e80123a9be
From Ilja Van Sprundel.
2210 lines
49 KiB
C
2210 lines
49 KiB
C
/* $NetBSD: altq_hfsc.c,v 1.27 2017/07/28 13:53:17 riastradh Exp $ */
|
|
/* $KAME: altq_hfsc.c,v 1.26 2005/04/13 03:44:24 suz Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software and
|
|
* its documentation is hereby granted (including for commercial or
|
|
* for-profit use), provided that both the copyright notice and this
|
|
* permission notice appear in all copies of the software, derivative
|
|
* works, or modified versions, and any portions thereof.
|
|
*
|
|
* THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
|
|
* WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS
|
|
* SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
|
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
|
|
* DAMAGE.
|
|
*
|
|
* Carnegie Mellon encourages (but does not require) users of this
|
|
* software to return any improvements or extensions that they make,
|
|
* and to grant Carnegie Mellon the rights to redistribute these
|
|
* changes without encumbrance.
|
|
*/
|
|
/*
|
|
* H-FSC is described in Proceedings of SIGCOMM'97,
|
|
* "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
|
|
* Real-Time and Priority Service"
|
|
* by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
|
|
*
|
|
* Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
|
|
* when a class has an upperlimit, the fit-time is computed from the
|
|
* upperlimit service curve. the link-sharing scheduler does not schedule
|
|
* a class whose fit-time exceeds the current time.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: altq_hfsc.c,v 1.27 2017/07/28 13:53:17 riastradh Exp $");
|
|
|
|
#ifdef _KERNEL_OPT
|
|
#include "opt_altq.h"
|
|
#include "opt_inet.h"
|
|
#include "pf.h"
|
|
#endif
|
|
|
|
#ifdef ALTQ_HFSC /* hfsc is enabled by ALTQ_HFSC option in opt_altq.h */
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/queue.h>
|
|
#if 1 /* ALTQ3_COMPAT */
|
|
#include <sys/sockio.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/kernel.h>
|
|
#endif /* ALTQ3_COMPAT */
|
|
#include <sys/kauth.h>
|
|
|
|
#include <net/if.h>
|
|
#include <netinet/in.h>
|
|
|
|
#if NPF > 0
|
|
#include <net/pfvar.h>
|
|
#endif
|
|
#include <altq/altq.h>
|
|
#include <altq/altq_hfsc.h>
|
|
#ifdef ALTQ3_COMPAT
|
|
#include <altq/altq_conf.h>
|
|
#endif
|
|
|
|
/*
|
|
* function prototypes
|
|
*/
|
|
static int hfsc_clear_interface(struct hfsc_if *);
|
|
static int hfsc_request(struct ifaltq *, int, void *);
|
|
static void hfsc_purge(struct hfsc_if *);
|
|
static struct hfsc_class *hfsc_class_create(struct hfsc_if *,
|
|
struct service_curve *, struct service_curve *, struct service_curve *,
|
|
struct hfsc_class *, int, int, int);
|
|
static int hfsc_class_destroy(struct hfsc_class *);
|
|
static struct hfsc_class *hfsc_nextclass(struct hfsc_class *);
|
|
static int hfsc_enqueue(struct ifaltq *, struct mbuf *);
|
|
static struct mbuf *hfsc_dequeue(struct ifaltq *, int);
|
|
|
|
static int hfsc_addq(struct hfsc_class *, struct mbuf *);
|
|
static struct mbuf *hfsc_getq(struct hfsc_class *);
|
|
static struct mbuf *hfsc_pollq(struct hfsc_class *);
|
|
static void hfsc_purgeq(struct hfsc_class *);
|
|
|
|
static void update_cfmin(struct hfsc_class *);
|
|
static void set_active(struct hfsc_class *, int);
|
|
static void set_passive(struct hfsc_class *);
|
|
|
|
static void init_ed(struct hfsc_class *, int);
|
|
static void update_ed(struct hfsc_class *, int);
|
|
static void update_d(struct hfsc_class *, int);
|
|
static void init_vf(struct hfsc_class *, int);
|
|
static void update_vf(struct hfsc_class *, int, u_int64_t);
|
|
static ellist_t *ellist_alloc(void);
|
|
static void ellist_destroy(ellist_t *);
|
|
static void ellist_insert(struct hfsc_class *);
|
|
static void ellist_remove(struct hfsc_class *);
|
|
static void ellist_update(struct hfsc_class *);
|
|
struct hfsc_class *ellist_get_mindl(ellist_t *, u_int64_t);
|
|
static actlist_t *actlist_alloc(void);
|
|
static void actlist_destroy(actlist_t *);
|
|
static void actlist_insert(struct hfsc_class *);
|
|
static void actlist_remove(struct hfsc_class *);
|
|
static void actlist_update(struct hfsc_class *);
|
|
|
|
static struct hfsc_class *actlist_firstfit(struct hfsc_class *,
|
|
u_int64_t);
|
|
|
|
static inline u_int64_t seg_x2y(u_int64_t, u_int64_t);
|
|
static inline u_int64_t seg_y2x(u_int64_t, u_int64_t);
|
|
static inline u_int64_t m2sm(u_int);
|
|
static inline u_int64_t m2ism(u_int);
|
|
static inline u_int64_t d2dx(u_int);
|
|
static u_int sm2m(u_int64_t);
|
|
static u_int dx2d(u_int64_t);
|
|
|
|
static void sc2isc(struct service_curve *, struct internal_sc *);
|
|
static void rtsc_init(struct runtime_sc *, struct internal_sc *,
|
|
u_int64_t, u_int64_t);
|
|
static u_int64_t rtsc_y2x(struct runtime_sc *, u_int64_t);
|
|
static u_int64_t rtsc_x2y(struct runtime_sc *, u_int64_t);
|
|
static void rtsc_min(struct runtime_sc *, struct internal_sc *,
|
|
u_int64_t, u_int64_t);
|
|
|
|
static void get_class_stats(struct hfsc_classstats *,
|
|
struct hfsc_class *);
|
|
static struct hfsc_class *clh_to_clp(struct hfsc_if *, u_int32_t);
|
|
|
|
|
|
#ifdef ALTQ3_COMPAT
|
|
static struct hfsc_if *hfsc_attach(struct ifaltq *, u_int);
|
|
static void hfsc_detach(struct hfsc_if *);
|
|
static int hfsc_class_modify(struct hfsc_class *, struct service_curve *,
|
|
struct service_curve *, struct service_curve *);
|
|
|
|
static int hfsccmd_if_attach(struct hfsc_attach *);
|
|
static int hfsccmd_if_detach(struct hfsc_interface *);
|
|
static int hfsccmd_add_class(struct hfsc_add_class *);
|
|
static int hfsccmd_delete_class(struct hfsc_delete_class *);
|
|
static int hfsccmd_modify_class(struct hfsc_modify_class *);
|
|
static int hfsccmd_add_filter(struct hfsc_add_filter *);
|
|
static int hfsccmd_delete_filter(struct hfsc_delete_filter *);
|
|
static int hfsccmd_class_stats(struct hfsc_class_stats *);
|
|
|
|
altqdev_decl(hfsc);
|
|
#endif /* ALTQ3_COMPAT */
|
|
|
|
/*
|
|
* macros
|
|
*/
|
|
#define is_a_parent_class(cl) ((cl)->cl_children != NULL)
|
|
|
|
#define HT_INFINITY 0xffffffffffffffffLL /* infinite time value */
|
|
|
|
#ifdef ALTQ3_COMPAT
|
|
/* hif_list keeps all hfsc_if's allocated. */
|
|
static struct hfsc_if *hif_list = NULL;
|
|
#endif /* ALTQ3_COMPAT */
|
|
|
|
#if NPF > 0
|
|
int
|
|
hfsc_pfattach(struct pf_altq *a)
|
|
{
|
|
struct ifnet *ifp;
|
|
int s, error;
|
|
|
|
if ((ifp = ifunit(a->ifname)) == NULL || a->altq_disc == NULL)
|
|
return (EINVAL);
|
|
s = splnet();
|
|
error = altq_attach(&ifp->if_snd, ALTQT_HFSC, a->altq_disc,
|
|
hfsc_enqueue, hfsc_dequeue, hfsc_request, NULL, NULL);
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
hfsc_add_altq(struct pf_altq *a)
|
|
{
|
|
struct hfsc_if *hif;
|
|
struct ifnet *ifp;
|
|
|
|
if ((ifp = ifunit(a->ifname)) == NULL)
|
|
return (EINVAL);
|
|
if (!ALTQ_IS_READY(&ifp->if_snd))
|
|
return (ENODEV);
|
|
|
|
hif = malloc(sizeof(struct hfsc_if), M_DEVBUF, M_WAITOK|M_ZERO);
|
|
if (hif == NULL)
|
|
return (ENOMEM);
|
|
|
|
hif->hif_eligible = ellist_alloc();
|
|
if (hif->hif_eligible == NULL) {
|
|
free(hif, M_DEVBUF);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
hif->hif_ifq = &ifp->if_snd;
|
|
|
|
/* keep the state in pf_altq */
|
|
a->altq_disc = hif;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
hfsc_remove_altq(struct pf_altq *a)
|
|
{
|
|
struct hfsc_if *hif;
|
|
|
|
if ((hif = a->altq_disc) == NULL)
|
|
return (EINVAL);
|
|
a->altq_disc = NULL;
|
|
|
|
(void)hfsc_clear_interface(hif);
|
|
(void)hfsc_class_destroy(hif->hif_rootclass);
|
|
|
|
ellist_destroy(hif->hif_eligible);
|
|
|
|
free(hif, M_DEVBUF);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
hfsc_add_queue(struct pf_altq *a)
|
|
{
|
|
struct hfsc_if *hif;
|
|
struct hfsc_class *cl, *parent;
|
|
struct hfsc_opts *opts;
|
|
struct service_curve rtsc, lssc, ulsc;
|
|
|
|
if ((hif = a->altq_disc) == NULL)
|
|
return (EINVAL);
|
|
|
|
opts = &a->pq_u.hfsc_opts;
|
|
|
|
if (a->parent_qid == HFSC_NULLCLASS_HANDLE &&
|
|
hif->hif_rootclass == NULL)
|
|
parent = NULL;
|
|
else if ((parent = clh_to_clp(hif, a->parent_qid)) == NULL)
|
|
return (EINVAL);
|
|
|
|
if (a->qid == 0)
|
|
return (EINVAL);
|
|
|
|
if (clh_to_clp(hif, a->qid) != NULL)
|
|
return (EBUSY);
|
|
|
|
rtsc.m1 = opts->rtsc_m1;
|
|
rtsc.d = opts->rtsc_d;
|
|
rtsc.m2 = opts->rtsc_m2;
|
|
lssc.m1 = opts->lssc_m1;
|
|
lssc.d = opts->lssc_d;
|
|
lssc.m2 = opts->lssc_m2;
|
|
ulsc.m1 = opts->ulsc_m1;
|
|
ulsc.d = opts->ulsc_d;
|
|
ulsc.m2 = opts->ulsc_m2;
|
|
|
|
cl = hfsc_class_create(hif, &rtsc, &lssc, &ulsc,
|
|
parent, a->qlimit, opts->flags, a->qid);
|
|
if (cl == NULL)
|
|
return (ENOMEM);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
hfsc_remove_queue(struct pf_altq *a)
|
|
{
|
|
struct hfsc_if *hif;
|
|
struct hfsc_class *cl;
|
|
|
|
if ((hif = a->altq_disc) == NULL)
|
|
return (EINVAL);
|
|
|
|
if ((cl = clh_to_clp(hif, a->qid)) == NULL)
|
|
return (EINVAL);
|
|
|
|
return (hfsc_class_destroy(cl));
|
|
}
|
|
|
|
int
|
|
hfsc_getqstats(struct pf_altq *a, void *ubuf, int *nbytes)
|
|
{
|
|
struct hfsc_if *hif;
|
|
struct hfsc_class *cl;
|
|
struct hfsc_classstats stats;
|
|
int error = 0;
|
|
|
|
if ((hif = altq_lookup(a->ifname, ALTQT_HFSC)) == NULL)
|
|
return (EBADF);
|
|
|
|
if ((cl = clh_to_clp(hif, a->qid)) == NULL)
|
|
return (EINVAL);
|
|
|
|
if (*nbytes < sizeof(stats))
|
|
return (EINVAL);
|
|
|
|
memset(&stats, 0, sizeof(stats));
|
|
get_class_stats(&stats, cl);
|
|
|
|
if ((error = copyout((void *)&stats, ubuf, sizeof(stats))) != 0)
|
|
return (error);
|
|
*nbytes = sizeof(stats);
|
|
return (0);
|
|
}
|
|
#endif /* NPF > 0 */
|
|
|
|
/*
|
|
* bring the interface back to the initial state by discarding
|
|
* all the filters and classes except the root class.
