932 lines
24 KiB
C
932 lines
24 KiB
C
/* $NetBSD: npf_nat.c,v 1.40 2016/03/18 10:09:46 mrg Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2014 Mindaugas Rasiukevicius <rmind at netbsd org>
|
|
* Copyright (c) 2010-2013 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This material is based upon work partially supported by The
|
|
* NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* NPF network address port translation (NAPT) and other forms of NAT.
|
|
* Described in RFC 2663, RFC 3022, etc.
|
|
*
|
|
* Overview
|
|
*
|
|
* There are few mechanisms: NAT policy, port map and translation.
|
|
* NAT module has a separate ruleset, where rules contain associated
|
|
* NAT policy, thus flexible filter criteria can be used.
|
|
*
|
|
* Translation types
|
|
*
|
|
* There are two types of translation: outbound (NPF_NATOUT) and
|
|
* inbound (NPF_NATIN). It should not be confused with connection
|
|
* direction. See npf_nat_which() for the description of how the
|
|
* addresses are rewritten.
|
|
*
|
|
* It should be noted that bi-directional NAT is a combined outbound
|
|
* and inbound translation, therefore constructed as two policies.
|
|
*
|
|
* NAT policies and port maps
|
|
*
|
|
* NAT (translation) policy is applied when a packet matches the rule.
|
|
* Apart from filter criteria, NAT policy has a translation IP address
|
|
* and associated port map. Port map is a bitmap used to reserve and
|
|
* use unique TCP/UDP ports for translation. Port maps are unique to
|
|
* the IP addresses, therefore multiple NAT policies with the same IP
|
|
* will share the same port map.
|
|
*
|
|
* Connections, translation entries and their life-cycle
|
|
*
|
|
* NAT module relies on connection tracking module. Each translated
|
|
* connection has an associated translation entry (npf_nat_t), which
|
|
* contains information used for backwards stream translation, i.e.
|
|
* original IP address with port and translation port, allocated from
|
|
* the port map. Each NAT entry is associated with the policy, which
|
|
* contains translation IP address. Allocated port is returned to the
|
|
* port map and NAT entry is destroyed when connection expires.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: npf_nat.c,v 1.40 2016/03/18 10:09:46 mrg Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/atomic.h>
|
|
#include <sys/bitops.h>
|
|
#include <sys/condvar.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/cprng.h>
|
|
|
|
#include <net/pfil.h>
|
|
#include <netinet/in.h>
|
|
|
|
#include "npf_impl.h"
|
|
#include "npf_conn.h"
|
|
|
|
/*
|
|
* NPF portmap structure.
|
|
*/
|
|
typedef struct {
|
|
u_int p_refcnt;
|
|
uint32_t p_bitmap[0];
|
|
} npf_portmap_t;
|
|
|
|
/* Portmap range: [ 1024 .. 65535 ] */
|
|
#define PORTMAP_FIRST (1024)
|
|
#define PORTMAP_SIZE ((65536 - PORTMAP_FIRST) / 32)
|
|
#define PORTMAP_FILLED ((uint32_t)~0U)
|
|
#define PORTMAP_MASK (31)
|
|
#define PORTMAP_SHIFT (5)
|
|
|
|
#define PORTMAP_MEM_SIZE \
|
|
(sizeof(npf_portmap_t) + (PORTMAP_SIZE * sizeof(uint32_t)))
|
|
|
|
/*
|
|
* NAT policy structure.
|
|
*/
|
|
struct npf_natpolicy {
|
|
kmutex_t n_lock;
|
|
LIST_HEAD(, npf_nat) n_nat_list;
|
|
volatile u_int n_refcnt;
|
|
npf_portmap_t * n_portmap;
|
|
uint64_t n_id;
|
|
|
|
/*
|
|
* Translation type, flags and address. Optionally, prefix
|
|
* for the NPTv6 and translation port. Translation algorithm
|
|
* and related data (for NPTv6, the adjustment value).
|
|
*
|
|
* NPF_NP_CMP_START mark starts here.
|
|
*/
|
|
int n_type;
|
|
u_int n_flags;
|
|
u_int n_alen;
|
|
npf_addr_t n_taddr;
|
|
npf_netmask_t n_tmask;
|
|
in_port_t n_tport;
|
|
u_int n_algo;
|
|
union {
|
|
uint16_t n_npt66_adj;
|
|
};
|
|
};
|
|
|
|
#define NPF_NP_CMP_START offsetof(npf_natpolicy_t, n_type)
|
|
#define NPF_NP_CMP_SIZE (sizeof(npf_natpolicy_t) - NPF_NP_CMP_START)
|
|
|
|
/*
|
|
* NAT translation entry for a connection.
