.
*/
KASSERT(np && mnp && np != mnp);
np_raw = (const uint8_t *)np + NPF_NP_CMP_START;
mnp_raw = (const uint8_t *)mnp + NPF_NP_CMP_START;
return memcmp(np_raw, mnp_raw, NPF_NP_CMP_SIZE) == 0;
}
bool
npf_nat_sharepm(npf_natpolicy_t *np, npf_natpolicy_t *mnp)
{
npf_portmap_t *pm, *mpm;
KASSERT(np && mnp && np != mnp);
KASSERT(LIST_EMPTY(&mnp->n_nat_list));
KASSERT(mnp->n_refcnt == 0);
/* Using port map and having equal translation address? */
if ((np->n_flags & mnp->n_flags & NPF_NAT_PORTMAP) == 0) {
return false;
}
if (np->n_alen != mnp->n_alen) {
return false;
}
if (memcmp(&np->n_taddr, &mnp->n_taddr, np->n_alen) != 0) {
return false;
}
mpm = mnp->n_portmap;
KASSERT(mpm == NULL || mpm->p_refcnt > 0);
/*
* If NAT policy has an old port map - drop the reference
* and destroy the port map if it was the last.
*/
if (mpm && atomic_dec_uint_nv(&mpm->p_refcnt) == 0) {
kmem_free(mpm, PORTMAP_MEM_SIZE);
}
/* Share the port map. */
pm = np->n_portmap;
atomic_inc_uint(&pm->p_refcnt);
mnp->n_portmap = pm;
return true;
}
void
npf_nat_setid(npf_natpolicy_t *np, uint64_t id)
{
np->n_id = id;
}
uint64_t
npf_nat_getid(const npf_natpolicy_t *np)
{
return np->n_id;
}
/*
* npf_nat_getport: allocate and return a port in the NAT policy portmap.
*
* => Returns in network byte-order.
* => Zero indicates failure.
*/
static in_port_t
npf_nat_getport(npf_natpolicy_t *np)
{
npf_portmap_t *pm = np->n_portmap;
u_int n = PORTMAP_SIZE, idx, bit;
uint32_t map, nmap;
KASSERT((np->n_flags & NPF_NAT_PORTMAP) != 0);
KASSERT(pm->p_refcnt > 0);
idx = cprng_fast32() % PORTMAP_SIZE;
for (;;) {
KASSERT(idx < PORTMAP_SIZE);
map = pm->p_bitmap[idx];
if (__predict_false(map == PORTMAP_FILLED)) {
if (n-- == 0) {
/* No space. */
return 0;
}
/* This bitmap is filled, next. */
idx = (idx ? idx : PORTMAP_SIZE) - 1;
continue;
}
bit = ffs32(~map) - 1;
nmap = map | (1 << bit);
if (atomic_cas_32(&pm->p_bitmap[idx], map, nmap) == map) {
/* Success. */
break;
}
}
return htons(PORTMAP_FIRST + (idx << PORTMAP_SHIFT) + bit);
}
/*
* npf_nat_takeport: allocate specific port in the NAT policy portmap.
*/
static bool
npf_nat_takeport(npf_natpolicy_t *np, in_port_t port)
{
npf_portmap_t *pm = np->n_portmap;
uint32_t map, nmap;
u_int idx, bit;
KASSERT((np->n_flags & NPF_NAT_PORTMAP) != 0);
KASSERT(pm->p_refcnt > 0);
port = ntohs(port) - PORTMAP_FIRST;
idx = port >> PORTMAP_SHIFT;
bit = port & PORTMAP_MASK;
map = pm->p_bitmap[idx];
nmap = map | (1 << bit);
if (map == nmap) {
/* Already taken. */
return false;
}
return atomic_cas_32(&pm->p_bitmap[idx], map, nmap) == map;
}
/*
* npf_nat_putport: return port as available in the NAT policy portmap.
*
* => Port should be in network byte-order.
*/
static void
npf_nat_putport(npf_natpolicy_t *np, in_port_t port)
{
npf_portmap_t *pm = np->n_portmap;
uint32_t map, nmap;
u_int idx, bit;
KASSERT((np->n_flags & NPF_NAT_PORTMAP) != 0);
KASSERT(pm->p_refcnt > 0);
port = ntohs(port) - PORTMAP_FIRST;
idx = port >> PORTMAP_SHIFT;
bit = port & PORTMAP_MASK;
do {
map = pm->p_bitmap[idx];
KASSERT(map | (1 << bit));
nmap = map & ~(1 << bit);
} while (atomic_cas_32(&pm->p_bitmap[idx], map, nmap) != map);
}
/*
* npf_nat_which: tell which address (source or destination) should be
* rewritten given the combination of the NAT type and flow direction.