|
|
*/
|
|
static int
|
|
hfsc_clear_interface(struct hfsc_if *hif)
|
|
{
|
|
struct hfsc_class *cl;
|
|
|
|
#ifdef ALTQ3_COMPAT
|
|
/* free the filters for this interface */
|
|
acc_discard_filters(&hif->hif_classifier, NULL, 1);
|
|
#endif
|
|
|
|
/* clear out the classes */
|
|
while (hif->hif_rootclass != NULL &&
|
|
(cl = hif->hif_rootclass->cl_children) != NULL) {
|
|
/*
|
|
* remove the first leaf class found in the hierarchy
|
|
* then start over
|
|
*/
|
|
for (; cl != NULL; cl = hfsc_nextclass(cl)) {
|
|
if (!is_a_parent_class(cl)) {
|
|
(void)hfsc_class_destroy(cl);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
hfsc_request(struct ifaltq *ifq, int req, void *arg)
|
|
{
|
|
struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
|
|
|
|
switch (req) {
|
|
case ALTRQ_PURGE:
|
|
hfsc_purge(hif);
|
|
break;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/* discard all the queued packets on the interface */
|
|
static void
|
|
hfsc_purge(struct hfsc_if *hif)
|
|
{
|
|
struct hfsc_class *cl;
|
|
|
|
for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
|
|
if (!qempty(cl->cl_q))
|
|
hfsc_purgeq(cl);
|
|
if (ALTQ_IS_ENABLED(hif->hif_ifq))
|
|
hif->hif_ifq->ifq_len = 0;
|
|
}
|
|
|
|
struct hfsc_class *
|
|
hfsc_class_create(struct hfsc_if *hif, struct service_curve *rsc,
|
|
struct service_curve *fsc, struct service_curve *usc,
|
|
struct hfsc_class *parent, int qlimit, int flags, int qid)
|
|
{
|
|
struct hfsc_class *cl, *p;
|
|
int i, s;
|
|
|
|
if (hif->hif_classes >= HFSC_MAX_CLASSES)
|
|
return (NULL);
|
|
|
|
#ifndef ALTQ_RED
|
|
if (flags & HFCF_RED) {
|
|
#ifdef ALTQ_DEBUG
|
|
printf("hfsc_class_create: RED not configured for HFSC!\n");
|
|
#endif
|
|
return (NULL);
|
|
}
|
|
#endif
|
|
|
|
cl = malloc(sizeof(struct hfsc_class), M_DEVBUF, M_WAITOK|M_ZERO);
|
|
if (cl == NULL)
|
|
return (NULL);
|
|
|
|
cl->cl_q = malloc(sizeof(class_queue_t), M_DEVBUF, M_WAITOK|M_ZERO);
|
|
if (cl->cl_q == NULL)
|
|
goto err_ret;
|
|
|
|
cl->cl_actc = actlist_alloc();
|
|
if (cl->cl_actc == NULL)
|
|
goto err_ret;
|
|
|
|
if (qlimit == 0)
|
|
qlimit = 50; /* use default */
|
|
qlimit(cl->cl_q) = qlimit;
|
|
qtype(cl->cl_q) = Q_DROPTAIL;
|
|
qlen(cl->cl_q) = 0;
|
|
cl->cl_flags = flags;
|
|
#ifdef ALTQ_RED
|
|
if (flags & (HFCF_RED|HFCF_RIO)) {
|
|
int red_flags, red_pkttime;
|
|
u_int m2;
|
|
|
|
m2 = 0;
|
|
if (rsc != NULL && rsc->m2 > m2)
|
|
m2 = rsc->m2;
|
|
if (fsc != NULL && fsc->m2 > m2)
|
|
m2 = fsc->m2;
|
|
if (usc != NULL && usc->m2 > m2)
|
|
m2 = usc->m2;
|
|
|
|
red_flags = 0;
|
|
if (flags & HFCF_ECN)
|
|
red_flags |= REDF_ECN;
|
|
#ifdef ALTQ_RIO
|
|
if (flags & HFCF_CLEARDSCP)
|
|
red_flags |= RIOF_CLEARDSCP;
|
|
#endif
|
|
if (m2 < 8)
|
|
red_pkttime = 1000 * 1000 * 1000; /* 1 sec */
|
|
else
|
|
red_pkttime = (int64_t)hif->hif_ifq->altq_ifp->if_mtu
|
|
* 1000 * 1000 * 1000 / (m2 / 8);
|
|
if (flags & HFCF_RED) {
|
|
cl->cl_red = red_alloc(0, 0,
|
|
qlimit(cl->cl_q) * 10/100,
|
|
qlimit(cl->cl_q) * 30/100,
|
|
red_flags, red_pkttime);
|
|
if (cl->cl_red != NULL)
|
|
qtype(cl->cl_q) = Q_RED;
|
|
}
|
|
#ifdef ALTQ_RIO
|
|
else {
|
|
cl->cl_red = (red_t *)rio_alloc(0, NULL,
|
|
red_flags, red_pkttime);
|
|
if (cl->cl_red != NULL)
|
|
qtype(cl->cl_q) = Q_RIO;
|
|
}
|
|
#endif
|
|
}
|
|
#endif /* ALTQ_RED */
|
|
|
|
if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0)) {
|
|
cl->cl_rsc = malloc(sizeof(struct internal_sc), M_DEVBUF,
|
|
M_WAITOK|M_ZERO);
|
|
if (cl->cl_rsc == NULL)
|
|
goto err_ret;
|
|
sc2isc(rsc, cl->cl_rsc);
|
|
rtsc_init(&cl->cl_deadline, cl->cl_rsc, 0, 0);
|
|
rtsc_init(&cl->cl_eligible, cl->cl_rsc, 0, 0);
|
|
}
|
|
if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0)) {
|
|
cl->cl_fsc = malloc(sizeof(struct internal_sc), M_DEVBUF,
|
|
M_WAITOK|M_ZERO);
|
|
if (cl->cl_fsc == NULL)
|
|
goto err_ret;
|
|
sc2isc(fsc, cl->cl_fsc);
|
|
rtsc_init(&cl->cl_virtual, cl->cl_fsc, 0, 0);
|
|
}
|
|
if (usc != NULL && (usc->m1 != 0 || usc->m2 != 0)) {
|
|
cl->cl_usc = malloc(sizeof(struct internal_sc), M_DEVBUF,
|
|
M_WAITOK|M_ZERO);
|
|
if (cl->cl_usc == NULL)
|
|
goto err_ret;
|
|
sc2isc(usc, cl->cl_usc);
|
|
rtsc_init(&cl->cl_ulimit, cl->cl_usc, 0, 0);
|
|
}
|
|
|
|
cl->cl_id = hif->hif_classid++;
|
|
cl->cl_handle = qid;
|
|
cl->cl_hif = hif;
|
|
cl->cl_parent = parent;
|
|
|
|
s = splnet();
|
|
hif->hif_classes++;
|
|
|
|
/*
|
|
* find a free slot in the class table. if the slot matching
|
|
* the lower bits of qid is free, use this slot. otherwise,
|
|
* use the first free slot.