|
|
*/
|
|
struct npf_nat {
|
|
/* Associated NAT policy. */
|
|
npf_natpolicy_t * nt_natpolicy;
|
|
|
|
/*
|
|
* Original address and port (for backwards translation).
|
|
* Translation port (for redirects).
|
|
*/
|
|
npf_addr_t nt_oaddr;
|
|
in_port_t nt_oport;
|
|
in_port_t nt_tport;
|
|
|
|
/* ALG (if any) associated with this NAT entry. */
|
|
npf_alg_t * nt_alg;
|
|
uintptr_t nt_alg_arg;
|
|
|
|
LIST_ENTRY(npf_nat) nt_entry;
|
|
npf_conn_t * nt_conn;
|
|
};
|
|
|
|
static pool_cache_t nat_cache __read_mostly;
|
|
|
|
/*
|
|
* npf_nat_sys{init,fini}: initialise/destroy NAT subsystem structures.
|
|
*/
|
|
|
|
void
|
|
npf_nat_sysinit(void)
|
|
{
|
|
nat_cache = pool_cache_init(sizeof(npf_nat_t), coherency_unit,
|
|
0, 0, "npfnatpl", NULL, IPL_NET, NULL, NULL, NULL);
|
|
KASSERT(nat_cache != NULL);
|
|
}
|
|
|
|
void
|
|
npf_nat_sysfini(void)
|
|
{
|
|
/* All NAT policies should already be destroyed. */
|
|
pool_cache_destroy(nat_cache);
|
|
}
|
|
|
|
/*
|
|
* npf_nat_newpolicy: create a new NAT policy.
|
|
*
|
|
* => Shares portmap if policy is on existing translation address.
|
|
*/
|
|
npf_natpolicy_t *
|
|
npf_nat_newpolicy(prop_dictionary_t natdict, npf_ruleset_t *rset)
|
|
{
|
|
npf_natpolicy_t *np;
|
|
prop_object_t obj;
|
|
npf_portmap_t *pm;
|
|
|
|
np = kmem_zalloc(sizeof(npf_natpolicy_t), KM_SLEEP);
|
|
|
|
/* The translation type, flags and policy ID. */
|
|
prop_dictionary_get_int32(natdict, "type", &np->n_type);
|
|
prop_dictionary_get_uint32(natdict, "flags", &np->n_flags);
|
|
prop_dictionary_get_uint64(natdict, "nat-policy", &np->n_id);
|
|
|
|
/* Should be exclusively either inbound or outbound NAT. */
|
|
if (((np->n_type == NPF_NATIN) ^ (np->n_type == NPF_NATOUT)) == 0) {
|
|
goto err;
|
|
}
|
|
mutex_init(&np->n_lock, MUTEX_DEFAULT, IPL_SOFTNET);
|
|
LIST_INIT(&np->n_nat_list);
|
|
|
|
/* Translation IP, mask and port (if applicable). */
|
|
obj = prop_dictionary_get(natdict, "nat-ip");
|
|
np->n_alen = prop_data_size(obj);
|
|
if (np->n_alen == 0 || np->n_alen > sizeof(npf_addr_t)) {
|
|
goto err;
|
|
}
|
|
memcpy(&np->n_taddr, prop_data_data_nocopy(obj), np->n_alen);
|
|
prop_dictionary_get_uint8(natdict, "nat-mask", &np->n_tmask);
|
|
prop_dictionary_get_uint16(natdict, "nat-port", &np->n_tport);
|
|
|
|
prop_dictionary_get_uint32(natdict, "nat-algo", &np->n_algo);
|
|
switch (np->n_algo) {
|
|
case NPF_ALGO_NPT66:
|
|
prop_dictionary_get_uint16(natdict, "npt66-adj",
|
|
&np->n_npt66_adj);
|
|
break;
|
|
default:
|
|
if (np->n_tmask != NPF_NO_NETMASK)
|
|
goto err;
|
|
break;
|
|
}
|
|
|
|
/* Determine if port map is needed. */
|
|
np->n_portmap = NULL;
|
|
if ((np->n_flags & NPF_NAT_PORTMAP) == 0) {
|
|
/* No port map. */
|
|
return np;
|
|
}
|
|
|
|
/*
|
|
* Inspect NAT policies in the ruleset for port map sharing.
|
|
* Note that npf_ruleset_sharepm() will increase the reference count.