*/
static inline u_int
npf_nat_which(const int type, bool forw)
{
/*
* Outbound NAT rewrites:
* - Source (NPF_SRC) on "forwards" stream.
* - Destination (NPF_DST) on "backwards" stream.
* Inbound NAT is other way round.
*/
if (type == NPF_NATOUT) {
forw = !forw;
} else {
KASSERT(type == NPF_NATIN);
}
CTASSERT(NPF_SRC == 0 && NPF_DST == 1);
KASSERT(forw == NPF_SRC || forw == NPF_DST);
return (u_int)forw;
}
/*
* npf_nat_inspect: inspect packet against NAT ruleset and return a policy.
*
* => Acquire a reference on the policy, if found.
*/
static npf_natpolicy_t *
npf_nat_inspect(npf_cache_t *npc, const int di)
{
int slock = npf_config_read_enter();
npf_ruleset_t *rlset = npf_config_natset();
npf_natpolicy_t *np;
npf_rule_t *rl;
rl = npf_ruleset_inspect(npc, rlset, di, NPF_LAYER_3);
if (rl == NULL) {
npf_config_read_exit(slock);
return NULL;
}
np = npf_rule_getnat(rl);
atomic_inc_uint(&np->n_refcnt);
npf_config_read_exit(slock);
return np;
}
/*
* npf_nat_create: create a new NAT translation entry.
*/
static npf_nat_t *
npf_nat_create(npf_cache_t *npc, npf_natpolicy_t *np, npf_conn_t *con)
{
const int proto = npc->npc_proto;
npf_nat_t *nt;
KASSERT(npf_iscached(npc, NPC_IP46));
KASSERT(npf_iscached(npc, NPC_LAYER4));
/* Construct a new NAT entry and associate it with the connection. */
nt = pool_cache_get(nat_cache, PR_NOWAIT);
if (nt == NULL){
return NULL;
}
npf_stats_inc(NPF_STAT_NAT_CREATE);
nt->nt_natpolicy = np;
nt->nt_conn = con;
nt->nt_alg = NULL;
/* Save the original address which may be rewritten. */
if (np->n_type == NPF_NATOUT) {
/* Outbound NAT: source (think internal) address. */
memcpy(&nt->nt_oaddr, npc->npc_ips[NPF_SRC], npc->npc_alen);
} else {
/* Inbound NAT: destination (think external) address. */
KASSERT(np->n_type == NPF_NATIN);
memcpy(&nt->nt_oaddr, npc->npc_ips[NPF_DST], npc->npc_alen);
}
/*
* Port translation, if required, and if it is TCP/UDP.
*/
if ((np->n_flags & NPF_NAT_PORTS) == 0 ||
(proto != IPPROTO_TCP && proto != IPPROTO_UDP)) {
nt->nt_oport = 0;
nt->nt_tport = 0;
goto out;
}
/* Save the relevant TCP/UDP port. */
if (proto == IPPROTO_TCP) {
const struct tcphdr *th = npc->npc_l4.tcp;
nt->nt_oport = (np->n_type == NPF_NATOUT) ?
th->th_sport : th->th_dport;
} else {
const struct udphdr *uh = npc->npc_l4.udp;
nt->nt_oport = (np->n_type == NPF_NATOUT) ?
uh->uh_sport : uh->uh_dport;
}
/* Get a new port for translation. */
if ((np->n_flags & NPF_NAT_PORTMAP) != 0) {
nt->nt_tport = npf_nat_getport(np);
} else {
nt->nt_tport = np->n_tport;
}
out:
mutex_enter(&np->n_lock);
LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
mutex_exit(&np->n_lock);
return nt;
}
/*
* npf_nat_translate: perform translation given the state data.
*/
static inline int
npf_nat_translate(npf_cache_t *npc, npf_nat_t *nt, bool forw)
{
const npf_natpolicy_t *np = nt->nt_natpolicy;
const u_int which = npf_nat_which(np->n_type, forw);
const npf_addr_t *addr;
in_port_t port;
KASSERT(npf_iscached(npc, NPC_IP46));
KASSERT(npf_iscached(npc, NPC_LAYER4));
if (forw) {
/* "Forwards" stream: use translation address/port. */
addr = &np->n_taddr;
port = nt->nt_tport;
} else {
/* "Backwards" stream: use original address/port. */
addr = &nt->nt_oaddr;
port = nt->nt_oport;
}
KASSERT((np->n_flags & NPF_NAT_PORTS) != 0 || port == 0);
/* Execute ALG translation first. */
if ((npc->npc_info & NPC_ALG_EXEC) == 0) {
npc->npc_info |= NPC_ALG_EXEC;
npf_alg_exec(npc, nt, forw);
npf_recache(npc);
}
KASSERT(!nbuf_flag_p(npc->npc_nbuf, NBUF_DATAREF_RESET));
/* Finally, perform the translation. */
return npf_napt_rwr(npc, which, addr, port);
}
/*
* npf_nat_algo: perform the translation given the algorithm.