|
|
*/
|
|
i = qid % HFSC_MAX_CLASSES;
|
|
if (hif->hif_class_tbl[i] == NULL)
|
|
hif->hif_class_tbl[i] = cl;
|
|
else {
|
|
for (i = 0; i < HFSC_MAX_CLASSES; i++)
|
|
if (hif->hif_class_tbl[i] == NULL) {
|
|
hif->hif_class_tbl[i] = cl;
|
|
break;
|
|
}
|
|
if (i == HFSC_MAX_CLASSES) {
|
|
splx(s);
|
|
goto err_ret;
|
|
}
|
|
}
|
|
|
|
if (flags & HFCF_DEFAULTCLASS)
|
|
hif->hif_defaultclass = cl;
|
|
|
|
if (parent == NULL) {
|
|
/* this is root class */
|
|
hif->hif_rootclass = cl;
|
|
} else {
|
|
/* add this class to the children list of the parent */
|
|
if ((p = parent->cl_children) == NULL)
|
|
parent->cl_children = cl;
|
|
else {
|
|
while (p->cl_siblings != NULL)
|
|
p = p->cl_siblings;
|
|
p->cl_siblings = cl;
|
|
}
|
|
}
|
|
splx(s);
|
|
|
|
return (cl);
|
|
|
|
err_ret:
|
|
if (cl->cl_actc != NULL)
|
|
actlist_destroy(cl->cl_actc);
|
|
if (cl->cl_red != NULL) {
|
|
#ifdef ALTQ_RIO
|
|
if (q_is_rio(cl->cl_q))
|
|
rio_destroy((rio_t *)cl->cl_red);
|
|
#endif
|
|
#ifdef ALTQ_RED
|
|
if (q_is_red(cl->cl_q))
|
|
red_destroy(cl->cl_red);
|
|
#endif
|
|
}
|
|
if (cl->cl_fsc != NULL)
|
|
free(cl->cl_fsc, M_DEVBUF);
|
|
if (cl->cl_rsc != NULL)
|
|
free(cl->cl_rsc, M_DEVBUF);
|
|
if (cl->cl_usc != NULL)
|
|
free(cl->cl_usc, M_DEVBUF);
|
|
if (cl->cl_q != NULL)
|
|
free(cl->cl_q, M_DEVBUF);
|
|
free(cl, M_DEVBUF);
|
|
return (NULL);
|
|
}
|
|
|
|
static int
|
|
hfsc_class_destroy(struct hfsc_class *cl)
|
|
{
|
|
int i, s;
|
|
|
|
if (cl == NULL)
|
|
return (0);
|
|
|
|
if (is_a_parent_class(cl))
|
|
return (EBUSY);
|
|
|
|
s = splnet();
|
|
|
|
#ifdef ALTQ3_COMPAT
|
|
/* delete filters referencing to this class */
|
|
acc_discard_filters(&cl->cl_hif->hif_classifier, cl, 0);
|
|
#endif /* ALTQ3_COMPAT */
|
|
|
|
if (!qempty(cl->cl_q))
|
|
hfsc_purgeq(cl);
|
|
|
|
if (cl->cl_parent == NULL) {
|
|
/* this is root class */
|
|
} else {
|
|
struct hfsc_class *p = cl->cl_parent->cl_children;
|
|
|
|
if (p == cl)
|
|
cl->cl_parent->cl_children = cl->cl_siblings;
|
|
else do {
|
|
if (p->cl_siblings == cl) {
|
|
p->cl_siblings = cl->cl_siblings;
|
|
break;
|
|
}
|
|
} while ((p = p->cl_siblings) != NULL);
|
|
ASSERT(p != NULL);
|
|
}
|
|
|
|
for (i = 0; i < HFSC_MAX_CLASSES; i++)
|
|
if (cl->cl_hif->hif_class_tbl[i] == cl) {
|
|
cl->cl_hif->hif_class_tbl[i] = NULL;
|
|
break;
|
|
}
|
|
|
|
cl->cl_hif->hif_classes--;
|
|
splx(s);
|
|
|
|
actlist_destroy(cl->cl_actc);
|
|
|
|
if (cl->cl_red != NULL) {
|
|
#ifdef ALTQ_RIO
|
|
if (q_is_rio(cl->cl_q))
|
|
rio_destroy((rio_t *)cl->cl_red);
|
|
#endif
|
|
#ifdef ALTQ_RED
|
|
if (q_is_red(cl->cl_q))
|
|
red_destroy(cl->cl_red);
|
|
#endif
|
|
}
|
|
|
|
if (cl == cl->cl_hif->hif_rootclass)
|
|
cl->cl_hif->hif_rootclass = NULL;
|
|
if (cl == cl->cl_hif->hif_defaultclass)
|
|
cl->cl_hif->hif_defaultclass = NULL;
|
|
|
|
if (cl->cl_usc != NULL)
|
|
free(cl->cl_usc, M_DEVBUF);
|
|
if (cl->cl_fsc != NULL)
|
|
free(cl->cl_fsc, M_DEVBUF);
|
|
if (cl->cl_rsc != NULL)
|
|
free(cl->cl_rsc, M_DEVBUF);
|
|
free(cl->cl_q, M_DEVBUF);
|
|
free(cl, M_DEVBUF);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* hfsc_nextclass returns the next class in the tree.
|
|
* usage:
|
|
* for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
|
|
* do_something;
|
|
*/
|
|
static struct hfsc_class *
|
|
hfsc_nextclass(struct hfsc_class *cl)
|
|
{
|
|
if (cl->cl_children != NULL)
|
|
cl = cl->cl_children;
|
|
else if (cl->cl_siblings != NULL)
|
|
cl = cl->cl_siblings;
|
|
else {
|
|
while ((cl = cl->cl_parent) != NULL)
|
|
if (cl->cl_siblings) {
|
|
cl = cl->cl_siblings;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return (cl);
|
|
}
|
|
|
|
/*
|
|
* hfsc_enqueue is an enqueue function to be registered to
|
|
* (*altq_enqueue) in struct ifaltq.
|
|
*/
|
|
static int
|
|
hfsc_enqueue(struct ifaltq *ifq, struct mbuf *m)
|
|
{
|
|
struct altq_pktattr pktattr;
|
|
struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
|
|
struct hfsc_class *cl;
|
|
struct m_tag *t;
|
|
int len;
|
|
|
|
/* grab class set by classifier */
|
|
if ((m->m_flags & M_PKTHDR) == 0) {
|
|
/* should not happen */
|
|
printf("altq: packet for %s does not have pkthdr\n",
|
|
ifq->altq_ifp->if_xname);
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
cl = NULL;
|
|
if ((t = m_tag_find(m, PACKET_TAG_ALTQ_QID, NULL)) != NULL)
|
|
cl = clh_to_clp(hif, ((struct altq_tag *)(t+1))->qid);
|
|
#ifdef ALTQ3_COMPAT
|
|
else if ((ifq->altq_flags & ALTQF_CLASSIFY))
|
|
cl = m->m_pkthdr.pattr_class;
|
|
#endif
|
|
if (cl == NULL || is_a_parent_class(cl)) {
|
|
cl = hif->hif_defaultclass;
|
|
if (cl == NULL) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
}
|
|
#ifdef ALTQ3_COMPAT
|
|
if (m->m_pkthdr.pattr_af != AF_UNSPEC) {
|
|
pktattr.pattr_class = m->m_pkthdr.pattr_class;
|
|
pktattr.pattr_af = m->m_pkthdr.pattr_af;
|
|
pktattr.pattr_hdr = m->m_pkthdr.pattr_hdr;
|
|
|
|
cl->cl_pktattr = &pktattr; /* save proto hdr used by ECN */
|
|
} else
|
|
#endif
|
|
cl->cl_pktattr = NULL;
|
|
len = m_pktlen(m);
|
|
if (hfsc_addq(cl, m) != 0) {
|
|
/* drop occurred. mbuf was freed in hfsc_addq. */
|
|
PKTCNTR_ADD(&cl->cl_stats.drop_cnt, len);
|
|
return (ENOBUFS);
|
|
}
|
|
IFQ_INC_LEN(ifq);
|
|
cl->cl_hif->hif_packets++;
|
|
|
|
/* successfully queued. */
|
|
if (qlen(cl->cl_q) == 1)
|
|
set_active(cl, m_pktlen(m));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* hfsc_dequeue is a dequeue function to be registered to
|
|
* (*altq_dequeue) in struct ifaltq.
|
|
*
|
|
* note: ALTDQ_POLL returns the next packet without removing the packet
|
|
* from the queue. ALTDQ_REMOVE is a normal dequeue operation.
|
|
* ALTDQ_REMOVE must return the same packet if called immediately
|
|
* after ALTDQ_POLL.
|
|
*/
|
|
static struct mbuf *
|
|
hfsc_dequeue(struct ifaltq *ifq, int op)
|
|
{
|
|
struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
|
|
struct hfsc_class *cl;
|
|
struct mbuf *m;
|
|
int len, next_len;
|
|
int realtime = 0;
|
|
u_int64_t cur_time;
|
|
|
|
if (hif->hif_packets == 0)
|
|
/* no packet in the tree */
|
|
return (NULL);
|
|
|
|
cur_time = read_machclk();
|
|
|
|
if (op == ALTDQ_REMOVE && hif->hif_pollcache != NULL) {
|
|
|
|
cl = hif->hif_pollcache;
|
|
hif->hif_pollcache = NULL;
|
|
/* check if the class was scheduled by real-time criteria */
|
|
if (cl->cl_rsc != NULL)
|
|
realtime = (cl->cl_e <= cur_time);
|
|
} else {
|
|
/*
|
|
* if there are eligible classes, use real-time criteria.
|
|
* find the class with the minimum deadline among
|
|
* the eligible classes.