|
|
*/
|
|
if (!npf_ruleset_sharepm(rset, np)) {
|
|
/* Allocate a new port map for the NAT policy. */
|
|
pm = kmem_zalloc(PORTMAP_MEM_SIZE, KM_SLEEP);
|
|
pm->p_refcnt = 1;
|
|
KASSERT((uintptr_t)pm->p_bitmap == (uintptr_t)pm + sizeof(*pm));
|
|
np->n_portmap = pm;
|
|
} else {
|
|
KASSERT(np->n_portmap != NULL);
|
|
KASSERT(np->n_portmap->p_refcnt > 0);
|
|
}
|
|
return np;
|
|
err:
|
|
mutex_destroy(&np->n_lock);
|
|
kmem_free(np, sizeof(npf_natpolicy_t));
|
|
return NULL;
|
|
}
|
|
|
|
int
|
|
npf_nat_policyexport(const npf_natpolicy_t *np, prop_dictionary_t natdict)
|
|
{
|
|
prop_data_t d;
|
|
|
|
prop_dictionary_set_int32(natdict, "type", np->n_type);
|
|
prop_dictionary_set_uint32(natdict, "flags", np->n_flags);
|
|
|
|
d = prop_data_create_data(&np->n_taddr, np->n_alen);
|
|
prop_dictionary_set_and_rel(natdict, "nat-ip", d);
|
|
|
|
prop_dictionary_set_uint8(natdict, "nat-mask", np->n_tmask);
|
|
prop_dictionary_set_uint16(natdict, "nat-port", np->n_tport);
|
|
prop_dictionary_set_uint32(natdict, "nat-algo", np->n_algo);
|
|
|
|
switch (np->n_algo) {
|
|
case NPF_ALGO_NPT66:
|
|
prop_dictionary_set_uint16(natdict, "npt66-adj", np->n_npt66_adj);
|
|
break;
|
|
}
|
|
prop_dictionary_set_uint64(natdict, "nat-policy", np->n_id);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_freepolicy: free NAT policy and, on last reference, free portmap.
|
|
*
|
|
* => Called from npf_rule_free() during the reload via npf_ruleset_destroy().
|
|
*/
|
|
void
|
|
npf_nat_freepolicy(npf_natpolicy_t *np)
|
|
{
|
|
npf_portmap_t *pm = np->n_portmap;
|
|
npf_conn_t *con;
|
|
npf_nat_t *nt;
|
|
|
|
/*
|
|
* Disassociate all entries from the policy. At this point,
|
|
* new entries can no longer be created for this policy.
|
|
*/
|
|
while (np->n_refcnt) {
|
|
mutex_enter(&np->n_lock);
|
|
LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
|
|
con = nt->nt_conn;
|
|
KASSERT(con != NULL);
|
|
npf_conn_expire(con);
|
|
}
|
|
mutex_exit(&np->n_lock);
|
|
|
|
/* Kick the worker - all references should be going away. */
|
|
npf_worker_signal();
|
|
kpause("npfgcnat", false, 1, NULL);
|
|
}
|
|
KASSERT(LIST_EMPTY(&np->n_nat_list));
|
|
KASSERT(pm == NULL || pm->p_refcnt > 0);
|
|
|
|
/* Destroy the port map, on last reference. */
|
|
if (pm && atomic_dec_uint_nv(&pm->p_refcnt) == 0) {
|
|
KASSERT((np->n_flags & NPF_NAT_PORTMAP) != 0);
|
|
kmem_free(pm, PORTMAP_MEM_SIZE);
|
|
}
|
|
mutex_destroy(&np->n_lock);
|
|
kmem_free(np, sizeof(npf_natpolicy_t));
|
|
}
|
|
|
|
void
|
|
npf_nat_freealg(npf_natpolicy_t *np, npf_alg_t *alg)
|
|
{
|
|
npf_nat_t *nt;
|
|
|
|
mutex_enter(&np->n_lock);
|
|
LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
|
|
if (nt->nt_alg == alg)
|
|
nt->nt_alg = NULL;
|
|
}
|
|
mutex_exit(&np->n_lock);
|
|
}
|
|
|
|
/*
|
|
* npf_nat_cmppolicy: compare two NAT policies.
|
|
*
|
|
* => Return 0 on match, and non-zero otherwise.
|
|
*/
|
|
bool
|
|
npf_nat_cmppolicy(npf_natpolicy_t *np, npf_natpolicy_t *mnp)
|
|
{
|
|
const void *np_raw, *mnp_raw;
|
|
|
|
/*
|
|
* Compare the relevant NAT policy information (in raw form),
|
|
* which is enough for matching criterion.