*/
static inline int
npf_nat_algo(npf_cache_t *npc, const npf_natpolicy_t *np, bool forw)
{
const u_int which = npf_nat_which(np->n_type, forw);
int error;
switch (np->n_algo) {
#ifdef INET6
case NPF_ALGO_NPT66:
error = npf_npt66_rwr(npc, which, &np->n_taddr,
np->n_tmask, np->n_npt66_adj);
break;
#endif
default:
error = npf_napt_rwr(npc, which, &np->n_taddr, np->n_tport);
break;
}
return error;
}
/*
* npf_do_nat:
* - Inspect packet for a NAT policy, unless a connection with a NAT
* association already exists. In such case, determine whether it
* is a "forwards" or "backwards" stream.
* - Perform translation: rewrite source or destination fields,
* depending on translation type and direction.
* - Associate a NAT policy with a connection (may establish a new).
*/
int
npf_do_nat(npf_cache_t *npc, npf_conn_t *con, const int di)
{
nbuf_t *nbuf = npc->npc_nbuf;
npf_conn_t *ncon = NULL;
npf_natpolicy_t *np;
npf_nat_t *nt;
int error;
bool forw;
/* All relevant IPv4 data should be already cached. */
if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
return 0;
}
KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
/*
* Return the NAT entry associated with the connection, if any.
* Determines whether the stream is "forwards" or "backwards".
* Note: no need to lock, since reference on connection is held.
*/
if (con && (nt = npf_conn_getnat(con, di, &forw)) != NULL) {
np = nt->nt_natpolicy;
goto translate;
}
/*
* Inspect the packet for a NAT policy, if there is no connection.
* Note: acquires a reference if found.
*/
np = npf_nat_inspect(npc, di);
if (np == NULL) {
/* If packet does not match - done. */
return 0;
}
forw = true;
/* Static NAT - just perform the translation. */
if (np->n_flags & NPF_NAT_STATIC) {
if (nbuf_cksum_barrier(nbuf, di)) {
npf_recache(npc);
}
error = npf_nat_algo(npc, np, forw);
atomic_dec_uint(&np->n_refcnt);
return error;
}
/*
* If there is no local connection (no "stateful" rule - unusual,
* but possible configuration), establish one before translation.
* Note that it is not a "pass" connection, therefore passing of
* "backwards" stream depends on other, stateless filtering rules.
*/
if (con == NULL) {
ncon = npf_conn_establish(npc, di, true);
if (ncon == NULL) {
atomic_dec_uint(&np->n_refcnt);
return ENOMEM;
}
con = ncon;
}
/*
* Create a new NAT entry and associate with the connection.
* We will consume the reference on success (release on error).
*/
nt = npf_nat_create(npc, np, con);
if (nt == NULL) {
atomic_dec_uint(&np->n_refcnt);
error = ENOMEM;
goto out;
}
/* Associate the NAT translation entry with the connection. */
error = npf_conn_setnat(npc, con, nt, np->n_type);
if (error) {
/* Will release the reference. */
npf_nat_destroy(nt);
goto out;
}
/* Determine whether any ALG matches. */
if (npf_alg_match(npc, nt, di)) {
KASSERT(nt->nt_alg != NULL);
}
translate:
/* May need to process the delayed checksums first (XXX: NetBSD). */
if (nbuf_cksum_barrier(nbuf, di)) {
npf_recache(npc);
}
/* Perform the translation. */
error = npf_nat_translate(npc, nt, forw);
out:
if (__predict_false(ncon)) {
if (error) {
/* It created for NAT - just expire. */
npf_conn_expire(ncon);
}
npf_conn_release(ncon);
}
return error;
}
/*
* npf_nat_gettrans: return translation IP address and port.
*/
void
npf_nat_gettrans(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
{
npf_natpolicy_t *np = nt->nt_natpolicy;
*addr = &np->n_taddr;
*port = nt->nt_tport;
}
/*
* npf_nat_getorig: return original IP address and port from translation entry.