|
|
*/
|
|
if ((cl = ellist_get_mindl(hif->hif_eligible, cur_time))
|
|
!= NULL) {
|
|
realtime = 1;
|
|
} else {
|
|
#ifdef ALTQ_DEBUG
|
|
int fits = 0;
|
|
#endif
|
|
/*
|
|
* use link-sharing criteria
|
|
* get the class with the minimum vt in the hierarchy
|
|
*/
|
|
cl = hif->hif_rootclass;
|
|
while (is_a_parent_class(cl)) {
|
|
|
|
cl = actlist_firstfit(cl, cur_time);
|
|
if (cl == NULL) {
|
|
#ifdef ALTQ_DEBUG
|
|
if (fits > 0)
|
|
printf("%d fit but none found\n",fits);
|
|
#endif
|
|
return (NULL);
|
|
}
|
|
/*
|
|
* update parent's cl_cvtmin.
|
|
* don't update if the new vt is smaller.
|
|
*/
|
|
if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
|
|
cl->cl_parent->cl_cvtmin = cl->cl_vt;
|
|
#ifdef ALTQ_DEBUG
|
|
fits++;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (op == ALTDQ_POLL) {
|
|
hif->hif_pollcache = cl;
|
|
m = hfsc_pollq(cl);
|
|
return (m);
|
|
}
|
|
}
|
|
|
|
m = hfsc_getq(cl);
|
|
if (m == NULL)
|
|
panic("hfsc_dequeue:");
|
|
len = m_pktlen(m);
|
|
cl->cl_hif->hif_packets--;
|
|
IFQ_DEC_LEN(ifq);
|
|
PKTCNTR_ADD(&cl->cl_stats.xmit_cnt, len);
|
|
|
|
update_vf(cl, len, cur_time);
|
|
if (realtime)
|
|
cl->cl_cumul += len;
|
|
|
|
if (!qempty(cl->cl_q)) {
|
|
if (cl->cl_rsc != NULL) {
|
|
/* update ed */
|
|
next_len = m_pktlen(qhead(cl->cl_q));
|
|
|
|
if (realtime)
|
|
update_ed(cl, next_len);
|
|
else
|
|
update_d(cl, next_len);
|
|
}
|
|
} else {
|
|
/* the class becomes passive */
|
|
set_passive(cl);
|
|
}
|
|
|
|
return (m);
|
|
}
|
|
|
|
static int
|
|
hfsc_addq(struct hfsc_class *cl, struct mbuf *m)
|
|
{
|
|
|
|
#ifdef ALTQ_RIO
|
|
if (q_is_rio(cl->cl_q))
|
|
return rio_addq((rio_t *)cl->cl_red, cl->cl_q,
|
|
m, cl->cl_pktattr);
|
|
#endif
|
|
#ifdef ALTQ_RED
|
|
if (q_is_red(cl->cl_q))
|
|
return red_addq(cl->cl_red, cl->cl_q, m, cl->cl_pktattr);
|
|
#endif
|
|
if (qlen(cl->cl_q) >= qlimit(cl->cl_q)) {
|
|
m_freem(m);
|
|
return (-1);
|
|
}
|
|
|
|
if (cl->cl_flags & HFCF_CLEARDSCP)
|
|
write_dsfield(m, cl->cl_pktattr, 0);
|
|
|
|
_addq(cl->cl_q, m);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static struct mbuf *
|
|
hfsc_getq(struct hfsc_class *cl)
|
|
{
|
|
#ifdef ALTQ_RIO
|
|
if (q_is_rio(cl->cl_q))
|
|
return rio_getq((rio_t *)cl->cl_red, cl->cl_q);
|
|
#endif
|
|
#ifdef ALTQ_RED
|
|
if (q_is_red(cl->cl_q))
|
|
return red_getq(cl->cl_red, cl->cl_q);
|
|
#endif
|
|
return _getq(cl->cl_q);
|
|
}
|
|
|
|
static struct mbuf *
|
|
hfsc_pollq(struct hfsc_class *cl)
|
|
{
|
|
return qhead(cl->cl_q);
|
|
}
|
|
|
|
static void
|
|
hfsc_purgeq(struct hfsc_class *cl)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
if (qempty(cl->cl_q))
|
|
return;
|
|
|
|
while ((m = _getq(cl->cl_q)) != NULL) {
|
|
PKTCNTR_ADD(&cl->cl_stats.drop_cnt, m_pktlen(m));
|
|
m_freem(m);
|
|
cl->cl_hif->hif_packets--;
|
|
IFQ_DEC_LEN(cl->cl_hif->hif_ifq);
|
|
}
|
|
ASSERT(qlen(cl->cl_q) == 0);
|
|
|
|
update_vf(cl, 0, 0); /* remove cl from the actlist */
|
|
set_passive(cl);
|
|
}
|
|
|
|
static void
|
|
set_active(struct hfsc_class *cl, int len)
|
|
{
|
|
if (cl->cl_rsc != NULL)
|
|
init_ed(cl, len);
|
|
if (cl->cl_fsc != NULL)
|
|
init_vf(cl, len);
|
|
|
|
cl->cl_stats.period++;
|
|
}
|
|
|
|
static void
|
|
set_passive(struct hfsc_class *cl)
|
|
{
|
|
if (cl->cl_rsc != NULL)
|
|
ellist_remove(cl);
|
|
|
|
/*
|
|
* actlist is now handled in update_vf() so that update_vf(cl, 0, 0)
|
|
* needs to be called explicitly to remove a class from actlist
|
|
*/
|
|
}
|
|
|
|
static void
|
|
init_ed(struct hfsc_class *cl, int next_len)
|
|
{
|
|
u_int64_t cur_time;
|
|
|
|
cur_time = read_machclk();
|
|
|
|
/* update the deadline curve */
|
|
rtsc_min(&cl->cl_deadline, cl->cl_rsc, cur_time, cl->cl_cumul);
|
|
|
|
/*
|
|
* update the eligible curve.
|
|
* for concave, it is equal to the deadline curve.
|
|
* for convex, it is a linear curve with slope m2.
|
|
*/
|
|
cl->cl_eligible = cl->cl_deadline;
|
|
if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
|
|
cl->cl_eligible.dx = 0;
|
|
cl->cl_eligible.dy = 0;
|
|
}
|
|
|
|
/* compute e and d */
|
|
cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
|
|
cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
|
|
|
|
ellist_insert(cl);
|
|
}
|
|
|
|
static void
|
|
update_ed(struct hfsc_class *cl, int next_len)
|
|
{
|
|
cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
|
|
cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
|
|
|
|
ellist_update(cl);
|
|
}
|
|
|
|
static void
|
|
update_d(struct hfsc_class *cl, int next_len)
|
|
{
|
|
cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
|
|
}
|
|
|
|
static void
|
|
init_vf(struct hfsc_class *cl, int len)
|
|
{
|
|
struct hfsc_class *max_cl, *p;
|
|
u_int64_t vt, f, cur_time;
|
|
int go_active;
|
|
|
|
cur_time = 0;
|
|
go_active = 1;
|
|
for ( ; cl->cl_parent != NULL; cl = cl->cl_parent) {
|
|
|
|
if (go_active && cl->cl_nactive++ == 0)
|
|
go_active = 1;
|
|
else
|
|
go_active = 0;
|
|
|
|
if (go_active) {
|
|
max_cl = actlist_last(cl->cl_parent->cl_actc);
|
|
if (max_cl != NULL) {
|
|
/*
|
|
* set vt to the average of the min and max
|
|
* classes. if the parent's period didn't
|
|
* change, don't decrease vt of the class.
|
|
*/
|
|
vt = max_cl->cl_vt;
|
|
if (cl->cl_parent->cl_cvtmin != 0)
|
|
vt = (cl->cl_parent->cl_cvtmin + vt)/2;
|
|
|
|
if (cl->cl_parent->cl_vtperiod !=
|
|
cl->cl_parentperiod || vt > cl->cl_vt)
|
|
cl->cl_vt = vt;
|
|
} else {
|
|
/*
|
|
* first child for a new parent backlog period.
|
|
* add parent's cvtmax to vtoff of children
|
|
* to make a new vt (vtoff + vt) larger than
|
|
* the vt in the last period for all children.
|
|
*/
|
|
vt = cl->cl_parent->cl_cvtmax;
|
|
for (p = cl->cl_parent->cl_children; p != NULL;
|
|
p = p->cl_siblings)
|
|
p->cl_vtoff += vt;
|
|
cl->cl_vt = 0;
|
|
cl->cl_parent->cl_cvtmax = 0;
|
|
cl->cl_parent->cl_cvtmin = 0;
|
|
}
|
|
cl->cl_initvt = cl->cl_vt;
|
|
|
|
/* update the virtual curve */
|
|
vt = cl->cl_vt + cl->cl_vtoff;
|
|
rtsc_min(&cl->cl_virtual, cl->cl_fsc, vt, cl->cl_total);
|
|
if (cl->cl_virtual.x == vt) {
|
|
cl->cl_virtual.x -= cl->cl_vtoff;
|
|
cl->cl_vtoff = 0;
|
|
}
|
|
cl->cl_vtadj = 0;
|
|
|
|
cl->cl_vtperiod++; /* increment vt period */
|
|
cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
|
|
if (cl->cl_parent->cl_nactive == 0)
|
|
cl->cl_parentperiod++;
|
|
cl->cl_f = 0;
|
|
|
|
actlist_insert(cl);
|
|
|
|
if (cl->cl_usc != NULL) {
|
|
/* class has upper limit curve */
|
|
if (cur_time == 0)
|
|
cur_time = read_machclk();
|
|
|
|
/* update the ulimit curve */
|
|
rtsc_min(&cl->cl_ulimit, cl->cl_usc, cur_time,
|
|
cl->cl_total);
|
|
/* compute myf */
|
|
cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
|
|
cl->cl_total);
|
|
cl->cl_myfadj = 0;
|
|
}
|
|
}
|
|
|
|
if (cl->cl_myf > cl->cl_cfmin)
|
|
f = cl->cl_myf;
|
|
else
|
|
f = cl->cl_cfmin;
|
|
if (f != cl->cl_f) {
|
|
cl->cl_f = f;
|
|
update_cfmin(cl->cl_parent);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
update_vf(struct hfsc_class *cl, int len, u_int64_t cur_time)
|
|
{
|
|
u_int64_t f, myf_bound, delta;
|
|
int go_passive;
|
|
|
|
go_passive = qempty(cl->cl_q);
|
|
|
|
for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
|
|
|
|
cl->cl_total += len;
|
|
|
|
if (cl->cl_fsc == NULL || cl->cl_nactive == 0)
|
|
continue;
|
|
|
|
if (go_passive && --cl->cl_nactive == 0)
|
|
go_passive = 1;
|
|
else
|
|
go_passive = 0;
|
|
|
|
if (go_passive) {
|
|
/* no more active child, going passive */
|
|
|
|
/* update cvtmax of the parent class */
|
|
if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
|
|
cl->cl_parent->cl_cvtmax = cl->cl_vt;
|
|
|
|
/* remove this class from the vt list */
|
|
actlist_remove(cl);
|
|
|
|
update_cfmin(cl->cl_parent);
|
|
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* update vt and f
|
|
*/
|
|
cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
|
|
- cl->cl_vtoff + cl->cl_vtadj;
|
|
|
|
/*
|
|
* if vt of the class is smaller than cvtmin,
|
|
* the class was skipped in the past due to non-fit.