|
|
*/
|
|
KASSERT(np && mnp && np != mnp);
|
|
np_raw = (const uint8_t *)np + NPF_NP_CMP_START;
|
|
mnp_raw = (const uint8_t *)mnp + NPF_NP_CMP_START;
|
|
return memcmp(np_raw, mnp_raw, NPF_NP_CMP_SIZE) == 0;
|
|
}
|
|
|
|
bool
|
|
npf_nat_sharepm(npf_natpolicy_t *np, npf_natpolicy_t *mnp)
|
|
{
|
|
npf_portmap_t *pm, *mpm;
|
|
|
|
KASSERT(np && mnp && np != mnp);
|
|
KASSERT(LIST_EMPTY(&mnp->n_nat_list));
|
|
KASSERT(mnp->n_refcnt == 0);
|
|
|
|
/* Using port map and having equal translation address? */
|
|
if ((np->n_flags & mnp->n_flags & NPF_NAT_PORTMAP) == 0) {
|
|
return false;
|
|
}
|
|
if (np->n_alen != mnp->n_alen) {
|
|
return false;
|
|
}
|
|
if (memcmp(&np->n_taddr, &mnp->n_taddr, np->n_alen) != 0) {
|
|
return false;
|
|
}
|
|
mpm = mnp->n_portmap;
|
|
KASSERT(mpm == NULL || mpm->p_refcnt > 0);
|
|
|
|
/*
|
|
* If NAT policy has an old port map - drop the reference
|
|
* and destroy the port map if it was the last.
|
|
*/
|
|
if (mpm && atomic_dec_uint_nv(&mpm->p_refcnt) == 0) {
|
|
kmem_free(mpm, PORTMAP_MEM_SIZE);
|
|
}
|
|
|
|
/* Share the port map. */
|
|
pm = np->n_portmap;
|
|
atomic_inc_uint(&pm->p_refcnt);
|
|
mnp->n_portmap = pm;
|
|
return true;
|
|
}
|
|
|
|
void
|
|
npf_nat_setid(npf_natpolicy_t *np, uint64_t id)
|
|
{
|
|
np->n_id = id;
|
|
}
|
|
|
|
uint64_t
|
|
npf_nat_getid(const npf_natpolicy_t *np)
|
|
{
|
|
return np->n_id;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_getport: allocate and return a port in the NAT policy portmap.
|
|
*
|
|
* => Returns in network byte-order.
|
|
* => Zero indicates failure.
|
|
*/
|
|
static in_port_t
|
|
npf_nat_getport(npf_natpolicy_t *np)
|
|
{
|
|
npf_portmap_t *pm = np->n_portmap;
|
|
u_int n = PORTMAP_SIZE, idx, bit;
|
|
uint32_t map, nmap;
|
|
|
|
KASSERT((np->n_flags & NPF_NAT_PORTMAP) != 0);
|
|
KASSERT(pm->p_refcnt > 0);
|
|
|
|
idx = cprng_fast32() % PORTMAP_SIZE;
|
|
for (;;) {
|
|
KASSERT(idx < PORTMAP_SIZE);
|
|
map = pm->p_bitmap[idx];
|
|
if (__predict_false(map == PORTMAP_FILLED)) {
|
|
if (n-- == 0) {
|
|
/* No space. */
|
|
return 0;
|
|
}
|
|
/* This bitmap is filled, next. */
|
|
idx = (idx ? idx : PORTMAP_SIZE) - 1;
|
|
continue;
|
|
}
|
|
bit = ffs32(~map) - 1;
|
|
nmap = map | (1 << bit);
|
|
if (atomic_cas_32(&pm->p_bitmap[idx], map, nmap) == map) {
|
|
/* Success. */
|
|
break;
|
|
}
|
|
}
|
|
return htons(PORTMAP_FIRST + (idx << PORTMAP_SHIFT) + bit);
|
|
}
|
|
|
|
/*
|
|
* npf_nat_takeport: allocate specific port in the NAT policy portmap.
|
|
*/
|
|
static bool
|
|
npf_nat_takeport(npf_natpolicy_t *np, in_port_t port)
|
|
{
|
|
npf_portmap_t *pm = np->n_portmap;
|
|
uint32_t map, nmap;
|
|
u_int idx, bit;
|
|
|
|
KASSERT((np->n_flags & NPF_NAT_PORTMAP) != 0);
|
|
KASSERT(pm->p_refcnt > 0);
|
|
|
|
port = ntohs(port) - PORTMAP_FIRST;
|
|
idx = port >> PORTMAP_SHIFT;
|
|
bit = port & PORTMAP_MASK;
|
|
map = pm->p_bitmap[idx];
|
|
nmap = map | (1 << bit);
|
|
if (map == nmap) {
|
|
/* Already taken. */
|
|
return false;
|
|
}
|
|
return atomic_cas_32(&pm->p_bitmap[idx], map, nmap) == map;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_putport: return port as available in the NAT policy portmap.