*/
void
npf_nat_getorig(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
{
*addr = &nt->nt_oaddr;
*port = nt->nt_oport;
}
/*
* npf_nat_setalg: associate an ALG with the NAT entry.
*/
void
npf_nat_setalg(npf_nat_t *nt, npf_alg_t *alg, uintptr_t arg)
{
nt->nt_alg = alg;
nt->nt_alg_arg = arg;
}
/*
* npf_nat_destroy: destroy NAT structure (performed on connection expiration).
*/
void
npf_nat_destroy(npf_nat_t *nt)
{
npf_natpolicy_t *np = nt->nt_natpolicy;
/* Return any taken port to the portmap. */
if ((np->n_flags & NPF_NAT_PORTMAP) != 0 && nt->nt_tport) {
npf_nat_putport(np, nt->nt_tport);
}
mutex_enter(&np->n_lock);
LIST_REMOVE(nt, nt_entry);
KASSERT(np->n_refcnt > 0);
atomic_dec_uint(&np->n_refcnt);
mutex_exit(&np->n_lock);
pool_cache_put(nat_cache, nt);
npf_stats_inc(NPF_STAT_NAT_DESTROY);
}
/*
* npf_nat_export: serialise the NAT entry with a NAT policy ID.
*/
void
npf_nat_export(prop_dictionary_t condict, npf_nat_t *nt)
{
npf_natpolicy_t *np = nt->nt_natpolicy;
prop_dictionary_t natdict;
prop_data_t d;
natdict = prop_dictionary_create();
d = prop_data_create_data(&nt->nt_oaddr, sizeof(npf_addr_t));
prop_dictionary_set_and_rel(natdict, "oaddr", d);
prop_dictionary_set_uint16(natdict, "oport", nt->nt_oport);
prop_dictionary_set_uint16(natdict, "tport", nt->nt_tport);
prop_dictionary_set_uint64(natdict, "nat-policy", np->n_id);
prop_dictionary_set_and_rel(condict, "nat", natdict);
}
/*
* npf_nat_import: find the NAT policy and unserialise the NAT entry.
*/
npf_nat_t *
npf_nat_import(prop_dictionary_t natdict, npf_ruleset_t *natlist,
npf_conn_t *con)
{
npf_natpolicy_t *np;
npf_nat_t *nt;
uint64_t np_id;
const void *d;
prop_dictionary_get_uint64(natdict, "nat-policy", &np_id);
if ((np = npf_ruleset_findnat(natlist, np_id)) == NULL) {
return NULL;
}
nt = pool_cache_get(nat_cache, PR_WAITOK);
memset(nt, 0, sizeof(npf_nat_t));
prop_object_t obj = prop_dictionary_get(natdict, "oaddr");
if ((d = prop_data_data_nocopy(obj)) == NULL ||
prop_data_size(obj) != sizeof(npf_addr_t)) {
pool_cache_put(nat_cache, nt);
return NULL;
}
memcpy(&nt->nt_oaddr, d, sizeof(npf_addr_t));
prop_dictionary_get_uint16(natdict, "oport", &nt->nt_oport);
prop_dictionary_get_uint16(natdict, "tport", &nt->nt_tport);
/* Take a specific port from port-map. */
if ((np->n_flags & NPF_NAT_PORTMAP) != 0 && nt->nt_tport &
!npf_nat_takeport(np, nt->nt_tport)) {
pool_cache_put(nat_cache, nt);
return NULL;
}
npf_stats_inc(NPF_STAT_NAT_CREATE);
/*
* Associate, take a reference and insert. Unlocked since
* the policy is not yet visible.
*/
nt->nt_natpolicy = np;
nt->nt_conn = con;
np->n_refcnt++;
LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
return nt;
}
#if defined(DDB) || defined(_NPF_TESTING)
void
npf_nat_dump(const npf_nat_t *nt)
{
const npf_natpolicy_t *np;
struct in_addr ip;
np = nt->nt_natpolicy;
memcpy(&ip, &np->n_taddr, sizeof(ip));
printf("\tNATP(%p): type %d flags 0x%x taddr %s tport %d\n", np,
np->n_type, np->n_flags, inet_ntoa(ip), ntohs(np->n_tport));
memcpy(&ip, &nt->nt_oaddr, sizeof(ip));
printf("\tNAT: original address %s oport %d tport %d\n",
inet_ntoa(ip), ntohs(nt->nt_oport), ntohs(nt->nt_tport));
if (nt->nt_alg) {
printf("\tNAT ALG = %p, ARG = %p\n",
nt->nt_alg, (void *)nt->nt_alg_arg);
}
}
#endif