|
|
* if so, we need to adjust vtadj.
|
|
*/
|
|
if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
|
|
cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
|
|
cl->cl_vt = cl->cl_parent->cl_cvtmin;
|
|
}
|
|
|
|
/* update the vt list */
|
|
actlist_update(cl);
|
|
|
|
if (cl->cl_usc != NULL) {
|
|
cl->cl_myf = cl->cl_myfadj
|
|
+ rtsc_y2x(&cl->cl_ulimit, cl->cl_total);
|
|
|
|
/*
|
|
* if myf lags behind by more than one clock tick
|
|
* from the current time, adjust myfadj to prevent
|
|
* a rate-limited class from going greedy.
|
|
* in a steady state under rate-limiting, myf
|
|
* fluctuates within one clock tick.
|
|
*/
|
|
myf_bound = cur_time - machclk_per_tick;
|
|
if (cl->cl_myf < myf_bound) {
|
|
delta = cur_time - cl->cl_myf;
|
|
cl->cl_myfadj += delta;
|
|
cl->cl_myf += delta;
|
|
}
|
|
}
|
|
|
|
/* cl_f is max(cl_myf, cl_cfmin) */
|
|
if (cl->cl_myf > cl->cl_cfmin)
|
|
f = cl->cl_myf;
|
|
else
|
|
f = cl->cl_cfmin;
|
|
if (f != cl->cl_f) {
|
|
cl->cl_f = f;
|
|
update_cfmin(cl->cl_parent);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
update_cfmin(struct hfsc_class *cl)
|
|
{
|
|
struct hfsc_class *p;
|
|
u_int64_t cfmin;
|
|
|
|
if (TAILQ_EMPTY(cl->cl_actc)) {
|
|
cl->cl_cfmin = 0;
|
|
return;
|
|
}
|
|
cfmin = HT_INFINITY;
|
|
TAILQ_FOREACH(p, cl->cl_actc, cl_actlist) {
|
|
if (p->cl_f == 0) {
|
|
cl->cl_cfmin = 0;
|
|
return;
|
|
}
|
|
if (p->cl_f < cfmin)
|
|
cfmin = p->cl_f;
|
|
}
|
|
cl->cl_cfmin = cfmin;
|
|
}
|
|
|
|
/*
|
|
* TAILQ based ellist and actlist implementation
|
|
* (ion wanted to make a calendar queue based implementation)
|
|
*/
|
|
/*
|
|
* eligible list holds backlogged classes being sorted by their eligible times.
|
|
* there is one eligible list per interface.
|
|
*/
|
|
|
|
static ellist_t *
|
|
ellist_alloc(void)
|
|
{
|
|
ellist_t *head;
|
|
|
|
head = malloc(sizeof(ellist_t), M_DEVBUF, M_WAITOK);
|
|
TAILQ_INIT(head);
|
|
return (head);
|
|
}
|
|
|
|
static void
|
|
ellist_destroy(ellist_t *head)
|
|
{
|
|
free(head, M_DEVBUF);
|
|
}
|
|
|
|
static void
|
|
ellist_insert(struct hfsc_class *cl)
|
|
{
|
|
struct hfsc_if *hif = cl->cl_hif;
|
|
struct hfsc_class *p;
|
|
|
|
/* check the last entry first */
|
|
if ((p = TAILQ_LAST(hif->hif_eligible, _eligible)) == NULL ||
|
|
p->cl_e <= cl->cl_e) {
|
|
TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
|
|
return;
|
|
}
|
|
|
|
TAILQ_FOREACH(p, hif->hif_eligible, cl_ellist) {
|
|
if (cl->cl_e < p->cl_e) {
|
|
TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
|
|
return;
|
|
}
|
|
}
|
|
ASSERT(0); /* should not reach here */
|
|
}
|
|
|
|
static void
|
|
ellist_remove(struct hfsc_class *cl)
|
|
{
|
|
struct hfsc_if *hif = cl->cl_hif;
|
|
|
|
TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
|
|
}
|
|
|
|
static void
|
|
ellist_update(struct hfsc_class *cl)
|
|
{
|
|
struct hfsc_if *hif = cl->cl_hif;
|
|
struct hfsc_class *p, *last;
|
|
|
|
/*
|
|
* the eligible time of a class increases monotonically.
|
|
* if the next entry has a larger eligible time, nothing to do.
|
|
*/
|
|
p = TAILQ_NEXT(cl, cl_ellist);
|
|
if (p == NULL || cl->cl_e <= p->cl_e)
|
|
return;
|
|
|
|
/* check the last entry */
|
|
last = TAILQ_LAST(hif->hif_eligible, _eligible);
|
|
ASSERT(last != NULL);
|
|
if (last->cl_e <= cl->cl_e) {
|
|
TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
|
|
TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* the new position must be between the next entry
|
|
* and the last entry
|
|
*/
|
|
while ((p = TAILQ_NEXT(p, cl_ellist)) != NULL) {
|
|
if (cl->cl_e < p->cl_e) {
|
|
TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
|
|
TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
|
|
return;
|
|
}
|
|
}
|
|
ASSERT(0); /* should not reach here */
|
|
}
|
|
|
|
/* find the class with the minimum deadline among the eligible classes */
|
|
struct hfsc_class *
|
|
ellist_get_mindl(ellist_t *head, u_int64_t cur_time)
|
|
{
|
|
struct hfsc_class *p, *cl = NULL;
|
|
|
|
TAILQ_FOREACH(p, head, cl_ellist) {
|
|
if (p->cl_e > cur_time)
|
|
break;
|
|
if (cl == NULL || p->cl_d < cl->cl_d)
|
|
cl = p;
|
|
}
|
|
return (cl);
|
|
}
|
|
|
|
/*
|
|
* active children list holds backlogged child classes being sorted
|
|
* by their virtual time.
|
|
* each intermediate class has one active children list.
|
|
*/
|
|
static actlist_t *
|
|
actlist_alloc(void)
|
|
{
|
|
actlist_t *head;
|
|
|
|
head = malloc(sizeof(actlist_t), M_DEVBUF, M_WAITOK);
|
|
TAILQ_INIT(head);
|
|
return (head);
|
|
}
|
|
|
|
static void
|
|
actlist_destroy(actlist_t *head)
|
|
{
|
|
free(head, M_DEVBUF);
|
|
}
|
|
static void
|
|
actlist_insert(struct hfsc_class *cl)
|
|
{
|
|
struct hfsc_class *p;
|
|
|
|
/* check the last entry first */
|
|
if ((p = TAILQ_LAST(cl->cl_parent->cl_actc, _active)) == NULL
|
|
|| p->cl_vt <= cl->cl_vt) {
|
|
TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
|
|
return;
|
|
}
|
|
|
|
TAILQ_FOREACH(p, cl->cl_parent->cl_actc, cl_actlist) {
|
|
if (cl->cl_vt < p->cl_vt) {
|
|
TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
|
|
return;
|
|
}
|
|
}
|
|
ASSERT(0); /* should not reach here */
|
|
}
|
|
|
|
static void
|
|
actlist_remove(struct hfsc_class *cl)
|
|
{
|
|
TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
|
|
}
|
|
|
|
static void
|
|
actlist_update(struct hfsc_class *cl)
|
|
{
|
|
struct hfsc_class *p, *last;
|
|
|
|
/*
|
|
* the virtual time of a class increases monotonically during its
|
|
* backlogged period.
|
|
* if the next entry has a larger virtual time, nothing to do.
|
|
*/
|
|
p = TAILQ_NEXT(cl, cl_actlist);
|
|
if (p == NULL || cl->cl_vt < p->cl_vt)
|
|
return;
|
|
|
|
/* check the last entry */
|
|
last = TAILQ_LAST(cl->cl_parent->cl_actc, _active);
|
|
ASSERT(last != NULL);
|
|
if (last->cl_vt <= cl->cl_vt) {
|
|
TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
|
|
TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* the new position must be between the next entry
|
|
* and the last entry
|
|
*/
|
|
while ((p = TAILQ_NEXT(p, cl_actlist)) != NULL) {
|
|
if (cl->cl_vt < p->cl_vt) {
|
|
TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
|
|
TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
|
|
return;
|
|
}
|
|
}
|
|
ASSERT(0); /* should not reach here */
|
|
}
|
|
|
|
static struct hfsc_class *
|
|
actlist_firstfit(struct hfsc_class *cl, u_int64_t cur_time)
|
|
{
|
|
struct hfsc_class *p;
|
|
|
|
TAILQ_FOREACH(p, cl->cl_actc, cl_actlist) {
|
|
if (p->cl_f <= cur_time)
|
|
return (p);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* service curve support functions
|
|
*
|
|
* external service curve parameters
|
|
* m: bits/sec
|
|
* d: msec
|
|
* internal service curve parameters
|
|
* sm: (bytes/tsc_interval) << SM_SHIFT
|
|
* ism: (tsc_count/byte) << ISM_SHIFT
|
|
* dx: tsc_count
|
|
*
|
|
* SM_SHIFT and ISM_SHIFT are scaled in order to keep effective digits.