|
|
*
|
|
* => Port should be in network byte-order.
|
|
*/
|
|
static void
|
|
npf_nat_putport(npf_natpolicy_t *np, in_port_t port)
|
|
{
|
|
npf_portmap_t *pm = np->n_portmap;
|
|
uint32_t map, nmap;
|
|
u_int idx, bit;
|
|
|
|
KASSERT((np->n_flags & NPF_NAT_PORTMAP) != 0);
|
|
KASSERT(pm->p_refcnt > 0);
|
|
|
|
port = ntohs(port) - PORTMAP_FIRST;
|
|
idx = port >> PORTMAP_SHIFT;
|
|
bit = port & PORTMAP_MASK;
|
|
do {
|
|
map = pm->p_bitmap[idx];
|
|
KASSERT(map | (1 << bit));
|
|
nmap = map & ~(1 << bit);
|
|
} while (atomic_cas_32(&pm->p_bitmap[idx], map, nmap) != map);
|
|
}
|
|
|
|
/*
|
|
* npf_nat_which: tell which address (source or destination) should be
|
|
* rewritten given the combination of the NAT type and flow direction.
|
|
*/
|
|
static inline u_int
|
|
npf_nat_which(const int type, bool forw)
|
|
{
|
|
/*
|
|
* Outbound NAT rewrites:
|
|
* - Source (NPF_SRC) on "forwards" stream.
|
|
* - Destination (NPF_DST) on "backwards" stream.
|
|
* Inbound NAT is other way round.
|
|
*/
|
|
if (type == NPF_NATOUT) {
|
|
forw = !forw;
|
|
} else {
|
|
KASSERT(type == NPF_NATIN);
|
|
}
|
|
CTASSERT(NPF_SRC == 0 && NPF_DST == 1);
|
|
KASSERT(forw == NPF_SRC || forw == NPF_DST);
|
|
return (u_int)forw;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_inspect: inspect packet against NAT ruleset and return a policy.
|
|
*
|
|
* => Acquire a reference on the policy, if found.
|
|
*/
|
|
static npf_natpolicy_t *
|
|
npf_nat_inspect(npf_cache_t *npc, const int di)
|
|
{
|
|
int slock = npf_config_read_enter();
|
|
npf_ruleset_t *rlset = npf_config_natset();
|
|
npf_natpolicy_t *np;
|
|
npf_rule_t *rl;
|
|
|
|
rl = npf_ruleset_inspect(npc, rlset, di, NPF_LAYER_3);
|
|
if (rl == NULL) {
|
|
npf_config_read_exit(slock);
|
|
return NULL;
|
|
}
|
|
np = npf_rule_getnat(rl);
|
|
atomic_inc_uint(&np->n_refcnt);
|
|
npf_config_read_exit(slock);
|
|
return np;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_create: create a new NAT translation entry.
|
|
*/
|
|
static npf_nat_t *
|
|
npf_nat_create(npf_cache_t *npc, npf_natpolicy_t *np, npf_conn_t *con)
|
|
{
|
|
const int proto = npc->npc_proto;
|
|
npf_nat_t *nt;
|
|
|
|
KASSERT(npf_iscached(npc, NPC_IP46));
|
|
KASSERT(npf_iscached(npc, NPC_LAYER4));
|
|
|
|
/* Construct a new NAT entry and associate it with the connection. */
|
|
nt = pool_cache_get(nat_cache, PR_NOWAIT);
|
|
if (nt == NULL){
|
|
return NULL;
|
|
}
|
|
npf_stats_inc(NPF_STAT_NAT_CREATE);
|
|
nt->nt_natpolicy = np;
|
|
nt->nt_conn = con;
|
|
nt->nt_alg = NULL;
|
|
|
|
/* Save the original address which may be rewritten. */
|
|
if (np->n_type == NPF_NATOUT) {
|
|
/* Outbound NAT: source (think internal) address. */
|
|
memcpy(&nt->nt_oaddr, npc->npc_ips[NPF_SRC], npc->npc_alen);
|
|
} else {
|
|
/* Inbound NAT: destination (think external) address. */
|
|
KASSERT(np->n_type == NPF_NATIN);
|
|
memcpy(&nt->nt_oaddr, npc->npc_ips[NPF_DST], npc->npc_alen);
|
|
}
|
|
|
|
/*
|
|
* Port translation, if required, and if it is TCP/UDP.