|
|
* we should be able to handle 100K-1Gbps linkspeed with 200Hz-1GHz CPU
|
|
* speed. SM_SHIFT and ISM_SHIFT are selected to have at least 3 effective
|
|
* digits in decimal using the following table.
|
|
*
|
|
* bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps
|
|
* ----------+-------------------------------------------------------
|
|
* bytes/nsec 12.5e-6 125e-6 1250e-6 12500e-6 125000e-6
|
|
* sm(500MHz) 25.0e-6 250e-6 2500e-6 25000e-6 250000e-6
|
|
* sm(200MHz) 62.5e-6 625e-6 6250e-6 62500e-6 625000e-6
|
|
*
|
|
* nsec/byte 80000 8000 800 80 8
|
|
* ism(500MHz) 40000 4000 400 40 4
|
|
* ism(200MHz) 16000 1600 160 16 1.6
|
|
*/
|
|
#define SM_SHIFT 24
|
|
#define ISM_SHIFT 10
|
|
|
|
#define SM_MASK ((1LL << SM_SHIFT) - 1)
|
|
#define ISM_MASK ((1LL << ISM_SHIFT) - 1)
|
|
|
|
static inline u_int64_t
|
|
seg_x2y(u_int64_t x, u_int64_t sm)
|
|
{
|
|
u_int64_t y;
|
|
|
|
/*
|
|
* compute
|
|
* y = x * sm >> SM_SHIFT
|
|
* but divide it for the upper and lower bits to avoid overflow
|
|
*/
|
|
y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
|
|
return (y);
|
|
}
|
|
|
|
static inline u_int64_t
|
|
seg_y2x(u_int64_t y, u_int64_t ism)
|
|
{
|
|
u_int64_t x;
|
|
|
|
if (y == 0)
|
|
x = 0;
|
|
else if (ism == HT_INFINITY)
|
|
x = HT_INFINITY;
|
|
else {
|
|
x = (y >> ISM_SHIFT) * ism
|
|
+ (((y & ISM_MASK) * ism) >> ISM_SHIFT);
|
|
}
|
|
return (x);
|
|
}
|
|
|
|
static inline u_int64_t
|
|
m2sm(u_int m)
|
|
{
|
|
u_int64_t sm;
|
|
|
|
sm = ((u_int64_t)m << SM_SHIFT) / 8 / machclk_freq;
|
|
return (sm);
|
|
}
|
|
|
|
static inline u_int64_t
|
|
m2ism(u_int m)
|
|
{
|
|
u_int64_t ism;
|
|
|
|
if (m == 0)
|
|
ism = HT_INFINITY;
|
|
else
|
|
ism = ((u_int64_t)machclk_freq << ISM_SHIFT) * 8 / m;
|
|
return (ism);
|
|
}
|
|
|
|
static inline u_int64_t
|
|
d2dx(u_int d)
|
|
{
|
|
u_int64_t dx;
|
|
|
|
dx = ((u_int64_t)d * machclk_freq) / 1000;
|
|
return (dx);
|
|
}
|
|
|
|
static u_int
|
|
sm2m(u_int64_t sm)
|
|
{
|
|
u_int64_t m;
|
|
|
|
m = (sm * 8 * machclk_freq) >> SM_SHIFT;
|
|
return ((u_int)m);
|
|
}
|
|
|
|
static u_int
|
|
dx2d(u_int64_t dx)
|
|
{
|
|
u_int64_t d;
|
|
|
|
d = dx * 1000 / machclk_freq;
|
|
return ((u_int)d);
|
|
}
|
|
|
|
static void
|
|
sc2isc(struct service_curve *sc, struct internal_sc *isc)
|
|
{
|
|
isc->sm1 = m2sm(sc->m1);
|
|
isc->ism1 = m2ism(sc->m1);
|
|
isc->dx = d2dx(sc->d);
|
|
isc->dy = seg_x2y(isc->dx, isc->sm1);
|
|
isc->sm2 = m2sm(sc->m2);
|
|
isc->ism2 = m2ism(sc->m2);
|
|
}
|
|
|
|
/*
|
|
* initialize the runtime service curve with the given internal
|
|
* service curve starting at (x, y).
|
|
*/
|
|
static void
|
|
rtsc_init(struct runtime_sc *rtsc, struct internal_sc * isc, u_int64_t x,
|
|
u_int64_t y)
|
|
{
|
|
rtsc->x = x;
|
|
rtsc->y = y;
|
|
rtsc->sm1 = isc->sm1;
|
|
rtsc->ism1 = isc->ism1;
|
|
rtsc->dx = isc->dx;
|
|
rtsc->dy = isc->dy;
|
|
rtsc->sm2 = isc->sm2;
|
|
rtsc->ism2 = isc->ism2;
|
|
}
|
|
|
|
/*
|
|
* calculate the y-projection of the runtime service curve by the
|
|
* given x-projection value
|
|
*/
|
|
static u_int64_t
|
|
rtsc_y2x(struct runtime_sc *rtsc, u_int64_t y)
|
|
{
|
|
u_int64_t x;
|
|
|
|
if (y < rtsc->y)
|
|
x = rtsc->x;
|
|
else if (y <= rtsc->y + rtsc->dy) {
|
|
/* x belongs to the 1st segment */
|
|
if (rtsc->dy == 0)
|
|
x = rtsc->x + rtsc->dx;
|
|
else
|
|
x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
|
|
} else {
|
|
/* x belongs to the 2nd segment */
|
|
x = rtsc->x + rtsc->dx
|
|
+ seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
|
|
}
|
|
return (x);
|
|
}
|
|
|
|
static u_int64_t
|
|
rtsc_x2y(struct runtime_sc *rtsc, u_int64_t x)
|
|
{
|
|
u_int64_t y;
|
|
|
|
if (x <= rtsc->x)
|
|
y = rtsc->y;
|
|
else if (x <= rtsc->x + rtsc->dx)
|
|
/* y belongs to the 1st segment */
|
|
y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
|
|
else
|
|
/* y belongs to the 2nd segment */
|
|
y = rtsc->y + rtsc->dy
|
|
+ seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
|
|
return (y);
|
|
}
|
|
|
|
/*
|
|
* update the runtime service curve by taking the minimum of the current
|
|
* runtime service curve and the service curve starting at (x, y).
|
|
*/
|
|
static void
|
|
rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u_int64_t x,
|
|
u_int64_t y)
|
|
{
|
|
u_int64_t y1, y2, dx, dy;
|
|
|
|
if (isc->sm1 <= isc->sm2) {
|
|
/* service curve is convex */
|
|
y1 = rtsc_x2y(rtsc, x);
|
|
if (y1 < y)
|
|
/* the current rtsc is smaller */
|
|
return;
|
|
rtsc->x = x;
|
|
rtsc->y = y;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* service curve is concave
|
|
* compute the two y values of the current rtsc
|
|
* y1: at x
|
|
* y2: at (x + dx)
|
|
*/
|
|
y1 = rtsc_x2y(rtsc, x);
|
|
if (y1 <= y) {
|
|
/* rtsc is below isc, no change to rtsc */
|
|
return;
|
|
}
|
|
|
|
y2 = rtsc_x2y(rtsc, x + isc->dx);
|
|
if (y2 >= y + isc->dy) {
|
|
/* rtsc is above isc, replace rtsc by isc */
|
|
rtsc->x = x;
|
|
rtsc->y = y;
|
|
rtsc->dx = isc->dx;
|
|
rtsc->dy = isc->dy;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* the two curves intersect
|
|
* compute the offsets (dx, dy) using the reverse
|
|
* function of seg_x2y()
|
|
* seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
|
|
*/
|
|
dx = ((y1 - y) << SM_SHIFT) / (isc->sm1 - isc->sm2);
|
|
/*
|
|
* check if (x, y1) belongs to the 1st segment of rtsc.
|
|
* if so, add the offset.
|
|
*/
|
|
if (rtsc->x + rtsc->dx > x)
|
|
dx += rtsc->x + rtsc->dx - x;
|
|
dy = seg_x2y(dx, isc->sm1);
|
|
|
|
rtsc->x = x;
|
|
rtsc->y = y;
|
|
rtsc->dx = dx;
|
|
rtsc->dy = dy;
|
|
return;
|
|
}
|
|
|
|
static void
|
|
get_class_stats(struct hfsc_classstats *sp, struct hfsc_class *cl)
|
|
{
|
|
sp->class_id = cl->cl_id;
|
|
sp->class_handle = cl->cl_handle;
|
|
|
|
if (cl->cl_rsc != NULL) {
|
|
sp->rsc.m1 = sm2m(cl->cl_rsc->sm1);
|
|
sp->rsc.d = dx2d(cl->cl_rsc->dx);
|
|
sp->rsc.m2 = sm2m(cl->cl_rsc->sm2);
|
|
} else {
|
|
sp->rsc.m1 = 0;
|
|
sp->rsc.d = 0;
|
|
sp->rsc.m2 = 0;
|
|
}
|
|
if (cl->cl_fsc != NULL) {
|
|
sp->fsc.m1 = sm2m(cl->cl_fsc->sm1);
|
|
sp->fsc.d = dx2d(cl->cl_fsc->dx);
|
|
sp->fsc.m2 = sm2m(cl->cl_fsc->sm2);
|
|
} else {
|
|
sp->fsc.m1 = 0;
|
|
sp->fsc.d = 0;
|
|
sp->fsc.m2 = 0;
|
|
}
|
|
if (cl->cl_usc != NULL) {
|
|
sp->usc.m1 = sm2m(cl->cl_usc->sm1);
|
|
sp->usc.d = dx2d(cl->cl_usc->dx);
|
|
sp->usc.m2 = sm2m(cl->cl_usc->sm2);
|
|
} else {
|
|
sp->usc.m1 = 0;
|
|
sp->usc.d = 0;
|
|
sp->usc.m2 = 0;
|
|
}
|
|
|
|
sp->total = cl->cl_total;
|
|
sp->cumul = cl->cl_cumul;
|
|
|
|
sp->d = cl->cl_d;
|
|
sp->e = cl->cl_e;
|
|
sp->vt = cl->cl_vt;
|
|
sp->f = cl->cl_f;
|
|
|
|
sp->initvt = cl->cl_initvt;
|
|
sp->vtperiod = cl->cl_vtperiod;
|
|
sp->parentperiod = cl->cl_parentperiod;
|
|
sp->nactive = cl->cl_nactive;
|
|
sp->vtoff = cl->cl_vtoff;
|
|
sp->cvtmax = cl->cl_cvtmax;
|
|
sp->myf = cl->cl_myf;
|
|
sp->cfmin = cl->cl_cfmin;
|
|
sp->cvtmin = cl->cl_cvtmin;
|
|
sp->myfadj = cl->cl_myfadj;
|
|
sp->vtadj = cl->cl_vtadj;
|
|
|
|
sp->cur_time = read_machclk();
|
|
sp->machclk_freq = machclk_freq;
|
|
|
|
sp->qlength = qlen(cl->cl_q);
|
|
sp->qlimit = qlimit(cl->cl_q);
|
|
sp->xmit_cnt = cl->cl_stats.xmit_cnt;
|
|
sp->drop_cnt = cl->cl_stats.drop_cnt;
|
|
sp->period = cl->cl_stats.period;
|
|
|
|
sp->qtype = qtype(cl->cl_q);
|
|
#ifdef ALTQ_RED
|
|
if (q_is_red(cl->cl_q))
|
|
red_getstats(cl->cl_red, &sp->red[0]);
|
|
#endif
|
|
#ifdef ALTQ_RIO
|
|
if (q_is_rio(cl->cl_q))
|
|
rio_getstats((rio_t *)cl->cl_red, &sp->red[0]);
|
|
#endif
|
|
}
|
|
|
|
/* convert a class handle to the corresponding class pointer */
|
|
static struct hfsc_class *
|
|
clh_to_clp(struct hfsc_if *hif, u_int32_t chandle)
|
|
{
|
|
int i;
|
|
struct hfsc_class *cl;
|
|
|
|
if (chandle == 0)
|
|
return (NULL);
|
|
/*
|
|
* first, try optimistically the slot matching the lower bits of
|
|
* the handle. if it fails, do the linear table search.
|
|
*/
|
|
i = chandle % HFSC_MAX_CLASSES;
|
|
if ((cl = hif->hif_class_tbl[i]) != NULL && cl->cl_handle == chandle)
|
|
return (cl);
|
|
for (i = 0; i < HFSC_MAX_CLASSES; i++)
|
|
if ((cl = hif->hif_class_tbl[i]) != NULL &&
|
|
cl->cl_handle == chandle)
|
|
return (cl);
|
|
return (NULL);
|
|
}
|
|
|
|
#ifdef ALTQ3_COMPAT
|
|
static struct hfsc_if *
|
|
hfsc_attach(struct ifaltq *ifq, u_int bandwidth)
|
|
{
|
|
struct hfsc_if *hif;
|
|
|
|
hif = malloc(sizeof(struct hfsc_if), M_DEVBUF, M_WAITOK|M_ZERO);
|
|
if (hif == NULL)
|
|
return (NULL);
|
|
|
|
hif->hif_eligible = ellist_alloc();
|
|
if (hif->hif_eligible == NULL) {
|
|
free(hif, M_DEVBUF);
|
|
return NULL;
|
|
}
|
|
|
|
hif->hif_ifq = ifq;
|
|
|
|
/* add this state to the hfsc list */
|
|
hif->hif_next = hif_list;
|
|
hif_list = hif;
|
|
|
|
return (hif);
|
|
}
|
|
|
|
static void
|
|
hfsc_detach(struct hfsc_if *hif)
|
|
{
|
|
(void)hfsc_clear_interface(hif);
|
|
(void)hfsc_class_destroy(hif->hif_rootclass);
|
|
|
|
/* remove this interface from the hif list */
|
|
if (hif_list == hif)
|
|
hif_list = hif->hif_next;
|
|
else {
|
|
struct hfsc_if *h;
|
|
|
|
for (h = hif_list; h != NULL; h = h->hif_next)
|
|
if (h->hif_next == hif) {
|
|
h->hif_next = hif->hif_next;
|
|
break;
|
|
}
|
|
ASSERT(h != NULL);
|
|
}
|
|
|
|
ellist_destroy(hif->hif_eligible);
|
|
|
|
free(hif, M_DEVBUF);
|
|
}
|
|
|
|
static int
|
|
hfsc_class_modify(struct hfsc_class *cl, struct service_curve *rsc,
|
|
struct service_curve *fsc, struct service_curve *usc)
|
|
{
|
|
struct internal_sc *rsc_tmp, *fsc_tmp, *usc_tmp;
|
|
u_int64_t cur_time;
|
|
int s;
|
|
|
|
rsc_tmp = fsc_tmp = usc_tmp = NULL;
|
|
if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0) &&
|
|
cl->cl_rsc == NULL) {
|
|
rsc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
|
|
M_WAITOK);
|
|
if (rsc_tmp == NULL)
|
|
return (ENOMEM);
|
|
}
|
|
if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0) &&
|
|
cl->cl_fsc == NULL) {
|
|
fsc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
|
|
M_WAITOK);
|
|
if (fsc_tmp == NULL)
|
|
return (ENOMEM);
|
|
}
|
|
if (usc != NULL && (usc->m1 != 0 || usc->m2 != 0) &&
|
|
cl->cl_usc == NULL) {
|
|
usc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
|
|
M_WAITOK);
|
|
if (usc_tmp == NULL)
|
|
return (ENOMEM);
|
|
}
|
|
|
|
cur_time = read_machclk();
|
|
s = splnet();
|
|
|
|
if (rsc != NULL) {
|
|
if (rsc->m1 == 0 && rsc->m2 == 0) {
|
|
if (cl->cl_rsc != NULL) {
|
|
if (!qempty(cl->cl_q))
|
|
hfsc_purgeq(cl);
|
|
free(cl->cl_rsc, M_DEVBUF);
|
|
cl->cl_rsc = NULL;
|
|
}
|
|
} else {
|
|
if (cl->cl_rsc == NULL)
|
|
cl->cl_rsc = rsc_tmp;
|
|
sc2isc(rsc, cl->cl_rsc);
|
|
rtsc_init(&cl->cl_deadline, cl->cl_rsc, cur_time,
|
|
cl->cl_cumul);
|
|
cl->cl_eligible = cl->cl_deadline;
|
|
if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
|
|
cl->cl_eligible.dx = 0;
|
|
cl->cl_eligible.dy = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (fsc != NULL) {
|
|
if (fsc->m1 == 0 && fsc->m2 == 0) {
|
|
if (cl->cl_fsc != NULL) {
|
|
if (!qempty(cl->cl_q))
|
|
hfsc_purgeq(cl);
|
|
free(cl->cl_fsc, M_DEVBUF);
|
|
cl->cl_fsc = NULL;
|
|
}
|
|
} else {
|
|
if (cl->cl_fsc == NULL)
|
|
cl->cl_fsc = fsc_tmp;
|
|
sc2isc(fsc, cl->cl_fsc);
|
|
rtsc_init(&cl->cl_virtual, cl->cl_fsc, cl->cl_vt,
|
|
cl->cl_total);
|
|
}
|
|
}
|
|
|
|
if (usc != NULL) {
|
|
if (usc->m1 == 0 && usc->m2 == 0) {
|
|
if (cl->cl_usc != NULL) {
|
|
free(cl->cl_usc, M_DEVBUF);
|
|
cl->cl_usc = NULL;
|
|
cl->cl_myf = 0;
|
|
}
|
|
} else {
|
|
if (cl->cl_usc == NULL)
|
|
cl->cl_usc = usc_tmp;
|
|
sc2isc(usc, cl->cl_usc);
|
|
rtsc_init(&cl->cl_ulimit, cl->cl_usc, cur_time,
|
|
cl->cl_total);
|
|
}
|
|
}
|
|
|
|
if (!qempty(cl->cl_q)) {
|
|
if (cl->cl_rsc != NULL)
|
|
update_ed(cl, m_pktlen(qhead(cl->cl_q)));
|
|
if (cl->cl_fsc != NULL)
|
|
update_vf(cl, 0, cur_time);
|
|
/* is this enough? */
|
|
}
|
|
|
|
splx(s);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* hfsc device interface
|
|
*/
|
|
int
|
|
hfscopen(dev_t dev, int flag, int fmt,
|
|
struct lwp *l)
|
|
{
|
|
if (machclk_freq == 0)
|
|
init_machclk();
|
|
|
|
if (machclk_freq == 0) {
|
|
printf("hfsc: no CPU clock available!\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
/* everything will be done when the queueing scheme is attached. */
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
hfscclose(dev_t dev, int flag, int fmt,
|
|
struct lwp *l)
|
|
{
|
|
struct hfsc_if *hif;
|
|
|
|
while ((hif = hif_list) != NULL) {
|
|
/* destroy all */
|
|
if (ALTQ_IS_ENABLED(hif->hif_ifq))
|
|
altq_disable(hif->hif_ifq);
|
|
|
|
int error = altq_detach(hif->hif_ifq);
|
|
switch (error) {
|
|
case 0:
|
|
case ENXIO: /* already disabled */
|
|
break;
|
|
default:
|
|
return error;
|
|
}
|
|
hfsc_detach(hif);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