|
|
*/
|
|
if ((np->n_flags & NPF_NAT_PORTS) == 0 ||
|
|
(proto != IPPROTO_TCP && proto != IPPROTO_UDP)) {
|
|
nt->nt_oport = 0;
|
|
nt->nt_tport = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* Save the relevant TCP/UDP port. */
|
|
if (proto == IPPROTO_TCP) {
|
|
const struct tcphdr *th = npc->npc_l4.tcp;
|
|
nt->nt_oport = (np->n_type == NPF_NATOUT) ?
|
|
th->th_sport : th->th_dport;
|
|
} else {
|
|
const struct udphdr *uh = npc->npc_l4.udp;
|
|
nt->nt_oport = (np->n_type == NPF_NATOUT) ?
|
|
uh->uh_sport : uh->uh_dport;
|
|
}
|
|
|
|
/* Get a new port for translation. */
|
|
if ((np->n_flags & NPF_NAT_PORTMAP) != 0) {
|
|
nt->nt_tport = npf_nat_getport(np);
|
|
} else {
|
|
nt->nt_tport = np->n_tport;
|
|
}
|
|
out:
|
|
mutex_enter(&np->n_lock);
|
|
LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
|
|
mutex_exit(&np->n_lock);
|
|
return nt;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_translate: perform translation given the state data.
|
|
*/
|
|
static inline int
|
|
npf_nat_translate(npf_cache_t *npc, npf_nat_t *nt, bool forw)
|
|
{
|
|
const npf_natpolicy_t *np = nt->nt_natpolicy;
|
|
const u_int which = npf_nat_which(np->n_type, forw);
|
|
const npf_addr_t *addr;
|
|
in_port_t port;
|
|
|
|
KASSERT(npf_iscached(npc, NPC_IP46));
|
|
KASSERT(npf_iscached(npc, NPC_LAYER4));
|
|
|
|
if (forw) {
|
|
/* "Forwards" stream: use translation address/port. */
|
|
addr = &np->n_taddr;
|
|
port = nt->nt_tport;
|
|
} else {
|
|
/* "Backwards" stream: use original address/port. */
|
|
addr = &nt->nt_oaddr;
|
|
port = nt->nt_oport;
|
|
}
|
|
KASSERT((np->n_flags & NPF_NAT_PORTS) != 0 || port == 0);
|
|
|
|
/* Execute ALG translation first. */
|
|
if ((npc->npc_info & NPC_ALG_EXEC) == 0) {
|
|
npc->npc_info |= NPC_ALG_EXEC;
|
|
npf_alg_exec(npc, nt, forw);
|
|
npf_recache(npc);
|
|
}
|
|
KASSERT(!nbuf_flag_p(npc->npc_nbuf, NBUF_DATAREF_RESET));
|
|
|
|
/* Finally, perform the translation. */
|
|
return npf_napt_rwr(npc, which, addr, port);
|
|
}
|
|
|
|
/*
|
|
* npf_nat_algo: perform the translation given the algorithm.
|
|
*/
|
|
static inline int
|
|
npf_nat_algo(npf_cache_t *npc, const npf_natpolicy_t *np, bool forw)
|
|
{
|
|
const u_int which = npf_nat_which(np->n_type, forw);
|
|
int error;
|
|
|
|
switch (np->n_algo) {
|
|
#ifdef INET6
|
|
case NPF_ALGO_NPT66:
|
|
error = npf_npt66_rwr(npc, which, &np->n_taddr,
|
|
np->n_tmask, np->n_npt66_adj);
|
|
break;
|
|
#endif
|
|
default:
|
|
error = npf_napt_rwr(npc, which, &np->n_taddr, np->n_tport);
|
|
break;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* npf_do_nat:
|
|
* - Inspect packet for a NAT policy, unless a connection with a NAT
|
|
* association already exists. In such case, determine whether it
|
|
* is a "forwards" or "backwards" stream.
|
|
* - Perform translation: rewrite source or destination fields,
|
|
* depending on translation type and direction.
|
|
* - Associate a NAT policy with a connection (may establish a new).
|
|
*/
|
|
int
|
|
npf_do_nat(npf_cache_t *npc, npf_conn_t *con, const int di)
|
|
{
|
|
nbuf_t *nbuf = npc->npc_nbuf;
|
|
npf_conn_t *ncon = NULL;
|
|
npf_natpolicy_t *np;
|
|
npf_nat_t *nt;
|
|
int error;
|
|
bool forw;
|
|
|
|
/* All relevant IPv4 data should be already cached. */
|
|
if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
|
|
return 0;
|
|
}
|
|
KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
|
|
|
|
/*
|
|
* Return the NAT entry associated with the connection, if any.