hfscioctl(dev_t dev, ioctlcmd_t cmd, void *addr, int flag,
|
|
struct lwp *l)
|
|
{
|
|
struct hfsc_if *hif;
|
|
struct hfsc_interface *ifacep;
|
|
int error = 0;
|
|
|
|
/* check super-user privilege */
|
|
switch (cmd) {
|
|
case HFSC_GETSTATS:
|
|
break;
|
|
default:
|
|
#if (__FreeBSD_version > 400000)
|
|
if ((error = suser(p)) != 0)
|
|
return (error);
|
|
#else
|
|
if ((error = kauth_authorize_network(l->l_cred,
|
|
KAUTH_NETWORK_ALTQ, KAUTH_REQ_NETWORK_ALTQ_HFSC, NULL,
|
|
NULL, NULL)) != 0)
|
|
return (error);
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
switch (cmd) {
|
|
|
|
case HFSC_IF_ATTACH:
|
|
error = hfsccmd_if_attach((struct hfsc_attach *)addr);
|
|
break;
|
|
|
|
case HFSC_IF_DETACH:
|
|
error = hfsccmd_if_detach((struct hfsc_interface *)addr);
|
|
break;
|
|
|
|
case HFSC_ENABLE:
|
|
case HFSC_DISABLE:
|
|
case HFSC_CLEAR_HIERARCHY:
|
|
ifacep = (struct hfsc_interface *)addr;
|
|
if ((hif = altq_lookup(ifacep->hfsc_ifname,
|
|
ALTQT_HFSC)) == NULL) {
|
|
error = EBADF;
|
|
break;
|
|
}
|
|
|
|
switch (cmd) {
|
|
|
|
case HFSC_ENABLE:
|
|
if (hif->hif_defaultclass == NULL) {
|
|
#ifdef ALTQ_DEBUG
|
|
printf("hfsc: no default class\n");
|
|
#endif
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
error = altq_enable(hif->hif_ifq);
|
|
break;
|
|
|
|
case HFSC_DISABLE:
|
|
error = altq_disable(hif->hif_ifq);
|
|
break;
|
|
|
|
case HFSC_CLEAR_HIERARCHY:
|
|
hfsc_clear_interface(hif);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case HFSC_ADD_CLASS:
|
|
error = hfsccmd_add_class((struct hfsc_add_class *)addr);
|
|
break;
|
|
|
|
case HFSC_DEL_CLASS:
|
|
error = hfsccmd_delete_class((struct hfsc_delete_class *)addr);
|
|
break;
|
|
|
|
case HFSC_MOD_CLASS:
|
|
error = hfsccmd_modify_class((struct hfsc_modify_class *)addr);
|
|
break;
|
|
|
|
case HFSC_ADD_FILTER:
|
|
error = hfsccmd_add_filter((struct hfsc_add_filter *)addr);
|
|
break;
|
|
|
|
case HFSC_DEL_FILTER:
|
|
error = hfsccmd_delete_filter((struct hfsc_delete_filter *)addr);
|
|
break;
|
|
|
|
case HFSC_GETSTATS:
|
|
error = hfsccmd_class_stats((struct hfsc_class_stats *)addr);
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
hfsccmd_if_attach(struct hfsc_attach *ap)
|
|
{
|
|
struct hfsc_if *hif;
|
|
struct ifnet *ifp;
|
|
int error;
|
|
|
|
if ((ifp = ifunit(ap->iface.hfsc_ifname)) == NULL)
|
|
return (ENXIO);
|
|
|
|
if ((hif = hfsc_attach(&ifp->if_snd, ap->bandwidth)) == NULL)
|
|
return (ENOMEM);
|
|
|
|
/*
|
|
* set HFSC to this ifnet structure.
|
|
*/
|
|
if ((error = altq_attach(&ifp->if_snd, ALTQT_HFSC, hif,
|
|
hfsc_enqueue, hfsc_dequeue, hfsc_request,
|
|
&hif->hif_classifier, acc_classify)) != 0)
|
|
hfsc_detach(hif);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
hfsccmd_if_detach(struct hfsc_interface *ap)
|
|
{
|
|
struct hfsc_if *hif;
|
|
int error;
|
|
|
|
if ((hif = altq_lookup(ap->hfsc_ifname, ALTQT_HFSC)) == NULL)
|
|
return (EBADF);
|
|
|
|
if (ALTQ_IS_ENABLED(hif->hif_ifq))
|
|
altq_disable(hif->hif_ifq);
|
|
|
|
if ((error = altq_detach(hif->hif_ifq)))
|
|
return (error);
|
|
|
|
hfsc_detach(hif);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
hfsccmd_add_class(struct hfsc_add_class *ap)
|
|
{
|
|
struct hfsc_if *hif;
|
|
struct hfsc_class *cl, *parent;
|
|
int i;
|
|
|
|
if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
|
|
return (EBADF);
|
|
|
|
if (ap->parent_handle == HFSC_NULLCLASS_HANDLE &&
|
|
hif->hif_rootclass == NULL)
|
|
parent = NULL;
|
|
else if ((parent = clh_to_clp(hif, ap->parent_handle)) == NULL)
|
|
return (EINVAL);
|
|
|
|
/* assign a class handle (use a free slot number for now) */
|
|
for (i = 1; i < HFSC_MAX_CLASSES; i++)
|
|
if (hif->hif_class_tbl[i] == NULL)
|
|
break;
|
|
if (i == HFSC_MAX_CLASSES)
|
|
return (EBUSY);
|
|
|
|
if ((cl = hfsc_class_create(hif, &ap->service_curve, NULL, NULL,
|
|
parent, ap->qlimit, ap->flags, i)) == NULL)
|
|
return (ENOMEM);
|
|
|
|
/* return a class handle to the user */
|
|
ap->class_handle = i;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
hfsccmd_delete_class(struct hfsc_delete_class *ap)
|
|
{
|
|
struct hfsc_if *hif;
|
|
struct hfsc_class *cl;
|
|
|
|
if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
|
|
return (EBADF);
|
|
|
|
if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
|
|
return (EINVAL);
|
|
|
|
return hfsc_class_destroy(cl);
|
|
}
|
|
|
|
static int
|
|
hfsccmd_modify_class(struct hfsc_modify_class *ap)
|
|
{
|
|
struct hfsc_if *hif;
|
|
struct hfsc_class *cl;
|
|
struct service_curve *rsc = NULL;
|
|
struct service_curve *fsc = NULL;
|
|
struct service_curve *usc = NULL;
|
|
|
|
if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
|
|
return (EBADF);
|
|
|
|
if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
|
|
return (EINVAL);
|
|
|
|
if (ap->sctype & HFSC_REALTIMESC)
|
|
rsc = &ap->service_curve;
|
|
if (ap->sctype & HFSC_LINKSHARINGSC)
|
|
fsc = &ap->service_curve;
|
|
if (ap->sctype & HFSC_UPPERLIMITSC)
|
|
usc = &ap->service_curve;
|
|
|
|
return hfsc_class_modify(cl, rsc, fsc, usc);
|
|
}
|
|
|
|
static int
|
|
hfsccmd_add_filter(struct hfsc_add_filter *ap)
|
|
{
|
|
struct hfsc_if *hif;
|
|
struct hfsc_class *cl;
|
|
|
|
if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
|
|
return (EBADF);
|
|
|
|
if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
|
|
return (EINVAL);
|
|
|
|
if (is_a_parent_class(cl)) {
|
|
#ifdef ALTQ_DEBUG
|
|
printf("hfsccmd_add_filter: not a leaf class!\n");
|
|
#endif
|
|
return (EINVAL);
|
|
}
|
|
|
|
return acc_add_filter(&hif->hif_classifier, &ap->filter,
|
|
cl, &ap->filter_handle);
|
|
}
|
|
|
|
static int
|
|
hfsccmd_delete_filter(struct hfsc_delete_filter *ap)
|
|
{
|
|
struct hfsc_if *hif;
|
|
|
|
if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
|
|
return (EBADF);
|
|
|
|
return acc_delete_filter(&hif->hif_classifier,
|
|
ap->filter_handle);
|
|
}
|
|
|
|
static int
|
|
hfsccmd_class_stats(struct hfsc_class_stats *ap)
|
|
{
|
|
struct hfsc_if *hif;
|
|
struct hfsc_class *cl;
|
|
struct hfsc_classstats stats, *usp;
|
|
int n, nclasses, error;
|
|
|
|
if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
|
|
return (EBADF);
|
|
|
|
ap->cur_time = read_machclk();
|
|
ap->machclk_freq = machclk_freq;
|
|
ap->hif_classes = hif->hif_classes;
|
|
ap->hif_packets = hif->hif_packets;
|
|
|
|
/* skip the first N classes in the tree */
|
|
nclasses = ap->nskip;
|
|
for (cl = hif->hif_rootclass, n = 0; cl != NULL && n < nclasses;
|
|
cl = hfsc_nextclass(cl), n++)
|
|
;
|
|
if (n != nclasses)
|
|
return (EINVAL);
|
|
|
|
/* then, read the next N classes in the tree */
|
|
nclasses = ap->nclasses;
|
|
usp = ap->stats;
|
|
for (n = 0; cl != NULL && n < nclasses; cl = hfsc_nextclass(cl), n++) {
|
|
|
|
get_class_stats(&stats, cl);
|
|
|
|
if ((error = copyout((void *)&stats, (void *)usp++,
|
|
sizeof(stats))) != 0)
|
|
return (error);
|
|
}
|
|
|
|
ap->nclasses = n;
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifdef KLD_MODULE
|
|
|
|
static struct altqsw hfsc_sw =
|
|
{"hfsc", hfscopen, hfscclose, hfscioctl};
|
|
|
|
ALTQ_MODULE(altq_hfsc, ALTQT_HFSC, &hfsc_sw);
|
|
MODULE_DEPEND(altq_hfsc, altq_red, 1, 1, 1);
|
|
MODULE_DEPEND(altq_hfsc, altq_rio, 1, 1, 1);
|
|
|
|
#endif /* KLD_MODULE */
|
|
#endif /* ALTQ3_COMPAT */
|
|
|
|
#endif /* ALTQ_HFSC */
|