|
|
* Determines whether the stream is "forwards" or "backwards".
|
|
* Note: no need to lock, since reference on connection is held.
|
|
*/
|
|
if (con && (nt = npf_conn_getnat(con, di, &forw)) != NULL) {
|
|
np = nt->nt_natpolicy;
|
|
goto translate;
|
|
}
|
|
|
|
/*
|
|
* Inspect the packet for a NAT policy, if there is no connection.
|
|
* Note: acquires a reference if found.
|
|
*/
|
|
np = npf_nat_inspect(npc, di);
|
|
if (np == NULL) {
|
|
/* If packet does not match - done. */
|
|
return 0;
|
|
}
|
|
forw = true;
|
|
|
|
/* Static NAT - just perform the translation. */
|
|
if (np->n_flags & NPF_NAT_STATIC) {
|
|
if (nbuf_cksum_barrier(nbuf, di)) {
|
|
npf_recache(npc);
|
|
}
|
|
error = npf_nat_algo(npc, np, forw);
|
|
atomic_dec_uint(&np->n_refcnt);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* If there is no local connection (no "stateful" rule - unusual,
|
|
* but possible configuration), establish one before translation.
|
|
* Note that it is not a "pass" connection, therefore passing of
|
|
* "backwards" stream depends on other, stateless filtering rules.
|
|
*/
|
|
if (con == NULL) {
|
|
ncon = npf_conn_establish(npc, di, true);
|
|
if (ncon == NULL) {
|
|
atomic_dec_uint(&np->n_refcnt);
|
|
return ENOMEM;
|
|
}
|
|
con = ncon;
|
|
}
|
|
|
|
/*
|
|
* Create a new NAT entry and associate with the connection.
|
|
* We will consume the reference on success (release on error).
|
|
*/
|
|
nt = npf_nat_create(npc, np, con);
|
|
if (nt == NULL) {
|
|
atomic_dec_uint(&np->n_refcnt);
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/* Associate the NAT translation entry with the connection. */
|
|
error = npf_conn_setnat(npc, con, nt, np->n_type);
|
|
if (error) {
|
|
/* Will release the reference. */
|
|
npf_nat_destroy(nt);
|
|
goto out;
|
|
}
|
|
|
|
/* Determine whether any ALG matches. */
|
|
if (npf_alg_match(npc, nt, di)) {
|
|
KASSERT(nt->nt_alg != NULL);
|
|
}
|
|
|
|
translate:
|
|
/* May need to process the delayed checksums first (XXX: NetBSD). */
|
|
if (nbuf_cksum_barrier(nbuf, di)) {
|
|
npf_recache(npc);
|
|
}
|
|
|
|
/* Perform the translation. */
|
|
error = npf_nat_translate(npc, nt, forw);
|
|
out:
|
|
if (__predict_false(ncon)) {
|
|
if (error) {
|
|
/* It created for NAT - just expire. */
|
|
npf_conn_expire(ncon);
|
|
}
|
|
npf_conn_release(ncon);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_gettrans: return translation IP address and port.
|
|
*/
|
|
void
|
|
npf_nat_gettrans(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
|
|
{
|
|
npf_natpolicy_t *np = nt->nt_natpolicy;
|
|
|
|
*addr = &np->n_taddr;
|
|
*port = nt->nt_tport;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_getorig: return original IP address and port from translation entry.
|
|
*/
|
|
void
|
|
npf_nat_getorig(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
|
|
{
|
|
*addr = &nt->nt_oaddr;
|
|
*port = nt->nt_oport;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_setalg: associate an ALG with the NAT entry.
|
|
*/
|
|
void
|
|
npf_nat_setalg(npf_nat_t *nt, npf_alg_t *alg, uintptr_t arg)
|
|
{
|
|
nt->nt_alg = alg;
|
|
nt->nt_alg_arg = arg;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_destroy: destroy NAT structure (performed on connection expiration).
|
|
*/
|
|
void
|
|
npf_nat_destroy(npf_nat_t *nt)
|
|
{
|
|
npf_natpolicy_t *np = nt->nt_natpolicy;
|
|
|
|
/* Return any taken port to the portmap. */
|
|
if ((np->n_flags & NPF_NAT_PORTMAP) != 0 && nt->nt_tport) {
|
|
npf_nat_putport(np, nt->nt_tport);
|
|
}
|
|
|
|
mutex_enter(&np->n_lock);
|
|
LIST_REMOVE(nt, nt_entry);
|
|
KASSERT(np->n_refcnt > 0);
|
|
atomic_dec_uint(&np->n_refcnt);
|
|
mutex_exit(&np->n_lock);
|
|
|
|
pool_cache_put(nat_cache, nt);
|
|
npf_stats_inc(NPF_STAT_NAT_DESTROY);
|
|
}
|
|
|
|
/*
|
|
* npf_nat_export: serialise the NAT entry with a NAT policy ID.
|
|
*/
|
|
void
|
|
npf_nat_export(prop_dictionary_t condict, npf_nat_t *nt)
|
|
{
|
|
npf_natpolicy_t *np = nt->nt_natpolicy;
|
|
prop_dictionary_t natdict;
|
|
prop_data_t d;
|
|
|
|
natdict = prop_dictionary_create();
|
|
d = prop_data_create_data(&nt->nt_oaddr, sizeof(npf_addr_t));
|
|
prop_dictionary_set_and_rel(natdict, "oaddr", d);
|
|
prop_dictionary_set_uint16(natdict, "oport", nt->nt_oport);
|
|
prop_dictionary_set_uint16(natdict, "tport", nt->nt_tport);
|
|
prop_dictionary_set_uint64(natdict, "nat-policy", np->n_id);
|
|
prop_dictionary_set_and_rel(condict, "nat", natdict);
|
|
}
|
|
|
|
/*
|
|
* npf_nat_import: find the NAT policy and unserialise the NAT entry.
|
|
*/
|
|
npf_nat_t *
|
|
npf_nat_import(prop_dictionary_t natdict, npf_ruleset_t *natlist,
|
|
npf_conn_t *con)
|
|
{
|
|
npf_natpolicy_t *np;
|
|
npf_nat_t *nt;
|
|
uint64_t np_id;
|
|
const void *d;
|
|
|
|
prop_dictionary_get_uint64(natdict, "nat-policy", &np_id);
|
|
if ((np = npf_ruleset_findnat(natlist, np_id)) == NULL) {
|
|
return NULL;
|
|
}
|
|
nt = pool_cache_get(nat_cache, PR_WAITOK);
|
|
memset(nt, 0, sizeof(npf_nat_t));
|
|
|
|
prop_object_t obj = prop_dictionary_get(natdict, "oaddr");
|
|
if ((d = prop_data_data_nocopy(obj)) == NULL ||
|
|
prop_data_size(obj) != sizeof(npf_addr_t)) {
|
|
pool_cache_put(nat_cache, nt);
|
|
return NULL;
|
|
}
|
|
memcpy(&nt->nt_oaddr, d, sizeof(npf_addr_t));
|
|
prop_dictionary_get_uint16(natdict, "oport", &nt->nt_oport);
|
|
prop_dictionary_get_uint16(natdict, "tport", &nt->nt_tport);
|
|
|
|
/* Take a specific port from port-map. */
|
|
if ((np->n_flags & NPF_NAT_PORTMAP) != 0 && nt->nt_tport &
|
|
!npf_nat_takeport(np, nt->nt_tport)) {
|
|
pool_cache_put(nat_cache, nt);
|
|
return NULL;
|
|
}
|
|
npf_stats_inc(NPF_STAT_NAT_CREATE);
|
|
|
|
/*
|
|
* Associate, take a reference and insert. Unlocked since
|
|
* the policy is not yet visible.
|
|
*/
|
|
nt->nt_natpolicy = np;
|
|
nt->nt_conn = con;
|
|
np->n_refcnt++;
|
|
LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
|
|
return nt;
|
|
}
|
|
|
|
#if defined(DDB) || defined(_NPF_TESTING)
|
|
|
|
void
|
|
npf_nat_dump(const npf_nat_t *nt)
|
|
{
|
|
const npf_natpolicy_t *np;
|
|
struct in_addr ip;
|
|
|
|
np = nt->nt_natpolicy;
|
|
memcpy(&ip, &np->n_taddr, sizeof(ip));
|
|
printf("\tNATP(%p): type %d flags 0x%x taddr %s tport %d\n", np,
|
|
np->n_type, np->n_flags, inet_ntoa(ip), ntohs(np->n_tport));
|
|
memcpy(&ip, &nt->nt_oaddr, sizeof(ip));
|
|
printf("\tNAT: original address %s oport %d tport %d\n",
|
|
inet_ntoa(ip), ntohs(nt->nt_oport), ntohs(nt->nt_tport));
|
|
if (nt->nt_alg) {
|
|
printf("\tNAT ALG = %p, ARG = %p\n",
|
|
nt->nt_alg, (void *)nt->nt_alg_arg);
|
|
}
|
|
}
|
|
|
|
#endif
|